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ABSTERACT

A random method for generated binary trees is presented,
and two forms of a class of one person games called "Tree
Solitaire" which have such trees as their game trees are
defined. After what "lock-ahead strategy" means in terms of
guch games is discussed, a thecrem on the most efficient use
of unlimited lock-aheads is proved, and a collection of strate-
gies involving 0, 1, or 2 lock-aheads per move is introduced.

A method involwving diagrams is presented for calculating
the probability of winning under the various strategies over
a restricted class of games. The superiority of one of the
1 look-ahead strategies over the other is proved for games of
the first form on this restricted class. For games of the
second form in this class, all the introduced strategies have
their chances of winning calculated, and these results are
compared among themselves, with the result for the first form
of the game, and with the results of Monte Carlo estimation of
the chance of winning in a particular case.

An approxXimate method for evaluating strategies from any
given position is introduced, used to explain some of the pre-
vious results, and suggest modifications of strategies already
defined, which are then evaluated by Monte Carlc methods.

Finally, variants on Tree Sclitaire are suggested, their
general implications are discussed, and using the methods
already developed one of the most suggestive variants is
studied and the results show a significant reversal from those
of the original game, which is explained by the difference in
the games on one particular.
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INTRCDUCT LON

In confronting the problem of nrosramming computers
to play mames such as chess, where mgood nlay seems to
requlre the =bility to "lock ahend" te future pesitions, one
is immediately sawnre that, desnite the comnuter's sneed, the
rome trese lu mucn too large to allow looking ahead to the
entl of t-e ~ome in meikine the decizion on where Lo move,
Frooent metheddzs o ent loak o a certain limited depth in the
troe usin: funot’ons wnich atiempt te evnluate "how food”
the positions seen are, and use what they 'ind as best they
can. Certain technigues such as a=[ ha'e been developed
to streamline this process, but no theoretic frameworw for
the problem of look-ahead has been constructed,

This paper reports an attempt to begin such =
construction by examining & class of one person fames with
simplified game tree, and evaluating various limited and
unlimited look-ahead strategles for it., In doing 50, a
terminolery for dealiny with look-ghead is developed, and
the kinds of distinctions and definitions that may prove
necessary or useful for further m::_rk are discussed,

This is an exploratory study with no known predecessors
in the literature, and so tignt organization and single-minded

purpose have been avoided in the interest of presenting all
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the varied results so far obtalned from different approaches,
and as many &5 possible of the conjectures and suggesfinns
i'or further study that have oceurred to the author. In
addition much time has been spent on detailed explanations
of problems and methods which, though not particularly deep,
are probably not particularly familiar either,

Chapter 1 introduces the eclass of games called
Tree Solitaire (sbbreviated T2) and its twe forms (TSD and
TSI, by exnlalnine how the rame tree for such a game 1
paeneraked; and then fturned into a Fame.

Chapter 2 discusses what is meant by "look-azhead"
in terms of this class of games, whet is meant by "look-
ahend stratery', and how such are to be evaluated. It then
proves o few simple results and defines the lock-ahead
strateglies that will be dealt with in later chapters: STRAT
and NOSTRAT Ainvolving no leok-zhead, HETHAT and LETRAT
inveolving one, and BETRAT, 2HSTRAT, and 2LSTRAT involving
two logk-aheads.

In chapter 3 methods are introduced which produce
closed formulas for the probability of winning using HSTRAT
and LSTRAT in games of form TSD. It is proved that
LETRAT 1is alwa#s the better strategy in such games.

Chapter 4 wuses methods similar to those af chapter

3 to evaluate, by means of computer program, all the look-azhead



stratepies defined in chapter 2; over ithe class of pames of
form TSI, (Alternative evaluation by Monte Carlo methods
is discussed for HSTRAT and LSTRAT.) The strateries are
then compared as to their "effectivencss" in obtaining wins
when various parameters involved in the meneration ol the
fmames are varied,

Chapter 5 introduces the concept of "depreclation
factors” for the purpose of evaluatins strateries from
positions other than the first one in the rame, A Dlpusinle
armument 1s given [for the predominance of LSTRAT over
HETEAT 1in TSI, Modificatlons of HSTRAT and BSTRAT are
Eugrested, using these depreciation facteors, and evaluated
by Monte Carlo methods so that they can be compared to the
original stratemies,

Chapter & introduces varlants on Tree Solitaire
as a means of supgmesting ways of extendinr results a ready
obtained. In particular a game which seems a much more
reasonable idealization of pgames like chess is introduced,
and a start is made toward applying the methods and results

of the previous chapters to it.



CHAPTZR 1
TRER SOLITAIRE ANHD ITS GAME TREE

Most rrame playing prosrams usinmg look-ahead abstract
a mame tree from the riles of the pams, and assifgn values fo
the pointz in the Lree azcording to an orsiuztion funetion
defined on the physicel conlisurations of the corresponding
nositions in the ~ome. In ctudying ths wursinecs of Lthe
igna=shead Drocestsre tneoretically, onz 1 most interested in
Just the game tree itsell and the values assirned to itc
pointz, Thercfore in tnds report the procedure is to meperatce
the mame tree, assisn values to its points, and then to define,
with as much simplicity as possible; a game which tne tree
represents.

Most consideration is smiven to a one-person mome, or
actually class of one-person games of this type, which will be
called "Tree Scliteire"™ (TS), and has been developed from an
idea nroposed by Seymour Papert_l Variants on this pame will
be discussed in Chepter 6, Treesz for TS are blnary, and

renerated rz follows:

Start with an initial "fork" a&s shown in Fipure 1.1

-

1. Imn unpublizhed notes and conversation.



The top point of the form will be czliled a solit point”.

ToP oR YSeLITY BoinT

BoMoH FoiuTs

o "BRaNcHEL”
/ ~

Fleure 1,1: a ork

The bettem points of the fork are called the immedlzie
“sucecessors’  of tne ton polnt, and zometimes Tbranches,”

The bottom points of the initial fork mey be elther lurther
"split points” or simply end points, Whether a bottom point
is a split point or an endpoint is decided by some probabilist
method, choszsen so that the probabllity that the point iz =2n
.Endpaint i3 a ziven number E., The probability that it i= a
Eplit point is 5 = 1-E. Whenever no confusion will arise,

an endpoint will be referred to as an E;, & split noint az an
5. If a2 hottom point to & fork is determined to be an E, a
new lork is added to the tree with this point as its top polint
and two new bottom polnts must be deﬁ]t with. As soon as all

avallable bottom points have been determined to be E's, the



reneration ¢ e binare tree l1s complete. Fijure 1,2 ives

an example.

Firure 1.2: A renerated treo

The tree will e ssnurated witn a finite nunber o
points if E = .5.1 The need for this will ocecasionally be
apparent, but many of the results to be obtitained will be
valid Tar E « .5, and thiz will be explained when it occours,

Assirn to the top point of the treec the walue 1, In
some probasbilistic way, declide on two number whose sum 1s
this top value, and aselipn these two numbers to be the values
of the branches of the fork. Thus in Figure 1.1, the t2p

point has value 1 and the bottom points misht have values .86

1. Harris, The Theory of Branching Processes, p.7




gnd - .4. Feor any fork, the ratio of the value of the niaﬁer
valued branch to the top value 1s called the "split ratio”.

. The =split ratio h&ré would be .6, If a bottom point is on. .
2, we aplit its value bhetween its two branches in the =ane
probabilistis way. This process is continued until nali
points of the tree have been assiened values., In & Finite
tree the =zum of the end points will equal 1.

In order to conctruct a meme, szome af these end-
points will bwe costed wins, Lhe rest Jossen.,  There will be
no drows, Twe sicilor sethodzs of asslioning wins and loszes
sive rise to two «<ifferent forms of Tree Solitaire.

The dependent form (TS5D) treats the values of the
endpoints as a preocability distribution, and assifFns one win
to the game, locatinmg it at an endpolnt chosen according to
the distribution., All other endpoints are losses, Thus the
value of an endpaint is the probability that it is a win.
The reason that this form of the game is called dependent is
that, -if one endpoint of value A 1is known to be a loss,
then the probabllity that any other endpoint is a win is its
orizinal value divided by (1l-A), since we know that one of
the endpoints must be a win.

In the independent form of the game (TSI}, the salue
of an endpoint is used as the probability that the endpoint

iz 2 win , the decision being made independently for each

- 10 -



endpoint., Thus there necd not be exactly one win, Theres
may be zero, ons, twWwo, three, ete, Knowing that one endnoint
iz a loss glves ne information as to the others, This form
of the zame was Introduced because it seems claoser to real
rames than 15D, end a 5o because it was erroneously thourht
that TSD would be too comnlicated to nnalyse,  (Hee chonter
Gl

Try somnlets the definition of Tree Balitalire, one
must expiain nne ratco of pley, Clenrize, 1Y the Same LrGo
in to ﬁqrh mn frame trecs should, a "nlay’ of the ~ane will be
representable as o nath from the top polnt to an end nolnt,
with the noints af the path representinsg positions in the reme,
and the iines betuwcen them representing lemal moves, Tods 1z
exactly what is done,

The "position" corresponding to each polnt is a certain
set of information about that part of the tree:

i. The value of the point itszelf

2. Wnether it is an E or an &5

3. If an E, whether 1t is a win or loss

Y, If an S, the values of its twe branches, or

Equivalentlyf its split ratio,

A move 1s made from a position corresponding to an S

point to a position corresponding to one of its branches. A

binary choice is inveolved and herein lles the opportunity for

- 11 -



stratery. The reme starts in the position vorresponding to
the top noint of the tree and continues until the position
eorrespondinin to an endpoint is reached, and is won if anAd
only if that point is a win, From now on "the position
erorresponding to” will he omitted and wasitions will be
Identified with the corresponding polnts, hopefully without
lass of clarity.

