MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A, I. LAB

Artificial Intelligence
Memo Ho. 210 December 1970

A USER'S GUIDE TO THE A. I. GROUP LISCOM LISF COMPILER:
INTERIM REPORT

Jeifrey P. Golden

Work reported herein was supported by Project MAC and the
Artificial Intelligence Laboratory, M.I.T. research programs
sponscred by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contracts
number HOO014-70-A-0362-0001 and -0002.

Reproduction of this document, in whole or in part, is per-
mitted for any purpose of the United States Sovernment.

Table of Contents

1. Introduction
11, Operation = Compiling

A, LISCOM"s top-level functions

I« COMFILE
fi EF
5. COMPILE
4§, CHMP, CN
B. Handy functions, global variables,;

and notes

(a) Functions
l. DECLARE
2, GEMNPREFIX
E, INITIALIZE

(bl Global variables = switches
I. *IWNITIAL
2. #=EYMBOLS
3. =GRIND
4. =REDEF
5, =*=CLOZED, +«ARITH, +MUZZLED
6, *=DEBUG

(c) Global variables = other
I« UMNDFUNS

2. MNEWSPECVARS

3. GENLIAT

4. TAGCHT

5. FUNNAME

{d}) Hotes on compiling
1. Errors

2. Generated functions
3. F=type functions and SPECIALs

4., HRedefining svstem functions

III. Operation - Formatting

LISCOM page 2

page

11

11

14

LISCOM page 3

I. Introduction

The LISCOM wversion of the A.l, Group PDPSE(TI0) Lisp
compi ler is @ descendant of the original Greenblatt-Helson
compiler, and is a friendly sibling te the COMPLR version
maintained by Jon L. White. The compiler operates in two passes
to translate LISP code into LAP code. The first pass performs a
general study of the S-expression function definition which is
to be compl led, producing as output a modified S=expression and
various “tables” attached toc free varlables. The second pass
does the actual compilation (generation of assembly codel,
making use of the transformations performed and the informaticon
gathered by the first pass,

The LISCOM version of the compiler is being used as a
vehicle for the implementation of “fast arithmetic” in LISP.
This work is being done under the auspices of the MATHLAE
project of the A.I. Laboratory. The early stages of the
compi ler implementation were handled by W. Diffie, and the work
has been continued by the present author. Corresponding changes
to the LISP system were implemented by W. A. Martin and Jon L.
White. The idea is to use user declarations of fixed=point and
floating=-point variables and functions - as to the value they
return, as well as other mechanisms more convenient in certain
situations (to be described at a later date), to enable the
open-compi lation of the LISP arithmetie functions. At the
present date, the conversion of the first pass of the compiler
to handle “fast arithmetic” has been completed. The conversion
of the second pass (s now under way, Also, some improvement In
the output code and many bugs in the compller were removed as a
joint effort of the present author and Jon L. White.

Every attempt has been made to make the LISCOM and COMPLR
versions compatible in the sense that a user need not make any
changes to his flle to switch from one compiler to the other.
There are, however, differences Iin some of the top level
functions through which the user corresponds with the compilers,
in the format of the LAP ocutputted, and perhaps also, in the
speed of operation of the compilers, in the relative
efficiencies of some of the LAP code, and in convenience to the
user in terms of warning and error messages, ete. The usage
conventions of the LISCOM version are described in the following
section. The only descriptions of the usage of the COMPLR
version avalilable at the present date are found in A.L. Memo
116A (EDP-§ LISP Revised), p. 5 and A.I, Memo 190 (An Interim
LISP User®s Gulde), Appendix X, both written by J. L. White,
Some discussion relating toe the user®s interaction with the
compi lers {(e.g. relating to DECLARE) may be found in A.I. Memo
190, p. 534 ff. A description of the actual operation of the
compi ler as of June 1949, especially the LISCOM version, written
by W. Diffie, Is available from the present author.

LISCOM page 4

I1. Operation

One may load in the LISCOM compiler by typing at DOT
“LIscOMIH® or “:LISCOMZE”. Since the LISCOM version uses the
formatting functions of the GRIND package (see A.I, Memo 190,
Appendix F), one may use LISCOM for both compiling and
formatting S-expressions, although the latter is surely
inconvenient when compared to loading In the flle GRIND LISP on
device COM. In any event, both features of LISCOM are described
below. Let us note here, that the features described below are
subject to change (hopefully with noticel.

