MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A.I. LAB

Artificial Intelligence
Memo No. 201 November 1970

COMPARATIVE SCHEMATOLOGY

Michael S. Paterson and Carl E. Hewitt

Work reported herein was supported by the Artificial
Intelligence Laboratory, an M.I.T. research program
sponsored by the Advanced Research Projects Agency of the

Department of Defense under Office of Naval Research con-
tract number N00014-70-A-0362-0002.

Reproduction of this document, in whole or in part, is
permitted for any purpose of the United States Government.

INTRODUCTION

While we may have the intuitive idea of one pProgramming
language having greater power than another, or of some subset
of a language being an adequate "core" for that language, we
find when we try to formalize this notion that there is a serious
theoretical difficulty. This lies in the fact that even quite
rudimentary languages are nevertheless "universal" in the follow-
ing sense. If the language allows us to program with simple
arithmetic or list-processing functions then any effective con-
trol structure can be simulated, traditionally by encoding a
Turing machine computation in some way. 1In particular, a simple
language with some basic arithmetic can express programs for any
partial recursive function. Such an encoding is usually quite
unnatural and impossibly inefficient. Thus, in order to carry
on-a practical study of the comparative power of different lan-

guages we are led to banish explicit functions and deal instead

with abstract, uninterpreted programs, or schemas. What follows

is a brief report on some preliminary exploration in this area.

LANGUAGES

The simplest language we shall study is a flow-chart lan-

guage with which we write program schemas such as shown in

2
Fig. 1. When we have provided an interpretation for the basic
function symbols and predicate symbols involved, a program schema
may be regarded as an executable program defining a partial func-
tion. As a convenient convention we take the arguments of this
function to be the initial values of locations Lis Lp,-.. (up to
as many as are mentioned) and the value as being the final value
of Lo if this is defined. Other locations Mg, Ml""’NO'Nl””
are used only as "working space". We may as well assume that

none of these latter locations is used as an argument before

being assigned to.

START Ly := H(Lj,L2) [

Fig. 1. A program schema.

Another language we shall use provides for the recursive
definition of functions using conditional expressions. For

example:

f(xl,xz) = if g(xy) then F(if P(xl) then x, else A)

else if P(xz) then true else f(xz,F(xl))

g(xl) if P(f(xl,F(xl)) then false else g(A)

defines two abstract functions by simultaneous recursion.

Given an interpretation of the basic functioh and predicate
symbols (which are the upper-case symbols in the definitions),
such a system defines a partial function corresponding to each
equation. The system is deemed to compute the function given by
the first definition. Such a system is called a recursive
schema. If there is only one equation it is a simple recursive

schema, if several it is compound.

INTERPRETATIONS AND EQUIVALENCE

An interpretation, I, for program schemas and recursive

schemas provides:
(i) a domain D

(ii) for each basic predicate symbol P, a (total) predicate

PI': D,—){true, false}

(iii) for each h—ary basic function symbol (n > 0) F, a
(total) function
F; : D"—D

In general, we use P, P', ... as predicate symbols and
other capital letters as function symbols. A constant is a
O-ary function.

The partial function defined by Schema S under interpreta-
tion I is denoted by Sy. For two partial functions u, v, we
write u ~ v if, for all x, either both of u(x), v(x) are unde-

fined or both are defined and u(x) = v(x). Two schemas S, S'

(not necessarily of the same type) are (strongly) equivalent,

S S' if, for all interpretations I, S

I1~S't-

Let of, o' be two classes of schemas. We write zi<ﬁgi'
if (vs € J)(as' € ') [s = s‘] and o { of if of (' but
not J' \< d. Let K be the class of recursive schemas and P be

the class of program schemas.

Theorem 1. & < R

Proof. To show #{ & involves only a routine construction which
we outline below. (For further details see [l] .) For each flow-
chart box b; in program schema U, consider the abstract paftial
function fi' which for given values of all the locations is com-
puted as followé. Start the schema at bi with the locations

having these values, and then the value of the function is the

final value of LO, if defined. It is easy to write a compound
recursive schema which defines the fi recursively. If b0 is
the START box then the function corresponding to U is got from

f by simply suppressing some of its arguments.

o
Now to show that the containment is proper, consider the

following recursive schema V.

