MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence

Memo Ho. 206 July 1970

THE VISION LABORATORY: PART ONE

Thomas O. Binford

Some of the facilities for vision programming are discussed in
the format of a user's manual.

Work reported herein was supported by the Warren MeCulloch Labora-
toery, an M.I.T. research program sponscred by the Advanced Researc
FProjects ARgency of the Department of Defense under Office of Haval
Research contract number NOO014=70=R-0352-0002.

Reproduction of this document, in whole or in part,

is permitted
for any purpose of the United States Government.

HOW TO MAEE A DLISP

The functions in DLISP are hand-coded in MIDAS using the
macros and linking mechanism of Roland Silver (A.I. Memo 1274).
They are contained in the file TOPO MOX (or latest version) and
also in the file DLISP ENGL on the tape labelled VEA DIS. The
procadure is:

make a file with DLISEF==1 ;1 suppresses TOPD functions

asserble with TS BMIDAS on ARCHIVE tape

f redquires large macro area

load the assembled file with the current relocatable LISP

SL UTn:TS_BMIDAS (CR) ;TOB ARCHIVE tape

DLISP SUBRS< DLISP EHGL

s STINE_
JLISPS
MDLISF SUBRE 5L

MLISP;RLISF 107HSLSS

(-1 1 ask errors
TDSS ; terminate
Y DLISP_BIN (CE) : dump

LISF PICPAC

Why deal with stored data? Unless the whole image is stored,
only certain routines can use the data (for example, those with
fixed scan patterns).

1. Convenience: Setting up the vidisector takes me about

15 minutes. Setting up particular conditions, for exam-
ple a particularly difficult edge, may take longer.

2. Reliability: The vidisector usually works, but it has
been down for periods of three weeks and longer.

3. FRepeatibility: A useful procedure has been to dump each
scene, then process it. If the program encounters a bug,
that data is waluable and allows the bug to be trapped.
Repeatibility also allows isclating changes. Conceptual
changes can also be tested more guickly with a well-known

SCEne .

Loading Stored Data

Loading stored pictures is simple if the entire picture is to
be loaded. A function LOAD is called:
(LOAD fnamel framed dev user arravy)
where the last argument specifies the array name for the data to
be stored, and the other arguments specify a file name. The size
of the array is determined by LOAD and is attached to the array as

- 3 _

the SIZE property of the atom. HNote that LOAD takes arguments
very much like UREAD, The file LOAD } on the TOR ARCHIVE tape
contains the necessary functions.

Where it is desired to work with only a portion of a stored
picture, the user must struggle with the rather complicated set of
arguments required by the binary read routines of Krakauer. His

notes are repeated here for reference.

Making Stored Pictures

To make stored pictures:
set up the vidisector
legad LISP PICPAC :LOAD PICFAC SYS

vigualize and frame the scene

$G (VIEW)
scan (VECAN den)
dump . (DUMP_fnl fn2 dev_user PICTURE)

After executing (VIEW), the user selects a grid with pots
labelled 143-147 and finally types T to terminate.

The system regquires about 44 blocks of core, depending on the
gize of the picture.

To make up a new version of PICPAC 5Y3, load the TOPO file
and allocate as desired, leoad a file PICPAC X13 which generates

a smaller vergion of the TOPOLOGIST, with TOPD inoperative and

inessential.

:LOAD_TOPO_NSYS

5G
ATLLOC %
CORE 36

o F

(UREAD PICPAC X13)[Q
where PICPAC X13 is only REGION X13 with the TOPO core allocation

removed and a smaller PICTURE array.

Praliminary PICPAC for LISP

B/3/67
L.J. Krakauer Revised 10/20/67

Several functions have been added to LISPF in order to allow
the reading of wvidisector images from tape, and the writing of
such images onto tape.

