MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Artificial Intelligence
Memo No. 203 July 1970

MICRG-PLANNER REFERENCE MANUAL
by

Gerald Jay Sussman and Terry Winograd

This is a manual for the use of the Micro-Planner interpreter, which
implements a subset of Carl Hewitt”s language, PLANMER and is now
available for use by the Artificial Intelligence group

Work reported herein was supported by the Warren McCulloch Laboratory,

an M.I.T. research program sponsored by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract
number N00014-70-A-0362-0002. Reproduction of this document, in whole or
in part, is permitted for any purpose of the United States Government.

Micro-Planner Reference Manual
by
Gerald Jay Sussman and Terry Winograd

I. Introduction

1) Micro-Planner is an implementation of a subset of Carl Hewitt’s
language, PLANNER, by Gerald Jay Sussman, Terry Winograd, and Eugene
Charniak on the Al group computer in LISP, Micro-Planner is now a
publically accessible systems program in the AI group system ITS. The
current version of Micro-Planner, embedded in an allocated LISP, may be
obtained by incanting “:PLNR’ or °“PLNR<control-H>® to DDT. Micro-Planner
is also available as EXPR code or LAP code. All questions, suggestions,
or comments about Micro-Planner should be directed to Gerald Jay Sussman
(login name GJS) who will maintain the program,

2) Philosophical Overview

The “level” of a programming language is a term which is in
fairly common usage in the computer culture., We all agree, for example,
that FORTRAN, LISP, and PLI are higher level languages than, say assembly
language, regardless of our opinions of their relative merits for
expressing our individual styles of programming. After some
introspection, 1 decided that what is meant by the level of a language
is the amount of knowledge of programming style implicit in the language
processor and thus the quantity of detail which the user does not
explicitly have to specify because he may assume that the processor will
fill in for him. When we express the value judgement that LISP or PLT7,
for example, is a lousy language, what we mean is that the stylistic
assumptions made by the designers of the language are incompatible with
our own styles and thus overly restrict us, There are some of us (may
ITS preserve their file directories.,) with whom any restrictions are
incompatible and who thus always write in assembly language. There are
others, such as I, who find such restrictions an aid in the organization
of large programs, Thus, to me, LISP is useful in that it provides a
large library of subroutines with uniform calling sequences, a convenient
evaluator for defining recursively reentrant procedures from those
primitives and a bookkeeper for the maintenance of a list structured data
base. Indeed for these conveniences I pay heavily in space and time
efficiency, as well as in some feeling of constrained style,

PLANNER is the first of perhaps a whole new level of languages
which will basically be oriented toward the accomplishment of tasks (or
goals) which may in fact be broken down into subtasks (subgoals). By
contrast, in previous languages (as LISP) problem solutions are expressed
in terms of procedures (functions). The distinction is not immediately
apparent but should become more clear if we note that in a PLANNER
program, if a goal is activated then it may be satisfied by any number of
objects in the data base or by any number of theorems (the analogue of
procedure). A backup mechanism is provided so that one of the
possibilities is tried, and then if, as a consequence a failure occurs,

PACE 2

then another is tried, etc. Furthermore, the data and theorems need not
be referenced explicitly, but rather by saying, in essence, “the datum
(cr procedure) which fits the following pattern (or accomplishes the
desired result), In order for such data and theorems to be implicitly
referenced efficiently the system has the responsibility of constructing

and accessing a cross-referenced data base of data and theorems.

PACE 3

II. Programming in Micro-Planner

The easiest way to understand Micro-Planner is to watch how it
works, so in this section we will present a few simple examples and
explain the use of some of its most elementary features.

First we will take the most venerable of traditional deductions:

Turing is a human

All humans are fallible
SO

Turing is fallible.

It is easy enough to see how this could be expressed in the usual
logical notation and handled by a uniform proof procedure. Instead, let
us express it in one possible way to Micro-Planner by saying:

(THASSERT (HUMAN TURING))
(DEFPROP THEOREMI
(THCONSE (X) (FALLIBLE $?X)
(THGOAL (HUMAN $7?X)))
THEOREM)
(THASSERT THEOREMI)

The proof would be generated by asking Micro-Planner to evaluate the
expression:

(THGOAL (FALLIBLE TURING) (THTBF THTRUE))

We immediately see several points. First, there are two different
ways of storing information., Simple assertions are stored in a data
base of assertions, while more complex sentences containing quantifiers
or logical connectives are expressed in the form of theorems,

Second, one of the most important points about Micro-Planner is that
it is an evaluator for statements written in a programming language. It
accepts input in the form of expressions written in the Micro-Planner
language, and evaluates them, producing a value and side effects.
THASSERT is a function which, when evaluated, stores its argument in the
data base of assertions or the data base of theorems (which are cross-
referenced in various ways to give the system efficient -look=-up
capabilities). A theorem is defined with DEFPROP as are functions in
LISP. In this example we have defined a theorem of the THCONSE type
(THCONSE means consequent; we will see other types later). This states
that if we ever want to establish a goal of the form (FALLIBLE $?X), we
can do this by accomplishing the goal (HUMAN $?X), where X is a variable.
The strange prefix characters are part of Micro-Planner”s pattern
matching capabilities. If we ask Micro-Planner to prove a goal of the
form (A X), there is no obvious way of knowing whether A and X are
constants (like TURING and HUMAN in the example) or variables, LISP
solves this problem by using the function QUOTE to indicate constants,
In pattern matching this is inconvenient and makes most patterns much

PAGE 4

bulkier and more difficult to read. Instead, Micro-Planner uses the
opposite convention -- a constant is represented by the atom itself,
while a variable must be indicated by adding an appropriate prefix, This
prefix differs according to the exact use of the variable in the pattern,
but for the time being let us just accept $? as a prefix Indicating a
variable. The definition of the theorem indicates that it has one
variable, X by the (X) following THCONSE,