Compiling
A. LISCOMs top-level functions:

These functions are all FSUBRs (unless they take no
argument in which case they happen to be SUEBRs).

1. COMFILE: COMFILE is the major function which enables
the user to translate one or more files of LISP code (these
files are called the “source files”, and are dencted here as
fnl fnl, gnl gn?, etc.) into a single file of LAP code (this
file is called the “target file” and is denoted here as
tn! tn).

4 file to be compiled may contain function definitions (via
DEFFROFP or DEFUN) to be compiled, MACRO-definitions to be
expanded, LAP code, declarations to the compiler {(via DECLARE =
described below), comments (via COMMENT), and any other random
S-expressions. All but function definitions via DEFPROP or
DEFUN, MACRO-definitions, and declarations via DECLARE are
simply passed on through to the target file “untouched” (except
see the discussion of the =GRIND switech below), MACRO-
definitions are expanded in Pass 1 and take prierity over (i.e.
can be used to redefine) system-defined functions. Since MACRO-
definitions are placed on the property list of the MACRO=-name, a
conflict will occur (of which the user will be Informed) if a
user MACRO has the same name as a compller function and If the
MACRD is called from within other {(or the same) MACRO-
definitions., (The LISP system may be hacked later on to prevent
this rare conflict from occurring by “prefixing” a “file name”
to each function name). Also, noting the description of DECLARE
below, if DECLARE Is used carelessly (e.g. foolishly modifying
global variables Intended solely for the compller®s Internal
use), trouble may ensue. No other conflicts between user names
{for variables and functions) and compiler names can occur.
Finally, let us note here that it is intended that the compiler
be able to compile (almost) any function that runs
interpretively and can be compiled. If any user runs into
difficulties with the compiler, he should see the author,

LISCOM page §

COMFILE takes a list of n »= § file-names (with device and
sname specifications if desired - the usual default options are
available) as argument. There are three special cases: n = 0,
n =1, and n >= Z.

(a) nm = 0: Twping (COMFILE) to LISCOM Is completely
analogous to typing (CMPJ) to COMPLR. This gives the user
control over the compllation process. An example of this use,
beginning here with the loading ﬂPETEtiﬂg;‘iS as follows: The
user is talking to DDT, which has typed "% at him.

‘e’ LISCOMTH" 1" (that which the system types at the
) user is enclesed in single
quotes.)
“LISCOM COMPILER (etc.)”
{(UREAD fn! fni) {the file to be compiled)
*({device sname)”
{UWRITE)
*(device sname)”
{COMFILE)
“COMPILER=LISTEMING®
RWT (I/0 switches are set as desired)
. . . (the compilation)
“{func . *EXPR)” {the EXPR “func” has been compiled)
“FINISHED” {the compilation has been

comp leted)
(UFILE tml tnfiﬁ

“{device sname)

Many wvariations on the above are possible, e.g. outputting to

the line=printer, rather than to the disk; or defining functions
on=line and compiling them.

The n »=] cases are the more usual ones. Here, the
compi ler handles the entire compilation process for the user,
including the setting of I/0 switches and filing (UWRITEIng,
UREADIing, and UFILEing).

(b) n= T: In this case, COMFILE takes a list of one
source file=name

(fn! fn dev sname)
as argument, and it outputs the compiled file as

{fnl LAF dev sname),
(“dev sname” perhaps being specified by default, of course.,) An
example call is

(COMFILE (FOO LISP)).

LISCOM page 6

In this case, only one source file can be translated into a
target file, The INITIALIZE function described below is
relevant here,

{c) n »= 2 In this case, COMFILE takes a list of n »= 2
file-names as argument; the first file-name is taken to be the
target file and the remaining n = I file-names are source flles.
The files are picked up in left-to-right order. In this manner,
one or more source filles may be translated Into a single target
file, A sample call is

(COMFILE (OUT COMP) (FOO LISFI) (GOO LISP? DSK JJ)).
When n »>= 2, the *INITIAL switch (global variable) desecribed
below may be relevant.