Before describing the functions, however, a word or two must
be said about the image conventions of PICPAC, Images are Con-
sidered to be rectangular subportiens of the unit sguare, and
hence image coordinates are fleating point numbers ketween 0 and
l. This convention facilitates the mapping of this "image space”
onto various I/0 devices, such as both vidisectors, the display,
the plotter, etc. Since fixed point coordinates have often been
used in the past, however, all functions needing fleoating point

- 5 -

arguments will perform the conversion from fixed point if fixed
point arguments are supplied. The fixed point values are assumed
to be new vidisector coordinates, so that the conversion amcunts
to fleoating the ceoordinates and dividing by 40%6.0.

The currently available functions are:

(PICARRAY arr gc xdim ydim): This function declares an image
array. Its use is exactly the same as the function ARRAY: the
arguments are, respectively, the array name, gc=NIL, the array x
dimension, and the v dimension. Since an image array will contain
numbers, and not pointers to E-expressiona, the second argument,
ge, should always be NIL, The array so declared looks like a nor-
mal LISP array; that is, (arr n m) will evaluate to the x=n, y=m
entry in the arrav.

(UREAD namel nameZ unit): The regular UREAD is used to open
a file for reading (but do not type LE#}

(READPIC arr llx lly del) or (READPIC arr llx lly delx dely):
This functien performs the read from the file previously specified
in a UREAD into the array arr. The arguments are respectively the
lower-left x and y coordinates, and the x and y deltas respectively
(the v delta will be assumed the same as the y delta if the last
argument is omitted). The number of points read is determined by
the array's dimensions. Thus the coordinates of the upper-right
peint of the image ares read in are given by:

-6 =

urx = llx + delx*xdim

ury = lly + dely*ydim
These arguments are normally to be floating point, but if fixed
point numbers are given, they will be assumed to be new wvidisector
coordinates and will he converted, as previously noted.

The value of READPIC will be arr, the name of the array, if
the read is successful. In order to bhe successful, however, the
area of the image reguested must be a subpart of the area recorded
on the tape. The area on the tape will not in general be the
entire unit sguare, however. If a ﬁnrtiun af the area reguested
is not on the tape, READPIC will print an error comment and return
the wvalues HNIL.

Note that 1f the delta given is not an integer multiple of the
delta on the tape, no error comment is printed, but rather READPIC
tries to do the best it can, returning for each point reguested the
value of the closest lattice point actually recorded on the tape.

(UWRITE unit): The regular TWRITE is used.

(WRITEPIC arr): The entire array arr is written out on the
unit previously opened for writing.

(UFILE namel named): The same UFILE is used as for ordinary
ASCIT files.

(DESCR a): usually (DESCR (QUOTE ARR)) or (DESCR):

The argument a is evaluated; it should evaluate to either the names

-7 =

of an array or to NIL. This functicon (its name stands for "des-
cribe”) evaluates to a list of 10. numbers describing the array,
which are, in crder:

(®dim ydim llx 1lly delx dely -335577777776 wd light data),
where the last three numbers give information about the wvidisector
used, the lighting, and the mode of the data. Humbers 3 through
6 are in floating point, and number 7 is a byte pointer used
internally, which can be ignored. (DESCR) evaluates to a similar
list which describes the image on tape which was last read from by
a READPIC, whether successfully or otherwise. (DESCR MIL)=NIL.

B useful trick is to execute a (SETQ ARR (QUOTE ARR)) for all
arrays. (DESCR ARR) may then be typed instead of (DESCRE (QUOTE
ARR)) .

(DESCEX a): This function is the same as DESCR, except that
all floating point numbers are fixed, after being converted to new
vidisector cocrdinates by multiplying by 4096.0. Images on tape

will generally have integral deltas.

SCAN FUNCTION IN LISPE

A scan function which has wide utility is available in DLISP.
The function evaluates functional arguments at the locations in
two dimensions given by the parallelogram specified by a point and

(nl . n2) steps along two vectors (vl . v2). v

"

: Vi
()l

A typical call is:

(SCAN '(funl fun2 rowfun) (x . ¥)(nl . n2) (vl . v2})
whare vl and v2 are dotted pairs, vectors defining the directions
of the steps. Typically, (vl . vw2) = ((0 . den) . {(den . 0)).
The functional arguments fund and rowfun are optional if present,

rowfun is called at the beginning of each row as an initialization

function, then at each peoint,

(fun2 (funl = y))
iz evaluated. The function SCAMA assumes that the second argument
is an array, and stocres into it.