The fourth statement illustrates the function THGOAL, which calls
the Micro-Planner interpreter to try to prove an assertion, This can
function in several ways, If we had asked Micro-Planner to evaluate
(THGOAL (HUMAN TURING)) it would have found the requested assertion
immediately in the data base and succeeded (returning as its value some
indicator that it had succeeded). However, (FALLIBLE TURING) has not
been asserted, so we must resort to theorems to prove it, Later we will
see that a THGOAL statement can give Micro-Planner various kinds of
advice on which theorems are applicable to the goal and should be tried.
For the moment, (THTBF THTRUE) is advice that causes the evaluator to try
all theorems whose consequent is of a form which matches the goal. (i.e.
a theorem with a consequent ($?Z TURING) would be tried, but one of the
form (HAPPY $?Z) or (FALLIBLE $?Y $?%Z) would not. Assertions can not
have an arbitrary list structure for their format but they are not
limited to two-member lists or three-member lists as in these examples.)
The theorem we have just defined would be found, and in trying it, the
match of the consequence to the goal would cause the variable $?X to be
assigned to the constant TURING., Therefore, the theorem sets up a new
goal (HUMAN TURING) and this succeeds immediately since it is in the data
base, In general, the success of a theorem will depend on evaluating a
Micro-Planner program of arbitrary complexity, In this case it contains
only a single THGOAL statement, so its succeess causes the entire theorem
to succeed, and the goal (FALLIBLE TURING) is proved.

Consider the question “Is anything fallible?”, or in logic
(EXISTS (Y)(FALLIBLE Y)), This requires a variable and it could be
expressed in Micro-Planner as:

(THPROG (Y) (THGOAL (FALLIBLE $2?Y)))

Notice that THPROG (Micro-Planner®s equivalent of a LISP PROG,
complete with GO statements, tags, RETURN, etc.) acts as an existential

quantifier, It provides a binding-place for the variable Y, but does
not initialize it -- it leaves it in a state particularly marked as
unassigned. To answer the question, we ask Micro-Planner to evaluate

the entire THPROG expression above, To do this it starts by evaluating
the THGOAL expression. This searches the data base for an assertion of
the form (FALLIBLE $?Y) and fails. It then looks for a theorem with a
consequent of that form, and finds the theorem we defined abtove. Now when
the theorem is called, the variable X in the theorem is identified with
the variable Y in the goal, but since Y has no value yet, X does not
receive a value. The theorem then sets up the goal (HUMAN $?X) with X as
a variable. The data-base searching mechanism takes this as a command to
look for any assertion which matches that pattern (i.e. an

PAGE 5

instantiation), and finds the assertion (HUMAN TURING). This causes X
(and therefore Y) to be assigned to the constant TURIMC, and the theorem
succeeds, completing the proof and returning the value (FALLIBLEF TURINC).

There seems to be something missing. So far,the data base has
contained only the relevant objects, and therefore lMicro-Planner has
found the right assertions immediately, Consider the problem we vould
get if we added new information by evaluating the statements:

(THASSERT (HUMAN SOCRATES))
(THASSERT (GREEK SOCRATES))

Qur data base now contains the assertions:

(HUMAN TURING)

(HUMAN SOCRATES)

(GREEK SOCRATES)

and the theorem:

(THCONSE (X) (FALLIBLE $ X)
(THGOAL (HUMAN $7?2X)))

What if we now ask, “Is there a fallible Greek?” In Micro-Planner we

would do this by evaluating the expression:

(THPROG (X) (THGOAL (FALLIBLE $7?X)) (THGOAL (GREEK $7X))) ,
THPROG acts like an AND, insisting that all of its terms are satisfied
before the THPROG is happy. Notice what might happen. The first THGOAL
may be satisfied by the exact same deduction as before, since we have not
removed information. If the data-base searcher happens to run into
TURING before it finds SOCRATES, the goal (HUMAN $?X) will succeed,
assigning $?X to TURING., After (FALLIBLE $?X) succeds, the THPROG will
then establish the new goal (GREEK TURING), which is doomed to fail since
it has not been asserted, and there are no applicable theorems., If we
think in LISP terms, this is a serious problem, since the evaluation of
the first THGOAL has been completed tefore the second one is called, and
the “push-down list® now contains only the THPROG. If we try to go back
to the beginning and start over, it will again find TURING and so on, ad
infinitum,

One of the most important features of the Micro-Planner language is
that backup in case of failure is always possible, and moreover this
backup can go to the last place where a decision of any sort was made.
Here, the decision was to pick a particular assertion from the data base
to match a goal. Other decisions might be the choice of a theorem to
satisfy a goal, or a decision of other types found in more complex Micro-
Planner functions, Micro-Planner keeps enough information to change any
decision and send evaluation back down a new path.

