MASSACHUSETTS INSTITUTE OF TECHHOLOGY

ARTIFICIAL INTELLIGEMCE LABORATORY

Artifiecial Intelligence December 1971
Memo HNeo, 203A (Updates 203)

MICRO=-PLAMNER REFERENCE MANUAL
by

Gerald Jay Sussman, Terry VWinograd, and Eugene Charnlak

This is a manual for the use of the Micro Planner Interpreter, which

implements a subset of Carl Hewlitt's language, PLANNER and s now
available for use by the Artificlial Intelligence Group.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Frojects Agency of the Department
of Defense under Office of Maval Hesearch contract MODD1l4=70-A-
0362-0002.

Micro=Planner Reference Manual
by
Gerald Jay Sussman, Terry Winograd, and Eugene Charniak

l. Introduction

1) Micro=Planner is an implementation of a subset of Carl Hewitt's
language, PLANNER, by Gerald Jay Sussman, Terry Winograd, and Eugene
Charniak on the Al group computer inm LISP., Micro=-Planner is now a
publicly accessible systems program In the Al group svstem ITS. The
current version of Micro=Flanner, embedded in an allocated LISP, may be
cbtained by Incanting ":PLHR" or "PLNR{control-KE>" to DDT. Micro=Planner
is also available as EXPR code or LAP code, All guestions, suggestions,
or comments about Micro=-Planner should be directed to Gerald Jay Sussman
(login name GJE) who will maintain the program.

2) Philosophical Overview

The "level" of a programming language 15 a term which Is in
falrly common usage In the computer culture. We all agree, for example,
that FORTRAN, LI5SP, and PL1 are higher level languages than, say assembly
language, regardless of our opinions of their relative merits for
expressing our individual styles of programming. After some
introspection, | decided that what is meant by the level of a language
is the amount of knowledge of programming style implicit in the language
processor and thus the guantity of detail which the user does not
explicitly have to specify because he may assume that the processor will
fill in for him, When we express the value judgment that LISP or PLL,
for example, i5 a lousy language, what we mean js that the stvlistic
assumptions made by the designers of the language are Incompatible with
our own styles and thus overly restrict us., There are some of us (may
ITS preserve their file directories!) with whom any restrictions are
incompatible and who thus always write In assembly language. There are
others, such as |, who find such restrictions an aid In the organization
of large programs. Thus, to me, LISP is useful in that it provides a:
large library of subroutines with uniform calling sequences, a convenient
evaluator for defining recursively reentrant procedures from those
primitives and a bookkeeper for the maintenance of a 1ist structured data
base, Indeed for these conveniences | pay heavily In space and time
efficiency, as well as in some feeling of constrained style,

PLANMER is the first of perhaps a whole new level of languages
which will basically be oriented toward the accomplishment of tasks (or
goals) which may In fact be broken down inte subtasks {(subgoals), By
contrast, in previous languages (as LISP) problem solutions are expressed
in terms of procedures (functions). The distinction is not Immediately
apparent but should become more clear If we note that In a PLANNER
program, If a goal Is activated then it may be satisfled by any number of
objects in the data base or by any number of theorems {(the analogue of
procedure) . A backup mechanism is provided so that one of the
possibilities Is tried, and then 1f, as a consequence a failure occurs,

' PAGE 2

then another is tried, ete, Furthermore, the data and theorems need not
be referenced explicitly, but rather by saying, In essence, "the datum
{or procedura)" whiech fits the following pattern (or accomplishes the
desired result). In order for such data and theorems to be implicitly
referenced efficiently the system has the responsibility of constructing
and accessing a cross-referenced data base of "assertions" (data) and

theorems {(programs).

Y

ey o e

PAGE 3

Il. Programming in Micro=Planner

The easiest way to understand Micre-Planner is to watch how It
works, so in this section we will present a few simple examples and
gxplain the use of some of its most elementary features,

First we will take the most venerable of traditional deductions:

Turing is a human

A11 humans are falllible
S0

Turing is fallible.

It is easy enough to see how this could be expressed in the usual
loglcal notation and handled by a uniform proof procedure. Instead, let
us express it in one possible way to Micro-Planner by saying:

{ THASSERT (HUMAN TURIHG})
(THCUNSE (X} (FALLIBLE $7%X)
(THGOAL (HUMAN $7X)))

The proof would be generated by asking Micro-Planner to evaluate the
expression:

(THGOAL (FALLIELE TURING) 3%T)

We immedliately see several points. First, there are two different
ways of storing information. Simple assertions are stored in a data
base of assertions, while more complex sentences containing guantifiers
orf logical connectives are expressed in the form of theorems.

second, one of the most impoertant points about Micro=Planner is that
it Is an evaluator for statements written in a programming language. It
accepts input in the form of expressions written in the Micro-Planner
language, and evaluates them, producing a value and side effects,
THASSERT is a function which, when evaluated, stores its argument in the
data base of assertions or the data base of theorems (which are cross=-
referenced in various ways to glve the system efficient look=-up
capabilities). In this example the second line defines a theorem of the
THCUNSE type (THCONSE means consequent; we will see other types later).
This states that if we ever want to establish a goal of the form
(FALLIBLE $%7X), we can do this by accomplishing the goal (HUMAN $7X),
where X is a variable. Hote that symbols like FALLIBLE and HUMAN have no
"meaning" in Micro Planner. (A1l Micro Planner symbols start with TH .J
Hor 15 there any significance to the order in which elements appear in
the pattern, We could have said (TURING 15=AN OSTRICH) for all Micro
Planner cares, The strange prefix characters are part of Micro=Flanner's
pattern matching capabllitlies, If we ask Micro=Planner to prove a goal
of the form (A %)}, there 15 no obvicous way of knowing whether A and X are
constants (like TURING and HUMAN in the example) or variables. LISP
solves this problem by using the function QUUTE toe indicate constants.

In pattern matching this is inconvenient and makes most patterns much

PAGE |

bulkier and more difficult to read., Instead, Micro=Planner uses the
opposite conventlon -- a constant 1s represented by the atom ltself,
while a variable must be indicated by adding an appropriate prefix. Thi:
prefix differs according to the exact use of the variable in the pattern,
but for the time being let us just accept 37 (this is a dollar-sign --
not an alt-mode) as a prefix indicating a variable., The definition of
the theorem indicates that it has one variable, X by the (X] following
THCUNSE.

The third statement illustrates the function THGOAL, which calls
the Micro=Planner interpreter to try to prove an assertion. This can
function in several ways. |f we had asked Micro=Planner to evaluate

(THGUAL (HUMAN TURIHG)) it would have found the requested assertian
immediately In the data base and succeeded (returning as its value some
indicator that It had succeeded), However, (FALLIBLE TURING) has not
been asserted, so we must resort to theorems to prove it. Later we will
see that a THGUAL statement can give Micro=Planner various kinds of
advice on which theorems are applicable to the goal and should be tried,
For the moment, 5T Is advice that causes the ewvaluator to try all
theorems whose consequent is of a form which matches the goal. (i.e. a
theorem with a conseguent (572 TURING) would be tried, but one of the
form (HAPPY §$7Z) or (FALLIBLE %$7Y %$7Z) would not. |If there is no advice
only the data base will be tried. Assertions can not have an arbitrary
list structure for their format but they are not limited to two-member
lists or three-member lists as in these examples.) The theorem we have
Just defined would be found, and In trying It, the match of the
consequence to the goal would cause the variable $7X to be assigned to
the constant TURING, Therefore, the theorem sets up a new goal {(HUMAN
TURING) and this succeeds immediately since It is in the data base. In
general, the success of a theorem will depend on evaluating a Micro=
Planner program of arbitrary complexity., In this case it contains only
single THGUAL statement, so (1Ls success causes the entire theorem to
succeed, and the goal (FALLIBLE TURING) is proved.

