MASSACHUSETTS INSTITUTE OF TECHNOLOGY
FROJECT MAC

Artificial Intelligence

Memo Mo. 208 September 1270

TEACHING PROCEDURES IN HUMANS AND ROBOTS

Carl Hewitt

This paper was originally presented at the Conference on
Structural Learning, April 5, 1970, Philadelphia, Pa.

Work reported herein was supported by the Artificial Intelli-

gence Laboratory, an M.I.T. research program sponsored by the
Advanced Research Projects Agency of the Department of Defense

under 0ffice of Maval Research contract number NOOOl4-70-4-0362-0002.

Reproduction of this document, in whole or in part, is permitted
for any purpose of the United States Government.

Teaching Procedures in Humans and Robots

|« Abstract

Analysis of the structure of procedures is central to
the foundsati es of proolem solvina, In this paper we axplore
three principle means for teaching procedurest tellinmg, canned

loops, and procedural abstraction. The most straichtforward way
to teach a procedure is by telling how to asccomplish it in a

high level goal-oriented lancuage. In the method of canned
lopps the control sLtructure that is needed for the procedure is

supposed and The procedure is deduced. 1In the method of
procedural abstraction the procedure i5 abstracted from
protocols of the procedure on examples.
2. The Importance of Procedures
in the Structural Foundations of Problem Solving

Several fundamental guestions must be faced by any

foundation for problem seolving. A foundation for problem
solving must specify a goal—oriented formalism in which problems
can be stated. Furthermore there must be a formalism for
specifying the allowable methods of solution of problems. As
part of the definition of the formalisms the following elements
must be defined: the data structure, the control structure, and
the primitive procedures. The problem of what are allowable
data structures for facts about The world immediately arises. A
foundation for problem selwing musp confront the problem of
changst dow can account be taken of the changing situation in
the world? What are cood ways to express problem solution

methods and how can plans for the solution of problems be

is distinct from nondeterministic control. However, under
cartain conditions & process using one or the control structures
can simulate a process using the other [3.1. FPLANWER 15 a hich
level, ooal=orientec languace in which one can specify to a
large degree what one wants done rather than how to do it.

e shall briefly explain sSome of the ideas behind
PLANNER to support our contention of the extreme importance of a
procedural basis for the foundations of problem solving. Since
a formal definition of FLAMHER is beyvond the scope of this
paper, our comments are necessarlly somewhat wvague and
philosophical. PLANKER will play a crucial role in our theory
of procedural teaching. One basic idea behind the lancuacge 15 a
"guality® that we find between certain imperatiwve and
declarative .sentences, For example consider the statement
{(implies A B}, As it stands the statement is a perfectly cood

dﬂciaratiua statement, [t also has certain imperative uses for

PLANNER. For example it says that we should sef up a procedure

which will note whether & Is5 ever asserted and if so to consider

whether 8 should then be asserted. Furthermore it says that we
should set up a procedure that will watch to see if it ever is
our goal to try to deduce B and If 50 whether it is wise to make
@ subgoal to deduce A, Exactly the same observations can be made
about the contrapositive of the statement (implies A B) which is
Cimplies (not b} (not &al}). Statements with such things as

wniversal guantifiers, conjunctions, disjunctions, etc. also

have both declarative and imperative uses. PLANNER theorems are
being used as imperatives when they are being executed and as
declaratives when used as data.

Our work on PLANNER has been an investigation in
PROCEDURAL EPISTEMOLOGY, the study of how knowledge can be
embedded in procedures. The PRINCIPLE OF PROCEDURAL EMEEDDING

says that intellectual structures can be analyzed through their

procedural analogues. The following all have procedural
analoguess

descriptions

recommendations
theorsms

proofs

grammars
mode ls of procedures

patierns
Descriptions have preocedural analegues in the form of PLANMER
procedures which recognize the objects described. Theorems in
the predicate calculus correspond to PLANNER theorems for making
deductions, Mathematical proofs correspond to plans in PLANNER
for generating a valld chain of deductions. The PROGRAMMAR
lancuage of Terry Winograd provides a procedural analogue to
obtain the kind of information that is supposed to be supplied
by transformaticnal grammars. Intricate patterns can be
specified in procedural pattern matching languages. Models of
procgrams are defined by procedures which state the relations

that must hold between the variables of the program as control

passes through varicus peoints.