In our example the decision was made inside the theorem for
FALLIBLE, when the goal (HUMAN $?X) was matched to the asserticn (HUMAN
TURING)., Micro-Planner will retrace its steps, try to find a different
assertion which matches the goal, find (HUMAN SOCRATES), and continue
with the proof. The theorem will succeed with the value (FALLIBLE
SOCRATES), and the THPROG will proceed to the next expression, (THGOAL

PACE 6

(GREEK $7X)). Since X has been assigned to SOCRATES, this will set up
the goal (GREEK SOCRATES) which will succeed immediately by finding the
corresponding assertion in the data base. Since there are no more
expressions in the THPROG, it will succeed, returning as its value the
value of the last expression, (GREEK SOCRATES). The whole course of the
deduct ion process depends on the failure mechanism for backing up and
trying things over (this is actually the process of trying different
branches down the subgoal tree.) All of the functicns like THCGOND, THAND,
THOR, etc, are controlled by success vs, failure., Thus it is the Micro-
Planner executive which establishes and manipulates subgoals in looking
for a proof.
Although Micro-Planner is written as a programming language, it
differs in several critical ways from anvthing which is normally
considered a programming language. First, it is goal-directed., Theorems
can be thought of as subroutines, but they can be called by specifying
the goal which is to be satisfied. This is like having the abilitiy to
say “Call a subroutine which will achieve the desired result at this
point.” Second, the evaluator has the mechanism of success and failure
to handle the exploration of the subgoal tree. Other evaluators, such as
LISP, with a basic recursive evaluator have no way to do this. Third,
Micro-Planner contains a bookkeeping system for matching patterns and
man ipulat ing a data base, and for handling that data base efficiently.
How is Micro-Planner different from a theorem prover? What is
gained by writing theorems in the form of programs, and giving them power
to call other programs which manipulate datd? The key is in the form of
the data the theorem-prover can accept. iost systems take declarative
information, as in predicate calculus, This is in the form of
~expressions which represent “facts’ about the world. These are

man ipulated by the theorem-prover according to some fixed uniform process
'set by the system, Micro~Planner can make use of imperative information,
telling it how to go about proving a subgoal, or to make use of an
assertion. This produces what is called hierachical control structure,
That is, any theorem can indicate what the theorem prover is supposed to
do as it continues the proof. It has the full power of a general
programming language to evaluate functions which can depend on toth the
data base and the subgoal tree, and to use its results to control the
further proof by making assertions, deciding what theorems are to be
used, and specifying a sequence of steps to be followed. What does this
mean in practical terms? In what way does it make a “better’ theorem
provet? We will give several examples of areas where the approach is
important., : :

First, consider the basic problem of deciding what subgoals to try
in attempting to satisfy a goal. Very often, knowledge of the subject
matter will tell us that certain methods are very likely to succeed,
others may be useful if certain other conditions are present, while
others may be possibly valuable, but not likely. We would like to have
the ability to use heuristic programs to determine these facts and direct
the theorem prover accordingly., It should be able to direct the search
for goals and solutions in the best vay possible, and able to bring as
much intelligence as possible to bear on the decision. In Micro-Planner

PACE 7

this is done by adding to our THGOAL statement a recommendation list
which can specify that ONLY certain theorems are to be tried, or that
certain ones are to be tried FIRST in a specified order. Since theorems
are programs, subroutines of any type can be called to help make this
decision before establishing a new THGOAL, Each theorem has a name (in
our definition on page !, the theorem was given the name THEOREMI), to
facilitate referring to them explicitly,

An important problem is that of maintaining a data base with a
reasonable amount of material., Consider the first example above. The
statement that all humans are fallible, while unambiguous in a
declarative sense is actually ambiguous in its imperative sense (l.e., the
way it is to be used by the theorem prover), The first way is to simply
use it whenever we are faced with the need to prove (FALLIBLE $7X).
Another way might be to watch for a statement of the form (HUMAN $7X) to
be asserted, and to immediately assert (FALLIBLE $?X) as well, There is
no abstract logical difference, but the impact on the data hLase is
tremendous., The more conclusions we draw when information is asserted,
the easier proofs will be, since they will not have to make the
additional steps to deduce these consequences over and over again.
However since we don‘t have infinite speed and size, it is clearly folly
to think of deducing and asserting everything possible (or even
everything interesting) about the data when it is entered. If we were
working with totally abstract meaningless theorems and axioms (an
assumption which would not be incompatible with many theorem-proving
schemes), this would be an insoluble dilemma. But Micro~-Planner is
designed to work in the real world, where ocur knowledge is much more
structured than a set of axioms and rules of inference. We may very
well, when we assert (LIKES $?X POETRY) want to deduce and assert (HUMAN
$?X), since in deducing things about an object, it will very often be
relevant whether that object is human, and we shouldn’t need to deduce it
each time. On the other hand, it would be silly to assert (HAS-AS-PART
$?X SPLEEN), since there is a horde of facts equally important and
equally limited in use. Part of the knowledge which Micro-Planner should
have of a subject, then, is what facts are important, and when to draw
consequences of an assertion., This is done by having theorems of an
antecedent type:

(DEFPROP THEOREMZ
(THANTE (X Y) (LIKES $?X $?Y)
(THASSERT (HUMAN $?X)))
THEOREM)

This says that when we assert that X likes something, we should also
assert (HUMAN $?X), Of course, such theorems do not have to be so simple.
A fully general Micro-Planner program can be activated by an THANTE
theorem, doing an arbitrary (that is, the programmer has free choice)
amount of deduction, asssertion, etc. Knowledge of what we are doing in
a particular problem may indicate that it is sometimes a good idea to do
this kind of deduction, and other times not. As with the CONSEQUENT
theorems, Micro-Planner has the full capacity when something is asserted,

PAGE &

to evaluate the current state of the data and proof, and specifically
decide which ANTECEDENT theorems should be called.

Micro-Planner therefore allows deductions to use all sorts of
knowledge about the subject matter which go far beyond the set of axioms
and basic deductive rules, Micro-Planner itself is subject-independent,
but its power is that the deduction processs never needs to operate on
such a level of ignorance. The programmer can put in as much heuristic
knowledge as he wants to about the subject, just as a good teacher would
help a class to understand a mathematical theory, rather than just
telling them the axioms and then giving theorems to prove.