(sCARNHA ' (funl array) (x . ¥)(nl . n2) (vl . w2})
A complication in the use of these functions rests on the LISP
convention with the order of elements in an array. LISPF stores
elements backwards from the usual convention of the faster moving
index as the first index. The SCAN routines were designed to work
with these arrays, and thus have reversed x and y coocrdinates for
real world devices like the vidisector.

-8 -

THE GEQMETER

The analysis performed by the GEOMETER has been described in
another note. We go into programming detail here. A package of
modules is called in a dozen subroutine calls, by a very brief
routine called EXECUTE. The flow of control is cutlined helow,
but can be followed directly in EXECUTE, The primary data is the
list REGIONS and various properties of each region, primarily

inelusion and BOUND.

REGIONS
(R12 H13 R14 R15 R16 R17 R20 R21 H22 H23 H24 H25 R26 RZ7
H30 H31 R32 R33 R34 H35 R36 R3I7 R40 R4l R42 H43 R44 R45 R46

R47 R50 R51 R52 R53 RS54 RS5 FS56 RS57 R0 RE1 R62Z)

The BOUND property is a list of sublists consisting of a code for

the neighbor, followed by a list of points.

R14 BOUND
((NIL (174 . 20))
{15 (174 . 22) (174 . 24) (174 . 26) (174 . 30) (174 . 32)
{174 . 34) (174 . 36) (174 . 40) (174 . 42) (174 . 44)

(174 . 48) (174 . 50} . . .

We choose big regione on the basis of perimeter, then determine

the list SEGMENTE of boundaries of big regions. The properties

- 10 -

of interest are the CORNERS of a segment, the SEGMENTS property
of a segment (list of sublists of points), and the REGIONS pro-
perty of a segment. The 5 property of a region is also of interest;
it is ﬁ list of dotted pairs of nhbr and segment, cyclic around the
boundary. The subsegmentation inteo straight lines is done at
this time; its results are the CORNERE property of a segment.

We go from segments to vertices by the syntactic analysia on
neighborhoods. By pairing segments across a common boundary and
by cycling around a vertex using alternately successor and pairing
operations: ¢ C

52 is the successcr of 5l R gj,/f///”’

54

£3 pairs with B2 A

24 is the successor of 53 st 1514 ']3

§5 pairs with 54
We come to vertices involving three or more regions. The properties
of interest are:

the CYCLE of a vertex, a cocw list of sublists of paired seg-

ments

VERTEX]1 and VERTEXZ of a segment, names of vertices.

VERTICES

(V30 Vw27 v26 V25 V24 V23 V22 v21 v20 v17 v1é v1s v1d v13)

- 11 -

(PRINTL (GET 'V30 'CYCLE))
({(1l5 . 522) (14 . 813))
({12 . 826) (15 . 523))

({14 . 831) (12 . 832)))

We obtain the location of vertices by intersection, and make a
better approximation to the straight lines between three-region
vertices. Then we prepare the format for output; that form is a
list of vertices with their positions and connectivity.
CONMNECT property of a wvertex, cow list of connected vertices
FOSITION property of a vertex, dotted pair floating point
(= . ¥
The PROPOSER works with that format and possikly adds some new
connections.

The figure which follows will be a useful model for the

@
m“\%@ E' \t@i@

%’f\gja @;{ng E
| @ E/@f/ "

527
g

examples of the new few pages.

£7

)

%
3%

®
£s8

ey

N

A\

@
&\

EE

A
/fo

- 12 -

1

EXECcl defines:

BREGIONES, a list of big regions
NERESIONS, a corresponding list of region codes
TRLZ, an assoc translation list from codes to regions

EDGESs defines:

SEGMENTS, a list of boundaries of big regicns

5 property of a region, list of dotted pairs, nhbr and seg-
ment ovelic around boundary

It calls:

5: which strings together sublists of BOUND with a constant
big region nhbr

SEGMENTS: which subsegments into straight lines. Returns
end points and any intervening corners.