-

rrom the above obzervations, we have constructed a

language that permlits both the imperative and declarative
aspacts of statements to be easily manipulated. PLANNCER uses a
pattern—directed information retrieval system. When a statement
is asserted recomiendations determine what conclusions will be
drawn from the assertions. Procedures can make recommendations
as to which theorems should be used in trying To draw
conclusions from an assertion, and they can recommend The order
in which the theorems should be applied., Goals can be created
and avtomatically dismissed when they are satisfied, Objects
can be found from schematic or partial descriptions. PFProvision
is made for the fact that statements that were once true in a
model may no longer be true at some later time and that
consequences must be drawn from the fact that the state of the
model has changed. Assertions and goals created within a
procedurs can be dynamically protected against interference from
other procedures. Procedures written in the lancuace are
gxtendable in that they can make use of new knowledge whether
it be primarily declarative or imperative in nature. Hypotheses
can be established and later discharged.

The logical deductive system used by PLANNER 1is
subordinate to the hierarchical control structure of the
lancua ce. PLANNER theorems operate within a context consisting
of return addresses, geals, assertions, bindings, and local

changes of state that have been made to the global data base.

Throuch the use of this context wa can ouice the computation and
avoia doing basically the same work over and over again. For
example, once we determine that we are working within a group
{in the mathematical sense) we can restrict our attention to
thevrems for working on groups since we have direct contrel over
what theorems will be used. PLANNER has a sophisticated
deductive system in order to give us greater power over the
direction of the computation. In several respects the deductive
system 15 more powerful than the gquantificational calculus of
order ocmaga. WMe have tfied to design a aeductive system
tocether with an elaborate control structure so that lengthy
computations can be carried out without blowing up. Of courss
the control structure can still be used when we limit ourselves
Lo using resolution [&.) as the sole rule of inference. 1In
general a uniform preof procedure gives us very little control
over how or when a theorem is to be used. The problem is one of
the lavel of The interpreter that we wamt to use. A digital
computer by itself will only interpret the hardware instructions
of the machine. We can write a higher level interpeter such as
LISP [?.) that will interpret assignments and recursive function
calls. At a s5till higher level we can write an interpreter such
as WATCHLESS which will interpret patterns. At the level of
PLANNCR we can interpret assertions, find statements, and goals.
In ceneral higher level interpreters have greater choice in the

actions that they can take since instructions are phrased more

in terms of ooals to be achived rather than in terms of explicit
glewantary actionsz, The problem that we face is to raise the
level of the interpreter while &t the same time keepinc the
actions taken by 1t under control. because of its extreme
hierarchical control and its ability to make use of new
imperative as well as declarative knowledoe, it is5 feasible to
carry out very long chains of inference in PLANHMER. Examples of
some of the kinds of statements that can be made in the language
ares

Find the second smallest integer that is sum of its factors.

Pick up all the red cubes that are on top of blues cubas and
put. TLhem in the yvellow boX,

Assert that all the people in this room are older than Jack.

Find all the employess at MIT that are related to each other
and give the relationship of each te the others.

We are concerned as to how a theorem prover can unify

structural problem solving methods with domain depandent
alguﬁthS aénd data into a coherent problem solving process, gy

structural methods we mean those that are cencerned with the

formal structure of the argument rather than with the semantics
ol its domain dependent content. Examples of structural mathﬁdﬂ
are the use of subgoals in PLANNER and the consequences of the
consequent heuristic. by the consequences of the consequent
heuristic, we mean that a problem solver should look at the

conseguences of the goal that is being attempted in order to get

an idea of some ol the statements that could be useful in
estaplishing or rejecting the goal. We nead to discover more
powerful structural methods. PLAMNER is intended to provide a
comput ational basis for expressing structural methods. One of
the most important ideas in PLANNER is to bring some of the
structural metheds of problem solving out into the open where
they can be analyzed and generalized., There are a faw basic
patterns of looping and recursion that are in constant use among
programmers. Examples are the "ror" statement of MATCHLESS, the
"find" statement in PLANNER, and recursion on the car and the
cdr in LISP.. The "find" and "for" primitives are explained in
the MATCHLESS and PLANNER decumentation [5.]. The patterns
represent common structural methods used in programs. They
Specify now commands can be repeated iteratively and
recursively. Une of the main problems in gettine computers to
write programs is to Use these structural patterns with the
particular commands that are available in a given problem