V. f(x) = if P(x) then x

else H(£(L(x}), f£(R(x)))

We shall show that no program schema can be equivalent to

A useful notion is that of a free interpretation. 1In a
free interpretation the domain is the set of all strings composed
from the basic function symbols. Then, for example, if H is a

binary function symbol and Ej, E2 are strings,

HI(EI'EZ) =H El E2 for any free interpretation I.

The interpretation of the predicate symbols is unconstrained.
It should be clear that for most purposes, it is sufficient to
consider only free interpretations. For example, for any S, S',
S £ 8' if and only if St = SI' for all free I.

For the present proof (and the next one) we consider the

family of free interpretations { I, }n > 0o where

Py (E) true if length(E) = n

n

false otherwise.

what is the value of V. (A\) where X is the empty string?

I
For n = 1, the value is HL R,
for n =2, it isHHLLRLHLURRR
etc.

We show that to compute the value for I at least n + 1 loca-
tions are required for working space. It helps to present the
same situation in a geometric form. We are to play a game of
placing movable tokens on a finite binary tree, Tn' For n = 3
the tree T3 is given in Fig. 2. The rules of the game are that
any token may be put on a bottom node at any time. If the two
nodes below a given node are covered then any token may be put
at the given node. How many tokens are needed to be able to
reach the top node? It is easy to see that n + 1 are suffici-

ent in general for Tn’ and the following argument establishes

their necessity.
o /a\
H | /////// \\\\\\\
/ \a a\ . /u
R RLR LRR “

VANV AN A

RRR
RRL .

Fig. 2. Binary tree for n = 3.

A tree will be said to be closed at a given stage of the
game if there is at least one token on each path from top to
bottom. Initially, the tree is devoid of tokens and so is not
closed. Finally there is a token at the top node and so it is
closed. We concentrate our attention on the time at which the
tree first becomes closed. This can only happen as a result of
placing a token at a bottom node, closing off the last path.

Now this path is otherwise empty of tokens and so each of the n
sub-trees sprouting immediately off this path must be independently
closed. Since at least one token is needed to close any tree,
there are at least n+l tokens on the tree at this time.

The relation between a computation of a program schema and
moves in this game we assume to be selfevident. Suppose a pro-
gram scheme U is equivalent to V and has just r locations. This
is immediately absurd because there is no way for U to compute
the required output for the interpretation I.. This completes
the first proof.

Program schemas are therefore unequal to the task of com—
puting certain abstract functions for the simple reason that a
fixed number of locations cannot compute all the necessary final
values. This is not a very interesting reason so we show in a

second proof of the same theorem that program schemas can fail

for more subtle reasons which reflect the inadeguacy of their con-

trol structure. The "ta¥get" schema for this proof computes a

partial predicate and is got from V, more or less, by replacing

H by the Boolean function and.

Second Proof of Theorem l. Consider the recursive schema:

w. f(x) = if P(x) then true

else if f(L(x)) then f(R(x)) else false

Since the value of this schema is either true or is undefined,
no argument of the kind given above is useful. Suppose program
schema U is equivalent to W and has t boxes and r locations, and
we may suppose, without loss of generality, that the only predi-
cate and function symbols occurring in U are P, L, R. A state
of U under a given interpretation is specified by a box of U
together with a value from the domain for each location. Two

states, S;, S5, are (just-for-now) equivalent if the sequences of

boxes for the computations continuing from Sl' S, are the same.
Consider the equivalence classes of states of U under the inter-
pretation I, defined above. With a little thought one can see
that the only property of the value of a location which can affect
the equivalence class is the length of the string. Furthermore,
any two stringé of length greater than n are indistinguishable

by P either immediately or in their future. Thus, U has at most
te(n+2)T equivalence classes under I,- If, during a computation

of U, an equivalence class is repeated then the computation is

doomed to loop. Uy (1) is supposed to terminate (with value
n
true), hence must never repeat an equivalence class, and there-
r
fore runs for no more than t-(n+2) steps. If n has been chosen

sufficiently large that
20> te(n+2)F
then U cannot have time to test each one of

“+——n-—> «—n——> “— n——>

P(LL ...L), P(RL ... L), «- « « ., P(RR ... R)
but nevertheless halts with value true. If we slightly modify
I, by letting P be false for some such expression which is not
tested, thén of course U will never notice and still give the
value true, but the value of W is now undefined. Thus U FWw
and the proof is complete. (Of course this method of proof

works equally well for schema V.)