Another advantage in representing knowledge in an imperative form is
the use of a theorem prover in dealing with processes involving a
sequence of events, Consider the case of a robot manipulating blocks on
a table. It might have data of the form, “block! is on block?,” “block?
is behind block3”, and “if x is on y and you put It on 2, then x is on z,
and is no longer on y unless y is the same as z°. Many examples in
papers on theorem provers are of this form (for example the classic
‘monkey and bananas’ problem). The problem is that a declarative theorem
prover cannot accept a statement like (ON Bl BZ) at face value., It
clearly is not an axiom of the system, since its validity will change as
the process goes on, It must be put in a form (ON Bl B2 S0) where S0 is
a symbol for an initial state of the world. The third statement might be
expressed as:

(FORALL (X Y Z S)(AND (ON X Y (PUT X Y S))
(OR(EQUAL Y 2Z)
(NOT(ON X Z (PUT X Y $))))))

In this representation, PUT is a function whose value is the state
which results from putting X on Y when the previous state was S, We run
into a problem when we try to ask (ON Z W (PUT X Y S)) 1i.e. is block 2
on block W after we put X on Y? A human knows that if we haven’t touched
Z or Wwe could just ask (ON Z W S) but in general it may take a complex
deduct ion to decide whether we have actually moved them, and even if we
haven‘t, it will take a whole chain of deductions (tracing back through
the time sequence) to prove they haven”t been moved. In Micro-Planner,
where we specify a process directly, this whole type of problem can be
handled in an intuitively more satisfactory way by using the primitive
funct ion THERASE, :

Evaluating (THERASE (ON $?X $2Y)) removes the assertion (ON $?X $?Y)
from the data base., If we think of theorem provers as working with a set
of axioms, it seems strange to have function whose purpose is to erase
axioms, If instead we think of the data base as the “state of the
world® and the operation of the prover as man ipulating that state, it
allows us to make great simplifications. Now we can simply assert (ON B
BZ) without any explicit mention of states, We can express the necessary
theorem as:

(DEFPROP THEOREM3
(THCONSE (X Y Z) (PUT $?X $?Y)

PACE 9

(THGOAL (ON $?X $7?Z))

(THERASE (ON $?X $?Z))

(THASSERT (ON $?X $7Y)))
THEOREM)

This says that whenever we want to satisfy a goal of the form (PUT
$?2X $?Y), we should first find out what thing Z the thing X is sitting
on, erase the fact that it is sitting on 2, and assert that it is sitting
on Y. We could also do a number of other things, such as proving that it
is indeed possible to put X on Y, or adding a list of specific
inst ruct ions to a movement plan for an arm to actually execute the goal.
In a more ccmplex case, other interactions might be involved., For
example, if we are keeping assertions of the form (ABOVE $: $2Y) we
would need to delete those assertions which became false when we erased
(ON $?X $F2Z) and add those which became true when we added (ON $?X $7Y).
ANTECEDENT theorems would be called by the assertion (ON $?X $?Y) to take
care of that part, and a similar group called ERASING theorems can he
called in an exactly analogous way when an assertion is erased, to derive
consequences of the erasure, Again we emphasize that which of such
theorems would be called is dependent on the way the data base is
structured, and is determined by knowledge of the subject matter. In
this example, we would have to decide whether it was worth adding all of
above relations to the data base, with the resultant need to check them
whenever something is moved, or instead to omit them and take time to
deduce them from the ON relation each time they are needed.

Thus in Micro-Planner, the changing state of the world can be
mirrored in the changing state of the data base, avoiding any need to
make explicit mention of states, with the requisite overhead of
deductions. This is possible since the information is given in an
imperative form, specifying theorems as a series of specific steps to be
executed.

If we look back to the distinction between assertions and theorems
made on the first page, it would seem that we have established that the
base of assertions is the “current state of the world”, while the base of
theorems is our permanent knowledge of how to deduce things from that
state. This is not exactly true, and one of the most exciting
possibilities in Micro-Planner is the capability for the program itself
to create and modify the Micro-Planner functions which make up the
theorem base. Rather than simply making assertions, a particular Micro-
Planner function might be written to put together a new theorem or make
changes to an existing theorem, in a way dependent on the data and
current knowledge. It seems likely that meaningful ‘learning” involves
this type of behavior rather than simply modifying parameters or adding
more individual facts (assertions) to a declarative data base,.

PACGE T1°¢

111. The Micro-Planner Primitives

This section will basically be a list of the Micro-Planner
primitives with a detailed description of each. Pteta-Lingulistic
variables will be enclosed in angle brackets (<>).,

The heart of Micro-Planner is a structure knovn as THTREE,; it is
to the hierarchical control structure of PLANNER what a push-down list i
to a recursive control structure such as is found in LISP, In LISP the
push down list remembers the return addresses of recursive function
calls; in Micro-Planner THTREE keeps track of the decisions (or
hypotheses) made so far in the problem-solving process which are
currently considered relevant to the solution. In case a failure occurs
PLANNER can back up THTREE, undoing the decisions which caused the
failure until a promising approach is found. If none is found the
program returns a failure. THTREE is a tree structure, each node of
which contains information about how to proceed in case either success or
failure propagates to that node. Failure is propagated from a node if
and only if a failure propagates to it and no further possibilities exist
at that node. A node of THTREE may be thought of as a goal, with
branches originating at this node associated with tentatively useful
hypot heses for establishing the goal. ,

Closely associated with THTREE is THALIST, the list of variable
bindings. Certain primitives bind variables by declaration. In their
initial bound state variables are called unassigned and are assigned to
“THUNASSIGNED.” THALIST shares the tree structure of THTREE,

Because of the non-recursive implementation of the Micro-Planner
interpreter the PLANNER value of an expression is not the same as its
LISP value. In most cases this is unimportant because PLANNER
expressions are usually executed for effect rather than for value, The
PLANNER value of an expression is however available as the LISP value of
the LISP free variable THVALUE immediately after the expression is
executed. Although this is not a very pretty convention it introduces
some very great simplifications in the implementation.