¢, CF: The function CF is available as a convenience for
those users who need to or wish to complle the same file
sequence twice. The file specifications made in the last call to
COMFILE with n »= | are preserved on the property list of the
atom TRY, so that one need only “eval” (CF) (for Compile Eile)
in order to repeat that call to COMFILE.

3. COMPILE: COMPILE is used to compile or recompile
individual functions, perhaps only in order to investigate the
code being produced. COMPILE takes as argument a list of the
functions (i.e. their names) to be complled, 1.e.

{COMPILE funl fun? ... funil.
COMPILE assumes that the S-expression definitions for the
functions have been loaded in already by the user, In
formatting, COMPILE uses the line-length (LINEL) of the device
(console) at which the user is logged-in, as opposed to COMFILE
which uses the line-length of the line printer (actually £§0. and
not 1£0.) This may be changed by the user by SETQing LINEL to
PAGEWIDTH. When recompiling, the function GEMPREFIX discussed
below is useful.

4. CHMP, CN: These functions are useful only for
investigating the code produced by the compiler. CMP takes as
argument a LAMBDA expression to be compiled, i.e.

(CMP (LAMBDA . . .)},
which is complled as a SUBR called TRY. Il.e. CMP combines in
one step a

LDEFFROP TRY (LAMEDA . . .} EXPR)
and

(COMPILE TRY).
CN (for Compille Hame), which takes no argument, is used to
repeat the last call to COMPILE, through the use of the global
variable FUNNAME, mentioned be low.

LISCOM page 7

B. Handy functions, global wariables, and notes:

The following is a description of functions and global
variables avallable in the compiler to aid in the comoilation
process:

{a) Functions

I. DECLARE: DECLARE, an FSUBR, Is an all-purpose function
used In handling declarations of wvariables (via the functions
SPECIAL and UNSPECIAL) and functions (wia #FEXFR and “LEXPR) as
well as in causing evaluations to take place Immediately.
Indeed,

DECLARE [expr.] = MAPC [{(FUNCTIOMN EVAL) (CDR expr.lil.
(Thus, one need not use DECLARE upon having leaded in the
compi ler, before initiating the compilation process.) DECLARE
will also enable the user to inform the compller as to how he
wishes “fast arithmetie” te be done, when such it available - a
full description will be given at that time. DECLARE is treated
by the LISP Iinterpreter just as is COMMENT; however, in the
compl ler it takes effect whether used at the top level or in a
function definition. DECLARE or an alternative must be used to
inform the compller

(1) via the compl ler function SPECIAL of variables which
appear free in some function(s) in the file ar of those which
the user would like to refer to by name later on. The compiler
and the user may access these variables via the “SPECIAL cell”
on their property List. Much will be sald of the former use In
later sections. The function UNSPECIAL is used to remove the
SPECIAL declaration.

(2} via the compiler functiens #=FEXPR and =LEXPR,
respectively, of FEXPRs and LEXPRs (i.e. EXPRs with atomie, non-
NIL LAMBOA-lists) which are called within function definitions
before they themselves appear (are defined) in the file, (the
default option for such “undefined” functicns Is that they are
of EXPR-type, and an error message will be printed out if this
is not done), if indeed they appear there at all.

DECLARE is also used in SETQing the “user-accessible” global
variables described below. Thus, a sample call is

(DECLARE (SPECIAL warl wvar?) (=FEXPR funl) (SETQ =GRIND 3)

(GENPREFIX H)).
(SPECIAL, UNSPECIAL, wEXPR, *FEXPR, *LEXPR, and GEMPREFIX are
all F5UBRs defined by the compiler.)

£. GENPREFIX: GENPREFIX is useful when recompiling
individual functions to be placed in a file alongside other LAP-
code or in compiling several files at different times which are
later to be assembled into cne system, GENPREFIX is used to
avoid conflicts between tags and between GENSYMs {generated
symbols) whiech are used by the compiler for generated functions

LISCOM page §

{see the “Notes” section below). (Tags are local to the LAP
function in which they appear, but only one sccurrence of each
tag may appear in a DDT symbol table). The syntax is

[GENPREFIX atom)
and the atom, e.g. BAR, is used (1) to prefix a GENSYM, e.g.
converting GOI05 to BARCIOS in the case of generated functlon
names; and (2) as the prefix to an integer (counter) TAGCHT in
the case of tags. 5See the discussion of the gloebal variables
GENLIST and TAGCHT below. A one-character atom Is usually used,
and indeed the generated atom (BARQIO5 here) may not have more
than & characters if it is to be placed in a DOT symbol table.
GENPREFIX also resets TAGCNT (see later) to 0. (It is hoped
that some day functions assoclated with GENSYMming will be added
to the LISF system to replace the need for GENPREFIX as used for
generated functions.)

