MASSACHUSETTE INSTITUTE OF TECHHOLOGY
PROJECT MAC

Artificial Intelligence
Memo MNo. 207 August 1970

MORE COMPARATIVE SCHEMATOLOGY

Carl Hewitt

Schdmas are programs in which some of the function symbols are
uninterpreted. In this paper we compare classes of schemas in
which various kinds of constraints are imposed on some of the
function symbols. Among the classes of schemas compared are
program, recursive, hierarchical, and parallel.

Wl

Work reported herein was supported by the Artificial Intelligence
Laboratory, an M,I.T. research program sponscred by the Advanced
Research Projects Agency of the Department of Defense under Office
of Naval Research contract number NOOOl4-70-A-0362-0002.

Reproduction of this document, in whole or in part, is permitted
for any purpose of the United States Government.

Lontents

I:'l- Cl:}.l"l'l'.EntE

1. Analyvtic Theory
|.1 Classes of Schemata
l. 1.1 HRecursive Schemas
lelslsel Comparison with Procram Schemas
lalsalalal Bushy Theorem
lelalala2 Sinecle Instance
Theoarem
lalala2 Compilation
la lola2 Schemas with Resets
l.1.1.4 Decoupilation
‘Schemas with Counters
Parallel Schemas
Locative Schamas
schemas with Selectors and Heplacement
Schemas with Free variables
Hierarchical Schemas
l.l.7.1 Comparison with Recursive

e
-
BT T A

L] - L]

Schemas
1. 1.7.2 Comparison with Parallel
Schemas
la1.7.3 PFPLAKHER Schemas
1.2 Intentions
l.2.1 Definition of Intentions
l.2.2 Completeness of Intentiemal Analysis

2. Synthetic Theary
2.1 Realizations
2.1.1 Healizations for the Quantificational
Calculus
2. 1.2 Realizationz of PLAMMER Theoarems
2.2 Construction of Schemas
2+.2.1 Completeness of Procedural Abstraction
2.2.2 Completeness of Methed of Canned Loops

g« Current Problems and Future bWork

« Analytic Theory

.1 ©Classes of Schemata

[.1.1 FRecursive Schaemas

The Tellowing is an informal prooress report of some
work that] have done with Mike Paterson. Jehn L, White made
important sugpgestions and corrections. The result that
recursive schemas are more powerful than procram schema was
cbtained as a term project Iin the soring of 196%. FRioorous
proofs are not given here but just an indication of how a proof
would go. Program schemas are nonrecursive procedures that have
uninterpreted function symbols and predicate symbols. We shall
use capital letters to dencote uninterpreted symbels. We shall
allow schemas to use a finite number of distinguished objects
which can be tested by the binary predicate "is®. For example
(is x "hello") is true only if x is the distincuished constant
"hello". Functicons evaluate their arguments from left to
right.

The fellowing is an example of a prooram schemas

(g x) = becin (registar y)

{comment v is5 a a register of the program schema o)
agalns

(If (or (P x) (is x "dolly")) then (return y})

(x <= (L vl

(v <= (R (R v1)}

(oo acain)
and

A recursive schema i{s a procram schema thst is allewed
to call itself or other recursive schemas recursively. The
foellowing is an example of & recursive schema k which iz defined

by @ set of recursive equationssi

(k x) = (if (P x) then ¥
eglse (T (k =) (m (B %13}
{m y) = (if (P (R y)) then (L v}

glse (C (m (1 vw)) (k (k x))))
For anmy recursive. schema defined by a set of recursive equations
we. can construct an eguivalent recursive schema with only one
eguation and one additional aroument to tell which equation is
being simulated. This is possible because we allew recursive
schemata to use a finite number of distincuished constants and
predicates to test for these constants. The follewina is an
example of a recursive schema that uses the interpreted constant

symbols true and false.

(f x) = (1f (P %}
then
(if (2 x)
then true
else Talse)
elseif (f (L x1)
then true
glse (f (H =13

l.lelel Comparison with FProcram Schenas

In ract the above recursive scheme is net eguivalent to any
program schema. by equivalent we mean that the twe schemas must
both fall to terminate or both must return the same value for
all interpretations of the functicons F, 4, L, and R. (ften we
will take the set of uninterpreted terms as our demain of
interpretation. In the above case the domain of interpretation
is x, (L x)y (R x)y, (L (L x)), (L (R %)), (R (L Xx)y etc. The
function letters L and R are interpreted as 1 and r wheres:

{1 y) is defined to be the term (L y)

{r vJ is the term (R v}

Thus (1 (R (L %)) is the term (L (R (L %)J). Two schemas are
equivalent if and only if they define the same function on the
domain of terms.

Theorem:

The functieon f defined above is not equivalent to any program
sthema.

Proof: Consider the fellowing class of interpretaetions 41 ml
where n is a non-necative inteoer:

The daonain of interpretation is the set of terms that can be
cnnztru:ted.frnm the indeterminate x and the predicate Jetters L
and H. The predicate Q is interpreted as a functien o with rance

itrue false). The predicate P is interpreted as the function pe

1.1 pace &

(p (hiQ ...Chio x),...0) true for m = n

false otherwise

whera eéch hii H™h SUDEEripteﬁ by im) is the interpretation for
H eor the interpretation for L and there is at most one path such
that

{g (hiDesalhin x}...)) = true
The domain of {I n} is the set of all terms that cap ke
construcied from the indeterminate x and the functions L and R.
fie are going to prove that for any program schema P we can find
an integer t such that P does not define not the same function
a5 the recursive schema f on at lesast one member of the class {]
t}. In the the interpretation Wl 3), we have the following L-R
tree (where each node is a term in the domain of (i 3)):

{x {eL =7 :
WL (L %x3)

d{L (L (L %333}
{(R (L (L x)))2})
{tR (L =22
AL (R (L %1212
LR (R (L x3)3332))
(R x)
L (R x»)

Wil (L (R x))3)

{CR (L (R %2330}
WE (B xi)

AL (R (R x))))