Consider the question "Is anvything fallible?", or in logic
(EXISTS (Y)(FALLIBLE ¥)). This requires a variable and it could be
expressed Iin Micro-Flanner as:

(THPROUG (Y) (THGOAL (FALLIBLE $7?Y) $T) (THRETURMN 57Y))

Hotice that THPROG (Micro=Planner's egulvalent aof a LISP PROG,
complete with GO statements, tags, RETUHEN, etec.) acts as an existential

gquantifler. It provides a binding=-place for the variable Y, but does
not Initialize it == it leaves it in a2 state particularly marked as
unassiened, To answer the guestion, we ask Micro-Planner to evaluate

the entire THPRUG expression above, To do this It starts by evaluating
the THGOAL expression, This searches the data base for an assertion of
the form (FALLIELE £7Y) and fails,. It then looks for a theorem with a
consequent of that form, and finds the theorem we defined above, Now whe
the theorem is called, the variable X In the theorem is identiflied with
the variable ¥ in the goal, but since ¥ has no value vyet, i does not
receive a value, The theorem then sets up the goal (HUMAN §7X) with X a

PAGE 5

a variable. The data-base searching mechanism takes thlis as a command to
look for any assertion which matches that pattern (i.e. an
instantiation), and finds the assertion (HUMAN TURING). This causes X
(and therefore Y) to be assigned to the eonstant TURING, and the theorem
succeeds, completing the proof and returning the value TUHING.

There seems to be something missing, 5o far,the data base has
contained only the relevant objects, and therefore Micro-Flanner has
found the right assertions immediately, Consider the problem we would
get if we added new information by evaluating the statements:

(THASSERT (HUMAN SOCRATES))
(THASSERT (GREEK SOUCRATES))
(THASSERT (HUMAN HEWTON))

Qur data base now contains the assertions:

(HUMAH TURING)
{HUMAN SUCRATES)
(GREEK SUCRATES)
(HUMAN NEWTON)

and the theorem:

(THCONSE (X) (FALLIBLE §7X)
(THGOAL (HUMAN $%X)))

What If we now ask, "I1s there a fallible Greek?" In Micro=Planner we
would do this by evaluating the expression:

{ THPROG (X)
(THGOAL (FALLIBLE $2X)5T)
(THGOAL (GREEK §7X))
{THRETURN §$7%X))

THPRUG acts like an AND, insisting that all of its terms are satisfied
before the THPROG Is happy. Hotice what might happen. The first THGOAL
may be satisfied by the exact same deduction as before, since we have not
removed information., Since the data=base searcher will run into HEWTON
before it finds SOCRATES, the goal (HUMAM $7X) wil] succeed, asslgning
$7X to NEWTON. After (FALLIBLE $7X) succeds, the THPROG will then
establish the new goal (GREEK NEWTOMW), which is doomed to fall slince it
has not been asserted, and there are no applicable theorems., |If we think
in LISP terms, this is a serious problem, since the evaluation of the
first THGOAL has been completed before the second one is called, and the
"push=down 1ist" now contains only the THPROG, |If we try to go back to
the beginning and start over, it will again find HEWTON and so on, ad
infinitum.

Une of the most important features of the Micro-Planner language is
that backup in case of failure is always possible, and moreover this
backup can go to the last place where a decislion of any sort was made.

PAGE G

Here, the decision was to pick a particular assertion from the data base
to mateh a goal, Other decisions might be the choice of a theorem to
satisfy a goal, or a decision of other types found in more complex Micro=
Flanner functions, HMicro=Planner keeps enough Information to change any
decislon and send evaluation back down a new path.

In our example the declision was made inside the theorem for
FALLIBLE, when the goal (HUMAN $7X) was matched to the assertion (HUMAN
MEWTOH). Wicro=Planner will retrace its steps, try to find a different
assertion which matches the goal, find (HUMAN SOCRATES), and continue
with the proof. The theorem will succeed with the value (FALLIELE
SUCRATES), and the THPROG will proceed to the next expression, {THGOAL
(GREEK §7X)). Since X has been assigned to SOCRATES, this will set up
the goal (GREEK S0CRATES) which will succeed immediately by finding the
corresponding assertion in the data base, The program will then return
the value SUCRATES. |If there were no explicit THRETURM statement, and
the THPROG was allowed to fall off its end, it would return the default
value THNOVAL. The whole course of the deduction process depends on the
failure mechanism for backing up and trying things over {(this is actually
the process of trying different branches down the subgoal tree.) A11 of
the functions like THCOHD, THAND, THUK, etc. are controlled by success
vs, Failure. Thus it Is the Micro=Planner executive which establishes
and manipulates subgoals in looking for a proof.

Although Micro=-Planner is written as a programming language, it
di ffers In several critical ways from anvthing which is normally
considered a programming language., First, it is goal=-directed. Theorems
can be thought of as subroutines, but they can be called by specifying
the goal which is to be satisfied., This is like having the ability to
say '"Call a subroutine which will achieve the desired result at this
point." Second, the evaluator has the mechanism of success and fallure
to handle the exploration of the subgoal tree, Other evaluators, such as
LISP, with a basic recursive evaluator have no way to do this., Third,
Micro=Planner contains a bookkeeping system for matching patterns and
manipulating a data base, and for handling that data base efficiently,

How is Micro=-Planner different from a theorem prover? What is
gained by writing theorems in the form of programs, and giving them power
to call other programs which manipulate data? The key is in the form of
the data the theorem=-prover can accept., Most systems take declarative
information, as in predicate calculus. This is in the form of
eipressions which represent "“"facts" about the world, These are
manipulated by the theorem-prover according to some fixed uniform process
set by the system, Micro=Planner can make use of jmperative information,
telling it how to go about proving a subgoal, or to make use of an
assertion. This produces what is called fhlerarchical control strucfure.
That is, any theorem can Indicate what the theorem prover 15 supposed to
do as It continues the proof, It has the full power of a general
programming language to evaluate functions which can depend on both the
data base and the subgoal tree, and to use its results to control the
further proof by making assertions, deciding what theorems are to be
used, and specifying a sequence of steps to be followed. What does this
mean in practical terms? In what way does it make a "better" theorem

PAGE 7

prover? We will give several examples of areas where the approach is
inportant.

First, consider the basic problem of deciding what subgoals to try
in attempting to satisfy a goal, Very often, knowledge of the subject
matter will tell us that certain methods are very likely to succeed,
others may be useful 1f certain other conditions are present, while
others may be possibly valuable, but not 1lkely. We would like to have
the ability to use heuristic programs to determine these facts and direct

the theorem prover accordingly. It should be able to direct the search
for goals and solutions in the best way possible, and able to bring as
much Intelligence as possible to bear on the decision. In Micro=-Flanner

this I5 done by adding to our THGOAL statement a reconmendation list
which can specify that ONLY certain theorems are to be tried, or that
certaln ones are to be tried FIRST in a specified order. 5Since theorems
are programs, subroutines of any type can be called to help make this
decision before establishing a new THGUAL., A theorem can be given a name
so that 1t can be explicitly referred to. |In our example, however, we
did not do so. |If we had wanted to name it, say, FALLIBLE=PROVER, we
would have written

{ THCONSE FALLIBLE-PROVER (X) ...)