5. INITIALIZE: INITIALIZE, a SUBR, is useful when
compi ling more than one file with a single loading of the
compi ler. INITIALIZE takes as argument T, 2, or 3 which
indicates [ts mode: If arg = 1, INITIALIZE removes all SPECIALs
from the OBLIST. This is obviously a less efficient alternative
to declaring all of one®s SPECIAL varlables UNSPECIAL at the end
of the file. If arg = 2, INITIALIZE removes all =EXFR, #FEXPR,
#*LEXPR, and MACRO properties from the OBLIST, except for those
- ®*EXPR flags used by the compiler. If arg = 3, INITIALIZE takes
both of the actions described above under args 1 and 2. Thus
INITIALIZE can be used to obtain a clean environment for
compi ling the next file, without the necessity of reloading the
compi ler. When using COMFILE with m > 2, INITIALIZ(E)ation 1=
accomplished through the setting of the *INITIAL switch,
described below.

(b} Global variables = switches:

Some of the user-accessible global varlables in the
compi ler are switches which may be set {(e.g. via DECLARE) to T
or NIL, or to an Integer, as the case may be. To indicate which

global variables are switches, * is used as the first character
of their names.,

I. =*INITIAL: As mentioned above, when using COMFILE with
n » £, INITIALIZE may be called between each palr of files
inputted for compilation by simply setting #INITIAL
appropriately, *INITIAL is the argument to INITIALIZE, and the
actions caused by setting #«INITIAL te 1,2, or 3 were described

above. The default setting is 0, In which case INITIALIZE Is
not cal led.

LISCOM page 9

2, *3YMBOLS: Setting =5YMBOLS to T causes (SYMBOLS T)
followed by & tag to be inserted into the LAP-code immediately
after the (LAP funname type) pseudo-instruction for each
function then compiled. The tag is useful in cases where two
function names begin with the same & characters, since these
cannot be differentiated within the ODT symbol table. For an
explanation of (5YMBOLS T=or=-HIL) see A.I. Memo 190, p. I-5, The
default setting of &5YMBOLS is NIL.

d. #=GRIND: Any S-expression (including MACRO=-definitions)
in the source file that is not a function definition is output
“as is” (as described below) into the target flle. (Even
DECLAREs are output, so that If the user wishes to Investigate
his LAP code, he can easlly check ocut the compiling environment
as to SPECIALs, UNSPECIALs, etc.) #GRIND gives the user control
over the manner in which both the random S-expressions mentioned
above and the LAP-code Is output, as follows:

#GRIND ¢ (the default setting): everything is

formatted (“ground”).
1: only the LAP-code is ground.
&3 only the random S-expressions are ground.
3t nothing is ground,
Furthermore, if *ERIHD = or 1, the compller outputs a form=-
feed after every 56 lines (or so - if =GRIMD = T1)}: if =GRIND = ¢
or 3, the compiler outputs a form-feed after the LAP-code for
each compiled function. Whereas formatting makes for much more
aesthetic and readable output, it is time-consuming and the user
may prefer not to grind ocut e.g. his LAP=code.

4. *REDEF: When set to T, #REDEF tells the user about
functions which are defined more than ocnee In the source flles.
This may be useful when compiling more than one source file with
one loading of the compiler, with the intention of assembling
these files into one file or system. Users who Intend te
compi le the same flle more than once with one compller leoading,
e.g. to take advantage of the compiler”s declaring as SPECIAL
undeclared free varlables, should not have *REDEF set to T on
the first go-round. The default setting of *REDEF is NIL.