S

1) (THPROG <variable declaration> <el> ... <en>)

THPROG is the PLANNER equivalent of tke LISP function PROG, Its job
is to bind the variables mentioned in the declaration and then to execute
the expressions <ei> in sequence, unless changes in sequence are '
specified by tags and THGO statements. As in LISP, atoms occuring in
THPROG bodies are interpreted as tags., If (THGO <tag>) is executed at
any point in the interpretation of a THPROG, execution then proceeds from
the expression immediately following the tag <tag>. THGO statements may
refer to tags which are not in the current THPROG but which are in one
which called it. The execution of THPROG terminates either with a
failure, successful execution of its last expression, <en>, or by a
forced success with a THRETURN statement., (THRETURN <exp>) is equivalent
to (THSUCCEED THPROG <exp>) and will cause the THPROG to succeed and
return as its PLANNER value the LISP value of the indicated expression.
If a THPROG returns by succeeding past the last statement, or by
executing a (THSUCCEED THPROG), it returns as its PLANNER value the atom
THNOVAL. If it fails, it returns NIL,

PAGE 11

The variable declaration list is a list of variable declarations, A
variable declaration is either an atom which is the name of a variable to
be used inside the THPROG, or a list of two elements, the first of which
is the variable name and the second of which is a LISP expression whose
LISP value is to be used as the initial value of the variable, 1If a
variable is bound without giving it an initial value it is given the
default value °‘THUNASSIGNED.”

Evaluation of a THPROG begins at the first expression of the indicated
sequence, If It succeeds, a new branch is generated on THTREE and the
next expression in sequence is evaluated, etc. If any statement fails
then the branches are unwound until either a new success ends the failure
propagation or there are no more branches and the THPROG fails. Thus
THPROG behaves as a THAND with variable binding capability; it fails
unless each of its subexpressions succeeds, allowing for backup, until it
returns, As usual, any LISP expression may appear in a THPRCG; if it
evaluates to NIL, a failure is generated, otherwise a success Is assumed,
Other relevant functions are THSUCCEED, THFAIL, THFINALIZE, THGO, and
THRETURN.

2) (THAND <el> ... <en>)

THAND fails unless each of its subexpressions succeeds in sequence,
allowing for backup. It is just like THPROG except that there are no
variable declarations or tags allowed,

3) (THOR <el> ... <en>)

THOR succeeds if at least one of its subexpressions succeeds.
Basically, it CDRs down the list looking for a winner and if it finds one
it succeeds, returning its value as the PLANNER value, If a failure
propagates back to it, however, it continues CDRing from the point it
left off until it finds another winner or It loses.

4) (THAMONG <variable name)> <expression>)

Upon entry the variable named (by an atom) must be bound If it is
unassigned then it will be assigned to the first member of the list of
choices to which <expression> THVALuates, 1If the variable already has a
value (is assigned), THAMONG fails unless the assigned value is already
among the choices. Each time a failure backs up to the THAMONG the
variable will be assigned to the next element of the choice list. If it
runs out of choices it fails, otherwise it succeeds.

5) (THGOAL <pattern> <recl> ... <recn>)

This Is a real dilly to describe. It is probably the most complex
single primitive in Micro-Planner. Assume the simplest case in which
there are no recommendations <reci> given., THGOAL searches the data base
for a datum (i.e. an assertion) which matches the pattern. If it finds
one, it succeeds after assigning all of the unassigned variables in the
pattern so as to make it match the datum; it then returns the assertion
found as its PLANNER value. If it does not find a matching datum it
fails, 1If after a success, a failure propagates back to It, it unassigns
the variables it assigned last time and continues its search for a

PACE 12

matching datum from where it left off,.

If recommendations are given they are tried in order., If the very
first recommendation is a (THNODB) or a (THDBF -) the initial data tase
search is inhibited, otherwise it is assumed in default, The possihle
recommendations are:

1) (THNODB) - Inhibit data base search, If it is not first it is
useless and causes an error,

?2) (THDBF <filter>) - Try only those elements of the data base
satisfying the filter.

3) (THTBF <filter>) - Try only those theorems satisfying the filter,

4) (THUSE <thl> <th2> ,.,.<{thn>) - Try the theorems given explicitly
by their atom headers in the order mentioned,

A filter is any unary LISP predicate; the always true predicate 1is
supplied by the system as THTRUE., All assertions have property lists
which are their CDRs, Thus if a filter refers to the CDR of its argument
it is referring to the property list., CAR of an assertion, however, is
not -] as in LISP atoms, rather it Is the datum which is matched against
the pattern.

If a theorem is recommended, say with THUSE, it had better be an atom
with a THEOREM property pointing to a consequent theorem (i.e. it must be.
of the form (THCONSE <variable declarations> <{consequent> <el> ...
<en>))). If the goal pattern matches the consequent, then the theorem
will be tried. The matcher will first bind the theorem variables
appearing in the declaration (see THPROG) and then match the patterns,
causing some of the theorem variables to be assigned and leaving others
unassigned. If the match wins, the theorem will proceed to execute as a
THPROG, If the theorem succeeds the PLANNER value of the THGOAL will be
the pattern of the goal with the assignments substituted for the assigned
variables, unless the theorem does a THRETURMN, in which case the PLANNER
value of the THGOAL will be the goodie returned., If a goal variable
which is unassigned is matched against a theorem variable and the theorem
eventually gives that variable a value then the goal variable also gets
the value., A more detailed description of the matcher will be given
later.