{(R (B (R x)3)})2

The function p is true only on the richt-mest (i.e. batton)
nedes and g is true on at most one of the richt-most (bottom)

nodes. We shall define the state of a program schema P at a

point in its computation to be the contents of the registers of

lel paee 7

F together with the statement of F that will be executed next.
Iwo states 51 and 52 of P under the interpretion I will be seid
to be EQUIVALENT if p executes exacktly thz sams seguence of
instructions when started from 51 az when started from S2.
Suppose we have a procram schema P with 5 statements and k
registers. In the interpretation 1 mnl}, the procram schema P
has at most s#((n+2)%%k) equivalence classes of states where #%
iz the exponential function. (Effectively the only thino the
schema can do is te count down edch ef Its k recisters to the
bottom of the L-R tree and test each of them to see {f it has
reached the bottom.) However, & procram schema needs at least
2%#%xn steps in order to check if g is true on each of the nodes
at level n. Therefore for sufficiently larce n, F must go into
an infinite lcop since it will arrive at two distinct nodes in
the same state., To see the matter somewhat differently look at
the sequence of equivalence classes of states. [f the sequence
repeats then the program schema is in anm infinite leocp. But the
poor preoegram schema must seek and test all 240 terminal neodes
and then halt. Therefore the program schema needs at least 2##%n
eguivalence classes.

| We define the protocol tree of a recursive schema 5 to
be the possibly infinite tree cbtained by substituting for each
schema that eoccurs in 5 the definition of that schema to cbhtain
a8 schema 3¢. The whole process is then repeated for the schema

5. The protoecol tree of the schema £ is

(if (P =}

then
(if (Q =l
then true
glse false)
else
{(if (P (L x13}
then
{if (0 (L =)
then true
alze
(i (P (R x1)
then
(if (Q (R x1)
then true
else falsel
alsa falseld
else
(if (P (L (L =10

then
(if €8 (L (L =3)d
then true

else
(if (P (L (R x1)}
then
(if (O (L (R =2}
then true
alse
--i}
glse
(if (P (R %))
-i-i-l:l}
else
fif (P (R (L =32
then
(if (@ (R (L x1i)
then
Lrue
else
-nald
eloa
{if (F (R %)
then
Cif (0 (R x23)
thean
true
glsea
falzel
else

falsell)

vie shall say that a protocol is BUSHY if it contains an
infinite binary subtree such below every node on the subtree
there is a path which can converoe, pMotice that irf & protocol
tree is bushy then it is infinite.

The schema f defined above is bushy as is5 shown by the

following bushy sub-tree.

AP =)
A(F (L %))
{(F (L (L x3))
{iil-.:l
s odd
AP (R (L x1))
{--l-}
Hewad 1}
AP (R =1
(P (L (R x1))
tiil}
Aynnt)
(P (R (R x)))
{aaal
:{lil-}}-}}

The schema f] defined below 15 not b bushy and there 15 an

egquivalent prooram schema.

(fl x)=Cif (P x)
then trus
gelseil (f1 (L x)
then true
glseif (f1 (R x))
then (f1 %)
else Ffalse)

The protocel tree is not bushy since it does not contain an
infinlite bimary tree.

if (P =)
then trua

al=se
if (P (L %))
then true
else
if (F (L (L x11)
then true
else

L]

The followino schema does not have a bushy protocceol tres because
rnone of the nodes have converosnt paths below them.

(f2 xi=11 (F x)
then (C (f2 (R x)) (f2 (L x))
else (C (f2 (L x)) (f2 (R =1
The schema ff defined below has & bushy protocol tree. HNote the

use of the uninterpreted function symbol "CV.

(ff =) =
(if (P x}
then X%
else
(c
(ff (L x1)
(ff (R x13))

The proteocel tree for the schema ff is:

(if (F x)
then ¥
else
{if (F (L x))
then
(if (P (R %))
then (& (L x) (R =1}
else
(if (F (L (R x)1
then
{(if (P (L (L xJ1)
then (C (L x) (C (L (r xM
(R (R %))
else
il'-i}

glsa
-F!-!-}J

glse
{(if (P {L (L x1M)

Lthen
(if F (H (L x231))
then
(it (F (R x2)
then (2 (2 (L (L x2) (& x}]
(R %13
clse
l--i-i]
2lse
-Ii-i-.]:l

The schema ffl delfined below does not have a bushy protocol

trea.

(ffl =x)=(if
for (P %) {not (F (L x)))
then %
glsa

(C (ff1 (L x)) (ff1 (B x))))
since it is egquivalent to

(ff x) = if (P x) then x
else (C (L x) (ff1 (R x)J)

All of the above schemas civen above have the property

they if they are not bushy then they are not eguivalent to any

program schema.

(T4 xvi = 1T (P v) then x
gelse
(s
(fa (L =) (G ¥
(f4 (F x} (G y

{(f5 x y) = if (P ¥)
then

if (U v) then true alse false
glse
land
(f2 (L x) (3 v))
(fo (R x) (G yw)id
neither of the above scheawas is esuivalent to any procram
schema, The reader micht consider hew te extend the definiticon
of bushy in order to enconpass the above cases. [Hint:
Consider protocol frees which have an infinite branch on which

arbitrarily large "bushy" brances appear.]

l.1.1.1.1 The Bushy Theorem:

If & schema has & bushy protocol tree then it is not equivalent
to any program schema.
The Tollowing is an example of a recursive schema which

doas not have a bushy protocol tree but is not equivalent to any

program schema.

{f w yJ = 1{f (P y)
then x
&lsea
(c
(f (L x) (H ¥y}
(f (R =) (H w21
However, if we restrict curselves to recursive schemata
which have only one instance of s call to themselves then we can
find an eguivalent program schema. The procram schema is
cotained frem the recursive schema by deing the tests Iin the

opposite order. A more primitive form of the transformation is

well known teo compiler writers. Tlhe transfermation explained
pelow will work only in the absence of side effects. The
rupnning time of the transformed prooram is of the oraer of the
square of the running time of the original proaram, e
conjecture that there Is ne transformetion that can do better
than the square of the runnineo time in ceneral. For example

consider

(f x) = (if (P x}
then x

else (H (f Wdelta x}) =))

le lalale2 The Single Instance Theoream:

A single recursive schematic eguation that defines a function
form f can be transformed inte an equivalent procram schema 1T

the Torm f appears only once in the definition of the function.

Proof:

Define (F°n x) to be F applied n times to some argument

(F70 x) = x
(FPin+1) x) = {F {(F™n x}1}
For example (F*1 x) is (F x)} and (F™2 x) i35 (F (F x1).