- solving domain. It is difficult to decide which if any of the
basic patterns of recursion is appropriate in any civen problem.
The problem of syntesizing programs out ef canned leoops is
formally identical to the preblem of finding proofs by

mat hematical induction. Indeed many proofs can be fruitfully
considered to cefine procedures which are proved to have certain

properiies. We have approached the preblem of constructing

procedures out of goal oriented language frem two directions.

The first is to use canned leoops (such as the find statement)
where we assume a-priori the kind of control structure that is
neecad ., I'he second approach is to try to abstract the

procedure from protocols of its action in particular cases.
3. Teaching Procedures

3.1 How are the roundations ol Froblem Solving Applicable to

Teaching Procedures?

Crucial to our understanding of the phenomenon of
teaching 15 the teaching of procedures. Understanding the
teaching of procedures is crucial because of the central role
played by the structrual analY;is of procedures in the
foundgations of problem solving. How can procedures such as

multiplication, algebraic simplification, and verbal analagy

proplem solving be taught efficiently? Once these procedures
have been taught, how can most effective use of them be made to
teach other procedures? In addition to being incorporated
directly as a black box, a procedure which has already been
Caught can be used as 3 model for teaching other procedures with
analoools structure. One of the most important methods of
teaching procedures is telling., For.example one can be told the
algorithm for doing symbolic integration. Telling should dene

in a hich level coal-oriented language. FLANNER goes a certain

distance toward raising the level of the languaoe in which we
can express a procedudre to a computer. The languace has
primitives which implament fundamental problem sclving
abilities, Teaching procedures is intimately tied to what
superficially appears to be the special case of teaching
procedures which write procedures. Only by teaching good
methods [or constructing procedures out of coal-oriented
languacge can we hope to teach ony but the most primitiwve
procedures. The process of teaching a procedure should not be
confused with the process of trying to get the one being taught
to guess what some black boX procedure really does {(as is the

case In in seguence extrapolation problems for example). The

teacher is duty bound to tell anything that micht help the one
being taucht to understand the properties and structure of the
procedure. We assume that the teacher has a good model of how
the student thinks. Also, just because we speak of "teaching”,
we do not thereby assume that anything like what classically has
been called "learning®™ is5 taking place in the student. However,
this does not exclude the possiblity that the easiest way to
teach many procedures is through examples. We can cive
protocols ﬂf the action of the procedure for various inputs and
enviroments, By "variebilization"™ (the introduction of
identifiers for the constants uf.the examples) the protocels can

be formed intoe a tree. Two branches of & protocol tres will be

said to be compatible if the same actions asre taken on both

branches. Two nodes on the protoceol tree will be said to be
compatible if the corresponding branches below the two nodes are
compatible. Then a recursive procedure can be eneratad by
identifying compatible nodes on the tree. hWe call the above
procedure for constructing procedures from examples the
PROCEDURAL ABSTRACTION of protocels. The program which is
obtained by the process ol procedural abstraction is not

necessarily the one intended by the teacher. However, the
teacher can always give more protocols to eliminate ambiguity or
he can otherwise indicate haw the program should be chanoed.

Procedural abstraction can be used teo teach oneself a preocedure.

3.2 Examples of Procedural Abstracticn

d.2.1 Computing a numerical functicn

For example suppose we are given the following protocols
for a function f. An expression such as "new [5 * 41" means that
we are binding an identifier (whose name we do not necessarily
know) with the value 5 # 4 = 28, We shall use polish prefix
notation and enclose function calls between the characters "{
and "}, The protocols presented below are simplifications. 1n
practice we can use a great deal more information within the
protocol, For example when binding an Identifier with a new

value v by "new [v]", we might know that the identifier being

bound 15 the same one bound in another place in the protocal.