An example of the 85 property:

pld 5
{12 . 526)
{15 . 523)
{21 . 524)
(17 . s25)
(12 . 826)

52 makes only a semall format :ﬁange.
VA defines:

PAIR property of a segment

VA calls:

FINDS
PRIES

The action of VA is to pair segments on opposite sides of a
common boundary by neighborhood and parallel-opposite. This
pairing rejects much nolse which fails to affect both elements
of a pair. The wvariables PARALLEL (radians, currently set at
about 30°) and PDTOL, a loose tolerance on perpendicular dis-
tance, control these conditiens. The overlap condition is

that one end of one of the lines must be interior to the
other in projection.

- 13 -

vl defines:

VERTICES, a list of three-region vertices

CYCLE property of a vertex, a list of sublists of length 2,
each element of which is a dotted pair, nhbr and segment

VERTEX1 and VERTEXZ property of a segment

vl calls:
CYCLE

The syntactic operation extracts three-or-more region ver-
tices. CYCLE cyoles around the vertex by alternating suc=
cessor and pair operations. Successor of 51 is 5Z; the pair
of 82 is 53: the successor of 53 is 54: ete.

C

V30 CYCLE SL) |53
({15 . 522} (14 . S13))
((12 . 828) (15 . 823))
({14 . 831) (12 . 832))

Vi defines:

POSITION of a vertex, dotted pair of floating point numbers

Ve oalls:
VTEX

Ve determines a best intersection of lines at a vertex by
determining a position with minimum mean sgquare perpendicular
distance from the lines. Each line appears paired. Iterates
a second and third time, weighting sguare distances inversely
by sguare extrapolation errors, thus giving most credit to

the most accurate estimates.
VTEST calls:

VTEX

VTEST occasionally merges two adjacent wertices. Useful to
suppress spurious vertices caused by low resolution.

- 14 -

LV

begins with the line between the three-region vertices at
either end of a segment. If all interior wvertices are suf-
ficiently close to the line, the segment is treated as a
straight line. If neot, cluster by proximity of end points,
and fit a vertex to each cluster.

PAIRV
CONNECT 3 = these two functions defines

CONNECT property of a vertex

These routines complete the format of the output: a list
of vertices with their positions and connectivities.

FROPOSE calls:

FREDECEEEOR
EUCCESSE0R
COLINEAR, CONVEX, and CONCAVE

FPROPOSE uses the simple format: a list of vertices, their
positions, and their connectivity. For each vertex, it
defines predecessor and successor properties to simplify
traveling around the net. It looks only at concave vertices.
It tries to close parallelograms. Given a concave vertex,

it examines each connecting vertex. The angle El must be

less than the angle 85;. If so, the routine locks by multi-
entry for a vertex near the point predicted by translating

V among VA,VZ. An earlier version used broken lines, to
extend them, and to connect two vertices with an edge parallel
to one in the regicn, provided it did not eross any other edge.

v B, V' E

VL

CUTPUT

writes out the data in the final format and with the data

- 15 -

a little program which reads the data in and formats it. The
function is called with the name of the ocutput file:
(OUTPUT fnamel fnamel),
Two flags are of interest:

SHOW if non-nil, causes display of various steps in processing.

PLOT if non-nil, causes plots of the steps displavyed.

Some useful functions for lecking at data are:
EHOWEDGES - paired straight lines
EHOWENDS - straight lines
EHOW = line drawing from final format

SHOWBOUND - unprocessed boundary

To help examine property lists:

(PLIST list property) FEXPR prints the indicated property
in a useful form, for each element in the list

(PROPS atom) FEXPR prints the indicaters only on the property
list of the atom.

- 16 -

SEGMENTS

The purpose of SEGMENTS is to take a portion of a boundary
and break it up into a sequence of straight lines. There are two
entries, which differ only in whether the list returned contains
the endpoints. The routines are in MIDAS, loaded into LISP using
the macros and linking mechanism of Roland Silver (A.I. Memo 127A).
They live in the TOPO MOX and in TVT .