6) (THFIND <mode> <skeleton> <variable declarations> <el> ..., <en>)

THFIND is a primitive whose THVALuation vields a list of objects, each
of which is the result of substituting for variables in the skeleton
values of those variables which cause the program starting at the
variable declarations (like a THPROG) to succeed., Thus, for example, the
data-base contained the assertions (HACKER N) (HACKER H) (HACKER RG) (AT
MAC RG) and we THVALed the expression (THFIND ALL (AT SC $?X) (X) (THGOAL
(HACKER $7X)) (THNOT (THGOAL (AT MAC $7?X)))) we would get ((AT SC N) (AT
SC H)) as its THVALUE (PLANNER value)., The mode field of a THFIND
statement is a triplet (<at least> <at most)> {resultd>), THFIND fails
unless it finds at least a number equal to CAR of the mode and if it
finds greater than or equal to CADR of the mode it returns CADDR of the
mode, If CADR of the mode is not a number it will never be found. The
mod§ triplet may be abbreviated by ALL = (7 NIL NIL), any number n = (n
nT),

PAGE 13

7) (THCOND <pairl> ... <pair n>)

THCOND is the PLANNER analogue of COND in LISP., As in MAC-LISP the
‘pairs’ needn’t be. Basically THCOND executes the CAR cf each pair until.
one succeeds. The THCOND will then succeed if all the rest of that
‘pair’ succeeds (like a THAND) else THCOND will fail,

§) (THNOT <e>) is defined as (THCOND (<e> (THFAIL)) ((THSUCCEED))).

9) (THASSERT <(skeleton> <recl> ... <recn>)

THASSERT adds the assertion (formed by substituting assignments for
variables (or by THVALing $E°s as described in the matcher section) in
the skeleton) to the data-base except if the skeleton is an atom, In
which case it adds the atom as a theorem to the theorem base.

THASSERT only fails if it tries to assert an already existing
assertion. If the first recommendation to a THASSERT is a (THPROP <e>)
then the LISP value of <e> is used as the property list of the assertion
being asserted, THASSERT also may recommend antecedent theorems with
THTBF or THUSE as in THGOAL, though the success or failure of those
theorems is irrelevant to success or failure of the assertion. The
PLANNER value of a THASSERT is the object asserted.

10) (THERASE <skeleton> <recl> ... <recn>) is identical to THASSERT
except for effect. 1If a failure backs up to an assertion or an erasure
it is undone,

117). (THDO Kel> ... <en>)

THDO executes each of Its subexpressions In turn and cares not whether
they succeed or fail; it then succeeds, If a failure backs up to it, all
that it did is undone.

12) (THAPPLY <theorem> <{datum>) <calls the specified theorem causing it
to match its pattern to the specified datum, If it matches the theorem
is executed with <datum) as its “argument.” The THVALUE of a THAPPLY is
the value of the theorem applied. :

13) THPUTPROP, THREMPROP, THRPLACA, THRPLACD are just like their LISP
counterparts except that if a failure backs up to them they undo their
effect.

14) (THSETQ <varl> <el> ... <varn> <en>)

Sets variable 7 to the value of el and ... and sets variable n to
the value of en. ULndone if failure backs up to it. If the variable is a
planner variable then the corresponding expression is THVALed; otherwise
the expressicn is EVALed, See warning about THVAL.

15) (THVSETQ <varl> <el> ,.. <varn> <en>)
Sets the variables to the values of eis as in THSETQ. ilot undone on
failure backup. See warning about THVAL.

PAGE 14

16) (THV <variable name>) (THNV <Kvariable name))

These LISP functions get the PLANNER value of thke variable vhosn name
is given. The atoms THV and THHV also serve as markers of the special
variable flags to the matcher. (THV FOO0) is $?F00 and (THNV FOO) is
$_FO00 by using the macro-character feature of LISP 1.6

17) (THVAL <expression> <alist?>)

THVAL is the lMicro-Planner evaluator just as EVAL is the LISP
evaluator. As in LISP, the first argument is evaluated (THVALuated) with
free variables in it given the values asscciated with them on the given
alist. Micro-Planner”s alist, called THALIST, is a list of pairs (CAR-
CADR not CAR-CDR) of variable names and values., If you want to stop a
Micro-Planner evaluation at the next Interruptable place hit ctrl-A.
Planner will then type out tA-THVAL and go into its listen loop. The
next expression to be executed is in the variable THE. To proceed, type
T<{space>; to terminate the calculation by infinite failure type
NIL< space>. Warning: an explicit call to THVAL may not be reentered for
backup upon failure after that call returns,

176) (THUNIQUE <variable name>) -

THUNIQUE is a primitive by wich a user may test to see if he is in one
kind of infinite loop. THUNIQUE assumes that the variable given is
bound.’ If the variable is bound, it Is assumed that it is assigned to a
list of atoms and expressions, THUNIQUE will then fail if there is any
previous binding and assignment of the given variable for which the atoms
and expressions THVALuate identically, the atoms keng interpreted as
variables.

19) (THFINALIZE <argl!> <arg?>)

THFINALIZE is a primitive which allows prunlng of THTREE,
Essentially, if one THFINALIZES, say to a tag, then all the things done
since that tag was passed are not undoable in case of failure. Example:
To put all of the green blocks In the box and return a list of those
actually moved:

(THPROG (X (Y NIL))
(THOR (THAND (THCOAL (IS $?X BLOCK))
(THGOAL (COLOR $?X GREEN)))
(THRETURN $?Y))
FOO
(THCOND ((THGOAL (CONTAIN BOX $?X)) (THFAIL))
((THGOAL (PUTIN $?X BOX) (THUSE TC-PUTIN))
(THSETQ $?Y (CCNS $7?X $7Y))
(THFINALIZE THTAG FOQO)
(THFAIL))
((PRINT $7?X) (THERT CAN NOT PUT IT IN))))

Besides finalizing to a tag, one can finalize a theorem or a THPROG by
saying (THFINALIZE THEOREM) or (THFINALIZE THPROG). There are lots of
other things that can be dorne with THFINALIZE, but I will not guarantee

PAGE 15

them,

20) (THSUCCEED <argl> <Largl>)
THSUCCEED caused success to propagate, the extent of which is
determined by the arguments:
(THSUCCEED THTAG <tag>) = (THGO <tag>) - see THPROG.
(THSUCCEED THPROG <e>) = (THRETURN <e>) - see THPROG.
(THSUCCEED <place>) = (THSUCCEED <place> T)
(THSUCCEED THEOREM <e>) causes theorem to succeed with value of <eb>,
(THSUCCEED THEOREM) causes the thecrem to succeed with value THNOVAL,
(THSUCCEED) causes a simple success to propagate.