An important problem is that of maintaining a data base with a
reasonable amount of material. Consider the first example above. The
statement that all humans are fallible, while unambiguous in a
declarative sense s actually ambiguous in its imperative sense (i.e. the
way it is to be used by the theorem prover}). The first way is to simply
use it whenever we are faced with the need to prove (FALLIELE $%X).
Another way might be to watch for a statement of the form (HUMAN $7X) to
be asserted, and to immediately assert (FALLIBLE 57X) as well. There s
no abstract logical difference, but the impact on the data base Is
tremendous. The more conclusions we draw when Information is asserted,
the easier proofs will be, since they will not have to make the
additional steps to deduce these consequences over and over again,
However since we don't have infinite speed and size, it is clearly folly
to think of deducing and asserting everything possible (or even
everything interesting) about the data when it is entered, |f we were
working with totally abstract, meaningless theorems and axloms (an
assumption which would not be incompatible with many theorem=-proving
schemes), this would be an insolvable dilemma. But Micro=-Flanner is
designed to work in the real world, where our knowledge is much more
structured than a set of axioms and rules of inference. We may very
well, when we assert (LIKES $7X PUETRY) want to deduce and assert (HUMAN
574}, since in deducing things about an ob]ect, it will very often be
relevant whether that object is human, and we shouldn't need to deduce it
each time. On the other hand, it would be silly to assert (HAS=AS=PART
57X SPLEEN), since there is a horde of facts equally important and
equally limited in use, Part of the knowledge which Micro=Flanner should
have of a subjeect, then, is what facts are important, and when to draw
consequences of an assertion, This is done by having theorems of an

PAGE 8

antecedent type:

(THANTE (X ¥) (LIKES 37X $7Y)
(THASSERT (HUMAN $7X)))

This says that when we assert that X likes something, we should also
assert (HUMAN $7X). Of course, such theorems do not have to be so simple.
A fully general Micro-Planner program can be activated by an THANTE
theorem, doing an arbitrary (that is, the programmer has free choice)
amount of deduction, assertion, etc., Knowledge of what we are doing in a
particular problem may Indicate that it is sometimes a good idea to do
this kind of deduction, and other times not, As with the consequent
theorems, Micro-Flanner has the full capacity when something is asserted,
to evaluate the current state of the data and proof, and specifically
decide which antecedent thecrems should be called.

Micro=Planner therefore allows deductions to use all sorts of
knowledge about the subject matter which go far bevond the set of axioms
and basiec deductive rules, Micro-Planner itself is subject-independent,
but its power is that the deduction processs never needs to operate on
such a level of ignorance, The programmer can put in as much heuristic
knowledge as he wants to about the subject, just as a good teacher would
nelp a class to understand a mathematical theory, rather than just
telling them the axioms and then giving theorems to prove.

Another advantage In representing knowledge in an imperative form Is
the use of a theorem prover in dealing with processes involving a
sequence of events. Consider the case of a robot manipulating blocks on
a table. It might have data of the form, "blockl is on bleek?," "block?
is behind block3", and "If x is on y and you put it on z, then x is an 2z,
and is no longer on y unless y is the same as z", Many examples in
papers on theorem provers are of this form (for example the classic
"monkey and bananas" problem). The problem is that a declarative theorem
prover cannolt accept a statement like (ON Bl B2) at face value, |t
clearly is not an axiom of the system, since its vallidity will change as
the process goes on. It must be put in a form (ON Bl B2 S0) where 30 is

a symbol for an initial state of the world. The third statement might be
expressed as: .

(FORALL (X ¥ Z S)(AND (ON X Y (PUT X ¥ 5))
(ORCEQUAL ¥ Z)
(HOTCON X 2 (PUT X Y 5))3)))

In this representation, PUT 1s a function whose value 15 the state
which results from putting X on ¥ when the previous state was 5. We run
into a problem when we try to ask (ON Z W (PUT X ¥ S5)) t.e. is block Z
on block W after we put X on Y? A human knows that |f we haven't touched
L or W we could just ask (ON Z W 5) but in general 1t may take a complex
deduction to decide whether we have actually moved them, and even if we
haven't, it will take a whole chain of deductions {tracing back through
the time sequence) to prove they haven't been moved. In Micro=-Planner,
~where we specify a process directly, this whole type of problem can be

PAGE 9

handled in an intuitively more satisfactory way by using the primitive
function THERASE.

Evaluating (THERASE (ON %$7X $7?Y)) removes the assertion (ON $7X $7Y)
from the data base. |If we think of theorem provers as working with a set
of axioms, it seems strange to have a function whose purpose is to erase
axioms., If instead we think of the data base as the "“"state of the
world" and the operation of the prover as manipulating that state, It
allows us to make great simplifications, Now we can simply assert {ON Bl
B2) without any explicit mention of states. We can express the necessary
theoremn as:

(THCUNSE (X ¥ Z)
(PUT §7X $7Y)
(THGOAL (UN $7X $7Z))
(THERASE (OH 37X 3$7I))
(THASSERT (ON S§TX $7Y)))

This says that whenever we want to satisfy a goal of the form (PUT
STK $?Y7), we should first find out what thing Z the thing % is sitting
on, erase the fact that it is sitting on Z, and assert that it is sitting
on Y. We could also do a number of other things, such as proving that it
is indeed possible to put % on ¥, or adding a list of specific
instructions to a movement plan for an arm te actually execute the goal.
In a more complex case, other Interactions might be involved. For
example, if we are keeping assertions of the form (ABOVE $7X $7Y) we
would need to delete those assertions which became false when we erased
(UN 37X %$7Z) and add those which became true when we added (0N §$7X $7Y).
Antecedent theorems could be called by the assertion (ON £7X $£7Y) to take
care of that part, and a similar group called erasing theorems can be
called in an exactly analogous way when an assertion is erased, to derive
consequences of the erasure., Again we emphasize, which thecrems will he
called can_be made dependent on the way the data base is structured,
which in turn can reflect knowledge of the subject matter. In this
example, we would have to decide whether it was worth adding all of the
above relatlons to_ the data base, with the resultant need to check them
whenever something Is moved, or instead to omit them and take time to -
deduce them from the OM relation each time they are needed,

Thus in Micro=Planner, the changing state of the world can he
mirrored In the changing state of the data hase, avoiding anv need to
make explicit mention of states, with the requisite overhead of
deductions. This is possible since the information is glven In an
imperative form, specifying theorems as a series of specific steps to hbe
executed,

If we look back te the distinction between assertions and theorems
made on the first page, 1t would seem that we have established that the
base of assertions Is the "current state of the world", while the base of
theorems is our permanent knowledge of how to deduce things from that
state. This is not exactly true, and one of the most exciting
possibilities In Micro-Planner is the capablility for the program ltself
to create and modify the Micro-Planner functions which make up the

PAGE 10

theorem base, HRather than simply making assertions, a particular Micro=-
FPlanner function might be written to put together a new theorem or make
changes to an existing theorem, in a way dependent on the data and
current knowledge. |t seems likely that meaningful "learning" invelves
this type of behavior rather than simply modifying parameters or adding
more individual facts (assertions) to a declarative data base,

PAGE 11

I1l1. The Micro=Planner Primitives

This section will basically be a list of the Micro=Planner
primitives with a detaliled description of each, Meta=Linguistic
variables will be enclosed in angle brackets (<>).