Suppose the dafinition of f is of the form

(f k) = if dalphs k}
then nbeta k}

else {ocamma (f {delta kl} k)

where {alpha kl} is the expression that is evaluated before the
recursive call to f, N beta k} is the expression that is
evaluated 1if there i3 neo recursive call teo f, and {camma (F
idelta k}) kJ} is the value for a recursive call to f. The

protocel tree for f is

(if {alpha idelta~0 kil

then
{beta Adelta=0 ki}
else
{gamma
{if dalpha Hdelta=™l k}}
then
doeta (delta™| kil
else
{camma
(if {alpha #Adelta®2 kl1}
then
dnetas {delta™2 kil
else
{gemma
(if {alpha
idelta™3 kil
thean
glse

senld

{delta™2 k1))
{delta=1 k1))
idelta™0 kil)
An - expression that appears within [and J is an intention that

is expected to be true whenever contrel passes throuch the

expression. It i5 not nezcessary to understand the intentions

in erder to understand the scheaa . In

prefer not to read the intentions, The

fc, and Ifd are intended to express what

and d respectively.

follows:

The function T can

fact many readers micht
intention funcfinna fa,
cees on in loops a, o,

be re-written as

{(f k) = bealn (recister mn 1)

{comment wy, n, I, and j are recisters of the procram
schema T)
{m <= k)
at {(if (not {alpha m}) then (m <= {delta m}l) (no al)
[define (fa m) = if {alpha m} then m else {delta
mtl
[{m = (fa k)) (comment [t is our intent that m

ke equal to (fa k) at this peint. It can be shown by inductien
that this intentien is5 always realized.))
(i == k)
(n <= A{beta ml)
ot {if {alpha i}
then
[(f k) = (fc ddelta (fa k}} k) = nl
{return nl)
[n = {f i3]
[define (fd nm j
m} else (fd n {delta m} {delta j!
[define (fc n 1)
(fd n k 1) ddelta i1}131]
[n = (fd Hbeta (fa k)} k 131
(i <= Adelta i})
(j == 1)
(m <= K
i (if (not {alpha i}
then
() <= {delta j}}
(m <= ddelta ml})

) = if dalpha j} then {gamma n
)]
= if dalpha i} then n else (fc

(go dl)
(n <= Adgamma n m})
n=1(f m)]
(go c)
end

l.1.1.2 Compilation

We can leok at program schemata and recursive schemata
s automata that operate on the universze of terms as a data
SPECE. A finite state schema automaton: eperates under a finite
state control structure using a finite number of registers each

of which can hold one term. As a primitive cperation the

automateon is allowed to create a term oy aonlvinec @& function to
terms steored in its reaisters and then to store the result back
in a register. In agdition the automaton is allowed a finfte
number of primitive predicates to test the contents of its
realsters. The class of linite state schema automata is
egquivalent to the class of pregram schemata in the ebvious way.
A pushdown schema autematon is defined to be a finite state
schema automaton with a pushdeown stack. In additien a pushdown
schema automaton is allowed & finite number of distinoulshed
constants as terms together with predicatas that test for the
distinguished constants. f¥ie will investicate the relationship
between these machines and schemas. The appropriate kind of
eguivalence is one in which side effects are allowed. Two
schemas will be said to be side-effect aquivalent if they are
the same function for all interpretations including those which
invelve side effects. For example the schemas j1 and j2 below

are not side-effect eguivalent.

(il %) = if (P %) then x
else (pl (g x) (g x))

ipl x v} = x

{}2 x} = if (P %) then x
else (j2 (G x))

The free interpretations are the ones in which each
uninterpreted function symbol is interpreted as the function

which evaluates to the list of all the primitive terms that have

been previously evaluated in the computaticn. For examnpls the

side=effect protocol tree for j2 is

if (P x)
then fx +(P %)}
glsa
if (P (G x))
then ({0 x) #(P {0 %)) (G %) =(P %)}
else
it (P (G*2 212
then {((G™2 x)} +(P (G™2 %)) (G™2 %) =(P (G
1) (G %) =(P x))
El58...

n the other hand the side=erffect protocel] tree of jI is:

ir (P x)
then {x +(P x)}
else
if (P (G x))
then HIG x) +{(P (G x)) (G x) (G x) ={(F %1}
else
if (P (G*2 xI)
then {(G°2 %) +(P (G*2 x)) (G"2 x) (G2 x)

=(P (G x)) (G x) (G x) =(P x1}

Blse..s
Thus jl! and j2 are not side-effect eguiwvalent. Althouch
crdinary equivalence is recursively undecidable, side=effect

equivalence is decidable by tree expansion.

The Compilation Theorems

For every recursive schema there is a side-effect eguivalent
pushdown schema automaton: Arguments to a function are passed
along by placing them on the stack and the value of the function
is returned in register rl. We shall show how to compile the

schema [defined below:

{(f x) = begin (new v initial (H x))
(comment y i5 & new local which is ifnitialized to (H %))
(if (P x)
: then (K x vw)
elself (and y (P (f x2})
then (K v x)
glse (G (K vy x) vy}
end

The compiled form is

(f x) = begin
(comment (= %) is the top element
f is entered. The top element is alse :glled [inﬂg; TE??k when
(define y to be {index 2))
(push {= x})
{call 1 H)
{(push r1})) (comment We declare vy to be the
next element on the stack and initialize it with the value (H

¥). The expression (call 1 H) will call the function H with I
argument.)

(ir
(push (= x1})
(call 1 P)
(true? ril}
then
{push (= %1}
{push (= y)}
{call 2 K)
(returnl
elself
fand
(
{ (true? {= v)J))
(push (= x))
(call 1T 13
Cpush ri1)
(ecall 1 PJ
(true? rilih
Lhen
(push (= y))
(push (= x})
(eall 2 K}
(returnl)
alse
: {push

inn
e

(push

fcall 2 k)

(push rili

(push (=)]

(call & G)

(raturnil
ena

1.1.1.3 Sechemas with Hesets

Tags can be thouaoht of as identifiers which ere bound at
each activation level. By ﬁassinn the activation as a parameter
the level of activation camn be imsediately reset by executing a
transfer of contrel through the activation. In order to obtain
an eguivalent machineg, we can extend the instructions of the
push down schema automaton by allowing them to stere & pointer
toe the top element of the stack into one of the registers. The
resulting class of machines is called the reset push down schema
autcmata. If the stack is ever popped back past & lccation that
is pointed to by & recister then the automaton halts with an
EITOr . he found discussions with Mike Fischer helpful in
analyzing Schemas with resets.

The Heset Theorem:
The class of reset push down scheme autemata is eguivalent to
the class of ordinary push down schemz automata.