The method is simple: given an ordered list of points, we
take the line between end points, and subdivide the list or not
depending on the maximum perpendicular distance of points from the
line. If the maximum perpendicular distance is greater than approxi-
mately four times the transverse point scatter dx (dx is approxi-
mately half a raster unit in a typical case), the list is subdivided
and the procedure is applied recursively to the sublists. The limit
of perpendicular distance is set from LISF by:

(SEGI limit) : initialization
where limit is floating point.

If there results more than cone division, the conditione for
finding a corner are not alwayves well met (no line should be near
parallel to the line between end points). Therefore, we repeat the
process twice more on the lines cbhtained, but annsidar.alt&rnate
vertices. Some corners are shifted and others disappear.

The routine returns a list of corner points (which are actually

- 17 -

points from the list). It would be better to return lists of fitted
points. The routine is called with a list of dotted pairs, not
necessarily floating point.

The perpendicular distance test is guite fast. The perpendi-
cular distance corresponds to the yv-coordinate in a coordinate system
rotated along the line connecting end peoints as the x-axis.

The parameters used by the program are:

SEGLIM: the limit to perpendicular distances considered colinear.
Set by (SEGI limit), it is a floating point machine number, not
a LISF atom.
SUBRs defined:
EEGI: initialize the parameter SEGLIM
SEGMENTS: returns a list of corners with end points in the form of
dotted pairs of floating point LISP numbers.

SEGMENT: returns list of corners without end points.

We make a short description of the operation and of the principal
MIDAS entries. A user who wished to incorporate the routines would
need to change the input form and the cutput form.

SEGPUSH: convert from input format to internal format: push

points on a point pdl (which overlaps TOPQ and thus smashes

TOPD) . The internal format is alternate x and ¥ in a bleck.
SEGBZ: segment portion of line between two pointers on the

#ﬂint pdl and recurse. Arguments are a list of corners in A,

= 18 =

and begin and end pointers in € and R4.

SEGER: repeat segmentation on each sublist between alternate

COITNELE .

The program, roughly speaking, is:

FUSHJ P, SEGPUSH ;set up internal format
PUSHJ P, SEGB2 ;initial segmentation
PUSHT F, SEGR rrepeat segmentation

PUSHJ P, SEGR

JRET SEGPD soutput list of dotted pairs.

- 19 -

MULTI-ENTRY CODING

The multi-entry coding routines are a module availakble in LISP
and MIDAS, The routines provide the mechanism for two-dimensional
proximity, i.e. find all points near a point p. Topology reguires
that there be N+l overlapping cells in N dimensions to guarantee
proximity. For simplieity, we have four instead of three overlapping
cells, The distance for proximity defines the dimension of the
array; if delta is this distance, the array must correspond to cells
of twice this size. The array has dimensions

N1/ (2*%DELTA), N2/(2*DELTA), 4
but is a half word array. In the MIDAS version, hash coding is
used if the image afray exceeds the storage area in size. In each
half word, a list of the entries is kept.

Functicons to initialize, to store, and to retrieve associations
comprise the package. In LISP:

(MATCHE nx ny [(cons sx svy)) initializes by calculating the
gcale and allocating an array of the calculated size. Here,
nx and ny are upper limits of coordinates which are assumed
to run from (0 . 0) to (nx . ny): sx and sy are cell sizes
aleng the two dimensions.

{(MULTISTORE p ptr) stores the pointer ptr at the position of
the dotted pair p.