The heart of Micra=Planner s a structure known as THTREE; 1t is
to the hierarchical contral structure of PLANHER what a puskh-down 1ist is
to a recursive control structure such as is found in LISP. In LISP the
push=down 1ist remembers the return addresses of recursive function
calls: In Micro=Planner THTREE keeps track of the decislons {(or
hypotheses) made so far in the problem-solving process which are
currently considered relevant to the solution, |In case a failure occurs
PLANNER can back up THTREE, undoing the decisions which caused the
failure until a promising approach is found, |f none is found the
program returns a failure. THTREE is a tree structure, each node of
which contains information about how to proceed in case elther success or
failure propagates to that node. Failure is propagated from a node if
and only if a failure propagates to it and no further possibilities exist
at that node. & node of THTREE may be thought of as a goal, with
branches originating at this node associated with tentatively useful
hypotheses for establishing the goal.

Closely associated with THTREE is THALIST, the 1ist of variable
bindings. Certain primitives bind variables by declaration. In their
initial bound state variables are called unassigned and are assigned to
"THUNASS | GHED." THALIST shares the tree structure of THTREE.

Because of the non-recursive implementation of the Micro=Planner
interpreter the PLANNER value of an expression is not the same as its
LISP value. In most cases this is unimportant because PLANMER
expressions are usually executed for effect rather than for value. The
PLANHER value of an expression is however avallable as the LISP value of
the LISP free variable THVALUE immediately after the expression Is
executed, Although this is not a very pretty convention It introduces
some very great simplifications In the implementation,

1) LPLHR, CINIT) .
One can have a PLAMNKER IWIT file In the same way one has a teco
init file. The file name should be as above.

23 (THAMONG <variable name> <{expression)

Upon entry the variable named (by an atom) must be bound. If It is
unassigned then it will be assigned to the first member of the 1ist of
cholces to which <expression> THVALuates, |f the variable already has a
value (is assigned), THAMUNG fails unless the assigned value is5 already
among the choices. Each time a failure backs up to the THAMONG the
variable will be assigned to the next element of the cholee list. |If it
runs out of choices It falls, otherwise It succeeds,

3} (THAND <el> ... {en>)
) THAND falils unless each of Its subexpressions succeeds In sequence,
allowing for backup. 1t is just 1lke THPROG except that there are no

* PAGE 12

variable declarations or tags allowed,

k) (THANTE <thm=name? <list-of-variables:> {pattern> <body>)
THANTE works Iin a similar fashion to THCOHSE to deflime and
(optionally) assert antecedent theorems.

51 [(THAPPLY <thecrems <datum>) calls the specified theorem causing It
to match its pattern to the specified datum. |If it matches, the theorem
is5 executed with <datum» as its "argument."™ The THYALUE of a THAPPLY is
the value of the theorem applied.

G (THASSERT <skeleton> <recl> ... <recnr)

THASSERT adds the assertion (formed by substituting assignments for
variables {(or by THVALIng SFE's as described In the matcher section) In
the skeleton) to the data-base except if the skeleton 15 an atom, in
which case It adds the atom as a theorem to the theorem base,

THASSERT only falls if it tries to assert an already existing
assertion, If the first recommendation to a THASSERT is a (THPROP <{e})
then the LISP value of <{e» is used as the property list of the assertion
being asserted, A more complex recommendation is THPSEUDU, which has its
own listing, THASSERT also may recommend antecedent theorems with THTEF
gr THUSE as in THGOAL, though the success or failure of those theorems is
irrelevant to success or failure of the assertion, The PLANMER value of
a THASSERT is the object asserted.

71 (THASVAL <variablex)
THASVAL 15 a predicate which assumes that the indicated variable is
bound. It succeeds if and only 1f the variable is assigned a value,

g8) (THBKPT <{comment:>) _

THEKPT has no effect unless traced., |1f it is, its comment is
printed, |[f the trace's break predicate is true as well, e, E.

(THTRACE (THBKPT T T)),
then THBEPFT breaks In a similar fashion to THERT. (see ##=2)}, However,
THEEPT is5 more powerful tham THERT as 1t also breaks upon failure backing
up to fte 1%t is thus more useful than THERT for debuggling PLANMNER
Programs.,

) (THCOMND <palrl> ... <pair n*)

THCUND s the FLANNER analogue of COND im LISP. As in MAC=LISP the
"pairs" needn't be, Gbasically THCUND executes the CAR of each pair until
one succeeds. The THCOKD will then succeed if all the rest of that
"pair" succeeds (like a THAMD) else THCOND will fail,

10) (THCUNSE <thm=-name> <list=of=-variables? <{pattern} <body>)

L& planner conseguent theorem can be defined and asserted by the
function THCONSE. For example, a consequent theorem named THM1 can be
defined and asserted as follows:

PAGE 13

(THCOMSE THML (X)) (FALLIGLE 57X} (THGOAL (HUMAM 3¥X)))
This is equivalant to:

(THPUTPROP
"THML
"(THCONSE (X) (FALLIBLE 57X) (THGOAL (HUMAN SFX)))
"THEQOREM)

(THASSERT THML)

The thecorem name is opticonal, If It is not given, a unique name
is generated by the system, HNote that this feature should not be used if
gne later wants to erase the theoren,

Asserting the theorem can be avoided by placing THNUASSERT
immediately after the theorem name For example,

(THCONSE THMI1 THHOASSERT (x) (FALLIBLE 5%X) (THGOAL (HUMAHN s5TX3))
will define THM1, but not assert It.

11) (THDATA) causes Micro=Flanner to go Into a read loop for gobbling
assertions and theorems at high speed. Loop ends when HIL is read.

12) (THDO <el? ... <en>)

THDO executes each of lts subexpressions in turn and cares not whether
they succeed or fall; 1t then succeeds, More precisely, it only ignores
simple failures occurring in Its scope. (For the distinction between
tvpes of failures, see THFAIL.) If a failure backs up to 1t, all that it
did Ts undone.

13} (THDUMP <filenamel> <(filename?: J{devicer <user’r)

Dumps the state of the Micro-Flanner world (THSTATE) inte the
specified file.

(THOUMP SAVE STATE) (THFLUSH) (UREAD) (I10C Q)
is a no op.

1) THEOREMS
Theorems are the Micro-Planner analogue of functions in LISP, There
are three kinds:

consequent theorem = for establishing goals
antecedent theorems - for cxpanding on assertions
erasing theorems = for expanding on erasures.

See THCUNSE, THERASZING, and THAHNTE for a convenient methoed of defining
theorems. When a theorem is called the declared variables are bound and
the pattern is matched to the calling pattern in THGOAL or datum in
THASSEKRT, THERASE, and THAPPLY, This has the effect of assigning some of
the theorem's varfables, The theorem i5 then executed as a THPROG if the

PAGE 14

matech succeeds.

15} (THERASE <skeleton» <recl>» ... <recn:) iz identical to THASSERT
except for effect. |If a failure backs up to an assertion or an erasure
it is undone,

1G) {THERASING <thm=-name> <{list=of-varlables? <pattern> <body>)

THERASING works in a similar fashion to THCONSE to define and
faptionally) assert antecedent theorems.

17} (THEHRT <ecomments)

THERT causes Micro=Planner to break and print fts pommient, The
state of the world can be exwplored by EVALIing any s-expression, Planner
expressions can be thvaled by explicitly calling thval. For example,

(THVAL (THASSERT (HUMAN TURIHGY) HIL)
would add this assertion to the data base if it had not been previously
asserted., MNote that explicit thvals should be done carefully as they can
change the state of the world,

kWhen ready to leave the breakpoint, ($F {s-exp>) causes THERT to
return the lisp value of the s-exp, (where "$" = ALT-MODE). Hote that
this will cause failure if the expression evals to NIL. %P is eguivalent
to (5P T) and is the standard way to proceed from the breakpoint.