We can simulate any schema that uses jumps throuch
activations with the loss of at meost a factor of two in speed.
The idea is that we shall use the distinguished constants "“one",

Hfwo", "Three" to indicate amn abrormal return. [T a function

returns "three" then it i5 delina &n abneraal return cn its third

argument. Censider the followine cxamples

(try x) = begin
zoain:
(if (0O =)
then
{(x == (F x1]
(oo acain)
glaself (F =z
then
{x <= (harder (F %) again}) (comment the tao
Wagain® is an identifier)
(if (not x)
then (return false)
else (go againl}
else (return falsel)
end

(harder %1 tag) = becin

ggains
Cif (0 %x1)
Lthen
(x == (F x[1}) (comment set the oclobal x to (F
%*1))

{po tag) (comment jump back to the activatien
defined by tag) :
elseif (P x)
then
{21 <= (harder (F x1) taagl)
(if (not x1)
then (return false)
gelse (oo acainll)}
else (return false)
and

iWe can rewrlte try and harder as try“ and harders respectively
without the use of resets. We shall use the function (exit x}

to force & process to leave a function with the wvalue x.

(try+ x) = beoln

goains
(if {30 x?
then
(x == [(F %))
(oo acain)
elseif (F %)
then
(2 == (beoin (new temn)
(temp <= (harder” (f x)))
(if (is temp "second®)
then
(oo amaind
else
treturn templrl)
(i (not x)
Lhen (return false?
else (go acgain)
else (return false))
end
tharders x1) = begin
apain:
(if (L x1)

then

(x == (F x11)

{return {("second"l)
glseir (P x1)

thean
(X1 <= {(pegin (new fenp)
(temp <= (harder” (F x11)
{if {is temp "second")
than

{exit "second") {(comment
the function harder”)
else

"sacond” is the value of

ireturn templill
(if (not x1)
then (return false)

else (gQo againll
else (return falsel)
end

lalod aSchemas with Counters

e would like to present another sxample of & function
that can be computed by a recursive schema but not by any
program schema. Define (F°n x)} as in the preol eof the 5incle
Instance Theeorem. Thus ((F*n+l) x) = (F (F™n x1J. Cuppose that
we successively compute (F x), (F (F x), etc. As we
successively compute tha guantity (F°i x) Tor some intecer i we
shall keep a running count of the number of times that (P (F™j
x)) has been true for j less than 1, minus the number of times
that (P (F*j %))} has been false for j less thanm 1. [If this count
ever coes negative then we shall return false as the value of
the function (zero x), otherwise the function (zeroc %) will runm
forever.

The Counting Theorem for Procram Schemata
The recursive schema “‘zero’ defined below is not schematically

equivalent teo any procgram schema.

{zero xJ = begin

again:
(if (7 x
then
(X €= (positive (F X221}
(if =
then
(e asainl)
glae
{return falsea)
else .

{returm Talsel)

end
The schema “zero’ uses the schema “positives to keep track of

the count by the depth of recursion of the schema “positive~.

{positive x) = beaqln

againt
(if {F x2
thean
{(x <« (positive (F x}})
(if x
then
{oo againl)
glsa
(return false)
else
(return (F =311
end

Using the technique of lccp elimination we can convert the above
functions inteo purely recursive schemas. We shall define a
schema zerol which is equivalent to zero and & schema positivel

which is eguivalent to positive.

(zerol x)= (if (F =)
then
(if (positivel (F x}1)
then
(Zerol (positivel (F x))}
else
fal=ze}
else
false)
(positivel x)=
(if (P x)
then
(if (positiwvel (F x))
then
{positivel (positivel (F x1))-
else
false)

alsga

(- ¥}
The protoceol tree for the scheua zere is

(if (P (F*0 =)}

thian
(if (B (F™1 =}}
then
(if (P (F*2 x 1)
than
glze
Cif (B (F*3 x})
then
else
(if (F (™4 x1)
then
e]lse
Talsell}
else
{(if (F (F™2 =)
then
(if (P (F™3 %))
than
else
(if (P (F™4 x1))
then
glse
alse
false))
else
falsel

The reader might ask himself why it ie that the Single Instance
Thecrem doesn’t apply to the schema positivel,.

Hewever a procram schema can salve the problem if we
give it a counter. We postulate the functions hinm mw_ and
zerc? which respectively add, subtract, and test for zero. The
following program schema is schematically eguivalent the the

function zeraot

{zerol x} = begin (new n) (return (zero? %1} end
(zarod x} = beain

apains {(Iif (F x)
then becin
(X <= (F xl}
n <= n 4+ 1}
(oo again)
end
(if (zero? n) then (return falsel)
{n == m=1)
(oo acainl
end
By allowing recursive Schemas to useé a counter, we can construct
a function “reczero” that is not eguivalent to any ordinary
recursive schema, the function reczero counts the number of
nodes along the bottom of the L-R tree that have the property P
minus the ones that do not have the property P. The function
returns the wvalue false if the count ever coes necative. We

azsume that arguments are evaluated from Jeft to right.
The Counting Thecrem for Recursive Schematas

The schema {(with counters) reczero defined below iz not

equivalent to any ordinary recursive schema.

(reczerc ¥} = begin {(new nl) (return {(reczercl xJ} end

(reczerocl x) =
(if (BOTTON? %)

then
(if (P x)
then becin
in <= n+l)
freturn true)
end

else becin
{if {zero? n) then {(returm falssl)
in <= n=1)

(return true}
and
else oeain
(if (not (reczercl (
(if (not {(reczercl
ireturn true)
end

¥ i1y then {(return falsell
¥31) then (return lalse))

L
R
The reason that reczero (s not eguivalent to any recursive
schema is very similar to the reason that no recursive schema
can search the branches of the L-F tree in parallel. 1f a
recursive schema is equivalent to reczero then it is constrained
to search the tree in essentially the same order that reczeroc
searches the tree. ({Jtherwise it could be made to fall into an
irfinite loop on an interpretation where reczeroc converces,.
Constrained in this fashion a recursive schema has only & rinite
number of states in which to try to keep the count., The
recursive schema cannot succeed for the same reason that ne
program schema is equivalent to the function zero defined above.
Conjectures the following function is not
schematically equivalent to any purely schematic recursive
system ﬂf equations. The function even is supposed to test
whether the number of bottom nodes of & L-R tree that are true
for the predicate P is the same as the number that are false for
the predicate P, The schema “even’ differs from the schema
‘reczero in the crucial respect that ‘even’ always locks at all
the bottom nodes before it comes to any conclusicns. Thus a
recursive schema that tries to imitate the schema even has a lot

more reom in which to maneuver., We conjecture that no recursive

schema can have enouch internal states (as defined in the proof
of the Sinultaneous Hecurstion Theorem) to be eguivalent to the

fupction even defined below.