LINEARLY RECURSIVE SCHEMAS

The task of effectively characterizing those recursive
schemas which are "programmable" is impossible. Indeed, if
e gﬂz is the subset of those recursive schemas which are equi-
valent to some program schema, we can neither effectively enu-

merate ® * nor (ﬂ - @*. This follows from the application of

10

straight forward techniques which are described in [1] or [2]

and will not be proved here. The best that we can hope for then
is to effectively characterize large subclasses of Gf and

R - 07*. At present we have a fairly eétensive effective sub-
class oftf_- #* which encompasses both V and W and which we
are seeking to extend further.

On the other hand, an approximation to W* is provided by
the "linear" schemas which are described shortly. A recursive
schema may be regarded as giving a way of computing the value of
a nonbasic function given the values of the same or other func-
tions at other arguments. The determination of these latter
values will in general require further recursive calls, and so

on. For example, in the following schema:

f(x,y) = if P(x) then f(x,S(y)) else
if P(g(R(x))) then S(x) else H(g(R(x)),R(y))
g(x) = if P'(x) then H(g(S(x)), R(g(S(x))))

else if P(x) then f(x,x) else A

the evaluation of f(x,y) might need the value of f(x,8(y)) or
the value of g(R(x)), and the evaluation of g(x) might need the
value of g(s(x)) or f(X,x). But, notice in this example, and
this is the defining criterion for a linear schema, that in any

evaluation at most one further value of a nonbasic function is

11

immediately required.

Theorem 2. If X is linear then X _ ¢ p*.

Rather than give a proof of this theorem, we shall give
here an example of the translation into pProgram sch ema form of
a simple linear program. The proof of Theorem 2, however, is by
reducing the general linear case to a schema isomorphic to this
example. So the following translation or compilation may be

regarded as the "canonical" example!
L*. f(x) = if P(x) then R(x) else S(f(T(x)), x)

The second argument of S is an important feature, adding to the

difficulty of this example. Let vo,vl,...v be the values of
m

the successive instances of f called for in some terminating

evaluation. We observe that:

vm = Rp(r ™ (x))

r
v, = SI(Vr+1’ TI()(x)) for r =0, ..., m -1,

and further, that if only we had some form of counter able to

count up to integers less than or equal to m, then we could

easily evaluate f by computing in turn Vir v 17t vo.
. m-—

However, such a counter can be simulated when we realize that:

12

(x)
PI(TI (x)) = false for r =0, ..., m -1
= true for r = m.

An equivalent program schema to L* is given in Fig. 3.

DISCUSSION

Of course the efficiency of the above translation leaves
something to be desired, and we are paying for our restriction
to only»a finite number of locations by an increase in the com-
putation time. The cause of the problem in this example is that

we are required to compute, in order, the sequence:
™ iy, ™D (), ..., Tr(x), T(x)

which the schema L does by computing each term independently all
the way up from x, and thus requires of the order of m2 opera-
tions. To investigate this situation of trading off between
time and space in more detail we have considered the following
simple combinatorial problem.

Suppose we have always available the value X in a "read-
only" location, My, and we have in addition a further k locations,
Ml""'Mk’ For given fixed m, we want to write a shortest pos-

sible sequence of instructions of the form:

My o+ o= T(M) 0<i< k, 0< j<k

13

N

(= S(Lo, N

im T(No)

0) 0

My = T0) My o T04)

Fig. 3. Program schema equivalent to a linear schema.

to compute successively the values
™ (%), ... TT(x), T(X).