18) (THFAIL <argl> <argl» <argi»)

THFAIL causes failure to propagate, the extent of which 15 determined
by the arguments:

(THFAIL THTAG <tag? T) causes a failure to propagate to the tag
indicated,

(THFAIL THTAG <tag?) causes a failure to propagate past the tag
indicated.

(THFAIL THPROG), {(THFAIL THEUREM) cause the THPROG or the THEOQREM
currently in to fall,

(THFAIL THMESS5AGE <messager) causes a failure to propagate wuntil it
reaches a THMESSAGE statement whose pattern matches the message,

(THFAIL) causes a failure similar to the one caused by a THGOAL, sav,
failing., The program will back up to the last declision point and try to
patch things up.

Any failure caused by THFAIL, except when 1t is given no

arguments, is a compound failure. All other failures are simple
failures.

19) (THFAIL? <{predicate* {action)

If failure backs up to this planner primitive and the LISP
predicate evals to true, It returns the eval of the action, THFAIL? s
useful as a computationally less costly form of THMESSAGE since it does
not involve pattern matching against a message failure or THPROGIiNg.

20) (THFIHALIZE <argl> <argl>)
THFINALIZE is a primitive which allows pruning of THTREE.
Essentially, if one THFIMALIZES, say to a tag, then all the things done

PAGE 15

since that tag was passed are not undoable in case of failure. ECxample:
To put all of the green bleeks in the box and return a list of those
actual ly moved:

(THFROG (& (Y HILY)
(THUR (THAND (THGOAL (15 57X BLOCK))
{(THGOAL (COLOR $7?X GREEHN)))
({THRETURM $TYJ))

FOU

(THCOHD ((THGOAL CCONTAIHN BOX $7X)) (THFAIL))
((THGUAL (PUTIH $7X BOX) (THUSE TC=PUTIN)])
(THSETQ $7Y (CONS $TX STY))
{THFIHALIZE THTAG FOU)
{THFAIL))
((PRINT 57x) (THERT CAN NOT PUT IT IM))))

Besides finalizing to a tag, one can finalize a theorem or a THFROUG by
saying (THFINALIZE THEQREM) or (THFIHALIZE THPROG)., There are lots of
other things that can be doene with THFINALIZE, but | will not guarantee
them.

21} (THFIND <mode> <{skeleton> <variable declarations» <el> ... {enk)

THFIND 15 a primitive whose THVALuation ylelds a l1ist of objects, each
of which is the result of substituting for variables in the skeleton
values of those variables which cause the program starting at the
variable declarations (like a THPRUG) to succeed, Thus, for example, If
the data-base contained the assertions (HACKER M)} (HACKER H) (HACKER RG)
(AT MAC RG) and we THVALed the expression (THFIND ALL (AT 5C $7X) (X)
{THGUAL (HACKER 57X)) (THNOT (THGOAL (AT MAC $7X)))) we would get (({AT 5C
HY (AT 5C H)) as its THVALUE (PLANMER wvalue).

The mode field of a THFIND may be any of the following.

ALL Says to find all items matching the description <number>
Find at least that number, there may be more in the data base, but | am
not interested In them,

{EXACTLY <number>) | want this number, If there are any more,
fail.

(AT-LEAST <number?>) |If there are fewer, fail, there may be more.

(AT=MO5T <number>») There may be less, but if there are more,
fail.

{AS-MANY=AS <number>) | don't care how many there are {(providing
there is at least 1), but | only want to see <number? of them.

(AT-LEAST <numberl> AT=-MOST <number2>) Takes the loglcal "and"
of the two conditions

(AT=-LEAST <numberl?» AS-MAHY=-A5 <number2>) Same here.

Those familiar with the old version might note that this is a different
syntax. However, any code writen in the old form will still work on the
new system,

PAGE 16

22) (THFLUSH <indicatorl? {indicator2’ ...)

THFLUSH 15 a generally useful function for getting a LISP into some
desired state. |t remprop's all properties with the indicators specified
from all atoms on the UBLIST.

(THFLUSH) = {(THFLUSH THASSERTION THAWNTE THCONSE THERASING)

23) (THGU <tagr) = (THSUCCEED THTAG <tag>)

24}y {THGUAL <patternr <recl> ,.. <recn)

This is a real dilly to describe, It is probably the most complex
single primitive in Micro-Flanner, Assume the simplest case in which
there are no recommendations <reci> given, THGOAL searches the data base
for a datum (l.e. an assertion) which matches the pattern, |If it finds
one, it succeeds after assigning all of the unassigned variables in the

pattern so as to make it match the datum; it then returns the assertion
found as its PLANWER walue. |If it does not find a matching datum it
falls., |If after a success, & failure propagates back to It, It unassigns

the variables it assigned last time and continues its search for a
matching datum from where it left off.

If reconmendations are given they are tried in order. |If the very
first recommendation Is5 a (THNUODB)Y or a (THDBF =) the initial data base
secarch is Inhibited, otherwise it is assumed in default. The possible
recomnendations are:

1) (THHUDB) = Inhibit data base search, If it is not first, it is
useless and causes an error,

2) (THOBF <filter») = Try only those elements of the data base
satisfying the filter.

3) (THTBF <filter>) - Try only those theorems satisfving the filter,

k) (THUSE <thl’ <{thi> ,..<{thn*) - Try the thecrems given explicitly
by their atom headers in the order mentioned,

A Filter iIs any unary LISP predicate; the alwayvs true predicate is
supplied by the system as THTRUE. All assertions have property lists
which are their ChHs., Thus if a fllter refers to the CDR of its argument
it is referring to the property list, CAR of an assertion, howewver, is
not =1 as_in LISP_atoms; rather it is the datum which is matched against
the pattern. F

IT a_theorem s recommended, say with THUSE, It had better be an atom
with a THEUHEM property pointing to a consequent theorem {(i.e. it must be
of the form (THCOHSE <variable declarations> <{consequent> <esl> ...
<en»)). Hote that the theorem need not be asserted for THUSE to apply.
IT the goal pattern matches the conseguent, then the theorem will be
tried, The matcher will first bind the theorem variables appearing in
the declaration (see THPHUG) and then mateh the patterns, causing some of
the theorem variables to be assigned and leaving others unassigned, |If
the match wins, the theorem will proceed to execute as a THPROG, |If the
theorem succeeds the PLANNER value of the THGOAL will be the pattern of
the goal with the assignments substituted for the assigned variables,
unless the theorem does a THRETURKH, in which case the PLAMHER value of
the THGUAL will be the goodie returned. If a goal variable which is
unassigned 1s matched against a theorem variable and the theorem

PAGE 17

eventual ly glves that variable a value then the goal variable also pets
the value. A more detailed description of the matcher will be gliven
later.

%) 3N <number> is a macro for (THANUM <number>). It says that
the goal should only be tried to be satisfied <number?® times, Hence the
<nuiber> + 1 "th time the goal is failed back te, no more attempts will
be made and the failure will continue backwards, In particular, %M1 can
be used when there 15 only one possible answer, and if failure backs up
te the THGUAL, no good can come by tryving different assertions or
theorems. 50 <number>, if it is to appear at all, must appear in the
first position.

G) (THHUM <number>) is very similar to 5N <number?, but may
appear at any point in the recommendation 1ist. Its effect is to set or
reset the number of times the goal will be tried. For example, If It
should appear first in the list, it is, in effect saving, the goal may
use any number of assertions it can find, but only <number® number of
theorems. In general, by interspersing THHUM's belween recommendations,
you are saying how many of the theorems which match the next filter ean
be tried.