It would be aproncs nere to erxnlain how thiz fame
cumparnt Lo ncre conns foatoed onez lixe anecs, el te jusi! Oy
itz wge no n slartine nolnt in the study of the nroblem of
loor-ahesd. First of nil, the simplificatlen to o one-narson

rame is reasonable in the besinning of such a study, a5 well

. a5 convenient due to tne nature of the Meme ftree and its

valuation., &imilarly, having the tree oe binary and thus
havinzg only two possible moves from any position, seems a
reasonable simplification, as does the fact tha£ an ordinary
"play"' of the ﬁaﬁe will only comprise ﬁ small numbher ol moves.
Letting the va'ue of & position be its probabllity of beinrm o
win is a straightforward valuation, even if it is perhaps more
powerful and simpler than those used in chess playinm procrams,
In TS5 the chance of any position being a final one is a
constant E throuchout the game and this may give rise to
doubts, but is perhaps justifiable by the fact that in zames

like chess a number of the moves from any position are such

- 12 -



outright blunders as would create a lost ~ame (or the mover --
and a win for his ovponent,

The principle obijection to TS must arise from the
fact that the ralues of positions of necesslty decrease as the
play of the rmaeme procedes farther down the tree., This is a
reasonable criticism, and the wegkness reierred to daes heve
arn appreciable effect on the results, ps will be seen when
ey are compared with those lor a variant elass of rames
without thiz weainess, in Cnonter G,

Howerer, Trec Solitaire is a nice znowease for tne
=arious possible limited look-=anend stratescles, and rllows
much stralghtforwnrd analysis of them, It can serve as a
warkshop for developins methods of evaluatinsg stratemies, and
it as well has a certain amount of intellectual appeal all by

itself,

- 13 -



CHAPTER 2

LOOK-AHEAD STRATEGIES AND THEIR EVALUATION
- in £ﬁ; éﬂnteﬁt ﬁf Treé Enliiaéré, a  look-anead” will
be defined as seeins a sucerssor position to Lhe one you nre
in, or nave rlready ceen, by "seeinyr a position will be
meant the acquisition of the entire set of information aszo-
cinted with the vosition, as defined in Chapter 1. The
difference between & "look-gheasd” and 2z "move 1s that lockin:
ghead to a position, slthoush it gives you as much information
a8 moving there would, does not commit you to that position,
whereas moving there would

£ look-anead strategy will work in the I‘{::l_] owing wWey.

suppese you Tind yourselfl in peosition X, In accord with a
#iven rule you choose those succeeding positions at which you
will leok -- the rule may allow you to use the result of your
gearlier look-shesads in choosing where to use your later looks.
Once the look-sheads have been completed, you maks use of the
information to decide according to a second rule where to move,
thus arriving at = new position, where, if it is not the end
of the game, the process is repeated. Any information you may
have gained in previous look-aheads as to the successors of

this new position is assumed to be forgotten.



A look-ahead stratefy can thugs be ceen to be defined
by ziving the two rules that movern it: the one that tells
vWrare to look, and the one that tells where to move,. riven
the results of the look-aghead,

Strateries mey be eveluated according to a number of
criteria. Hizh on the list, however, must be thelr effeec-
tiveness at achieving a win, over the whole class of fames of
Tree Solitalre, The principles of such evalustion are
demonstrated in the following two cases ol stratesies
invalving no loox-shead at all.

NOSTRAT 1is defined by the rule that moves are chosen
completely randomly, without any reference to the values of
positions. In thlis case the expected value of the position
you move to will be 1/7 the wvalue of the position you are in
The chance of winning on a given move 15 the expected value of
the position at the end of that move times the chance of
getting that far in the game, under the given stratery, times
the chance of the position being an endpoint, i.e., times E,

The chance of winning the game at all thus becomes a conver-

gent infinite sum. 1In this case, A
: i
P N\
1 1 1 2 _E 1 ™ - .
sE+(@ s+ (3es? + . = 3 (5

,

= Ef(2-3) = E/(2-(1-E)) = E/(E+1)

- 15 -



I E = 1 then the probability of winnln: W = 4333,

- NO ~
NOSTRAT 1s not the best possible stratenqy involving
no look-aheads., That honor belonss to the obvious stratery
of Aalways movinT t-. the hicher valued of the two branches of
a fork, which stratery will be called simnily 0OTRAT. To
cnlculate the chance of winning under 3STRT, we make use of
the expected va'ue A of the split ratic as a prediction
for the way values split at every split polnt we encounter,
IT the ton palint ef A ferk n=s wvelue X, the cxnectod raliqa
of the hipgh branch's walue is AX a2nd for the lewer —slued
branch BX, where B » [1-p). Since the value at the top of
the tree is 1, the cnance of winning under STRAT can be
3een tn be |

-

; AE(rS
=0

i _AE___ AB AE

T-AS -~ T1-A+AE = BFAE

If E=%, A={, then the probability of winning
W= 6000,

Against "effectiveness" must be weighed the "cost" of
the strategy, in terms of, éa;'.r_. computer time. Since it may
be assumed in tne case of logk-ghead strategies that the
principle time consuning factor would be the number of look-
aheads, cost considerations would lead us to want to minimize

this number per move over the class of all rame trees.

- 16 =



However, in tryving to balance this amsinst the importance

of having an effective stratepgy, any theoretical treatment
would involve a certein amount of erblitrariness, which mirht
hare a considerable effect on the results, In order to =vold
thiz praoblem, tris study has concentrated on comparing as to
tnolr effectiveness varlous stratexies whose EEEEE nre the

seme.  Limited

lonk-ahead” strategies invelvineg one look-

—

pnesd will first be exemined, and then those involving two
rra poossibly moro, |

But Tirst, Tfor the sake of perspﬁctivﬁ: wie will note
a result at the other end of the spectrum == unlimited Took=
shead., With unlimited lock-ahead a win 1s éasured {in T3D;
in TSI“I;-;in is asssured 1if there in fact i one). 50 what
we must do here is pick from a number of equally "effective”
strateries, that which is least costly. Such stratemies have
iR Tommon the Tact that they use thelir look-=ahesd to (ind the
endpoint which 1s a win {(in T3D; in TSI, such an endpoint
if it exists), and then the proper choice of moves is a matter
of course,

.Intuitively, the best of these lock-ahead strategies
would be the one which leoks at the highest valued of the
points open to look-ghead 1l.e., the points which are successors
to the polnts already seen., Thus in Figure 2,1 you would first

look at .6, then .5, then L&, .4, .3, .2, .1,

- 17 -



Fipure 2.1: A cample fame tree with sample uwnlues,

! proved that thils is indeed the best method,

Panpert
Proof: First note thst since any method of selectins what
point to look at next is independent of whether that point is
ari B or not, over the class of all preme trees the proportion
of E's looked at to the total number of points looked at
should be the same, thut is, should be the number E. Thus

to minimize the total number of positions looked at, over the

clase of all game trees, one need only minimize the number aof

endpoints looked at,

1. 1In unpublished notes.

- 18 -



The expected number of endpoints to be looked at in

order to find a win is, for any stratesy in games of TEI:
... - _ l!._.. - ; 5 .- . - .I‘_-.
Ay'l o+ (L-hg )2 + L. 4 (1-p ) (2-A )00 (2-8 1A
and for TID
ﬁ1-1 + A?-E + ... F An'n

whers Fi iz the value of the 1Fh endpoint locked at, and
n is the number of endpoints. The [l—hi] arec cancelled in
the formuls for TED because; 1 Aj is not o win, then the
chance that A; , 1s a win is increased to A, ,/(1-8&;).

I hoth caeses, the zum will be minimized if the end=-
noints are ordered so that Al = AE =L L. > An, which can only
bte suaranteed by the strategy under consideration. Q.E.D.

We now return to strategies invelving a fixed number

—

of look-aheads. The present chapter will conclude with a

—

description of the strategies to be evaluated 1n the next two

ﬂchapters. However, first it wlll be noted that unlike the
strategy just described, they are all what will be called
"erdinal" strategies. An ordinal strategy is one which does
not make use of the precise wvalues of the twoe branches of a
fork, but only notes which one is larger. Only such "ordinal”
information is used in deciding where to look next, as well as

chooslng where to move next, The use of the preclse values,

- 19 -



cithér to choose the next move, or to choose where Lo loos
next, at first thoumht would seem guite valuabkle, however
- the actual adventere in the case of one or two look-aheads
may be minute, 2nd there is a corresponding inernase in the
amount of aoaleulatlion nerded snd hence time used, These sand
otner nquestions are diseuneed in chanter &,

The strateries:

BT, e Grncacread, Lok st tnn Ricoor breanch, I It
E o -T T.

in om0, mothe Lheen, 1T it io en E  amed o Wing move Lhaere,

Otherwise move to the lower branch,

LETHAT, One loox-shead. Look at the lower branch, I it is
an & sand 2 win, move tnere. Otherwise move to the hlsher

brench.

“HUSTRAT. Two look-aheads ( or less), Look at the hisgh branch,
If it iz sn 5, look at its hirh branch,.” If elther of these
two iz & win, or if both are 35's, move to the high branch,.

Otherwise, move to the low branch.

2LSTRAT. Two look-aheads {or less), Look at the low branch.
If it is an 3, look at its hlgh branch. If either of these

two iz a win, move to the low branch, Otherwise move to high

branch.

- B -



BESTRAT. Two lonk-aheads, Look at both branches., If either
iz a win, move there. Otherwlise, move to the highest of the

--two- which is-an 5. If both are lossesz,-accept defeat with

a smile,

Theszse five exhaust the pozsibillties for one znd Lwo
lnok=ahead ordinal strategles, in the sense that any octher
such strategy can be shown to be obviously inferior to at
least one of these whilch agsrees with it az to number aof lcok-
aheads, whereas the ranking of these 1s not at first obvicus,
The next two chaoters try to discover this ranking. Althouzh
the resulis in the present chapter hold egqually well for both
TsD and TEI, tho treatment ié different when lﬂuh?aheads are
involved, and so one chapter is devoted to each type of rame

separately.

- 2] =



CHAPTER 3
ONE LOOK-iHEAD STRATEGIES IN THE DEFPENDENT FORM

OF TREE SOLITAIRE

The results in this and the following chapter wlll
be proved for the restricted class of Fame brees with
constant split ratio A, .5 < A < 1,0, 1t is a mlausible

- S —

ranfneluras tant the recsults are apnrorximately true over ithe
ez of &ll fame Srees, so lonwr as A in the sxpectad
value ol the snllit ratio,

in tnis.thapter it will be proved that in TaD,
LETAAT 1s more effective than HETRAT for all allowable
values of A and X, TIs this a surprising result? HWith
unlimited look-ahead the least costly stratezy that Ilnsures
a win involves looking at the nighest walued position first;
wlth one look-ahead the most effective stratemy is tn lonk
. at the lowest, But this i= no contradiction. Also, we must
remember the whole strategy, not Jjust the look-ahead rule.
LETRAT, by looking at the smaller branch, insures that if
there is a win at either branch on this move, you will pet it,
I this is the wvirtue of being "aggressive”, then HSTRAT
has the advantage of "cautious,"for it assures you af not

loging on the current move unless both choices are losses.