21) (THFAIL <argl> <arg?> <arg3>)
THEAIL causes failure to propagate, the extent of which is determined
by the arguments:
(THFAIL THTAG <tag> T) causes a failure to propagate to the tag
indicated.
" (THFAIL THTAG <tag>) causes a failure to propagate past the tag
indicated.
(THFAIL THPROG), (THFAIL THEOREM) cause the THPROG or the THEOREM
currently in to fail.
(THFAIL THINF) causes failure to top level of THVAL,
(THFAIL THMESSAGE <message®) causes a failure to propagate until it
reaches a THMESSAGE statement whose pattern matches the message.

22) (THMESSAGE <variable declarations)> <pattern> <el> . . . <en>)
examines failures propagating to it, if one has a message which matches
the pattern (after the declarations are made) control then passes to the
body, <ei>, which executes as a THPROG.

23) (THGO <tag>) = (THSUCCEED THTAG <tag>)
'24) (THRETURN <e>) = (THSUCCEED THPROG <e?>)

25) (THASVAL <variable>)
THASVAL is a predicate which assumes that the indicated variable is
bound. It succeeds if and only if the variable is assigned a value.

26) (THFLUSH <indicatorl!> <indicatorZ> ,..)

THFLUSH is a generally useful function for getting a LISP into some
desired state. It remprop’s all properties with the indicators specified
from all atoms on the OBLIST. :

27) (THDUMP) dumps the state of a Micro-Planner as to assertions and
theorems on the currently selected output devices,

28) (THDATA) causes Micro-Planner to go intc a read loop for gobbling
assertions and theorems at high speed. Loop ends when NIL is read,

PAGE 16

29) (THBKPT <comment>) has no effect unless THTRACEd. If it

is, a
THBKPT becomes a comment which is typed out and which breaks if

U4
desired,

30) THEQREMS A

Theorems are the Micro-Planner analogue of functions in LISP. There
are three kinds:

consequent theorem - for establishing goals

antecedent theorems - for expanding on assertions

erasing theorems - for expanding on erasures.
Thecrems are defined by (DEFPROP <name> <body> THEOREM) and are added to
the data-base using THASSERT or THDATA and may be removed with THERASE,
The form of a theorem Is (<indicator> {variable declaratlions) <pattern)
<el> ... <en>), where the indicator may be THCCNSE, THAMNTE, or THERASING,
whichever is appropriate., When a theorem is called the declared
variables are bound and thee pattern is matched to the calling pattern in
THGOAL or datum in THASSERT, THERASE, and THAPPLY. This has the effect
of assigning some of the theorem”s variables. The theorem is then
executed as a THPROG if the match succeeds.

31) The Matcher

The Matcher in Micro-Planner is elémentary and contains a minimum of
bells and whistles but is (hopefully) sufficiently powerful for most
problems, If more powerful matching capabilities are needed, hooks are
provided for the user to hang himself by. (If you wish to hang yourself
come see me first., If you really need hair, wait for Hewitt”s PLANNER.)
Micro-Planner®s matcher only matches lists one level deep and only has
two distinct kinds of variable occurrences. The matcher®s actions can be
summarized in the é-by-6 chart on the next page, which shows how any two
pattern elements interact. One nice hook in the matcher is that a
pattern element (or the entire pattern) may be of the form $E<expression)
or (THEV <expression>) (those macro-characters are at it again.) , which
means that the element (or pattern) is tc be replaced with the result of
THVALuating the expression with an appropriate THALIST, For example, to
stack up all red objects:

(THGOAL (STACKUFP $E(THFIND ALL $?X (X) (THGOAL (COLOR $?X RED))))).

MATCHER CHARACTERISTICS

Callin
Pattérn 5 $?X or (THV X) $¢X or (THNV X) |Constant
) un-— un-— C
Theorem) . . .
Pattern assigned |assigned J|assigned |assigned
?
':; (D V(X)-V(Y) V(Y)Y V(X) [V(X)&V(Y) [V(X)¢V(Y) |V(Y)YC
11 & Ye X Y+ X Y€ X
E g u o
3 @ A - —_— —_—— ———— _——— _
[)
1] e VX)XV (Y) V(X)eV(Y) VX))V (Y)
© 1 g Ye X Y& X Y& X
> u g
S S - -—- - ——- - - -
w 0 V (Y) =V (X) vV (Y)=C
= e V(X)¢V(Y) |[V(Y)V(X) [V(X)EV(Y) V(X)«V(Y) |V(Y)<C
E:i Y& X Y& X Y& X
S o o-H
B)
o V(X V(Y) |[V(Y)EV(X) [V(X)EV(Y) [V(X)eV(Y) [V(Y)eC
O |t | 8 Y& X Y& X Y& X
B v O - _— - _— _ —_
5| °2
o)
é
constant V(X¥D V(X)¢D V(X)¢D
D . L _ L o o
V(X)=D D=20C
~—
Action Taken -- Blank if no action is taken
€+—Condition for Success -- Blank if always succeeds
V(X) means value of X, V(Y) means value of Y