25) (THMATCH <expl» <expl:)

THHATCH matches the lisp value of its first argument against the
lisp value of its second argumnent. For example,

{THMATCH "(HUMAH TURING) '(s5_X 5.1
would succeed and result in $_X being assigned to "HUMAN and %_Y heing
assigned to "TURING. |f $_X were instead $7%, then THMATCH would succeed
with $7X assigned to "HUMAM, providing 57X were previously either
THUNASS IGHED or assigned to HUMAN,

Failing back through a THMATCH is similar te failing back through
a THGUAL. Any variable assignments made by the mateh are undone and the
variables are returned to their previous values,

Hote that THMATCH will not work properly if its inputs are
themselves planner functions since PLANMNER Is not corecursive with LISP.
For example, if HUMAN TURING is already asserted, the planner value of

(THGOAL (HUMAN TURING))
is ((HUMAN TUKIHG)) but its lisp value Is HNIL, Hence,
(THMATCH (THGUAL (H TJ)) "(HUMAN TURING))
will not work properly, An explicit call to THVAL, however, will work:
{ THMATCH
(THVAL "(THGOAL (HUMAH TURIHNG)} HIL)
" (HUMAN TURING)))
26) (THMESSAGE <variable declarations> <pattern? <el> . . . <enk)

examines failures propagating to it, if one has a message which matches
the pattern (after the declarations are made) control then passes to the

PAGE 18

body, <ei’, which executes as a THPHUG,

27) (THHOUOHASH <ATUM> <INDICATOR1> <INDICATORZ2> ...)

The patterns of micro=-planner theorems and assertions are stored
in buckets hung on the atoms appearing in the patterns. Atems which are
very common are not very useful for this purpose. For example, suppose
we wished to assert the following five patterns:

Al: (JUHH 15 A& BUY)
AZ: (JACK |5 A BOY)
AZ: (MARY 15 AN GIRL)
Ab: (JILL 15 A GIRL)
Ay (WUUF 15 4 DUG)

"15" and "A" are not helpful in distinguishing any of these assertions
from the others. It would save space as well as computation to tell
planner this, Execuling

CTHHUOHASH 15 THASSEERTION)
CTHHOHASH A& THASSERTIOH)

accomplishes this purpose,

Une can be selective in telling planner where a particular atom
Is not useful for pattern matching purposes, This is done by specifyving
which of the four following types of patterns the atom is not useful in
indexing:

the patterns of

consequent theorems
antecedent theorems
erasing theorems
assertions.

The syntax for this is to use any combination of the four following
indicators:

THCONSE, THANTE, THERASING, THASSERTION

For example, (THNUHASH 15 THASSERTION) informs planner not to use
the atom "I5" as a handle on the pattern matching of assertions in which
it is found. It i5 still used for pattern matching purposes when it
ggcurs in the patterns of theorems.

{THHUHASH <atom? THCONSE THANTE THERAS|NG THASSERTIOHN)

can be abbreviated as (THHNUOHASH <atom*) and I1s used when the atom that it
is completely useless for pattern matching purposes,

28) (THHUT <er) is defined as (THCOND (<e> (THFAIL)) ((THSUCCEED))}).

PAGE 113

29) (THUR <el» ... <enz)

THUR succeeds if at least one of bem 55iﬂnb succeeds,
basically, it CDRs down the list Iﬁﬂklnﬂ ¥ Sinner and if it finds one
it succeeds, returning its value as the PLAhHER value, |If a failure
propagates back to it, however, it continues CORing from the point it
left off wuntil it finds ancther winner or it loses.

3uU) (THPRUG <declaration» <ely ... <enr)

THPHUG §s the PLANNER equivalent of the LISP function PROG. 1ts job
is to bind the variables mentioned in the declaration and then to execute
the expressions <ei? in seguence, unless changes in seguence are
specified by tags and THGO statements. As in LISP, atoms occurrimg In
THPRUG bodies are interpreted as tags. | f (THGD <tagr) is executed at
any point in the interpretation of a THPRUG, execution then proceeds from
the expression Immediately following the tag <tag>, THGU statements may
refer to tags which are not in the current THPROG but which are in one
which called it. The execution of THFRUG terminates either with a
failure, successful execution of its last expression, <eny, or by a
forced success with a THRETURN statement., (THRETURM <{exp*) is eguivalent
to (THSUCCEED THPRUG <expr) and will cause the THPROG to succeed and
return as Its PLANNER value the LISP value of the indicated expression,
If a THFRUG returns by succeeding past the last statement, or by
executing a (THSUCCEED THPRUG), it returns as its PLANHER value the atom
JHHUVAL. If it fails, it returns HIL.

The <declaration? is a list of variable declarations, A varlable
declaration is elther an atom which is the name of a variable to be used
inslde the THPRUG, or a list of two elements, the first of which is the
variable name and the second of which is a LISP expression whose LISP
value is to be used as the initial value of the variable, |If a variable
is bound without giving It an Initial value it s given the default value
"THURASS IGHED."™ A more complex form of variable declaration may be found
under THHESTHICT.

Evaluation of a THPROG begins at the first expression of the indicated
sequence, |f It succeeds, a new branch is generated on THTREE and the
next expression in sequence is evaluated, etc., |If any statement fails
then the branches are unwound untlil el ther & new success ands the failure
propagation or there are no more branches and the THPROG fails., Thus
THPHUG behaves as a THAND with variable binding capability; it fails
unless each of its subexpressions succeeds, allowing for backup, until Tt
returns, As usual, any LISP expression may appear in a THPROG; if it
evaluates to NIL, a failure is generated, otherwise a success s assumed,
Uther relevant functions are THSUCCEED, THFAIL, THFINALIZE, THGO, and
THHETUHHN,

31) THESEUDW

“"{THPSEWDO)" as the first recommendation to an assertion enables
one to activate a pattern's antecedent theorems, without actually
asserting the pattern. For example, to activate the antecedent theorems
which match the pattern "{(HUMAN TURING)" without actually asserting It Is
Twccomplished by:

PAGE 20

(THASSERT (HUMAN TURING) (THPFSEUDO) 5T

In many cases this can be done without using THPSEUDU by first asserting
the pattern with the appropriate theorem recommendations and then erasing
the pattern. For instance, one could accomplish the same effect as using
THPSEUDO in the above example by the following:

(THASSERT (HUMAN TURING) &£T)
[(THERASE (HUMAN TURING))

However, THPSEUDU becomes necessary when some of the variables in the
pattern are unassigned, thus preventing it from being asserted,

THPSEUDU performs in the same fashion for activating a pattern's
erasing theorems without actually erasing the pattern,

32} THPUTPRUF, THREMPHUP, THHPLACA, THRPFLACD are ﬂust like their LISP
counterparts except that if a failure backs up to them they undo their
effect.