5, *CLOSED, #ARITH, #MUZZLED: These switches have to do
with fast-arithmetic complling, and hence, are not yet of
interest. It should be pointed out, though, that setting «CLOSED
toe T, which in fact is its current default setting, causes the

compiler not to attempt to do any fast-arithmetic compiling,
which is now the intention.

LISCOM page 10

6. *DEBUG: As the compiler is loguaclous In its error and
warnlng messages (see section (d) 1, below), several LISP users
have used the compller for debugging purposes - seeking out
typing errors, etc. For this reason, a special faster debugging
mode, which is entered by setting #«DEBUG to T, has been added to
the compiler, In which no LAP code is generated, no cutput flle
iz opened, and Iin fact, the compiler does not go through its
second pass at all. The [Tsts UNDFUMES and NEWSPECVARS (see
below) are still maintained. The only warning message which is
not issued is that for undefined GO tags (see belowl). One may
use COMFILE In the manner described above. (For n »= 2, the
target file should be WIL)., The default setting of =DEBUG Is

WIL.

LISCOM page 17

{c) Global vquabies - other:

1. UNDFUNS: Upon completing the complilation for each call
to COMFILE, the compiler prints out the elements of the list
UNDFUNS, These are the names of user functions which though
called within the source file(s), were not defined there. The
functions appear in UNDFUNS in the order of their first call.
The user can ask for this list to be printed again (or for the
first time in the case of COMPILE) by evallling UHDFUNS,

f. MNEWSFECWARS: MEWSPECVWARS is a list of all those
variables seen since the last call to COMFILE or COMFPILE which
appeared free In some function but were not declared SPECIAL.
These variables are made SPECIAL by the compiler. To have this
list printed out, the user may eval MEWSPECVARS.

3. GENLIST: Evalling (GEWPREFIX atom) as discussed above,
say atom = BAR, sets GENLIST to the list (B A R)., Thus, the
same result can be had by setting GENLIST accordingly, except
that GEMPREFIX also resets TAGCNT to 0. The default setting of
GENLIST is (G).

4. TAGCNT: Tags generated by the compller are cbtained by
(MAKNAM (APPEND GENLIST
(EXPLODE (SETQ TAGCHT (ADDI TAGCHNT))))).
Upon loading in the compiler, TAGCNT Is set to 0. The user may
sat TAGCHT to some positive Integer 1f he wishes.

5. FUNNAME: FUNNAME 1s set by COMFILE and COMPILE to the
name of the current function being complled, or to the last such
function if the compiler has just completed compiling a
function. Thus, if an error occurs while compiling, evalling
FUMNAME enables the user to determine the name of the function
being compiled.

(d) Hotes on compiling:

1. Errors which cause the compiler to stop, fall Into
three general categories: (1) breaks: which are generally
caused by compiler errors, () data-errors: which the compller
believes to be caused by errors within the user®s function
definitions, and (3) errors in data or due to the compiler which
the compller does not check for, but which eventually lead to
LISP errors. We will address ourselves here only to the first
two categories in the hope that those of the third category will
rarely If ever occcur.

In the case of (1) or (%), the compliler enters a read=oval-
print loop which Is useful in debugging the compller or In
investigating further the existing state of affalrs. To exit

LISCOM page 17

from this loop, the user usually types |G or 1Z; of course, with
the Intention of notifying the author in case of a compiler
error. The user may also wish to type $P_ or $X_ (% = {alt.
mode?, _ = <space?) to proceed., In the case of (1) compiler
errors, in which case the compiler prints out #BREAK#® fol lowed
by the error message, typing either $P_ or $X_ will cause the
compi ler to recommence compiling with the next function in the
file. (In this case only, the compiler may have output some
spurious LAP-code.,} In the case of (Z) data-errors, the
compiler prints out either *NREDATAERR* or #RDATAERR%* followed by
the error message. In the case of *NRDATAERR#% or “non-
recoverable data error”, typing $P_ or $X_ again causes the
compi ler to go on to the next function. In the case of
RDATAERR or “recoverable data error”, typing $P_ causes the
compi ler to continue compiling the same function, perhaps after
making some reasonable adjustment If necessary; while typing $X
again causes the compiler to go on to the next function. The
intention is to give the user the option of continuing with the
same function with the possibility that the compiler will
discover more data-errors therein; or indeed, the compiler may
correct the error, as described below, The user may in any
event decide to recompile the function Jor the file later on. ht
present, there are only four cases of “recoverable date-errors”

(1) The compiler encounters an FEXPR or LEXPR definition,
having previously compiled the function as an EXPR. Typling $P_
will cause the compiler to continue compiling, taking the
function to have F-tvpe or L-type, respectively, from now on.