(MULTIFIND p ptr) returns a list of elements different from

- 20 -

ptr and with no repetitions, elements near the dotted pair
position p.
The functions occocupy one page of EXPR code in the file labelled
A 262 on the tape TOB ARCHIVE.
In the MIDAS version, the array location and array size are

stared in wvariables:

MULTIA: rarray location
MULTIL: rarray length

A: ;xlow float pt
E: rvlow float pt
C: ;xhigh float pt
R svhigh float pt

To initialize, either:

MULTIM: 1% dimension fixed pt

MULTIN: ry dimension fixed pt

PUSHS P,MULTII ;calculates scale and scaling function
or the user can specify the scale factors and allow the program to
caloculate the dimensions of the image array:

MULTIO: secale factor

MULTIO+1 ;scale factor y

PUSHJ P, MULTIZ ;:;initialize, calc dimensions and choose scale

function

To store in the multi-entry array:
A: pointer

B x float pt

-

c

LRl

v float pt
PUSHJ P, MULTIS
which returns:
AL: original pointer
B-R5: four lists of associations, exactly, in each of the
four registers are two lists: after cons list, before cons
list.
To find associations:
A: pointer
E: x flecat pt
C: ¥ fleat pt
PUSHT P, MULTIV
which returns a list in A, without repetitions and without the
original pointer.
To store vectors, interpolating points between end peoints, suf-
ficient to guarantee proximity:
A: pointer
B:r x1 float ﬁt
C: vyl float pt

R4: =2 float pt

- 22 -

R5;: v2 flcat pt

MULTVF: funarg evaluated at end points and interpolated points
PUSHI F, MULTIV
At each interpolated point and end point, the program calls the
functional argument in MULTVF (which might be MULTIS, but which woul
praferably be a function which calls MULTIS, then processes the
associations which occur). A useful way of using MULTIV is with a
hash-coded table of pairs to avoid repetition. The CONSes can be

done from a pdl or free storage area.

- 23 =

ETRAIGHT LINE FITTING

We usually represent a line in the symmetric form:
x¥sint - y¥*cost + z = 0.
The special cases

¥ = ax + b

x oy o+ 4
are simply:
x*tant = v + z/cost = 0
X - y*cott + z/sint = 0
The sclution to the special cases is straightforward in terms of

the method of projection:

v = ax + b

E:H: = ELIZJ¢11* th
E%*Hi‘i== nUi: ¥, ¥ + l?:E.“q

This is a system of two eguations in two unknowns:

Q= (-I&Z- Y z]'."'\ _ZH;";)/(JF-TX‘K;E#;—Z':J;)
b= (Z-I:‘j'. zt; "z.i'.’-ii';h)/(im Z;;-NZ X; "-‘)

whese solution corresponds te the line with the same first two moments
as the sample. The equations are exactly those of the least sguares
solution. The solution for the form

¥ = coF + d
can be obtained by interchanging % and ¥y in the tweo eguations. The

_ 24 _

cage of a symmetric interval in x is often very useful. Then, the

sum on X vanishes, Z F}- =() ands:
= le‘.‘l*, {Z K
h?‘-z:!j;‘frd

The general linear form has a nhonlinear normalization condition and

t—-ﬁ"-i'i'- * H,l*:?;ml
"{[Z‘ «t, = Ly~ w (G Lw -Zy, ;'5-'7_‘

One useful guantity for description of a line is its angle;

the solution is:

tan 2=

slopes are not continuous through the full range of T directicons.
Although the general linear solution involves transcendental func-
tions which inveolve a certain amount of computation, the alternative
is to take the special case solution about the axis which lies nearer
the line of the data. This amounts to choosing the larger of the

denominators

(T!'.r Z"‘* gﬂ; 'i‘ ‘*;‘.‘) or (i"i z.r%: Z,H: _Z.‘H;H;)

The straight line fits should be adeguate even though the procedure
is not rotationally invariant, but tan & is a poor approx to the
angle @ at angles near 45%. The simplest sclution is to calculate
the angle @ corresponding to a few terms in the atan 8 series
expansion.

Straightforward error propagation shows the mean sguared error

in slope to be:

- 25 _

|
Cdatday = <dy*dy> /(% T x-Lan,)
L]
For the general case, we can use the same result after a rotation

of coordinates with x axis along the direction of the line. A

usual test for linearity is the mean squared error:

M= Z:(m:-i'bg te)?

which can be computed in terms of the sums already calculated:

M= a27 x2 4 la.bz'nj +B”ZL‘|" F lac? x f’]br:z.\j te2r1

A description of the line segment by two of the sample points
is deficient but useful. Instead, we describe a line segment by
end points, projected on the line. These are eguivalent to the
best fit line, and are an alternative representation.