33) (THRESTRICT <variable? <lisp function 1» <1isp functlion 2% ...}

THRESTRICT allows one to restrict a PLAWNNER variable so that it
will enly match objects which satisfy the LISP predicates named in the
_THHESTHICT statement, For example, consider

{THEUAL (AGE WMUTHER (3R $7X HUMEBERP))

%M is an abbreviation, which expands te THRESTRICT. In this example, 37X
will only match numbers. Haturally, the function named must be a
function of one variable., Of course, we could have a lambda expression
instead of the function name, as in

(THGUAL (57Y 15 A (3R 7 (LAMBDA (X) (MEMQ X '(DOG CAT HACKER})J))})

Also note that rather than a variable, we have a question mark Inside the
sH expression. The net result is that the "?" will only matech DOG, CAT,
or HACKER. However, it doesn't get assigned a value as $7% would In our
first example. We can also have

(R $_IL MYPHED)

which has the expected result,

In all our examples so far the restriction has been
declared in our goal statement., We can also create the restriction when
we declare variables at the begining of a theorem, or a THPROG, as in

(THPRUG (A (3R B HUMANPIC)
(THGUAL (§$7A SUN OF $7?B) $T))
i"l.}

FAGE 21

In this THPRUG's wvariable bindings we use & rather than 5%t or $_B. (The
prefix would have no meaning in the context of a variable list.) 1t is
also possible Lo use THRESTRICT as a free standing function, so this last
THPROG could have been written

(THPRUG (A B C)
{THRESTRICT B HUMANP)
(THGOAL (57A SUN OF $8)5T)
II+:I

Unce we restrict a variable it stays restricted until Tt Is
unbound, As we shall see, this has some interesting conseguences,

At the moment THGUAL 1s the only fumction which takes note of
restrictions. 50 one can THSETO a restricted variable to a value which
would not satisfy its restrictions., The same goes for THAMONG,

It is possible to have

(THFRUG (A (SH O ORANGEP)Y C)
(THGOAL C(OWH 57A (3R 3YB CIRCULARP))}
!!'}

which will act the same as

(THPROG (A (SR U URANGEP CIRCULAHPF) ©)
(THGOAL (UWN 37A 37B))
il-l}

Another Iinteresting case s
(THGUAL (UWN JACK (3R S7B CIRCULARP)) (THUSE WHOHAS))
where WHUOHAS lTooks 1ike

(THCONSE (F G)
(OWIN S7F S$PG)
(THGOAL (HOLD $?F (%R 37G SMALLP))ST))

When we do this last THGUAL, the item which matches 3%¥G must satisfy both
CIHCULARP and SHMALLP. It is possible that this goal will call another
theorem which satisfies the goal without assigning $7G a value. |If this
is the case then our first goal (0WH JACK...) will be satisflied without B
getting a value, but, the restriction SMALLP will stay with $78, just as
an assigned value would have., Hence it is possible for a theorem not to
assign a value to a variable, but merely restrict its range of
possibilities.

34) (THHETURMN <e>) = (THSUCCEED THPROG <ex)

35) A(THSETQ <varl> <el> ,.. <varn» <en»)
S5ets variable 1 to the value of el and ... and sets variable n to

PAGE 22

the value of en, |If failure backs up to it, it is undone, |If the
variable is a planner variable then the corresponding expression [5
THVaLed; otherwise the expression is EVALed, THSETU ignoeres variable
restrictions. See warning about THVAL,

56) (THSTATE <indicatorl? {indicator2? ...)
Prints that part of the state of the Micro=Flanner world
specified by the indicators,
(TH>TATE THASSERTION) = assertions in data base
(THSTATE THCUNWSE) = consequent theorems currently asserted
{THSTATE THAKNTE) = antecedent theorems currently asserted
{THSTATE THEHASIHNG) = erasing theorems currently asserted

37) (THSUCCEED <argl> <argiZ»)
THS5UCCEED caused success to propagate, the extent of which is
determined by the arguments:
(THSUCCEED THTAG <tag>) = (THGU <tag>) - see THPROG.
(THSUCCEED THPRUG <e*) = {(THHRETURMN <e») = see THFROG.
(THSUCCEED <place») = (THSUCCEED «<placex TIJ
{ THSUCCEELD THEUREWM <e») causes theorem to succeed with value of <e>,
{THSUCCEED THEUREM) causes the theorem to succeed with value THHOVAL.
(THSUCCEED) causes a simple success to propagate,

58) (THUNIQUE <expl> <explr ...)

THUNIUWUE is a state filter, It causes fallure if the list
consisting of the values of its arguments has been computed by any
previously executed THUNIQUE. For example, & conseguent theorem named
THM1 can be prevented from getting into a loop by calling itself
recursively (via any intermediate theorems) with arguments identical to
those suppllied to the theorem at the higher level activation by making

(THUHIQUE '"THM1 57X1 $7X2 ...)
the first statement of the theorem's body, where $7X1, $7X2, ... are the
planner variables ocecurring in the theorem's pattern.

39) (THY. .. <variable name>)} (THNY <variable name}) i
These LISF functions get the PLAMNER value of the wvariable whose name
Is given, The atoms THY and THHV also serve as markers of the special

variable flags to the matcher. (THY FOU) is $?F00 and (THNY FOO) is
$_FUU0 by using the macro-character feature of LISPF 1.6,

40) (THVAL <expression? <alist>)

THVAL is the Micro-Planner evaluator Just as EVAL is the LISP
evaluator. As in LISP, the first argument is evaluated (THVALuated) with
free variables in it given the values associated with them on the given
alist, Miecro=-Planner's alist, called THALIST, Is a list of pairs (CAR-
CAUK not CAR-CDR) of variable names and values., |If you want to stop a
Micro-Planner evaluatlion at the next interruptable place hit ctrl-=A,
Planner will then type out [A=-THVAL and go Iinto a THERT listen loop (sea
THERT). The next expression to be executed Is In the variable THE. To
proceed, type $pi{spacer. MWarning: an expliclt call to THVAL may not be

Es

' PAGE 23

reentered for backup upon failure after that call returns,

41) (THVSETY <varl>» <el> .., <varn? <enr)

“ets the variables to the wvalues of eis as In TH5ETQ. Mot undone on
failure backup., See warning about THYAL.

42y Abbreviations

5%7x = (THVY xJ
3_% = (THHVY =)
%Ex = (THEV x)

5 = THRESTRICT
50 = THGOAL

S5A = THASSERT

SHx = (THANUM x)
5T = (THTBF THTRUE]
3& PR | 55 ignﬂl‘Ed

L3} The Matcher

The Matcher In Micro=-Flanner is elementary and contains a minimum of
bells and whistles but is (hopefully) sufficliently powerful for most
problems, HMicro=Planner's matcher only matehes lists one level deep and
only has two distinct kinds of variable occcurrences, The matcher's
actions can be summarized in the G=byv=6 chart on the nesxt page, which
shows how any two pattern elements interact. One nice hook in the
matcher 1s that a pattern element (or the entire pattern) may be of the
form $E{expression? or (THEV <{expression?) (those macro=characters are at
it again!) , which means that the element (or pattern) is to be replaced
with the result of THVALuating the expression with an appropriate
THALIST. For example, to stack up all red objects:

(THGOAL (#STACKUP SE(THFIND ALL $7%X (X) (THGOAL (#COLOR §7X #RED))
Y1),

See THRESTRICT for more powerful matching methods

MATCHER CHARACTERISTICS

V(Y}V (X) means ¥ assigned to value of X

Y4 X means Y assigned to value of X such that if ¥ is

clobbered,

g0 is X

lin
l"j"nE £?X ar (THV X) $¢X or (THAV X¥) |Constant
Theasrem ';.11”1—) ".‘m_ i ¢
FPattern - | assigned |assigned lassiqgned [assigned
?
- o WV (VIY V) (VIXEVY) VX)EVY) (V(YWC
[% e X ¥+ X ¥ X
E g m
am- ——— ——— ——— —— _——
E
L 'EI ViNmeviy)! NNV () WK ev (Y)Y !
“ n: Ye X Y X Ve X
o ® o
i m == - ——— === =——— —_——= —_———
e ml V¥ =vix) vi¥)=sCc
';: L VX7 (Y) (VYV} (VI(XeEV(Y) VIX)eTY) V(Y=
il E T X Y4 X Ve X
B W —_— —_ —_— —_— —_—
E = IR
o
" VKV IY) VYV ix) [VEORVIY) [VOev(Y) [VIiYieo
a | IE =X Y= ¥ W= 3
3:\ [é —— [eep—— - [E—— [REp——
s
fTY a
i
Constant VXKD V(X)eD V(X)eD
D . L L L L
ViXi=D D= C
—nction Taken -- Blank if no action is taken
—Condition for Success -- Blank if always succeeds
V{(X) means value of X, V(Y¥) means value of ¥