It is difficult to see which factor outweisghs the other, so

- 29 .



we turn now to the nctual evaluatlion of Lthe strategles,

Now that look-aheads have been invoked, it seems
untikely that the probability of winning under a miven
stratersy will be calculable in as simple a2 manner as was
used in chapter . The uze Al a zinele expected value 'or
the walue al the aositlion on 4 slven move (at o siven ply of
the game tree] will lead into Aiffieulty. With look-ahesd
stratering, the orobenility distribution of nosition values
at o yriven nly iz dependent on the probatility diztributiaon
for thr nrevious ply. This means that the expected velue
far ths position valus at one ply is not = direct function
of the expected value Tor the previous ply, but of the Enpire
distributicn of position walues, Thus we cannot, az was done
'or DTRAT, have o single estimate of the position value at
ane nly, and use that to caleulate our estimate for the next.
Instead we must find a way to retain distribution information,

For mames with a constant split ratio this is not too
hard, and hopefully the probabilities of winning thus obtained
will be good approximations to the probabilities for the class
of all games whose expected split ratio is equal to that
constant,

With econstant zplit ratio, the number of possible nposi-
tion values at the n®P ply (with the top point of the gfame

tree being ply 1) is precisely n. Feor example, with split



rotic & and B = 1-A; the possible position value at the

first ply 1s 1, a8t the second ply the values are A vl B,

P =™

at the third A, ABE, and E", and so on, To avaluatn the

e

chonee of winnlng for o wiven E and A under a particular

Elfate*y we sun, for aach ply, the product of each npossibie
'-pnﬂitinﬁ value times the probability that such » posgition is
an endpoint times the probability, over the class of all Fame
trees with =plit ratio A and endinsg prob=hility =, thot
you esild get to zuch o posltion at the iven nliy ander —oe
stratery, Taen we oum the values thus abtadned Tar the
probabllities of winnines at ench ply arer all plies rom
niy = on. [(This is the same =85 summing the chances of winnineg
on tne firsi move, second move, ete, )] The total is the
probabllity of winnlne at all, under the clven stratery over
the elass of all pames with the partlcular split ratio and
ending probability. The sum will converge, as it is clearly
bounded by 1.

To aid in this calculation, it is convenient to have
g diagram as in Figure 3.1 for HSTRAT. The diagram i=s only
partially drawn here, However, it iz in a sense recursive,
and once one understands how it is generated, one doesnot need
to see the rest, A5 such diggrame are much relied upen in

this report, a detailed explanation of this one will be miven

- Al -



here, so that the reader can generalize and thus understand

later diagrams without much further explaining,

Figure 3.1: Evaluation Diagram for HSTRAT

The pointes and lines have numbers assocliated with
them, The points represent possible pnsitiuns you may be in
or looking at, and the cirecled numbers are their values,

Lines are directed from left to right or from top down, and

- 25 -



the numbers nssoclnted with them are tne probabllities of
moing from the starting point to the endpoint (in the case

- - HSTE&T,-uf-ﬁnin& from leoking at- tihe high branch. to
moving to the low branch, or of going from the top peint of

a fork to lookinz at its high branch). The first horizonta?
row of points renressnts the first move (or second ply), =nd
so on, The probability of being in a given position (i.e.,
at a riven noint of the diagram) on a miven move (i,e,, nt a
#iven nly of the zame tree) ls calculnted reecursively by
sssociating to easn oolint in the dlasram o second number (lts
"mreobsbility” ) equal to the produst of this number far the
npoint's immediate predecessor, with the number on the line
connecting the two., {In scme later diagrams a point may have
more than one such predecessor; in which caze we take thé Sum
of such products,] The first point in the tree has 1.00 for
its probabllity.

This particular diagram is rather simple. For instance,
on the first move the hisgher branch has wvalue IA, You move
their unless it is a loss, the chance of which is E{l-nj.

If it is & loss, all other probabllities have to be divided
by {I-AJ- because we're in the dependent form of the mame,
and so the lower branch, to which-yuﬁ mnvé, now has value
+%§%} = 1, and is so0 laheiad. Essentially this same kind of

process goes on at each move.
e
A
LA
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How for the evaluation itself. 'The

on the first move 1s

. . o .
g4 + E(1-£3-E+1 = &Y + BE"

wrer= B - (1-f). 0On the second move it i=n
AR+ (R R = e (1-A)E

{(1-47)

(remamber 5 = 1-%:, and zo on, Howerer, =

f!—ﬁ?] and simniliylne, tne second term in
(S& + BEZ}(AE + BE)

or (54 + BES)

Thiz turns out to be true in feneral; i.e,,

and the wey the numbersz in it are assigned

LeMMae: Tne chance of winning on any glven

first) is (54 + BES) times the chance of

previous move

chanee of winning

i+ [1-8)7E73

ansnllin-: the

times the chance of winning on the first move.

study of the diagpram

shows that

move (except the

winning on the

This means we have a peometric series as before, and so we

have proved

THREOREM 3.1: Owver the class
constant split ratio A and

probability of winning under HSTRAT is

27T -

ending probability E,

of all games of TSD with

the



For exanple,
Similar yrood
diapram 1is

nly are |Joca

1"'."‘5?6}.".""{1:'5:1'

1/2, A= 3/4, then W, - T/G = TG,
things happen Tor L3TRAT ln Ti:0, The

.2, where the possivle positlons at each

ted in narrow bands of not gulte ceolinear polnta,

Figure 3.2:

Eveluation diagram for LSTRAT



This dlagram is explained az follows, The irst thing ynﬁ

da i1s look at the lower ralued branch of the initial fork,
Wwnose value Is B, I it is a win, you move there. I IL is
a =plit noint, which happens with probability 5, you move
to the higher ~alued branch, whose value iz A, I it is a
lozs (probabllity E(1-E}), wyou stlll move to the hicsher
branch, but now ihe probabilities of winnlng are the orl-inal
values divided vy (1-B) so the value of the hirsher Lran-h
is A {i-B} = s#fp - 1. In a similar woy the rest of oo
1iarran may be reaerzted,

The chanece of winnins on the Cirst move is

¥E + SEA + E(1-B)E-1 = EB + ESA + E°A
Or the next move, the chance of winning is

ES722 + ESPAB + E°5°A° + ESCA® + E95AB + ESsA°
or

(5°A + ESA)(EB + ESA + E°A)

The reader may verify for himself that again we have
a ratio which holds {'rom move to move throughout the same,

The sum of the resulting geometric series is

2

EB+ESA+E“A _ E(B+3a+(1-8)A) _ _E
1-é§h+Esn 1-{1-E)SA-ESA 1-5A

= 20 =



and we have shown

THROREH 4.2: Ower the class of all rcomes ol P20 wllh
" ecnstant, split ratic A and ending probability o B, the

probabllity of winning under LSTRAT is

“p o= B(1-84)

i & - Lomad n - i, bhen W = 5 = 3000,

w

How we ore ot (not nrepored Lo prove

THEOREM F.3: ©Over the class of all ;rames of TﬁD witn
coenstant split rotio A and ending probabllity ¥, for any
combination of values of E and A, .5 < E < 1. and

5 < A< 1,, both LITRAT and HSTRAT are more effective
than STRAT (no loak ahead), and LSTRAT is more effective
than HSTRAT.

Proof: This result is obtained by simply comparing

i

5 f _ E{a+BE R
W yBgp (ror sRAm), Wy = EUERELT L ema - o

The first is clearly smaller than either of the second two,

T

so all that need be shown 1s that HL = W
true if

H * which will be

E__ _E(#+BE
T-5i ~ T-5(A+

=0
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That will be true if

1 - S(&+BE) - (A+BE)(1-24) = O

i.e., if 1 - SA - SBE - A - BE + SA® + BESA > O

i.e., 1f 1 - Sh - SB[1-5) - A - B{1-8) + 3 + 3iB(1-8) = 0
i.6., if 1 - S(A+B) + S'B - (A+B) + 5B + Sa(f+B) - 3°AB = O
1o, 47 1 =% 4 CUB{1-R) = 1 + S(mB; > 0

i, 1t B om0

But this last is obviously true for .5 < F « 1. and

'

.5 < A < 1, Hence HL = ﬂH and ~ LETRAT i3 the more efifective

stratermy. Q. E.D.



CHAPTER 4
STRATEGITS IN THE INDEPENDENT FORM OF TREE SOLITAIRE
in

The neatneszs of the farmulas [or and W

L H
T is due to an inherent cancellation whilech rdoes not take
nlace there lor tne two-look-anead straterles, zo the trcat-
ment of these has been postponed to this chapter on TSI

In the crse of thls class of sames, no clozed farmuls Des
yviet, been diccovered [or the probabllity of winning under ony
of the strategsies involvinsg look-ghesd,

Howerer, diarrzams such as those in the nreceding
chanter can still he constructed, and sups~ast the 1deas.fcr
resursive computer nroframs which can calculate the appro-
priate nrobabilities of winning (W, L and by analozy,
Wops Waps and HB] move by move, This process, it turns out,
need only be carried on for the first temn moves to met 5-place
accuracy, although occasionally a small correction factor must
be added to take care of the chance of winning after the 10%H
move,

A separate program has been written in MAD for each
of the five stratecies, in addilticon to one for two limiting
cases whieh will be discussed below, Lach program when riven

~walues for FE and A& outputs a sequence D(1l), D(2),....D(10)
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of numbars ropresonting the probabilities of winnine on the
Ist, 2nd, ete. move, An output prosrsm then prints them and
the ratio between succeeding terms, as well as their sum and
any correction foctor., The diagrams and programs are
oresented in Appendix A. With the exception of 2H2TRALT
and 2LSTRAT, all these programs were checred arainst nand
caleulations. Thnose twe were too complicated for hand
ca];ulﬂtiun, but the internal workinms of both programs were
thaoroushly cone over nnd found setiziactary.