Functions in both LISPF and MIDAS are availlable to compute
straight line fits. 1In LISP, the procedure is to evaluate:

{STLINE L)
where L is & list of detted pairs. The wvalue iz a list of three
parameters in one of the two special case forms.

The MIDAS version (available in TVJ %) fits the general form
of the linear eguation. The internal representation is a block of
alternate ® and ¥y floating point poeitions. It expects:

A: pointer to the £first point

B: pointer to the last point

- 26 -

PUSHT F, LFIT
The results are in a block of about 20 words to BLT into a header
block for the line. Other entries are:

A: x float pt

B: v float pt

PUSHJ F, LFITP
which adds a point to the line sums.

PUSHT P, LFIT 3
which takes its data from the LFIT data block and fits the parameters
of a general straight line.

A: =x float pt

B: ¥ float pt

PUSHT B, LFITEE
which projects the point (x,y) on the line in the LFIT data bleck.

For the purpose of testing colinearity, a function for the
special case line fit also exists, but has not been debugged. The
time required per fit is around .5 msec, sufficiently fast teo allew
rather free testing of colinearity hypotheses for extension and

redundancy of lines.

- 27 -

LINE VERIFICATION

LW

Given two points Ql and Q, in the field of view, the program
will tell whether an edge extends from QL£I to QgiT fI normal to
quz}'

The central part of the program is in MIDAS to be used within
LISF. A few EXPR execute top level functions.

Instructions for use:

1. Assemble the MIDAS program MLV 1 {(or MLV 2) which is on tape AHD.
MIDasS[E
deviceruser; MLV BIN«MLV l@
2. Link the assembled version with LISP and TOPO as follows:
STINK[H
JLISPS
Mdevice:user;TOPO BINSL
Mdevice:user MLV BINSL
Mdevice:user;RLISP 10THSLSS
PES
TDS3
sY Lv BIN R
3. Read in file LV 1 {or LV 2) of tape AHD
[UREAD LV 1 device user)

- 28 -

4, sSetqg Ql and Q2 to coordinates of extremal points of possible
edge, l.8.1%
(SETQ Q1 [COHS X=-coord. Y=-coord.))
(SETQ Q2 (CONS ¥=coord. Y=coord.))
Coordinates should be fixed point guantities between 0 and 1777 octal.
5. Execute
(LV)
I1f no edge is found it returns NIL, otherwise a description of the
edge as follows: .
(STEP DARK RIGHT (20 . 25))
-edge of the step tyvpe
-the dotted pair represents the x-coordinates of the lower and
upper point of the actual edge with respect to axes Ox and Oy

4

as shown in the figure

~the darker face is right of Q;Q,.

another description:
(ROOF UP (22 . 42))
=rocf locking upward.
etc...

6. a) rI| iz set to 10. If vou wish to change it execute:;

- 29 -

(8ETQ INCERT new value)
flopating point number
(LWCST)
(TABALF)
k) The shortest and longest edges for which the wverification
process is secure are 50. and 400. respectively (2000 octal being
the side of the whole field). To change this execute:

(SETQ MAXLE new value of maximal length)

(SETQ MINLE new value of minimal length)

(LVCET)

(TABALF)
values should be floating point numbers.
Hote: if you make MINLE less than 50., wvou should use 5 bands
instead of 10 (for clarification see paragraph 7 below). Then
MINLE can be lowered down to 25.

) If vou want to use the program with canned data, read in

the canned data after reading file LV 1, as follows:

(LOAD Edge File Ho. device user LID}

array where cross-sections are stored

Fresumakly vou would before have dumped LID:

(DUMP Edge File No. device user LID)

7. The procedure is set with 10 bands (see On Boundary Detection,

A.I. Memo No. 1B3, p. 45). If vou wish to use five bands execute:

- 30 -

(SETQ NBD 5)
(SETQ THEIN 4)
(LVCST)

(SETEAR '".r'v}

= 31 -