[even %) = begin (new n)
{evenl x)
(return {zera? n 1)
encd

tevenl x) =
(if (BOTTOM? %)

then
(if (7 x)
then

in <= n+ll

x)

else
(n <= n=1]

x)

else begin (even (L x1) (return (even (F %))} end

lelaled Decompilation

The Decompilation Theorem:
For ewery push down schema automaton we can effectively
construct a side-efrect equivalent recursive schema, We shall

gssume that subroutines take their arcuments in recisters ri,

rZ; etc.

Consider the followino push down schema automatent

(palindrome) = begin
(comment the arcument is passed in ri)

imove x rl} {(comment move the contents of rl inte the
register x1J

(call O end-of-stack) (comment ocenerate the
distinguished constant "end-of=-stack")

(push rl)
pals

(mave rl xJ

fecall 1 TEARILN)
it ri

than oeagin

(pop rild

teall | end-af-stack?)
(if ri then (returnl)

apaing
tpop rild
fcall | end-of-stack?)
(1f ri
Lhen
teall O falseld
(return}’
alse (oo acgainl)
end
{move ri x)
(call 1| P)
(if rl
then (push rl) (oo palll
(pop 1Tl
(call 1 epnd-of-stack?)
(if rl

then (call O false) (returnh)
imove rl x1J
(call 1 FI
imove x rl)
(go pal)
and

The Decompilation Theorem follows almost immediately from the
Heset Theorem. The push down schema autopaton palindrome is
equivalent to the schema palindromel defined below: The
function exit will force a return from a function through
arbitrarily many intervening blocks. The following method for
decompi ling produces a prooram that runs in a time proportional
to the tTime of the push dcown schema automaton. There is5 an
alternative method of decompilation that involves no loss of
efficiency but it is not =zo easy to understand because more work

must be done in the translation.

(palindromel ri) = becin {new x)

placels
pals

label 24

(% <= rll
(palindromal end=of=stack labell labell)

(rl1 =<== %)
{r1 <= (TERNIN r1)
if rl then becin
(halt) (comment stack under flow)
labells
irl == (end=of=stack?})
(if r1 then (rl <= (false)) (exit rl)
else (go agaiml)
end
{ri1 <= %)
(r1 «= (F rl1ll

(if rl1 then (palindrome2 ri labell labelZ2) {(co pall)

(halt) (comment stack unber flowl

(rl «= [(end=ofstack? riil

fif r! then (rl <= {(falsel) (return ril1)}
(move ril xl

irl «= (F rll}

(X == 11}

{go pal)

end

(palindrome | stacked tagl tag2) = begin

place s
pels

pall)

(go placel)
(x == 11}
(palindromel end=of=stack labell labelZz)

(rl == xJ

(rl <— (TERMIN rl)

if r1 then begin
{move rl stacked)
{go tagl)

label]:
{r1 <= (end-of-stack?))
(if r1 then (rl <= (false)) (exit ri}
else (oo again))

end

(rl == x1i

(rl == (P riil

(1f r!| then (palindrome2 ri labell label2) place2:

irl <= stacked)

(oo

{go label:Z)

labelss
(rl <= {end-ofstack? ril}l
(if r! then (rl <= (falsc)) (return 1)}
(move rl1 ®x)
(rl1 <= {F rli)
(x == 1l
{go pall
end (palindrome?2 stacked taol tao?2) = becin
(go placeZ)
(x == 1l
(palindromel end-of=-stack labell Jabelz)
placels
pali:
(ri =— ¥) .
(r1 <= (TERMIN rl)
if r1 then becin
tmove rl stacked)
(oo tacl)
labell:
(r1 <= (end-of-stack?))
(if rl then {(rl1 <= (falsel) {exit ril
else (go againl)
end
(rl == x)
(rl «= (F ri1l)
{if r!1 then (palindromeZd ri1 labell label2) placed: (oo
palll
irl == stacked)
{go labelz)
labelZ:

{rl <= {end-ofstack? rilj)

(if ri1 then (r1 <— {(false)) (return rl})
{move ri xJ

(krl «= (F rll}

(x <= rll

{go pall

end

l.l.3 Parallel Schemas

We introduce the delimiters "e“ aznd "»>" te delimit
guantities that are to be computed in parallel. Fhenever a
process executes an expression like <x» it divides inteo two
ProCESS 85, lne process executes ¥ and the other attempts to
continue normal execution. For example in the expressien
<2+3>#<4xh>, the product 4%5 is computed in parallel with the
sum 2+3. Thus the expression "begin <return x> (return vy} end®
is defined to be the value of x or y dependineo en which
evaluates first in some particular but unspecified parallel
computation. If a process executes the primitive expression
"{die)" then it must .commit suvicide on the spot. Frocesses can
coordinate thelr actions throuah locks. Any expression x can be
locked by (lock x) provided thﬂt.the exprassion is not already
locked. If x is .already locked then any process which executes
f]nék %) will be bleocked until x is unlecked by the primitive
(unlock x). However a process can execute {(leckad? %) which
will return true is x {s Jlocked but will leck x if it is
unlocked. The kind of call delimited by "<¥" and "»" can be
implemented using the fellowing primitives:

{create n o af) will create @ new process named n with
the evaluation of ¥ which will execute the expressicon af if the

evaluation of x is ever completad.

(resume n x? will resume the process named n o with x &s
the value of the statement which ceused control to leave n. The
process which calls resume will ne stopped., [f the process n is
already running then the process which calls resums will be
blocked until n stops.

(Tork n x) is exactly like (resume n x) except that the

process which calls the function fork is not stopped.

e define the following function using parallel processing:

(f x)=(if (P x)

then x
glse
becin
ereturn (f (L x]l=»
{return (T (R %))
endl

The above functicn is determinate {(ie. halts and has the same
value independent of the relative speed at which the sub-
processes run) on infinite binary trees in which the predicate P
is true on only one node.

The Parallel Evaluation Theorem:

The function f defined is not eguivalent to any recursive
schema.