(f B} == {new {wI TRUE: (=@ ¥} 50 1}
Thus {(f J} =

{f 1} 2= {new [1]
FALSE: {= 1 @} 50

| # new [1—=11 TRUE: {= & @) 50 |
Thus {f 1} = 1

LF 2y = {new [2]
FALSEs {= 2 @) 50
2 ® new [2=11 FALSE: {= | @} 50
| * new [1=1] TRUE: {= & &} 30 1|
Thus {f 2) = 2

Lt 3) 3= tnew [3]

FALSE: {= 3 &) 50
3 % new [3-1) FALSE: {= 2 @} 50
2 % new [2=1] FALSE: {= | B} 50
1 *# new [1-11 TRUE: {= @& @} 50 1
Thus (f 3) = &

gy the process of "variabilization", we conclude that
the above protocols are compatible with the following program
which 15 in the form of a tree (which we shall call the protocol
tree),.
iF %} 3= {new [xd= x]
if (= x@ B) then |

else xi * new [Xl=(xB=1)] if {= %1 B} then 1

else x1 * new [x2=(xl1—=1)) if {= %2 @} then |
else x2 * new [x3=(x2=1)] 1f {= %3 @)

then |
else ...
Now we identify compatible nodes on the protecol tree. For
example
{new [x3=(x2=1)1 if {= x3 &) then |
else ...

15 compatiole with

tnew [x2 = (x1 =131 if {= x2 @) then |
alse x2#%new [x3= (x2=1)] if (= %3 @)
BLEE . ua

he can "identify" the two ncdes as cne node d by renaming
jdantirfiers.
o= {new [x = (x2=1)] it (= x &}

then |
glse X#{N (x=1))

gy identifying all ol the compatible nodes of the protocol tree
we oblain.

(f 2} 1=

if (= x @} then !
elzse ¥ *{f (x=1)}

Tne reader will note that f is in fact the factorial function.
PLANMER procedures and theorems can be taught in precisely the
Same rashion. For example the computer can be taucht to build a
wall or recognize a tower from examples. We assume that the
Leacher has a good working model of the student who is being
taught. The teacher attempts to convey a certain boedy of

knowledege to the student. Of course the student will be told

anything which might help him to understend the material faster.
3.2.2 Reversing a List at All Levels

Ne would like to give an example of procedural

abstraction In a domain with structured data. The function

"first"™ will take the first element of a list. The functions

first and rest are named “car® and "cdr® respectively in LISP.

For example {first ((e I) & () k))} is (e f). The function

"rest" will Lake the rest. For example irest ((e f) a () k)) is
(a (j k). There i5 an ampicuity as to whether (a {rest (e f
g)} d) should evaluate to (a (f g) d) or (a f g d). We shall

resclve the ambicuity by introducing a new pair of delimiters
for function calls "< and “»>" so that (a {rest (e)} d) will
evaluate Lo {a (f g} d} and (& <rest (g 1)>» d) will evaluate to
(a I gd). The function tatom ®xs will be true if x is an "atom"
and thus cannot be broken down withe the functions first anc

rest.

Consider the following protocols for a procedure r:

{ir a) = {(new [a)
TRUE: {atem al

30 ai

thus {r a} is a

ir (n)) == {(new [{n)]
FALSE: {atom (n)}
S0
{<new [tlrest (n)i]

TRUE: fatom ()}
50 ()=

{new [{first (n)}]

TRUEs {atom n}

S0 nil}

thus 4r (n)} is (n)

tr (a b))} t={new [{a& b))
FALSE: {atom (a b)}

S0
(<new [{rest (a bl}]
rALSEs {atom {a2))
=1

telnew [{rast (5)})
TrUE: {atam (1r

ETHI -
tnew [{first (b3}
TRUES dfatam o)

S50 bhiz
inew [{first (a bii]

[RUEs latom al}
S0 arll

thus {r (& b))} is (b a)

tr ({al)} s={new [{{a))]
FALSE: {atom ({a)))
S0
(<inew [{rest ((a))l}]
[RUE: {atom ()}