In the case of the ong look-zhesd otirabesies, tho
conclusions of the nrecedins chanter ceem to carry over to
TCI, even if their proof does not, Table 8,1 rive the calcu-
lated -ralues for NL’ HH (and W) for -raricus combinations of
E and A,

As can be seen, W, > W, for all E and A riven
here, and both Wt and HH are greater than W. For fixed
E, W, (and indeed W) approach W, from below as _H

H
approsches 1. In the limiting case they would all be equal,
agz 8]l the value of the top point of a Tork would Fo to 1ts
high branch. Similarly, for fixed A&, W, (but not W)
epproaches Wy from below as E approaches 1, apain with
equality for the limitins case, because then both bottom
points of the initial fork would be endpoints. Coth these

conclusions could have been made for TSD, because the numerator

of" the fraction representing W, - W, was {1-E]E[1dﬁ]E+
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2 i W Wy Wiy
! -5 33353 G515 40110
5 L AREET .5 A3LzY S
g (& B AriTE 6100
- G 81818 B30k .H326E
€ ) il IR et RO

£ ) e gl >

5 r.r s i )
-5 5 - 33333 .B515= LAE110
5 5 JazBsy  JBGEBTC . ok2ds
.5 L7368 L Tackl 71253
.22 .5 JboTha TATIT L THES3
.25 .75 CbeTBo 31847 L LATTO
- .5 .16 .6 LBETEE  .6B102
.75 .75 60241 76722 .TST4S

.G .75 LT2973 0 LT796%2 L T93T]

rﬁble 4.1: Computer resnlts: evaluation of probablility
of winning under STRAT, LSTRAT, and HSTRAT
over the class of games of T3I wlth constant

eplit ratio,
- 34 -



The case in the table with E = .5 ecan be included
because in TSI a came can be played without generatine the
entire some tree, All that need be fsenerated are the positions
thet will actua’ly be looked at or moved to under the ~miven
stratery., (This is how computer simulation of the ~ams nro-
ceedes in the Monte Carlo metnod of evaluatlon to be digcussed.
owelow. ] The expected length of a path in the tree is only
1 ¥, ca by sueh Yimited reneration we can reducse our work to
roasoneble omournts, &3 lont s £ i3 not too gmalll

Aetually. two acters disturd tnic astimste of rmanme
leniitn when we are denling with strate-ies invol-ring look-ahead,
Endpoints which are losses may be foreseen and aveoided, On the
athaer hand, =sndnoints whizch are ﬁins may be foreseen ancd
purposely sourght, The results of actual simulation of LETHRAT
with E = ,ﬁ and E = ,25 show that playing a smiven amount
el mamen for the smaller E takes only about 1.4 times ns
long as for the larger E. The factor for BSTRAT 1is sbout
2.4, reflecting perhans the sreater abllity of that two-look-
ahead strategy to avoid losing endpoints,

Elnce computer simulation of game playing has been
introduced, it would perhaps be appropriate here to present
the results of an attempt toestimate W, and W, ina
special case, by Monte Carlo methods, E was set to .5, A

to .T5. Actual games were played under LETREAT and HITRAT,
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with the game tree being generated as needed with the aid of
a MAD random number zenerator. 20,000 or more pames wore
olayed to obtain the estimates, A "trial’ was a series af
10,000 vames. The variation between trials for any marticular
estimate was at most 00080, indicatine considerable

stapility., The resultz are summerized in Table 4,7,

Diarram Method Constant Split Ratio Vardiable Snlit Hatlo

1 iI 1 1l
iy . BRTER L BTGO0 LB LEOEL0 A0
iy ,BALo2 . B5530 . BERLD LBTOTO . B5040

Table 4,7 Monte Carlo estimates of HL and ”H fer E = .5,
A= [TE,

This table, in addition to comparing the Monte Carlo
estimates for constant split ratio with the value obtained by
diagram method in Table 4.1, pives the estimates for HL and
HH when the split ratio is not constant, but obeys a prubability
distribution such that every value between .5 and 1,0 is |
egually possible [anﬂ hence the expected value of the split
ratio iz .75), Two different value (I and II) for each

split ratioc alternative are given, because it was found that
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different utilizations of the random number generator znve
‘rise to significantly 4ifferent estimates, Under utilizstion
I, low ralues of the random number caused wins., Under
utilization II, hiszh values caused wins,

The difference caused by this effect iz not the same
for both stratezsies, or for both snlit retio possibilities,

Under constant split ratio, the difference for W is 01100,

L
far HH LOOTIC,  Under variable split ratio, the differenre

for W~ is .GOS7C, for Wy, .01140, 411 these are eonsi-
derably rreater than the ,%0C40 marsn of errar in the
individual table entries, thus indicating that these differences
are significant, and, althourh tha table 4.1 values do lie
between tne I and TII wvalues for constant split ratio under
both strategies, casting a doubt on the use of Monte Carlo
methods for precise estimation of probabilities of winnins,

at leasst with the pressnt random nuﬁber g&nﬂratnr.l However,
such methods do, at least here, preserve the rankineg of the
gtrateglies, and it can be noted that apparently, the ~iven
non-constant distribution of split ratios here does yield a
greater probability of winning under both strategies than for
conegtant split ratio, even though the expected value for the

ratlio in each case is the same. An example of a Monte Cerlo

1. Time pressures have prevented the devising of a random number
renerator which would be for our purposecs less bilased.
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program 1ls listed in Appendix E.

Returning to the diagram method of evaluating
strate~ies, and the sssumntion of constant split ratio, it
i interesting to nete how the chances: of winning on pertli-
2ulEr moven (i.E., at particular ply in thr game iree)
compare for HITRAT snd LOTREAT. Table L, = i; B, listinﬁ_ﬁf

{1} thrsugnh N{10), as defined above for the two, with

- .85 nand 5o PR
Mave LATRAT HITRAT
1 45313 L 30063
2 . 15253 L 15733
3 L O5eha . LEROT
I .01BET 02735
5 .00E70 .01154
6 L0024 3 . 00500
T . 00089 .00216
& . 00033 . 0009k
o . 00017 . 00041
10 , O000h . 00018
SUM : :  JBETAS. . 66088
CORRECTION FACTOR . 00003 L0001k
S W, and Wy - (68768 - 66102

‘Table 4.3: Chances of winning under HSTRAT and LSTRAT
Tor the first 10 moves, with & = .5, A = .75,
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The ratic between successive terms For LSTHAT

berins at .3%66) and increases to L, 47114 by the 10ER

move., PFor HITRAT  tne ratios o up 1rom 40470 Lo L 4955T™.
This leads to the lact tnat here LSTRAT's alventare 1s
entirely contained in the first move (Fer other E and A,
it is sometimes contained in the first two. ) Then the
cumulative eflfect of 'cautiocusness” berins to pay off. The
fact that Lthe chance of winning on the 6 move is twlece as
math under  AOTRAT  an under LSTHRAT 15 due Lo the cumulalive

2L

oot ol neving urzed that stiratesy on the Ciecst 5 moves, thus
reducing the chance of winnine early in the reme, rather than
to any inherent superiority of H3TRAT once you are that far
alons in the game and position values are small., This will
be shown as a byproduct of the work in the next chapter.

Now turning to strategies with more than one look-ahead,
we note that in a way ZHSTRAT is an extension of HSTRAT.
One could easily continue this extenslion to =& 3HSTRAT, etc.,
with each new strategy o slight improvement over the others,
For instance, in Figure 4.1, 2HSTRAT would move to the &
position, then notice the loss at A3 and move to AR. Howevar
EHBTRAT would see the loss riﬂht'amgy and move to B, which is

a rreater wvalue than AB,



FiFure 4,1: A possible =mame treec, labeled with the values
af the points.

30 we have the general concept of {HSTRAT. where
X =1,2,3..., In the 1imit we obtain an unlimited look-ahesad
stratepry =4HTTEAT whoze effectiveness serves 2= a Limlt for
all such stratesies, «HOTRAT locks deowm the high branch of
a fork, and i1ts hirh branch, if it spliis, and then its hizh
branch, ete., untll an endpolnt 1is reached. If it is & win,
you move to the oripginal high branch, if a loss, move to the
low branch, (A very inefficient way to use unlimited look-
ahead, even though it agrees with the one discussed in chapter
é ocn the first 2 or 3 looks, depending on A, Also inefficient
due to the repeating of previous look-aheads after each move,

but this is & common fault of all XHSTRAT's).
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Similarly, an «LSTRAT may be defined as a limit of
XLSTRAT's., Table 4.4 gives the evaluations of these, and the

already defined two look-zhead strate-ies, for various I

and A,

E ¥ III'IIHl II'-IEL ‘IITI_i_. "II:-"'H TJ‘:EH

5 .5 LB1335 . B0013 . 61583 . 5lLeg .B1585
L5 CEERET ARG JRESLYy BRARAT LB1RHE 64563
b TS T L CTIETE L ERhek LATIGL LG
.5 L L CUEHT CRLTHY LBE4ET CHITE LPERS
.5 e, RS el L A1ETE L G1EE0 . FOY1E L0
.5 i LJuE0sd L EGES L9B0TE LoBo4g L od040
el .75 . BRLEA 553G - L 616338 LATEL L5760y
.5 .75 ST1hE CTIETS L T3324 LBT301 . 68967
.75 .75 781873 CTEOaY LTE18 LTEUTO LTaTeR

Table 4,4: FProbabilities of winning under BSTRAT, PRPLSTRAT,
=«LSTRAT, Z2HSTRAT, and =HSTRAT, over the class of
. games of TEI with constant split ratio,

For A= .5, W_ = W, because «HSTRAT asnd «LSTAAT
reduce to the same thing. HIL would not equal HxH for
A= .5 because they would differ on where to move if the last

point leocked-ahead to were a split point,
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A much more interesting table can be constructed
by using Tablesd,l and 4.4 +to rank all the strategies as

to effectiveness:

E A 1 | 5 & T
5 .5 wl--tig--=H B 2L L 24 H
.5  L66E6T =L B PL eH L 2H H
.5 .75 =L 2L B w=H L 2H H
B LG =], 2L B L wH ZH H
+ 5 .95 ], 2L B L =H 2H H
AT wl 2L B L =H 2H--"tle"--H
.5 LT =L 2L B eH L =2H H
.5 .75 wL L B =H L 2H H
TS5 LTS =L B 2L eH--"tie"--L 2H H

Table 4.4: Ranking of stratepies as to probabllity of winning

over the class of mames of TEI with constant
split ratio,

Table 4.5 speaks for itself., It bears out the con-
cluslon that W, . > W, . However it also shows that it is
not true that in all cases XLSTRAT 4is the best X loock-
ahead strategy: For E= .5 and A= .5 and A = ,66667
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HE > HEL‘ The wastefulness of the XHSTRAT's “caution’ is
seen from the [act that one look-ghead LSTRAT 1s better

. than .2HSTRAT, end even, in certain cases, better than
=HSTRAT,

However, rigorous mathematical jusiifications fnf suﬂﬁ.
conclusions sre yet to be discovered, Une of the purposes of
the next chapter is teo pet a start in that direction.

fiz one last way of looklnr at the resultz of thilz
easpter, let us note erxnctly now muach the s25e of Toox-ghooad
in ordinal look-phesd stratepies imorores the chance of
winninr., Tsble 4,5 7mives for warious combinations of values
for E and A tThe ratics of the probabilities of winnine
under the mozt elffective one and two locok-ahesd stratesies,

to the probebility of winning with no look-ahead (under STRAT).