(Z) The user has a MACRO-definition with the same name as a
compi ler function. The user will lose only In the situation
described above (i.e. the MACRD is called within other (or the
same) MACRO-definitions.) If this is not the case, the user may
type $P_ , and the compiler will continue, making certain that a
conflict will not occur.

(3) The user calls a system function with the wrong number of
arguments, The user may type 5P_ , causing the compiler to
continue as follows: IFf he called the function with too few
arguments, the compller appends HILs for each of the remaining
arguments. If he called the function with too many arguments,
the compi ler makes no change in the case of closed-compl led
functions. The more commonly used open-compi led functions pull
off only as many arguments as they need. Later, the user may
wish to edit the LAP-code for this function or recompile it.

{4) A RETURN is used not in the context of a PROG. Typing $P_
will cause the compller to strip off the RETURN, I.e. convert
(RETURN arg) to arg, and continue.

Other possible errors in user code may simply cause the
compiler to print out a warning message and go on. This does
not mean that these situations are not really errors. For
example, the compller may complain that it has encountered a
free variable which has not been declared, which it then makes

LISCOM page 13

SPECIAL. If this wariable has been used bound in previous
functions and the user Intends for these occcurrences to mean the
same variable, then a miscompilation has occurred. Warning
messages are also given in case of unused PROG or LAMEDA
variables - bound variables which are not declared SPECIAL and
which are not evaluated within that PROG or LAMBDA: undefined GO
tags, in which case the compiler simply outputs a JR3T (jump) to
the end of the LAP-code for the PROG; etc. These may all
signify errors,

. There are two circumstances which cause the compiler to
complle code out of context, i.e. to extract LISP code from a
function definition and to compile it as a generated function:

(1) Lambda funargs: any occurrence of
(FUNCTION (LAMBDA . . .))
in code causes the LAMBDA expression to be complled as a
separate function.
{(2) Any call to ERRSET of the form
(ERRSET argl argl)
or
(ERRSET argl)
in which argl is neither an atom nor a list of a single atom
(i.e. a function call with no arguments) causes arg! to be
compi led as a separate function of the form
(LAMBDA MIL argl).
The latter clrcumstance as a cause for compllation out of
context will probably be eliminated In the near future,

Clearly, any variables which appear free In these LAMBDA
expressions (perhaps as & result of thelr being compiled out of
context) must be declared SPECIAL.

3. Any variables appearing In arguments to F-type
functions which are to be evaluated (e.g. the latter arguments
to ARRAY) must be declared SPECIAL. Unfortunately, here the
compi ler does ne checking for the user. Hence, the user will
lose if he does not heed this warning. Alsc, the user must
remember to declare as SPECIAL any free variables appearing in
functional position, or the compiler will take them to be
undefined functions and compile them as SUERs.

4., In his LISP code to be compiled, the user may redefine
a LISP system function as a MACRO but not as an EXPR or FEXPR.
If the user wishes the latter, e.g. to redefime SUBST wvia an
EXPR, he may do the following instead:
(DEFUN SUBST MACRD (X) (CONS “SUBSTI (CDR X)))
(DEFUN SUBSTI EXPR . .) .
(The atom “EXPR” of course Is unnecessary.)

LISCOM page 14

II1I. Formatting

There are two functions available in the compiler for
formatting: FORMFILE, analogous to COMFILE, for formatting a
file and FORMAT, analogous to COMPILE, for formatting function
definitions. Except for their obviously different purpose, the
syntax and semantics for these functions is simllar to that for
COMFILE and COMPILE., respectively, except that (1) at present,
FORMFILE has no n = @ mode; (£€) when n = 1, the assumption is
that the user when evalling (FORMFILE (fnl fnf)) wishes to
clobber the source file, l.e. wishes to give the target file the
same name as the source file.

Please notify the author in case of compliler bugs or if vou
have other comments to make,