S50 ()=
tnew [{first ({al}}]
rALSEY {atom (a))
50
(<inew [{rest (a)})
TRUE: {atom ()}

S0 (1t
{new [{first (a)}]
TRUE: {atom al

S0 ariid

thus {r ((a))} is ({a))

e obtain the followino protocol treet

ir x) &= {new [x]= %]
if {atom x1)
Lnen x1
elsa
(<new [x2={rest =xi)}]
if {atom x2}
Lhen z2
glse
(<new [(x3={rest x2}]
if (atom x3}
then %3
Blse...>
{new [xé4={first x2}]
if {atom x4}
then x4
glsg ... tis

{naw [xb={(first x1})

if tatom x5)
Lhen X9

eglsa
{<new [x&={rest x5J]

if tatom x&)
then X&

else . ..»
{new [x7={first =5)]
if tatom x7}

thenm x7

else ...t)

By identifying compatible nodes we cbhbtains:

{reverse=-at=all=lavels %) =
(if {atom xJ
then x

else

(<reverse-at-all-levels {rest xi>
reverse-at—all-levels {first x}})}

3.2.3 Finding the Description of a Stick

Suppose that we have the following data bases

iplock a)
(olock b)

{glued a bl
See figure 1 for an interpetation of the above data
base. Suppose that we are told that the above situation

represents & stick on the basis of the following protocols

tgoal (stick a b))} sset up & ooal to prove that there is a stick
from & to. b

tnew [HO-YALUE WNO=VALUE MO-VALUE] i we have three new
identirfiers that initially do not have wvalues

__ conseguent: (stick a b) jthe goal causes activation of a
PLANNER theorem whose consequent matches (stick a b)

TRUE: {proved? (glued a b))} § if it has already been
eéstablished that a is glued to b

S0 {return true?

Thus the above s5ituation really does represent a stick. How

suppose that the data base is:

{block a)
(plock bl
(block ci
{clued a b)
(glued b <l
(between a b

Figure 2 gives the interpretation of the above data base.

Suppose we obtain the rollowing protocol on the above data

baseid

{ooal (stick a cii
[naw NO=VALUE NO=VALUE NO=VALUE]
consegquent®: (stick a c}
FALSE: {proved? (clusd a ¢)}
20
iproved? (block a))

igoal {?lued a b))
{proved? (petween a b c)}

{ooal (stick b c))
[new NO=VALUE NO-VALUE NO=VALUE]

consequent: (stick b ¢}
is {proved (glued b e)}

S0 {return true}

By variabilization we obtain the follewing protoccl trees

{goal (stick u wi}
[new x v 2]
consequent: (stick x z)
if {goal {?IUEd X 2)1
then {return truel
else
{proved? (block %)}
{goal (glusd % y)!
{proved? (between x y z)}
{ooal (stick y z)}
[new x1 y1 z11]
consequents (stick xI1 z1)
if (oeal (glued xi z1))

N

'l

(block a)
(Block b)
(glued a2 b)

Figure 2,

/

7 7 7
a | b

C

.(block a)

{block a)
(block b}
(block c)
(glued a b)
(glued b c)
(between a b

€l

Figure 3,

v

Q b

- /

(block b)

(
{
{

block e)
glued a b)
glued b ¢)

(not {between a b ¢})

then {return truel
else

iproved? i(block x1})
tooal (gluec xI yi)l}

iproved? (between x1 yl zl1})}
lgoal (stick yl z1})

gy ldentifying compatible nodes we cbtain the fellowing
consequent theorem which 15 the description of & stick.
idefine stick-description (conszeguent

(¥ v z) tdeclare x vy and 2z to be local identifiers
(stick x z) #this description is for statements of the

form (stick x 21
{if {goal (glued x z)}

then {return trus}
glse :
t{proved? (block x)}
tooal (glued x)i

‘provaed? (between x y z)J
{eoal (stick y z)}}))

We see that (there 15 a stiek froem x to z in one of the
following two casest

2 x i% glued to z

2: The block x is glued to some block y between x and z
such that there {5 a stick between vy and z.