B A W one look-ghead two look-sheads
, ratio - ratic
« 5 -5 £ 33333 1,67 1.86
5 . BERET 5 1.26 _ 1,33
.5 .75 .6 1.15 - 1.1%
.5 .G 81818 1.02 1,035
5 .95 . 90478 1.005 - 1.01
25 .95 . G8020 1,000 1. 000
.25 .75 42780 1.21 1.32
-5 LTS .6 1.15 1.19
75 .T5 .69231 1.11 1.13

‘Table 4,5 Improvement in chance of winning due to look-aheads
used in ordinal strategies over the class of Fames
with constant split ratic,
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CHAPTER &
DEPRECIATION FACTORS AND NON-ORDINAL STRATEGIES

So far 1n thlis report, etratesies have been evaluated
as Lo thelr effect on the whole game. In this chapter we
look ot them in thelr effeet from any ~iven position, and
try Lo do this without detailed projectionzs of what will
hannen later on, thus nerhaps enablin- us to decide whiczh
Took=anesd stratery t° use, move by more,

To this end we introduce the concept of "denreciatinn
factors” to ald In our evaluation of the relative scontribution
of "eautien” and ‘arpréssiveness". For the time beins, we
Wwill be concerned with the ¢loss of TCI rames, with constant
split ratio A, and in addition will concentrate at first on
the cne lock-azhead strategies for simplicity.

Suppose we try to evaluate the orobabllity of winning
under LSTRAT from a position which is a split point of walue
X, about which the only other informstion available is the
value of its branches, which here will be assumed to be deter-
mined ﬁy the constant split ratiec A. The probability of
winning is clearly less than X, because we can under the
given strategy look only at a limited portion of the ~ame tree
below the point, and only move down a single path., This has

already been seen to be true for all the limited leook-ahead
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stra£9ﬁ1&5 ga [ar concidered for the cnse where X« 1

and we are at the berinning of the gome. However, Sunmas:s
we do fake ¥ to be the nprobability of winning in ‘such =
pase. We mirht improve our estimate by addine the actual
ahence af winnine® under LSTRAT on the Tirst move from the
airen nosition, EBS + (1-EB{)EAX, to tho chance af movuine
te a split point, (1-EBX)3, times the ~alue of that point,
i, which is beins used as the estimatin o the nthance of
winning from this second solit peint. The resulting formula.

eall it UL’ is

vy = EBX + (1-EBX)EAX + (1-EBX}S(/X)
- EBX + (1-EBX)(AX) = EBX + AX - EABK
Evaluating HSTRAT in the same way, we get

Vy = A% + SAX + E(1-AX)(EBX+SBK)

= if + E(1-AX)BX = EBX + AX + EABX®

our over-estimation of the chance of winning from a
split point has given rise 1o the intereétlng result that
vL = ?H. However, rather than puzzle over the exact reason
it works out this way, let us try to correct that over-

astimatiun. It would be very convenient if the antual chance
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of winnins from & split point was A sonstant, depending anly
on the stratesy being used, times the +value of the point.
_ Buch a constant could be called a "depreciation Tactor .
However, it is really too ﬁuch to assume (in TSI) that rfuch
g constant exists, independ.ﬂnt of the value of the position.
What is actuslly needed is probably a "depreciation
function” of E, A4, and X¥. However, we can rFet an estimate
of thlis function by assuminm that it is constant, at least
constant from one move to the next, Then lettinz K  siend
for the constant, Ki{ would be equal to tae estimate of
nrobability of winning which is calculated znelosously ta the

caleulations of W and V..

L H

KX = EBX + (1-EBX)[EAX + SKAX]

Solvinge for K:

w . EBX + EXA - E°ABXZ _ E(1-EABK)
Ly v EsaBx® - sax L SAT

As X approaches 0O, “L (actually a function of E, A,

and X) inereases to a limit of E/{1-24)

For HSTRAT, we would have

KX = EAX + SKaX + E{1-AX)[EBX + SKBX]

K, = EAC* E°BX - E°ABA® _ _E(A+EB) - E°ABX

X - SAX - ESBX + ESABX® A+EB] + ESREX

- 46 -



Rz K anpproaches O, KH inereasses to a limit of Igé%%%%%T
Interestinsly enourh, the limiting valuez for HH
and K, are ¥, and Y for TSD (Chapter 3). This
Eurnriﬁe has = yood exnlanation, however, A5 X ﬁpprnachen
0, the independent same TEI fet closer to the dependent
T2D (the (1-X)} 1actors you divide by when you diszcover
losing endpoints, approach l.) And in TID dy and HH are
the depreclation 'actors, which in fact are constant throush-
out the =ame, ns can be seen if one moes o-er the analysis in
chapter 5. Becnause ol this constancy, thevy mive the actual
provability of winning when multiplied by the va'ue of the
ﬂnsitiﬂn. The top peosition has valiue 1, zo the chance ol
winning the rcame iz simnly the depreciation Tactor itszecll,
How, if for miven E and A we superscript the K's

to let K7 = limit K“: , we have, Trom Theorem 3.3
=D

_ - EfA+EB£
- - KE z KE 1l - b+

It can be concluded from thls that

I% _ E - EFABX E{A+EB) - EZABX
- SA ¥ ESABX 2 T - S(A+EB] + ESABK -

because exactly the same terms are subtracted from esach

numerator, and exactly the same terms are added to each

denominator.
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Now, since in TSI K is not constant for all
position values X, & Ei does not rive a preclse estimate
of the probability of winning from position X under
L3TRAT, in faect the real probability will be somewnere
betwean X Hi and X E? . It is intultively plausible from
the above inequalities however, that the chance of winninr
from ¥ under LEITRAT will be greater than that under
HUTRAT, no matter what value X, Thin is in support af the
clnlm made In the last chapter that the et Lhat under
HiTRAT +there 13 a groater chance of winninsg on the Ath
move than under 13TRAT 1s only indientive of the cumulatlive
effect, and not of any real superiority of HSTRAT at that
point in the ~ame,

We can further explain the kind of results summarized
last chapter in table &4.2 as follows. Suppose you are at a
positisn of value X small enough so that the Jlimiting

formulas K and KI epproximately hold. Then the probobi-

lities of winning are, respectively

XE and KE(A+EB]
1 - SA 1 - S(A+

Under ISTRAT the chance of winning on the next move, if X
is small enough, is approximately EAX + EBX = EX, 50 the
“formula can be interpreted as representing the sum of the
.:hann&s of winning on each successive move, the first term

Co.
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beinrg X and the ratio between succeedling terms belnpg 354,
(This was the way we mot the fermula in the case of TSD In
chapter 3). Similarly, for HSTHAT the first term 1s XE(A+EB)
and the ratieo S(A+EB). The ratioc for HSTRAT 1is greater
than that for LSTRAT, but this is outweirhed by the prepon-
derence of the first term in the LSTHAT series.

If this sanalysis is correct, the ratio D(I,;/D(I+1)
described in chapter 4 should approach the ratios described |

in the last paramraph. This is shown In table 5.1 nelow

B h HSTRAT : ﬁ%%% S{A+EB) LETRAT: DDIS 54
5.5 . 3TUED . 37500 L oktBp . 25000
.5 BEBAT L41B15 41667 -33165 . 33333
.5 .75 L 43573 LA3T50 L37118 « 3THOC
. B .9 LBETTY CATR00 Ja4118 . 5000
.75 .5 . 21867 . 21875 . 12486 . 12500
LT85 .75 23341 . 23437 . 18464 . 18750

Table §,1: Comparison between actual ratios between chances
of winning on ch and 10%" moves with theoretical
limits for -HSTRAT and LSTRAT in mames of TSI
with constant split ratio.

With the introduction of depreciation factors, it

becomes possible to discuss intelligently non-ordinal strategies
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which make use of the actual values of the branches of a fork,
not Jjust their relative ranking, To deo this we first drop

the assumption that the split rgtim iz constant, and then add the
acsumntion th&%hgﬁﬂrﬂciﬂtiﬂn funetlons just derived Tor

conztant onlit rstio A also nold soproximately for s
dicstribution of snliit ratios merely with sxpected vnlus A,

The advantage of non-ordinal stratesiez, if there is
any, will come from the possibility that, over the class of
rFame Lreees, the possiblility of winmins from a4 split point
whrose branches' vslues are known may -ary a little dependlns
on how the top salue is split between its sucecessors, Thus,
given two positions which are split points and whose split
ratios are known, it may be nmaaible that even thoush
position X has value higher than position ¥, the chance of
winnlng from posltion ¥ 1is lower, because its wvalue splits
in an unfavorable way.