The values may appear in any location, but must be prodﬁced in
the given order. Let L(k,m) be the length of the shortest such
sequence of instructions. For example, L(l,m) = bm(m+1l). we

have derived an explicit formula for L(k,m) from which we can show

L(k,m) ~ mt/%

14

Thus, there exists the possibility of computing linear recursive

schematic functions using a fixed number of locations with rea-

sonable efficiency. However, it is likely that some more versatile

control structure than that of program schemas is required to
realize the possibility.

We are currently investigating the relations between various
augmented forms of program schema, such as program schemas with
counters, push—down stores, or stacks. These augmentations may
either be expressed by more complicated definitions of "schema"
or else may be got from the ordinary program schema by fixing part
of the interpretation. For example, to express the idea of
counters we could fix the interpretation of the constant symbol
ZERO, function symbols ADDl, SUBl, and predicate symbol POSITIVE?
in the obvious way. We must take care in applying some of the
well-known results of automata theory to this area. For example,
program schemas with counters are not "universal" in this theory,
becuase the first proof of Theorem 1 shows that no such schema
can be equivalent to the recursive schema V. However, we can
show that under an appropriate definition of push-down store pro-
gram schemas, they are equivalent to the class of recursive

schemas.

15

A CLASS OF PARALLEL SCHEMAS

For a very simple extension of recursive schemas we allow a
parallel form of conditional expression.

IF p THEN q ELSE r

has the value g if p is true, the value r if p is false and in
addi tion if p is undefined but g and r are both defined and are
equal then the value is g. As a special case of this connective

we define:
p /OR/ q to mean IF p THEN true ELSE g

So if either p or g has the value true then (p/OR/q) is true, and
if both p and q are undefined it is also undefined. Let 24 be

the class of schemas we get by extending UE with /OR/.

Theorem 3. & <

The proof of this theorem which is too long and detailed to
give here is by showing that no recursive schema can be equivalent

to the follbwing schema.
S. £(x) = if P(x) then true else (£(L(x))/OR/£(R(x)))

The value of SI(A) for a free interpretation I is true if there

is at least one string of L's and R's for which P is true and is

16

undefined otherwise. 1In the proof we characterize the behavior

of recursive schemas under the free interpretation where P is
always false. The only strings on the binary tree of (L,R)-strings
that a recursive schema can "look at"‘are those strings within a
bounded distance of a finite number of paths descending through

the tree. Therefore, any recursive schema must fail to test cer-
tain strings and so will give a different value from S for some

interpretations.

CONCL.USION

We have a clear notion of effective schemes of computation
involving uninterpreted functions, and should like to have a
fairly natural augmentation of program schemas capable of repre-
senting any such effective computation. A good candidate for this
supreme position in the hierarchy of schemas would seem to be pro-
gram schemas with two push-down stores. Provided the schema has
the ability to put special control constants in its stores and to
subsequently recognize them, the "universality" of this model
appears assured.

Throughout this paper we have made the simplifying assumption
that only total functions and predicates can appear in interpreta-
tions. Removing this assumption changes several of our results

and introduces new considerations. For example, to show that

17
éﬁl(_z{ we have only to notice that the schema
f(x) = (P(x) /OR/ P'(x))

has no recursive equivalent. Also the concept of effective com-
putation is now no longer unambiguous and depends on the conven-
tions we adopt concerning the evaluation of partial basic

functions.

ACKNOWLEDGMENT

We should like to mention the work of Dr. H. Ray Strong [3]
which discusses in more detail many of the topics of this paper,

and to acknowledge the helpful discussions we have had with him.

REFERENCES

l. D.C. Luckham, D.M.R. Park and M.S. Paterson, "On Formalized
Computer Programs", Journal of Computer and System Sciences,
Vol. 4, No. 3, dJune 1970.

2. M.S. Paterson, Equivalence Problems in a Model of Computation.
Ph.D. Thesis, Cambridge University, 1967.

3. H.R. Strong, Translating Recursion Equations into Flow Charts,
Parts 1 and 2. Reports RC 2834 (March 1970) and RC 2859
(April 1970), IBM Research Center, Yorktown Heights, N.Y.