Ine methed of procedural abstraction is very much like a
generalized form of compilation. The relationship between the
compiled version and the interpreted version can be very subtle.
The Interpreted wversion caem be the implicit behavier of an
amorphous collection of general purpose goal=-oriented language
{say in PLANNER). The compiled procedure is the explicit
solution of the preblem in a precise aleoorithmic foarm. 1In

classical compilers the relationship is much more

straigntforward. Every time that the interpreter for the

langua ge changes the compller must chance. In fact the
interpretér anc compller are two modes of what is essentially
ohe program: an interpreter-compiler. In compile mode it would
actually proguce the code For the source codes in interpret mode
it would take the actions correspondinc to the compiled code

that would be produced in compile mode.

4. ‘Teaching Proceduras by Deducing the Bodies of Canned Loops

If the type of control structure is known a priori, then
the rest of the function can often be deduced. Often the
control structure needed is a very comnonly used leop such as
the “for® loop in MATCHLESS, recursion on the tree structure of
lists, or one of the loops in FLANNER such as “tryw, "find“, or

Mact", We shall call loops such as the above “capned" loops

since we will often pull them out and use them whale when we are
in need of a control structure for a routine, The approach of
using canned, loops is the one used by Kleene [7.] for
constructive realization functions for intuitionistic leaice.

Also, a very similar approach is used in [12.) and [1.1.

Suppose that we know the following theorem about the predicate

{REVERSEP x v} which means that v is the reverse of x. For

example {reversep aa aa) and {reversep (1 2 (3 43} ((3 4] 2 11}

gre true. ke shall use !¢ and »! as meta angle brackets for <

and » respectivly. The delimiters !{ and }! are the meta
braces for { ang }. The function "identity" is the the identity
function. For example {identity b} evaluates to b and (s
<identity (L udlz> v) evaluates to (s t uvw). The reason that we
use meta-brackets is that we shall use a pattern directed
formalism to talk about programs as objects. The function last
will return the last elemant of a 1ist and the function butlast
will return all but the last. Thus (last ({a:b) c (e £1})} _
evaluates to (e f) and {(butlast ((a b) ¢ (e f))} evaluates to

({a b) c). Using procedural abstraction the following

definition cam be produced Tfrom a few well chosean examples,

Lreversep x yir i=
{if {or {atom x} {atom yl}}
then {= x vl
else
{and
t= {first x} {last yl}}
{reversep {(rest x} {butlast yl)

By mathematical induction we can show that (reversep a b} is

true if the following PLANWNER expression succeeds.

{if {goal !{atom al!}
Lhen
iIf a 1s an atom then b Should be egual to &.
{ooal (=a b))
else
{ooal (not !{atem al!l}
{goal !{reversep !irest al! ci!}
i0therwise let ¢ be the reverse of the .rest of
8.
{ogoal {= (l!<identity e»! !{first al!) b)}
ithe identity function is used to convert ¢ into
the initial segement of bl})

The above PLANNER expression civas methods by which a coal of

the form ireversep a b} can be established. We would like to

find a Tfunction reverse from lists to lists such that {reversep

x (reverse x))} is always true. The PLANNER expression above
succests that we try to use linear induction on lists as the

control structure. The schema for linear induction applied to

attempt to construct a function reverse which satisfies the

condition {reversep x {reverse %)) isi

!{reverse x)! =
H{if !'{atom x)!
Then
{temprog (Y) Y is a new local
iHere we compute the code of what to do
if x 15 atomic.
{assert '"{atom x}!}
{geal !{reversep x Y}!}
i Find a2 ¥ which is the reverse of the
atom "x" and return it as value.
ireturn Y}}
eglza
{temprog (Y)
idere we compute the code of what to do
If x is not atomic.
lassert (not !{atom x}!))
lassert !{reversep
'{rest x}!
'{reverse !{rest x}!}1}1)
i Make the inductive hypothesiis that
the reverse of the rest of x satisfies the condition.
{goal !{reversep x Y}!}
i Find a ¥ which the reverse of x and
return it as valua.
: {return YJ}}}