Froof: Suppose a set of recursive eguations {fi0, T11, «ecy
fin) is schematically equivalent to f with f!0 eguivalent to f.
That is for all interpretations of the uninterpreted functicn
symbols, the schemas f and fi0 are the same function. Suppose

that we start up ©fi10 on input x and make the predicste P false

for every node to which it (s aoplied as fi0 computes alono. 1f
the computation converces then fi0 dogs not leok at socue node
which is5 a contradiction of the suppozition that 1.0 is
eguivalant to . lherefore the computatieon runs foraver znd the
sequenﬁe of statements throuch which the control passes is
ultimately pericdic. Conslder the sequence of arcuments to cone
of the functions {(call it fii for "f subscripted by i"™) as the
control passes through one ¢ycle. Suppeosa that fii is a
function of j arouments: ail,...,3!j. The arouments with which
i1 will be called after the control has passed throuoh one
cycle are terms definable from all,...,8!). Let us call them

A 1Tl yens @i j71s The situation can be diaecrammed as followst

L

(T1i allysesyaijli the beoinning of the cvecle in the
control structure

(fil ad 1™y, waeqy@i}™1) 3 We pass throuch the same point
of the cyecle in the control structure

If none of aid™l, ...,31J71) is the same as one of ail,...,81]
then we are done since the set of recursive eguations is tracing
j paths down an expontentially crowing tree which means that
some node is not looked at. If we saet the interpretation so

that P is true for the node then we have a contradicticn. He

conclude that the fact that one of all*l, ...,a!j" richt be

same as one of ajll,... 2l j is a nuisance. Let us call the

arouments to fii after we have cone tircurh the cvcle k times

Bl 1 kyanadt j7 ke Observe that {f we oo throuch the cycle j!
times then there will be some [such that 1 is less than j! and
ai1™i,..-,44ij71 has the property that it is an epicycle. iy
this we mean that some aigq™i is the same as onz of ail,.casai
if and only if it is the same as aig. All such aig do not
contribute to the number of nodes examined since they are
repeats of nodes previously examined in exactly the same way.

The situation can be diaorammed as followss

TE0D 80 0,ean,atils

CE1E 81171, weeqali™l)

L

{(fii ai 1"k, ..., 81i%k)i the becimnino of the epicycle in
the control structure

(fi1 ail IM(2%K), e..,8i]7(2%k))3 we pass throuoch the same
point in the epicycle

Threrefore we can complete our proof by applving to epicycles

the above argument that we used for cycles. QLELD.

le 1e4 Locative Schemas

The Lecative Thecorems:
If locations of identifiers are an allowed data tvpe, then the
control structure of recursive schemas can compute any partial
recursive function. We shall revert to the ecenvention that
arguments are passed on the stack. We will need to use reocister
which we shall call ri. The register will be allowed to held a
peinter to a location in the stack. Pointers are created by the
use of the function "index". For example (index 0) is the
location of the top of the stack when the function is entered.
praofl:

fie can define & counter using a recister as followst:
(initialize-counterl) = becin

icall | zera)

(push rl1) (comment push the distinguished literal zero
onte the stack)

{moveli rl (index 0)}) (comment put & pointer te the top
of the stack im register rl)

(returnl
end
{count=upl) = beain

(push rl} (comment push the contents of reocister ri)
(moveli rl (index Q))

(returni

&

{count-deownl) = becin

(move rl1 (in rl1)) (comment put the contents of the
centents of location rl in location ri)

(returnl

end

(zero-test 1) = beoin
(push ri)

{call O zerc?) (comment test for the distincuished

literal zerol
(return}

end
iarvin Minsky proved that twe counters are universal, Q.E.D.

la 1.5 5Schemas with Selectors and Keplacement

Another way in which we can proceed is to impose data
types on the computing domain. Storace off the stack can be
established by peostulating a constructor ¢ and selectors sl and

52 such that for all x and ¥ in the computino demain we have:

(51 (e x yl)) = x

(52 (¢ X y)) =y
in the domain of interpretation. Classically we would postulate
that every call to the constructer must return & new element of
the computing domain. The lack of functicnality eof ¢ in the
computing domain implies that it must be defined using side

effects,

1.1.6 "Schmeas with Frea Variables

(c x ¥) = begin (new 2}
(z <= (5] free-storage-1list))
{free-storace-list «<- (52 free-storage-1list))
(comment "free-storace-Jist® is free in c)
{return (CONSTRUCTOR x v z)
end

For scme purposes the hash coded constructor of MeCarthy (which
we shall eall heod results in gains in efficiency in both time
and storage. For a hash coded constructor, we would have

If xl1=x2 and yl=y2 then {(hc x1 y1) = (hc x2 v2),

l.1.7 Heirarchical sSchemas

PLANMER uses a more powerful control structure than that
of the recursive function call. A HleRARCHICAL CUHTROL
STRUCTURE is used which means that at any point a process can
fail which will cause it to back up to socme previcus state and
then continue, The primitive function (GENFAIL) will generate a
simple failure. The primitive function (FAIL? try lose) will
evaluate the expression try, [f the evaluation succeeds then
the value of the functieon "fajilure?" is the value of try.
Otherwise the value of the function "failure?" is the value of
lose. For example the value of

[+

(failure? {(x <= 2) (% <= 3))
(1f %x=2 then (fail) else 4})
is 7 since x first cets the value 2 but then is given the wvalue

3 when a failure backs up to the functien "failure?v,

lel.7.1 Compariseon with Recursive Schemas
We shall give an example to show that hierarchical
centrol structure is more powerful than recursive control

structure.

Heirarchical Schemas Are lore Fowerful than lecursive Schemas

The hierarchical schema ¢ defined below is not
equivalent to any recursive schema. What the schema o does is

to search the follewing tree for x lecokinc fer a node on which F

i5 truss:
x
(L™ x)
(L™2 x)
{L™3 %}
(A™1 (L*2 %))
(L™4 x)
(B=1 (L™4 x 1
(R*1 (L™1 %1
(R™2 (L™ x3))
(R=1 x)

(™2 %)
(™3 x)

ke have shown in the section on parallel] schemass that no

recursive schema can do the search.

(g x) = (h (f x))

th z) = if (is z "truew)
then
(begin
(comment 1f the value true is returned
then we are done)
true)
aglze
(beoin
(comment otherwise cenerate a failure)
(faill)

{1 x)=(fail?
false
(begin (new y!
"({comment v is @ new locall

[y <= x]

[k
(f (L x»
(if [P v
than true
else [y <= (4 y) false)dld)
(k = £) = if {is 5 "ftrue")
then “"ftrus"
else €

Prooft The preoof is similar to the proof of the parallel
evaluation theorem. Suppose a set of recursive egquatiens {I#0,
f#1, eusy. f#n) 15 schematicaly equivallent te f with f#0
equivalent to f. Suppose that we start up f#0 on input x and
make the prdicate p true for every node to which it is applied
as f#0 computes along. If the computetion converseges thn f#0
does not leock at some noed which is a contradiction of the
supposition that f#0 is equivalent to . Therefcre the
computation runs foerever and the seguence of statements therouch

which the control passes is ultimately periodic.

le1.7.2 Comparison with Parallel Schemas

iie conjecture that perallel schemas are more powerful
than hierarchical schemas. The example which will show this is
the same example used to show that parallel schemas are more
powerful than recursive schemas. However, the proof for
hierarchical schemas is more difficult. The method by which

parallel schemas can simulate hierarchical schemas is messy but

straicht forward.