The ordinal strategies to which such considerations
might apply are H3TRAT, 2HSTRAT, and BSTRAT, for in all
these we ordinarily can move to a split ﬁﬂint whose split
ratia we ha?e.aifeady seen in look-ahead, The use of this
information to modify the strategy in the cases of BSTHAT
and HSTRAT will be shown. The part of the strategies which

tells where to look will remain the same, but the rules about

where to move, given the results of the look-ashead, will be
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altered. There 1s also the possibility of strategies with
more than one look-ahead, where the results of the filrst
look-ahesds (the exasct values of the branches seen) may be
used to determine where to look next, Such a stratemy is

the unlimited look-ahesad stratesy di=cuszsed in chapter 2,
where that position with the hizhest alue of all those you
have not yet seen, but know the value 2f, Is locked at next,
Howevwer, this 13 the only sxample of zucsh non-ordinal
strateries studlied so far,

One unfortunate aspect of the non-urdlinal strateclies
we do study is that they do not lend tnemselves to simple
evaluation techniegues. This is because an expected wvalue of
the split ratic,; like the A we used for crdinal strateries;
iz useless when we want to utlilize the fact that the split
ratio varies according to a probability distribution.
Evaluation will have to be done by computer using the Monte
Carlo m&thﬂﬂs whose reliability was brought into guestion in
the last chapter. However if we make :ﬂnﬂiﬁtﬁﬂt.uﬂﬂ of the
random number generator, we should be able to get an estimate
of the amount of improvement non-ordinal informatlon allows us.
(and alsec its cost in computer time;.

So, to define these non-ordinal modificatlons: Under

BSTRAT the depreciation factor is found as bafore
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Ki o= wpk + (1=BadjiBL + E{1=-Ad)0KBL + (1=1WBX JSEAX

fi - ES ABX® E-E" ABY

X
B~ = T-S(A+E= ) TAESFBR

K 2 5
X-ESBA+ES 8BK™ -5 /004 ES ABL®

Limit E% = HE = E/{1-53(/+BE} ), which combines tne best of
o0

both HSTRAT and L3ITRAT =-- the hirh chance af winninm on
tne move, and the hirh ratio between such chances on succeed-
inm mo'ez, But thnls was to be expected, a2t least in the

limit.
By using the depreciation "fTactor’, we can ret an
idea of Lhe probebility of winning from the ton of a Tork

wnose split ratio is known. Define

-
. E-E°ABK) X
Kg(E, A X) = 5 +EBE) + TEL

- as a depreciation "functien" giving the depreciated wvalue of
a position with value ¥X. Then let our known fork have top

yalue ¥ and split ratio R. The chance of winnins will

be approximated by
EE{E.ﬂ.I,Rj = ERX + (1-ERX)E(1-R)X + E(1-RX)=S HB{E,ﬂ,{l-R]x}
+ (1-E{1-R)X)S HB[E,ﬁ,Ex]
(Note that we are still using. A as the expected value of the
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split ratics we don't know about yet,) BSTRAT would be
mnﬁifieﬁ only in the case when both hish and low branches
of° your position heve heen found to be split points. Denote
the value of thne low branch by L, and tne high brancéh ty H,
and suppose that their split ratios are RH and RL . e
then compare CB{E,A,H,HHJ and EB{E,A,L,HLJ an@ move Lo
the branch with the nizhest value for this. In all nrobsbility
this would be the H branch anyway, but samnle computer
caleculations show that 1f° H/(H+L) <« .55 there is at least a
nossibility. ~orresnondingly greater az the ratio anproaches
.50, that the [ branch may be chosen,

Monte Carleo methods, implemented as deseribed in
chapter 4, yielded the folleowing evaluation of BSTRAT &nd
its modified version, as to chance of winning, In 10,000
games, BSTEAT won .T2435 of the time, with a variation
over repeated trials of only .00010. The modified version
E'S?HAT won .T73200, with a variation of .00030 over
repeated trlials. This is an improvement of approximately
L DOTES. This is a considerable amngnt ﬂhﬂn you consider that,
-in -‘Table 4.3 for E= .5, &= .75, W.. - W 1

2L B
and so this modification probably makes BETRAT the most

is only .00235,

effective two lock-ahead strategy we have. This is born out
by a Monte Carlo evaluation of 2L3STRAT which ylelded an

estimate of W at 72810 + .00020, clearly less than the

2L
estimate for "W, -. - - Lol

B
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However B'STHAT, thourh more cffective, 1z more
costly thoan BSTEAT in the zensze thet it took slighily more
than twice as much time to play 10,000 pames, due to the
extra caleulations invelved in B'STRAT. This should
probably not he ftaken to seriously, since in most real mames
the tims Involwed in such calculations would be much more
seriguzly aver=wairhed by the time needed to simply Senerate
the puzlition ralues, and anywony, we could have ckipped them
excopt wnen HO(LrH) < .%%, which is the only Lime they ecould
be useful,

Hﬂte_that this non ordinal stratery 1z quite sophisz-
ticated in comparison to what might have been suggested
without the a2id of depreclatiosn factors. For instance,
confronted with a situation suech as In Firure 5.1, one mipght
think Lo #6 to the lower branch because its high branch has

the nishest walue of all points at its level.

Fipure 5.1: Example of part of a gane tree for TZII
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However, since .6 (.4+.6) = .55, this would probably be
wronr assuming that our previous calculations are indeed
_annliecnkble, and apnlyinm such a simple rule over the lonrs
run would surely be contra=-productive,

Turnine to  HITRAT, araln we must nnss up simple nﬂﬁ; -
ordinal modificaticons, for lnstance: alter looking shead o
the .6 point, deciding to 7o to the .4 because .4 is
greater than .3, Instead, using the depreclation factor

derired above, we defline

T 2
. . . X[E(I+EB} - E° .
(i, iy TJ_{ ] KEX |

. = G(A+EB) ¥ ESIRS

H
and, with ® and T =#ms alone

cH{E.n,x,H} = EAR + SK,(E, R, XR) + E{I-HH}iEK{l-H]+5"q{E,ﬂ,H{1-H}]]

Supnose we are at a fork whose bottom points ere agaln H and
L, and we find by look-ahead that the H branch splits, with
split ratic R. Then we can compare EH{E,ﬂ,H,H} to

EL + 5K4(E,A,L) ond move to the H branch only if the first
va ue is the greater., This modification was E?a;unted by the
Monte Carlo methods already deseribed. with BSK,(E,A,L)

replaced by ECH{E,A;L;ﬁ); which should be improvement, althourh
no proof has been found, The resulting fraction of wins was

.EBT265 cumﬁnred to .6TUT0 as was obtained before for HSTRAT
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by this metheod; an incresse of about ,00:00; and nownere

near erowth to make it better than LSTREAT, which hacs an

" sdvantare of about .0PES0 over HSTRAT. The cost was azain

a3 doubling of computer time for 10,000 r~sames, but, likewlse,
arain would have been reduced if in the cases where H O (LvH)
wan too rreat, the caleculations of © had heen omitted,
Under.tnlﬂ stratesy the cut-off noint would be abeout 5%
for laerre (in abseolute terms) values of H, decreanine«s to
perhaps 55 for H = ,006, These cut of points were
determined by computer evaluaticons of £ for rarious H  and
L, and why 1t should te what it is, and why 1t should deoend
on the value aof H itselfl, are gquestions onen to further
research,

The results of this resesrch into non-ordinal strategsies

i1z zummarized in Teble 5.7 below

Stratery Fractinq of wins Fraction of wins

when modified Difference
'BSTRAT L TElE5 L T3200 . DOT65
HSTRAT . BTOTO ET265 . 00195

Table 5.1: Comparison of Monte-Carle Results for Ordinal

" and Non-Ordinal Strategies in Gemes of TSI
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CHAPTER 6
VARTANTS ON THEE SOLITAIRE
45 A SUGGESTION FOR FURTHER STUDY

Tne abvious Tirst sugrestion for extending the results
so 7ar reported would be te study in more detail the ordinal
strateries in Tree Colltalre with more than twe look-aheads,’
aor perhapg stratesles which are not 1imited az to number of
look-aheads but as to the number of ply deep in the same tree
they may look,

Going beyond the specifie limitation to the rules of
Tree Salitaire, the obvious second suppestion for extendine
the results would be to stop the restriction to binary same
trees, and allowing for the possibllity of more than two moves
from a miven.pﬂsitinn. de could consider the case of ternary,
B-pry, etec., trees, or we could even let the number of branches
at a given positieon ary according to some probability
distribution. A kind of tree solitalire could be defined on
such trees, in our strategy gefinitinns "low" ecould be
replaced by “second highest”, and evaluation could procede in
perhaps much the same way.

_ However, rather than leap to such attEmptB_in this
iﬂEt chapter, we shall continue our limitation to the binary

trees for which our terminolory has been developed, and
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consider some variants of tree solitiaire preserving this
characteristlie,

The princinle falling of Tree Solitaire as a model
for the %ind of gemes involving look-zhead which we usually
encounter, apoears Lo be the fact that the raiues of the
positions naturally decrease as you et further on in the
mame, This is the main reason we had to have “depreciatinon”
factors and the probabie explanation of why amgrezzi-re
LSEHAT  dld hetter then cautlons  HSTHAT. How can we correct
tris 'milinge?

There nre twao vinds of modification, which can be
efiected independently. OUne is to change the rame tree and
its generation, the other to change the "valuation” of the
tree, the method of assipgning values to its points., We would
like to keep the basic approach of generating the tree first,
independently of thoe values which may later be asslrned to
it, although these values may themselves reflect tree structure
‘'as is often the case in real mames and our evaluations of
nozitions in them.

An exarple of modifyineg the trese would be to have E,
the probability that a point is an endooint, be a function of
its level 1n the tree [how many moves deep in the fame it is),
This would probably not complicate matters much, and indeed,

the diagram-computer nrorram methods of chanter 4 might still
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e useable, In addition the essentlia! feature of ecach polint
belng Judgped as E or an 5  independently of all the other
- noaints 1s retained, However, by itself. this modificatlion
does not solve the problem referred to abote, and this
chapter will now further restrict itself to only those
modifications which alter the valuation of the same iree,
leaving this suzgrestion as Just that == a sugpgestion,

Three possible modified games wil" ne discussed, in
azcendings order of usefulness,

1. Glwven some probabllity distribution af numbers
hotween € snd 1, rasifn vraluns to the andnaints ol the
(f'inite) tree. The value here represzents the nrobability
that the endpoint is = win. FDT-ETEPF split point of the
tree, let its value be calculated from ths values o' the set
of endnoints which are its successors, immediately or farther
dowm in the tree, end let it be the probability that at least
one of these is a win, i.e., the chance that there 1s a win
beneath thet split noint in the tree. If' the set of successor
endpoints has 3 numbers, with values &, B, and C, then the
value of the paint would be & + B + C - AB - AC - BC + ABC.