Ihe above expression evaluates to the following definitions

{reverse x) &=
{if {atom x)

then x
else (<ldentity {reverse {(rest x}}»> (Ffirst x}))

4, Comparison of The Methods

[here 15 not much to be s5aid abpout teachinc procedures

by telling, [t is not always clear whether the procedure should

be taught from the top down or the primitives should be taucht
First. However, the pasics of Lhe metnod are simple and
direct. Unfortunately the teacher will not always know the
code for the procedure which is to be taught. He might be
engaged in wishrul thinking hoping to find a procedure with
cartain properties. The method of canmned loops 15 often
applicable to such cases, Trying to use the method of canned
loops has the pfﬂblam that the control structure must be
supposed. Often it 15 very difficult to guess the kind of
control structure which will prove appropriate. Also the method
of canned lcops works on the problem in the abstract as opposed
to specific examples where the identifiers are bound to actual
values. The advantage of the abstract approach is that 1If it
succeads then the procedure will be known by its construction to
have certain properties. On the other hand it is often easier
to see what to 0o on concrete cases, The appreoach of procedural
abstraction is to combine together several concrete cases into
one supposed eeneral procedure. Properties of the general

. procedure must then be established by separate argument. 1f the
protocols of the examples are produced by & geal=criented

language such as PﬁAHNEH, then there will be points along the

protocols where certain predicates are known to be trus, The

predicates express the fact that some goal was established as

true al that point, Often it is possible to show by
mathematical induction that tThe corresponding properties in the
abstracted procedure are always true when the procedure passes
through tha peoints. In this way a problem soclver can have a
partial model of his problem solving preocedures. The models ecan
be expressed naturally in PLANWER. Also the method of
procedural abstraction has the advantage that the coentrol
Siructure does not have to be supposed in advance. Often a
problem solver will have the basic problem solving ability to
solve any e of a certain class of problems. But he will not
know that he has the capability. Writing a procedure which can
Dbe Shown to solve the class enables the problem solver to
bootstrap on his previous work. Procedural abstraction itself
i% Turther evidence for the Principle of Precedural embedding.
To lmplement the principle as a research program requires a hian
level goal-oriented formalism. PLANNER and some embellishments
that we have made to the language are rirst steps toward

realizing the Princible of Procedural Embedding.

5. Acknowlegrements

I'hanks to the referee for many helplul suggestions. In

the course of doing this work, [had useful discussions with

Marvin Minsky and Seymour Papert.

. bibliography

l. Green C, C. (with Bob Yates), Application of Theorem
- Proving to Froblem Solvino., Proceedinos of [JCAL. June |vav,

2. Hewitt, €. and Paterson, M., Comparatiwve
Schematology: Proceedings of Conference on Concurrent Systems
and Parallel Computation at Woods Hole Mass. June [1979.
Sponsored by Project MAC, M. I. T. June 19274,

3. Hewitt, C., More Comparative Schematology: Project
MAC Artificial Intelecence Memo. June 19708

4. Hewltt, C., PLANNER: A Lanucage for Proving Theorems
and Manipulating Models in a Hobot, Proceedings of IJCAIL.

5. Hewitt, C., PLANNER: & Languace for Froving
Theorens, Artificlal Intelligence Memo 137, Massachusetts

Institute of Technology (project MAC), July. |967. Revised June
¥ TE.

6. Hewitt, C., Functional Abstraction im LISP and
PLANNER, Artificial Intelligence Memo 151, Massachusetts
Iostitute of Technology (project MAC),

7.{leene, 5. C., Introduction to Metamathematicst HNorth
Holland.) _

8. Hobinsen, J. A., A Machine-oriented Logic based on
the Hesolution Principle. Journal Association of Computing
Machinery. Vol. 12, pa. 23-41.

¥. McCarthy, J.3 Abrahams, Paul W.i Edwards, Daniel J.j
Hart, Timothy F.i and Levin, Michael I. I1¥582. Lisp 1.5
Frocrammer~s Manual, 4, I. T. Press.

Id. Waldinger and Lee, PROW: A Step Toward Automatic
Frogram wWriting. Proc. I[JCAIL.