1.1.7.3 PLAHNKER Schemas

2 aynthetic lTheory

2.1 Healizatlons

2.1.1 Healizatiens Tor the Quantificaticonal Calculus

e would like to show how we can use schemas to express
procedurally the meaning of certain constructive looically valid
santences in the predicate calculus. Classically,
intuitionistic logic has been used fto prove constructive
sentences. However, the connection between this lancuage and
push down schema automata is somewhat indirect. We need to
daefine the notion of a schema g realizing & formula phi.
Houchly speaking g realiies phi if it tells how to compute the
value of phi from the subformulas of phi dependinc on the
logical connectives of phi. #Ke shall define the notion that g
realizes phi by induction on the structure of phi:

For dterms). o realizes phi where phi is a term if o is
true I{f and only if phi is true, For example (F (F w) z)
realizes (F (F wl z).

For {and...}. g realizes phi = (and theta psi) if (o O
realizes theta and (g 1) realizes psi. HNeote that a really is
two functions in disguise.

For {or...t. o realizes phi = {cr theta psi) if whenever

(o Q) is false then (o 1) reallzes psi and whenever (o 0) 1Is net
false then (g 1) realizes theta,

For Almplies...}. o realizes phi = {(iuplies theta psi)
if whenever h realizes theta then (o h) realizes psi.

For {not...}. o realizes phi = (not theta) if for no h
is it the case that h realizes theta.

For d8ll...}. o realizes phi = (all x [theta %x1) Iif for
all » it is5 the case that (g x) realizes Ttheta x].

For {5om...J. o realizes phi = {(some x [theta x1) if (¢

1) realizes [(theta (g 0O)].
.Cnnsider the followine formula which we shall call phis

{(implies
(some X
(implies (A x) (B %))
{(implies (all x (A x)) (some x (B x})1))

iie claim the function g defined below realizes phi.

g = (lambda h (lambcda k (lambda s
(it s = 0
then (h 0]
else ((h 1) {k (h Q})3)))

suppose that h realizes (some x {(implies (A& x} (B x1J)
(h 1) realizes (implies (A (h Q) (B {(h CI1)

suppose that k realizes {(all x (A x}}

(k ¢h 21 realizes (A (h OX)

(1) (k (h Q))) realizes (E (h 0))

{({{g h) k) 1) realizes (B ({({g h) k} O}

(lg hl k) realizes (scme x (0B x1})
(g h) realizes (implies (all x (A x)) (some ¥ (E %))

g realizes phi

ke are interested in Znowing when a fermula can be realizad

constuctively.

Healization Theorem for Hecursive Schemas with Functional

Arouments.

IT phi is proveable in intuitionistic logcic, then phl is
realizable by a recursive schema with functional arcuments, The
Healization Theorem represents aone approach toward a
canstructive theory of computation. From a description of the
kind of object that we would like to have ociven the description
of certain other objects as input, we derive a program for
computing our goal. Actually we shall prove that for
intuitionistic logic the realization function can be made
primitive recursive. The proof is a slicght modification of tThe
stangard preoof for the inteoers. It is a warm up for the
analogous proof for the deductive system of PLANMNER. FHowever,
in PLAKNER we require the full power of the recursive functions
for our constructive realizations,

Proof: The feollewing proof is by induction on the
structure of intuitionistic preofs usine natural deduction. It
goes by stralohtforwardly winding and unwinding of definitions.

iith a little work we could cet PLAVNNER to create the proof.

tand introductiont

theta realized by say o

psi realized by say h

(and theta psi) realized by (lambda s ({f (5 = Q) then e
gelse hl)

land elimination}
tand theta psi) realized by say o
theta realized by (o 0)
psi realized by (g 1)

ior introl
psi realized by say g

— e — .

{or theta psi) realized by (lambda t (if t=0 than false

else o
(or psi theta) realized by (lambda t (if t=0 then true
glse gl
{or elim}
(or theta psi) realized oy s5ay ¢
theta hypothesis; Suppose that theta is realized
Ey h

eventually deduce g3y omeca which is realirzad Ly
{m h) for scme recursive m usinc the inductive hypothesis
psi hypothesisi suppose the P51 is realized by k
eventually deduce omeea which s realized by (1
k) for seme recursive 1 usino the Inductive hypothesis
anegga which is realized by (if (g 0) then (m (ex 1)) else
(1 (g 1))

timplies intro}
aneca hypothesis; sUppose omega is realized by h

eventually deduce say psi which is realized by
(g h} for some recursive a usine the inductiwve hypothesis,

—— e e ——

{implies omeca psi) realized by (lambda h (g h})

{implies elim!
{implies omneca psil) realized by say o
omeoa realized by sav h

.

psi realised by (¢ h}

{neg introl

omarmd hypothesiss suppose that omeos is realized
by h

aventually deduce say (not psi) which is
realized by (g h) for seme recursive g usine the inductive
hypothesis

eventually decduce psi which is realized by (k h)
for some recursive k using the inductive hypothesis.

(not omeca) which is realized by any function since it

is impeossible for both (not psi) to be realized by (o h) and for
psi to be realized by (k hl.

{all intre}

-

i
ieventually deduce say [omeca x] which is
realized by (¢ x)} for scme recursive ¢ using the inductive
hypothesis

S I . . S

tall % (omeca xJ) realized by (lambda x (c x))

{all elim}
(all x [(omepa x1]) realized by say ¢

T O B . i e i

[omega t] for socme term t4 realized by (g t)

lexist introl

lomega t] is realized by say g whare t is a term

(exist x [omega x1) is realized by (lambda s (if (5 = 0)
then t else gl) :

lexist elim}
(5ome x lTomega x1) realized by say o
¥ilomeosa %] realized by (¢ 1)

aeventually deduce say psy which does not
contain x frees psy is realized by (m (g 0) (g 1)) for some
recursive m usino the inductive hyvpothesis.

psy

Thus we have completed the inductive prcof.