Th;s does not solve the problem raised above, for the
values of points decrease as you fo down the tree (althoush
not indefinitely, as they can in TS5), but it has one interest-

ing facet, Consider the problem ralsed in chapter 2 of findinnm
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the Teast eoastly unlimited look=nahead etfeLe1y whilech ruarintees
a win {if there are any wins in the ~mmume). The answer there
Tor Tree Zolltalre was to loow first at the nolnt wilth the
hirhest value. In Game 1, if the distribution of endnoint
values i3 surh that the +values are all equal to some constent
A, the least costly stratery, in terms of number o! positions
you need to loaok ae. is to look at the lowest valued noint

anilab i,

Prool’s  From the value of a split pedint, we can, knowins .
caleulate the: numboar of endpoints beneath 1t. The lower the
Yalue the lewer the endpoints. However, the lower the number
of endpoints beneath 8 point in the tree, the hircher the
proportion of such endpoints to the total number of points
beneath that point., (If K iz the number of endpoints, there
are K-1 split points, counting the top one. K/ /2K-1 decreases
a2 K increases). Since all endpoints have equal probability
cf being a win, tne 1eaut costly leek-ahead preeedure will be
the one which waetee the least time in gettinF to look at
endpocints., This is accomplished by lookines at the lewest
point, which can be expected, by the ehuve eenaideratiun, to
be the cleeeet cne to an endpoint. . 2. E. D, |
The reason this works 1s that the ve;ue ef a polint 1s

not independent of the structufe underneeth-it in the tree, is
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in {act a function of the number of endooints, Even If the
values of the endpoints were not equal but were assigned
- according to -a nrobabllity distribution as explained above,
there would ztill be o demendence, from which some informstlon
about the tree structure could be obtalned. Suzh an arraﬁﬁe—.-
ment is probably not at all unreasonsble since such informa-
tion is provably avallable in the valuations used in act:ual
rames, howevrer. it is an exsmple of the non ztandard codin<
nnenomena and complleates matters unduly (and erbltrarily;in
a theoretic treoatment even thouszh it iz valuakle in s~ivine
s an idesa of how our expecteotlions mey =0 wrons in such
s tuationa, dere the best limited look-mhead stratesy would
probably have Lo make use of suveh informatisn, and. Lthe
- evaluation of any stratemy would have Lo take Into account
the deﬁendency, An sbility to count binary trees with a given
numbar of endpoints might be needed, and there is no easy
closed formula for that.

2., Eimilar problems arise in this second game, due
;Eaiﬁ to the fact that values are assigned from the bottom of
the tree up rather than from the top down, and thus can reflect
tree structure.

Assipn values to the endpoints as in game 1. However
this time let each split point have wvalue equal to the |

average of the values of its immediate successors, We now

-
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have avolded the oroblem of heavine naturally decreasingm
position values, Heowever, araln problems in evaluatineg
gtratenies wlll arise because the value of a nosition does
te!l us a little about the tree structure beneath 1t,
fltrnoush the exnectsed ra‘ue of the value of a4 split peoint is
tne same as that of an endonoini, its varisnce, because it is
an average, will be smaller, as a function of the number of .
end-polnts benesth 1t., Therefore a polint with a vaiue very
'ar from the mean 1s likely to nave only = few endnoints
beneath it, or be one itselfl.

This game n#s been mentioned neot so0 much for its owm
importance, but because 1t sugpgests an ldea for a seme where
rolues for positions are independent of the tree structure
henesth them, and yet are "likely" to be the average of their
Successors.

3. Decide on a probability distribution F with mean O,
To the top ﬁf the tree assipn 2 number T between O and 1.
Given a fork in the tree whose top value C has already been
assigned, generate independently two numbers A and B
according to the dlstributiﬁn+ Then the values of the branches
are ﬁ'+ & and C+ B (i.e., the values of the branches abe.
chosen according to the probabllity distribution F shifted over
s0 that C© 1is its mean). If a polnt is an endpoint with
value F, the probabllity of its beinr a win is P Lr
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C=fF=<1, 1 4t F>1l., and ©¢ if P < 0,

The valuatlion in this game is an idealization of
the way which computer position evaluation functions might
e thoursht to work with regard to successive positions, =nd
in that senze thiz rame should be s murh better aporoxima-
ticna to the real <ames psame pleyineg orosroms are written to
desl with, With tnis hope, the rest of this chapter is
derated to showins how the ideas and techniques of the
earller cnaptoers can be used as s stert on the evaluation of
strateries In games of form 3.

To congtruct a diagram that mirht be sonropriate, we
note that althoush the expected value ol either brench a™ =
fork is the wvalue C of the top polnt, the erbmected ralue of
the higher branch iz somewhat greater than € and of the
lawer branch, somewhat less., Let us suppose that %  is
aymmetric about its mean; thep the expected wvalue of the
branches would be C + A and C - &, where A 1= determined
from 7., This yields a diarram as in Figure 6.1 based on the
assumption that the expected position values are always realized,
The values on the lines can be filled in according to the _.
gtratagy you are cnn;id&ring, and the computer programs of
chapter 4§ could easily be modified to evaluate all the

strategies that were evaluated for TS,
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Fizure 5.1: Expected moszition values and possible moves in
Game H.

Howe'rar, the reasonableness of the estimates of probabllicy
of winnins thuz obtained would depend on how the actual
distribution F scattered its values and what erfect this
miznt n=ave. As in the case of Tree Colltaire, it's hard to
tell whether using the expected values of position raluss fto
construct 2 diagram leaves out any essentlial considerationsz,
and here we cannot fall back on the restriction to constant
split ratic, The effect could be checked by Monte ﬂarlﬁ
Methods,

The results of sample hand caleculations for T ='1£E,
A = 1/6 are summarized in Table 6,1, where after move 3 the

formulas were too complicated to evaluate,
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Probabllity of winning

Move HSTRAT LSTRAT
S . +381 IR
2 . o Lk
3 . 141 .10y
SUM . T52 Lo
Tabhle A, 1: Hand ecaleculations of chances of winninge under

HETREAT and  LETREAT over the class of zmames 28

form 5.

It is apparent that even thourh LSTRAT is shead et the end
al 7 omoons,  HITRAT wlll predominate when the Eumriﬁ taken
ey, say, 10 movesz; by which time the game should. be over.
However, a more exact estimate can be obtained by
caleulat ine the probability of Jlosing, for that sum turns ocut

+a converrge qulte rapidly. DSee Table E.2

Probability of Iﬂsinm-'

Move HSTRAT LSTRAT STRAT

1 o556 .139 V16T

2 .0191 035 .02

3 o L0069 , 000 000

- -SUH_' T eBie -.lTh ' . 209
Sum + correction factaor.OB50 1Tl ' L1
1 - SUM = Frovability  .,g B2 T4l

~ of winning

Takle &.p: Hend esleulation of chances of lesing under HITRAT
LSTRAT, and OTRAT over the class of games of form 3
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STRAT was thrown in for Zood measure to show the improvenent
dus to look-shead over the best one can do without any. The
third term Tor L3TRAT and STRAT is 0O  hecause with A
and K n#8 they are, from the Srd mo-e on under these strate-
fries you ean ro only to positions with salue greater than ar
enqual to 1. The ronclusion one draws {rom this table in that
HZTRAT is the best ane-look-ahead stratesy. It is reasonable
to think that this zeneralizes 1o all allcwable values of A
pnd E, How that values of points no lonser need decrease
Tater on in the =mame there is a premiun on "cpution” and
“arpression’ becomes "recklessness',

Althoush 2 proof of H3TRAT's ~eneral superiority is
not vet known, it can be shown for the limitinm case where

i= 0, 1,8, all positions have the same value T, {Thiﬂ is

the game as game 2 with all endpolnts assigned the same value+j

THEOREM 6.1: Let W, represent the chance of winning.under _
HSTRAT, and W, the chance under LSTRAT, aover the class ol all
pames of form 3, in which every point of the game tree has the
same value T, 0 <T < 1. Then Wy > W, for all £ (the

H L
probability that 2 point is an endpoint) O < E < 1.

Proof: Under HETRAT the chance of winning at any particular
position 1s



ET + E{1-T}ET - ET(1 + E - ET|
The chance of continuing on In the rame is

s+ B(1-T5 = 3(1 + b - ET)

“e w o . BI(IrE-mT; _ _ wr{l+Z-ET) '_1*+1+E-1£T}
o Ho  L-8({1vE-ET) ~ 1-[1-Ej(1I+E-E1] = T-Tr+t

For L3THAT the chanze of winning at any nosition is
ET + (1-ETET
aril the chance of continuing in the rsame i;

(1 - ETj5=1-E - ET + E°T
) . ET(2-2T) _ T(2-ET
S0 Wy, T EB(1+T-ET) - ]L1+T-E%T
T§1+E-ET} T£E-E‘T}
WH - HL = - - -

This will be >0 if
(1+E-ET) (1+T-ET) - (2-ET}(T+E-ET) = ©

This can be simplified to

2, .2 2me

}4+T=ET+E+ET=E-T=ET-ET +E-T® -2T-2E4+2ET+ETo+E T-E°T

=1-T-E+TE= (1-E)(1-T} = C©
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(breause of the bunds an K and Ty, 1. i 0,

For A oreator than O and asosumingg thoe famo works
1ike disgrem 4,1, It can be shown that both the chance of
winnins on the mave and the chance of continulng past 1t =re
imoroved, for buth  HSTRAT and  ISTRAT, but it is not imme-
dlately apparsnt wnlsh 7ains the most, It is at lesst mlausible
tn helieve thst HYTRAT maintains its supericrity. FPerhops
sorethnin: 1ise denpeciatlion fectors will be inventakle