PAGE 25

V. & Compendium of Micro=Planner Error GComments

The tilero=-Planner error comments are meant to be self-explanatory. |IF
you come across one which Is not, It is probably meant for me, not you,
and it would help in removing residueal bugs for you to save the situation
and show it to me. A1l Micro=Planner error comments are typed out by a
break function called THERT which leaves you in a LISP listen loop at a
point as close as possible to the cccurrence of the error, so that the
state of the system may be Interrogated. Usually the error is fatal,
but if vyou wish to proceed, type j3Pispacer {(See THERT), Usually something
is typed out before the error comment; that is the object the comment is
complaining about. Micro-Planner error comments almost always end with -
{funny word»; the <{funny word: Is the name of the system function which
got mad, In many cases, Micro = Flanner will catch the error before it
has done anything too drastic. In such cases the user will be able to
patch things up on the fly, and continue as if nothing happened. Whether
or not this can be done depends on the kind of error.

The authorized list follows:

LISPERROR = THWVAL

LI5F became unhappy when trying to evaluate the expression typed out,
| f proceeded, the value of THERT will be assumed to be the value of the
expression which caused the error.

_BAD SUCCEED - THVAL, or BAD FAIL - THVAL
You were screwed by a Planner bug. FPlease save situation and contact
e .

UMCLEAR HECOMMEMDATIOHN = THTRY

The expression typed out before the error comment was a recommendation
to THGUAL which was not either a THTBF, THDBF, THHUM, or a THUSE, or was
a THANUM or THHUDBE which did not come first in the list., |If proceeded,
the value of THERT will be assumed to be the correct recommendation.
Atomic recommendations are ignored. Since proceeding with 3P s
egquivalent to proceeding with the value T , §P In effect says to ignore
the recommendation entirely .

BAD THEOREM = THTRY1

The expression printed was passed to THGOAL as a theorem, |t elther
did not have @ THEOHREM property or was not a consequent theorem. |If
proceeded with a value, the value will be assumed to be the correct
theorem name. If %P is used, this theorem will be ignored and the next
item on the recommendation 11st will be tried.

BAD CALL - THFINALIZE

You called THFINALIZE without giving a place to finalize to., |If
proceeded, the value of the THERT is taken as a specification of the
place, If %F is used, the finalize 15 lgnored,.

_UVERPUP = THFINALIZE
THF INALIZE overpopped THTREE trving to find the lousy place to stop.

PAGE 26

This is a fatal error. Ho recovery is possible.

UVERPUPR = THSUCCEED

THSUCCEED overpopped THTHREE trying te find the place to stop
succeeding. Hemenber that THGO and THRETURN use THSUCCEED. Fatal
errar,

HUT FUUND = THFEA&IL

THFAIL could not find the place to stop failing. |f proceeded the
value of THERT is taken as a specification of the place. If it is T ar
NIL then it is just returned as the value of THFAIL.

IMPURE ASSERTIUN OR ERASURE - THASS1

The datum you Ltried to assert or erase had a variable which was
unassigned. The offending assertion is in the variable THX, You may
edit it to be pure and then proceed the program,

BAD THEUREM = THTAE

fou tried to THUSE an antecedent or erasing theorem which was of the
wrong Lype or did not have a theorem property. |f you proceed the value
of THEKRT is assumed to be the correct theorem name. |f you had just
forgotten to define the theorem, feel free to define it before You
proceed, and return the same name.

UNCLEAHR RECOMMENDATIUN - THTAE

You gave a THASSERT or THERASE recommendation which was not a THTBF ar
a THUSE. As in THTRY, the value of THERT is assumed to be the corrected
recommendation. Atomic ones are agaln Ignored.

UvbD HWUMBER UF GUUDIES - THSETQ, or 0OD HUMBER OF GOODIES = THVSETQ

THSETY or THVSETU does not know what to do with the last goodie,
Proceeding will cause the odd goodie to be ignored, (Haturally the error
will be ignored also.)

THUNBUUND = THV1

You tried to access the value of the unbound variable printed., |f
proceeded, the value of THERT will be assumed to be the value cell of the
variable which was not bound,

THUHASS IGNED = THV1

You tried to use the value of the unassigned variable printed. The
value of THERT is taken as the value of the variable in the current
expression, MNote that if you want the variable to have this value later,
you had better THVSETQ 1t.

THUNBUUND - THGAL
Tou tried te access the unbound variable printed. Proceed as in
THUWBOUND - THV1,.

PAGE 27

V. Hiints and kinks

1) A1l atoms whose pnames begin with TH are property of Micro=Planner and
should not be used in programs designed to interact with it,

2) When iicro=-Planner is loaded (by :PLHNR in DOT) it is listening in a
HREAUD=THVAL=-PHINT loop at the top level, Typing S$P<space? will cause this
loop to be exited to a LISP READ=EVAL=-PRIMNT loop., Any error condition
which propagates to the top level {(eg, entrl=G) will restart the READ-
THVAL=PREINT listen loop.

3) The system version of dicro-FPlanner has a LAP in it. 1t is desirable
to REMLAP at the earliest possible time as the LAP takes up lots of
space,

L) The EXPR version of Micro=Planner is in D5KE:PLHR:; PLHR » and the LAP
verslon Is stored In DS5K:PLHNRE: PLHR LAF,

5) Because most Micro=Planner primitives operate by modifying THTREE and
then returning, it is fairly unilluminating to try to trace them with a
LIsP tracer (which is good for the LISF recursive control structure).
For that reasgn | have taken pains to provide a tracer which 15 more
relevant to the planner control structure. It Is available as EXPR code
in DsK:iPLHK;THTRAC >, With it one can conditionally trace and break on
theorems, assertions, erasures, and goals. To use the tracer one must
first read it in and then incant (THTRACE <objl: . . . <objnr}, where
each object 15 an item to be traced or broken at. The possible entries
are ejther:

{atom? abbreviation for (<atom* t nil)

(Catomr {trace condition>) abbreviation for (<{atom> {trace condition’
nil) or

Lftatom? <trace condition> {break condition:)

The CAH of the item may either be the name of a theorem or one of the
following atoms which have special meanings:

THEUKEM all theorems

THGUAL all goals

THASSERT all assertions

THERASE all erasures

THEKPT all breakpoints

The conditions are THVALed with the THALIST which is current at the time
of call and thus may be arbitrary PLANNER programs which test the state
of variables and the data base, Tracing of selected items, or of all
items may be terminated using THUNTRACE.

B) A Miero=Planner program may at any point call a LISP program, but a
LIsP program may not call a Miecro=Planner primitive because the PLANNER
control structure 18 pot really recursive, |If a LISP routine wishes to
call a PLANMER program it must explicitiy THVAL it with an appropriate
THALI=T. Be especially careful not to screw around with the LISP values
“of Micro-Flanner primitives unless you understand what vou are doing.

" PAGE 28

The possibilities for lossage are infinite,

e e ik i 1l s