Intuitionistic Implementation Theorem

For every recursive schema P, we can effectively find a
Tirst order formula [theta % y¥] such that P is total recursive
{f and enly if (all 2 {(some y Ttheta % v1}) is proveable in
intuitionistic logic. Furthermere, the program F on input x
converces to the value y if and only if [theta x y] is provesble
in intuitienistic leogic. #e assume that all uninterpreted
function symbels in schemas ars total.

We shall give an example ef how to construct the formula

theta for the following program which is due to Paterscnt

(g x) = (1f (T (F %))
. then (h x (F xJ)
alse x}

th x y¥l=
(if (T (F (F w22}
then x
eélseif (T (F x))
then (h (F x)} (F (F ¥}
glse (g (F x)))
The formula [theta x y] to be censtructed is the cenjunction of

the followling three foraulas where "ifi"™ is an abbreviation for

vif and only if":

(1ff
(FG % v}
(or
tand (T (F x)) (FH % (F %} y))
tand (net (T (F %)) (v = %31}

{all x1 =2 v {(iff
(FH =1 x2 vl

{or
tand (T (F (F =21)) (v = x1})
fand
(mot (T {F (F =211
(T (F =12}
(Fa (F x1) (F (F x2)) w1}
Cand

{not (T (F (F x211)

(not (T (F x1))

(PG (F x1) vi))
{(all x (or (T =) (not (T x)13))
The last statement comes frem the fact that we are assuming that
@ll uninterpreted functions are total. The schema g is indeed
total recursive.

Even after adding selectors and constructors the
realization theorem can still be proved in the standard way. fe
introduce the predicate atom which tests to see il its aroument
is atomic and thus cannot be broken down usine the selectors.
The following rule is added to intuiticnistic leociec:

(all x (inplies {(atom %) [theta xJ)) realized by say o

X,¥i[theta x] hypothesisi suppose [thete x] is
realized by (m x)

i L[theta yv] hypothesis; (theta v) is realized
By (m)

seventually deduce Tthete (c x v1] realized
by say (h m X y) using the inductive hypothesis

{all x [theta xJ) realized by
(k x) = (if (atom x)

then (g X

else (h k (1 2z} (52 23113

‘Sometimes an increase in efficiency can b2 cbtained from

replacement operators ri and r2 such that

if x = {51 z) and v
(sl z2) = w, and (52 z) = vy

if x = (5] z) and v
{s] z) = x, and (52 Z) = w.

(22 2z} then after (rl z w) we have

(52 £) then after (r2 z w) wa hsve
There are real problems in trying to use the universe of terms

a5 & universal doanain of interpretation when the use of

replacement operators is allowed.

2.1.2 Realizations of FLANNER Theorems

2e2 Construction of Schecas

2.2.1 Completeness of Procedurz] Abstration

2.2.2 Completeness of Mdethod of Canned Lcoops

3 Current Proolems and Future hork

How can we characterize more precisely the differance
between fTunctions that need to use a recursive or parallel
control structure as cppeosed to those that eonly need a simple
iterative program structure? The preblem of deciding whether
any given recursive schema can be rewritten as a procram schema
is of course undecidable. We would like to find ceneral
criteria of independent interest which would be sufficient to
guarantes that a recursive schema could not be rewritten as a
program schema.

There 1s ceneral agreement that the theory of
computatien is currently not in good shape. The three major
areas (autocmata thenr?, recursive function theory, and specizl
case hacks) are not applicable to practical precrams. e can-
contrast our plicht with the situation in applied physies. An
applied physicist finds that it is essential to understand
fundamental physical laws both in designing his experiments znd
in interpreting their results. HNo such fundamental laws and
principles are known in programming. FKecursive function theory
sets the very outer limits of what is pessible. Few theories
are more elégant. Howewver, the fact that classical recursive
function theory deals with the indices of the partial recursive

functieons and not with the meanine of the programs has been a

fundamental limitiatien on tne applicacility of the theeory. Fer
example the recursicn theorem says that fixed peints exist for
any acceptable Goedel numbering, Almest all the classical
theorems cf recursive function theory can be derived usineg only
the Godel axians Tor indices of partial recursive functions,
Similarly, the couplexity thecry of the recursive functicns can
be derived from Elum?s axioms for indieces. Autcmatas thecorists
have been able to discover some of the structure of warious
limited classes of automata such &s finite state machines, push
down machines, and space and time bounded machines, However,
since the theory daveloped has been mostly ceoncerned with
closure and complexity properties of the special machines
considered as acceptors, it has had limited applicability to
real computer programs. Most proorams are not structured in the
way reguired to fall intec one of the special classes of
machinas. some theecrists hope that by studying encuch examples
of very narrow domains of aloorithms where we have a lot of
demain depencdent knowledge that we can induct a theory of
computation in & Eaconian Tashion. Deep studiss have been made
on guestions such as how fast integers can be multiplied and how
fast matrices can be multiplied. Studies in the theory of
searching and serting appsar to be more relevant for
constructing a unified theory of computation since they afe
concerned with basic computational abilities.

Studying the properties of procrams schematically

offers several advantaces. OScheu&s can be procrammedi in a
realistlc fashien. They airror the structure of preocrans that
are used in applications. Usine them we can precisely deifine
structural properties. Fropertics of the structural classes can
be demonstrated. An encouragine sicn is that nene of the preafs
given here is conceptually very cdifficult. Schemss cive us a
tool by which we can ricorcusly formulate and prove statements
that every proaramner intuitively knows. #we have used schemas
to make & kind of distinction between semantic and syntactic
extensions teo programming lanouwaces, The intent of the
restriction that functions be uninterpreted is te try to prevent
our mathematics from fallino inte what Perlis likes to call tha
"Turing Machine Tar Pit." By usineg uninterpreted function
symbols we can prove both analvtic and constructive thecrems
about classes of programs. In the anélytic theory the
mathematical properties of the structural classes is expounded.
In the constructive theery the process by which schemas can be
constructed from goal oriented language such as PLAMNWNER. The
intention is only partially realized and we must search for
other natural mathematical structures to impose on our schemas
in order to chtain a more realistic theory of semantic
extensions to programming languaces. We are ceontinuing te
Investicate what cains in efficiency can be ebteined from the
foallowing extensions te pregramming lancuaces:

recursion

hierarchical contrel structure
PLANKER primitives

Locations as a tyoe

resets

free identifiers

parallel evaluation

replacemant operators for constructors.