{althoush hers tney mizht be "annrecistion factors”; and can

be used to solve this oroblem, and then tc 7o on to pronose
non-ordlnal strateries.
At any rate, the avenues for further study are wide

open, and hold prospects of more and veried results,



APPENDIY fA: Prorrams lor evaluating ctratesies in chanter I

CALLE%: This is the eallings nrogram for the rest of the
programs, on CT35,

QUTPUT: This KD external function iz uzed by all the
followlnr stratesy functisng to sum and print thelr
their results: the values D(I) for I = 1 through
10 resrcoentine the chances nof winning on esach of
the first 10 moves, and the ratio between succeeding
terms. 'The sum of the D(I; 15 increased by »
correction faotar arrived at by scsuming that Lhe
ratic between successive termz. from D(9) on, 1s
a canstant. 0ORE = D(10)/(1.-D{()"D(10))} - D{10}

ir 1re followins  HAD external functlons which ealeulate

{1 #op the —erious stratesles discussed In chanter 4  when

precernted with salues for E and A, V(I] reoresants the

calue of the ith point from the left in the corresnonding
diarram, at the level under consideration. T(I) represents
the probability of getting to a poslitlion with such a “ralue at
that level., All the programs stsrt and end with the same
statements, which are

EXTERNAL FUNCTION

PROGRAM COMMOW V,T.D,A,B,5;E;

DIMENSION V({10),D{10),T(10)
INTEGER J,%,L,I1,I2,13,I4

FUNCTION RETURH
END OF FUNCTION

and so only the differing parts will be listed. For each
strategy the diagram will be presented, comments if necessary,
and then the program listing.
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M1

ENTHY TO LSTRAT.

v 13 = E*p

v ?{. = w¥H

T(1l) = L-U{EE

D 1§ - V(L}*T(1)+V(2)
THROUGH M1, FOR J=2,1,J.G.10
vi2) = V(1)*B

V1) = V{1 )*&a

T(2) = T(1)*5

T(1) = T 1i*5*{1.-v{9}]

D{Jy = T(1

PRINT COMMENT $ LSTRAT
EXECUTE OUTPUT.
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1
e

TO H3TRAT,.
0O

L
n
(]

B

o,

1.

E*El.-a]

E*(T({1)*V(

THROUGH M1, FOR J =
V(J+1l) = V(J)*B
THROUGH M2, FOR L =

M2 V(L) = V(L)*A
T(J+1) = E*5*(1,=V(J))*T(J)
THROUGH M3, FOR L = J,-1,L.LE.O

M3 TsL = S*T(L)+E*5+*(1,-V(L-1} )*T(L-1)
o{J

e
it od

=T
VO
vl
vz
TO
T(1
T2
Dl

= 0.

THROUGH M1, FOR L = 1,1,L.G.J+1
M1 D{(J) - D{J)+V(L)*T(L}*E

PRINT COMMENT § HSTRATS

EXECUTE OUTEUT.
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2L STRAT

The lines are not connected at the AE and £ B nointe t-
emphasize the [zct that in TS5I; under this Etsaterv, you
wolld not move from B to AB  and then to B ete. You
meere B te AE only when you have seen by prwiaus look-
ehead that AR iz a win., GCtherwise tha progran is nulte
gimilar to that for LITRAT

ENTRY TC LSTRAT

Vil} = E*a

viz) = E*B

T{1) = 1.-E*B*(1.-5*Aa)

T(2) = 1.

T(3) = 1.

D{1) = TI[l]l"-J{l]|+T{E}'HF{E}

THROUGH M1, FOR J = 2,1,J.G.10

v(2) = V(1)*B

V(1) = v(1)*a

T(2) = T(1 *sw{a]*s

T{3) = T{1;*5

T(1) = T(l)*S*(1.-V(2)-V(2)*5*4)
M1 D{J) = T(1 *¢{1}+T{?}*v¥2]

PRINT COMMENT & 2LSTRAT

EXECUTE OUTPUT.
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2HOTRAT

*The diarram does not work like the ones before. Suppose you
are at AR esnd it is an 3. If you came from B then you
know that AB is a split (else at B you would haye moved
tc BF) and so the chance of moving from AB to AB®, glven
that you came from B is B82E[(1-A-B). However, if you came
from A, this chance is E(l1-£B) + SE(1-£-B). Therefore

- you cannot associate to each point in the diagram a single

alue renresentins the chance of getting to a point with that

value at that level; but need two numbers; one for each way
of gettinrg there, and you must keep track of them separately.

In the program R(I) is the possibility of coming from the

upper left, T{I] from the upper right.

DIMENSION R(10)

ENTRY TO HSTRAT

Q.

Q.
E*(1.-A)+5*E* (1. -A%A)
Q.

1.
0.

A = O 0 =D
| |

Had D™D
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Mz

M3

M1

Q)] = 0.
Yil]) = A
Viz2) = B
D(1) = E*(V(1)+R({(2)*V(2);

THROUGH M1, FOR J = 2,1,J.G.10°
V{J+1) = V(J)*B
THHGUGH M2, FOR L = J,-1,L.L&.O.

V(L) = V(Lj=A

R a*l} - Rij*E*(l -ﬂ{J;JrS'{l ~V(J)*A))*3
T(J+1,
T}ﬂ’:.ll]ﬂri ]~'I3 FOR L = J,=1,L.LE. O
T(L) - &*(T(L)+R(L))
R(L} + T(L- ]}*""a*E*[l =V{L-1)*A)

EL-]}* #EF( (L, =V(L-1))+8* (1. -V{I-1)%4) |
LJl:'J; G.

THROUGH M1, FOR L = 1,1,1.0,J+1.
n{d) = D{JJ+‘-I{L]|*E*[T{L +H(L},
BRINT COMMENT & 2HSTRAT

EXECUTE OUTPUT.
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M1

o HSTRAT

1./(1.=-3%4)

= E*A%G
= 1,-D(1)

= E
HEOUGH M1, FORE J = 2;1,J.G.10
- V(1)*B
U(l}*G*a

= T(1) *{'3‘5*"'4’{1]']
= (1.-C)*S*T(1)
NT COMMENT $ HLIMITS
CUTE OUTPUT.

NTRY TO LIMITS,.

1
1
1
1)
[J
1
RI
XE
1 = L.
1) = E
HROUGH M2, FOR J = 1,1,J.G.10
vtl}*a*{;
v

J) = T

1 =V 1
T = T(1 {1 -C)*s
PRII-:IT COMMENT $ LLIMITE
EXECUTE OQUTEUT,

E
G
D
T
v
T
v
c
D
T
P
E
T
v
T
C
D

|:r:+{1 —C)*=V(1)*A)
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4

wio disagram iz used o bit differentliy {rom the rest. At each
nal 'h caanca 2f winning, not at that point, but at 1ts two
fU“cﬂ“smr 10 trney exist, is computed. If the —ralue of the
polnt iz ¥, the lormula for this is EXB + (1-ZXB)EXA. Thus
the numbers on the lines indicate the probabillty of metting
to the points and finding that they snlit. This modification
is necessary because of the way BESTRAT works, and is related
to the modificetions for ZHSTRAT & 2LSTRAT.

I-'I

.'J

ENTRY TO BSTRAT
E*B*(1-E*B)*E*A
0.
E'{l.—E‘B{
S*E=*{1.-A
0.
A
B
THFGUGH Ml, FOR J = 2,1,J.G.10
o{J) = .
THROUGH M2, FOR L = 1,1,L.G.J
Mz D(J) = D(J)+E*V(L)"T(L)*(B+(1. *'F"!EI*I[L_]}*A}
WHENEVER J.E. 10, TRANSFER TO M1
V{J+1) = V(J)*B
THROUGH M3, FOR L = J,-1,L.LE.C
M3 {L} = V{ Li'A
. T(J+1) = T(J)*E*s*(1.-V(J))
THROUGH M4, FOR L = J,-1,L.LE.O
My T(L) = s=((1. -E*v{L}}*T[L}+T{L 1}*3#{1 =v(L=1}))
M1l CONTINUE
PRINT COMMENT $ BSTRAT$
EXECUTE OUTFUT.

LI | |

cooHEag
3= O RS = O
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AFFENDIX B: Sample Monte Carle Evaluation Program

The feollowing MAD prorram was used on a CTSE system
to evaluate " HATRAT with non-ordinal modifications, over the
glass ol TED pames, by playing throush = series of randomly

ranerated rames uvesing that stratermy.

INTEGEE I,.J
READ FORMAT F,J
VECTORVALUEE F=313+%
~ THROUGH M, FOR I=1,1,I.G.J
M1 A=RANNO. (£
READ FORMAT F1,F,NGAME
VECTOR VALUES F1=3$F5.5,F5.0%
G0,
W0,
T=0,
TH=0.
M3 WHEHEVER G.GE.NGAME, TRANSFER TO END
£1=1.
MU A=RENNO, (X)/2.+.5
Tw=T4+A
TH=TH+1.
Mp  K2=X1+*s
' K3=H1-KP
A BANNG, (7))
WHEHEVER A.G.E, TRANSFER TO M5
A=TANNO, (X)
WHENEVER £.0G.X2, TRANSFER TO M6
WIN W=W+1,
LOSE G=0G+1.
TRANSFERE TC M3
M&5 A=RANNC. (X)/2.+.5
T=T+A
TH=TN+1.
H=E‘J{3+f17 ‘-E','I"C. {:':3:- TTE}'GJ [xErA]
WHENEVER H.G.0., TRANSFER TO Mb
Al=X2
TRANSFER TO M2
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M5

T M10

A=RANNO. (X)

WHENEVER A.G.E, TRANSFER TO M10

A=RANNO. (X)

WHENEYER A.G.X3, TRANSFER TO LOSE

TRANSFER TO WIN

*1=%3

TRANSFER TU M4

SCORE=W/G

AVE=T/TH

PRINT FORMAT F2, SCORE, AVE

VECTOR VALUES Fo=$%2FE, 5+%

EXLCUTE EXIT,

INTERNAL FUNCTION K. (Y)=Y*(E*(.T75+E*, 25)-E<E¥, 1875%Y
(1,=5%(.75+E*, 25)+E#5*, 1875%Y)

INTERNAL FUNCTION C. (U,R)=E*U*R+3+K, (U*R)+E*(1.-U*R)
#(E*U*(1.-R)+5*K. (U*{1.-R}))

ZND OF PROGRAM
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