V(Y)¢V(X) means Y assigned to value of X

Y€ X means Y assigned to value of X such that if Y is

clobbered,

so is X

PAGF 1§

IV, A Compendiumn of Micro-Planner Error Comments

The Micro-Planner error comments are meant to be self-explanatcory. If
you come across one vwhich is not, it is probably meant for me, rot you,
and it would help in removing residual bugs for you to save the situation
and show it to me. All VMicro-Planner error comments are typed out by a
break function called THERT which leaves you in a LISP listen locp at a
point as close as possible to the occurrence of the error, so that the
state of the system may be interrogated. LUsually the error is fatal,
but if you wish to proceed, type T<space>. By typing NIL<{space) at the
listen loop the program will be aborted by infinite failure in an effort
to restore the data base. Usually something is typed out before the
error comment; that is the object the comment is complaining about.
Micro-Planner error comments almost always end with =<{funny word>; the
{funny word> is the name of the system function which got mad. The
authorized list follows:

LISPERROR - THVAL _
LISP became unhappy when trying to evaluate the expression typed out,

BAD SUCCEED - THVAL, or BAD FAIL - THVAL
You were screwed by a Planner bug. Please save situation and contact
me .

UNCLEAR RECOMMENDATION - THTRY

The expression typed out before the error comment was a recommendation
to THGOAL which was not either a THTBF, THDBF, or a THUSE, or was a
THNODB which did not come first In the list.

BAD THEOREM = THTRY] _
The expression printed was passed to THGCAL as a THEOREM. It either
did not have a THECREM property or was not a ccnsecuent theoren.

NCT FOUND - THUNIQUE
The expression printed out was passed to THUNIQUE as the reference
variable; unfortunately it was unbound.

THUNBOUND - THUNIQUE
The variable printed out was unbound. It was accessed by THUNIQUE.

BAD CALL - THFINALIZE
You called THFINALIZE without giving a place to finalize to.

OVERPOP - THFINALIZE
THFINALIZE overpopped THTREE trying to find the lousy place to stop.

OVERPOP - THSUCCEED
THSUCCEED overpopped THTREE trying to find the place to stop
succeeding. Remember that THGO and THRETURN use THSUCCEED,

PACE

OVERPCP - THFAIL
THFAIL overpopped THTREE'trying to find a place tc stop failing.

IMPURE ASSERTION OR ERASURE - THASS] ,
The datum you tried to assert or erase had a variable which was

unassigned.

EAD THEOREM - THTAE
You tried to call an antecedent or erasing theorem which was of the

wrong type or did not have a theorem property.

UNCLEAR RECOMMENDATION - THTAE
You gave a THASSERT or THERASE recommendation which was not a THTBF

a THUSE.

ODD NUMBER OF GOODIES - THSETQ, cr CDD NUMBER OF GOODIES - THVSETQ
THSETQ or THVSETQ does not know what to do with the last goodie.

THUNBOUND = THVI
You tried to access the value of the unbound variable printed,

THUNASSIGNED - THVI1
You tried to use the value of the unassigned variable printed.

OVERPOP - THREMBIND
Probably a Planner bug. See GJS,

THUNBOUND - THGAL
You tried to access the unbound variable printed.

16

or

PACE 20

V. Hints and Kinks

1) ALl atoms whose pnames begin with TH are property of Micro-Planner and
should not be used in programs designed to interact with it,

2) when Micro=-Planner Is loaded (by :PLNR in DDT) it is listenirg in a
READ-THVAL-PRINT loop at the top level. Typing t<space> will cause this
loop to be exited to a LISP READ-EVAL-PRINT loop. Any error condition
which propagates to the top level (eg. cntrl-G) will restart the READ-
THVAL-PRINT listen lcop.

3) The system version of licro-Planner has a LAP in it. It is desirable
to REMLAP at the earliest possible time as the LAP takes up lots of

space.

4) The EXPR version of Micro-Planner is In DSK:GJS; PLNR > and the LAP
version is stored in DSK:GJS;PLNR LAP, '

5) Because most Micro-Planner primitives operate by modifying THTREE and
then returning, it is fairly unilluminating to try to trace them with a
LISP tracer (which is good for the LISP recursive control structure),
For that reason I have taken pains to provide a tracer which is more
relevent to the planner control structure. It is available as EXPR code
in DSK:GJS;THTRAC >, With it one can conditionally trace and break on
theorems, assertions, erasures, and goals, To use the tracer one must
first read it in and then incant (THTRACE <obj1> . . . <objn>), where
each object is an item to be traced or broken at. The possible entries
are either: :

<atom> abbreviation for (<atom> t nil) :

(<atom> <trace condition>) abbreviation for (<atom> <trace condition>
nil) or

(<atom)> <trace condition> <break condition>)

The CAR of the item may either be the name of a theorem or one of the
following atoms which have special meanings:

THEOREM all theorems

THGOAL =~ all goals

THASSERT all assertions

THERASE all erasures

THBKPT all breakpoints

The conditions are THVALed with the THALIST which is current at the time
of call and thus may be arbitrary PLANNER programs which test the state
of variables and the data base, Tracing of selected items, or of all
items may be terminated using THUNTRACE,

6) A Micro-Planner program may at any point call a LISP program, but a
LISP program may not call a Micro-Planner primitive because the PLANNER
control structure is not really recursive, If a LISP routine wishes to
call a PLANNER program it must explicitly THVAL it with an appropriate
THALIST, Be especially careful not to screw around vith the LISP values
of Micro-Planner primitives unless you understand what you are doing.

PAGE 21

The possibilities for lossage are infinite.

