MASSACHUSETTS INMSTITUTE OF TECHNOLOGY
A. I. LAB

Artificial Intelligence August 1987

Technical Memo Hﬂ*_l Issued Hovember 1870
(Memo Mo, 211)

EQUIVALENCE PROELEME IN A
MODEL OF COMPUTATION

Michaael Stewart Paterson

Work reported herein was reprinted by the Artificial
Intelligence Laboratory, an M,I.T. research program
sponsored by the Advanced Research Projects Agency of
the Department of Defense under QOffice of Haval Research
contract number NO00l4=70-A-0352=-0002.

Reproduction of this document, in whole or in part, is
permitted for any purpose of the United States Government.

EQUIVALENCE FROBLEMS IN A

MODEL OF COMPUTATION.

Michael Stewart Paterson.

August 1967, Trinity College.

A digsertation submitted for the degree
of Doctor of Philosophy of the University of

Cambridge.

FREFACE.

1 am most grateful to my supervisor Dr. D.M. Fark

for his constant encouragement and assistance,

I should like to thank the Science Researca Council
and Trinity College, Cambridge, for grants to support this
regearch., In this second typing I have been fortunate to have
the tvping services of the secretaries at the Artificial

Intelligence Laboratory.

Hovember, 1970

(11)

CONTENTS .

INTRODUICTION

PART I.

DEFINITIONS AND ELEMENWTARY RESULTS.

§1 MHotation and prereguiszsites.

§2 '"Program schemara' and some basie results,

2.1
2.2
2.3
2.4
§3 Some
3.1

3.2

PART IIL.

Definitions.

Justification of definitioms.
svntactic characterizations.
"Bessonable' relatioms anmd rule=-books.
simple equivalence problems.

Loop=free schemata.

Schemata which always converge.

URSOLVABLE PROBLEMS.

§4& Two—tape and two-headed automata.

4.1
§,.2
&.3
4.4

§ 5 Unsolvability of problems of program schemata.

3.1

5.2

5.3

Two-tape automata.
Two-headed automata.
Recursive tapes.

Translaticn to binary automata.

Simulation and first results.

Decision problems for equilvalences.

'Adeguate' rule-books.

(111}

1z
13
20
23
il
36
37
42

50
51
a2
56
62
68
Fi |
72
B0

BB

CONTENTE continued.

FART TIL. SOLVABLE PROBLEMS

i Schemata with non-intersecting loopa and
monadic functionm symbols,
6.1 Preliminaries.
6.2 P-representation.
6.3 Decision procedure.

§7 Free, liberal and progressive aschemata.
7:1 Freelipng liberal schemata.
7.2 Progressive schemata.
7.3 Full schemats.
7.4 Decision procedure for progressive schemata.
7.3 Congervative schemata.

SIRMMARY .

References.

{iv)

95

98

99
103
111
118
118
129

13l

138
145

147

151

INTRODUCTION .

A central problem in the mathematical theory of
computers and computation is to find a suitable framework
for expressing the execution of & computer program by a
computer. Within the frasework we want to be able to
provide answers to such questions as:

(1) Does & certalm program perform & certaim task?

(2) Are two programs equivalent, i.e., do they
perform the same task?

{3} Under what conditions, if at all, will
a program fall to halt?

(4} How can a given program be simplified,

in some sense, or made more efficient?
These kinds of guestions are customarily answered by
experienced intuition, for simple programs, supplemented
by trial and, cften, error for more complicated ones. We
should like to replace such methods by a formalizable
procedure, capable of belng carried cut by & computer
program. Unfortunately, under most definitioms, =1l the
above questioms are provably umsolvable. The proof
might procesed by saying that if we could answer any of
these questions, we could certainly establish of 2 given
program whether or not it ever hslts. Then, if our

programming language is sufficiently powerful to carry ocut

real computations, we should be able to reduce the
halting problem for Turing machines, or some such
unsolvable decision problem, to the halting problem for
certein programs in our language.

In default of & complete procedure, 1t may,
nevertheless, be worthwhile to look for warlous technigues
by which to prowve, say, that two programs are equivalent.
J. McCarthy [9,10] introduces = formalism using conditional
expressions, in which new functions are produced from old
funetions by & recursive definition process. A computer
program in his formalism, given in the form of & flow
diagram, in which the flow of calculation is controlled
by conditional expressions, can be converted to a series
of function definitions. Various techniques are presented
whereby such recurgive functions, and hence programs, may
be proved equivalent.

Cooper [1] generalizes certain of these equivalence
ing certain conditicns and relations. These techniques
seem to be applicable enly te pregrams of a relatively
simple nature and furthermore, for any actual programming
language and computer, the intrinsic relations between
the operaticns expressible in the language are cften
complicated. Even apparently simple relaticns may have

to be gualified by exceptions and adjustments corresponding

to the idicsyncrasies of the language and computer. As

a fairly trivial example, algebraically:
2
(akl) (z=1) = " =1

but the corresponding results of the two "routines':

¥ o= X-1

¥ 1= ¥+l and o= EwX
X = E=1

o= Xxy

as calculated by a computer will rarely be the same, and
if ¥ initislly haes & walue close to wunlty the first
expression is likely to give the more precise result.
We canmot in gemeral allow two such routines to be
treated as eguivalent,

Cooper stresses the need to be able to prove
'shallow results about larpe preograms', by which he
means results which depend only on rudimentary properties
of the language and the sisple relations between the
b;aic functions; for example, we might consider the
purely praph=-theoretic transformations which can be made
on the flow-diagram of a program.

Iu. Ianov [6], whose work is reported also by
Rutledge [15], accomplishes this by considering the
'logical schemes' representing the sequential and control

propertles of programs which remain when almost all the

information about the nature of the basic operatioms is
disregarded. He is able to obtain a complete decision
procedure for the equivalence of schemes, but sacrifices
a great deal of the essential structure of programs,
leaving, in effect, little more than finite automata.
The work described here iz an investigation
inte & model of computation which is, in a sense, an
extension of Ianov's model. We regard our 'computer'
gz having storage divided up into a finlte number of
dizcrete "locations”, with each of which is assoclated a
value from some fixed, uwswally infinite, domainm. A

Evpical computation statement or instructiom:
L2 1= F{LZ’LS}

has the effect of assigning & new wvalue to the location
LE’ which depends im some fixed but unspecific way on
the previous values of L2 and L3 and the symbol F. The
only other kind of statement performs some test, similarly
unspecified, on the value of 2 location (without changing
this value), and decides, on the basis of this test,
which statement is to be executed next.

We are free to regard a statement as a
'"machine=code' order for some computer, as &n sssigmment
or conditionmal jump statement im gome autocode ar

ALGOL-1ike lanpuage, as a sub-routine of a program (in

which case a location may be a whole block of storage
or scme more general data structure), oF even as some
gtep in a process quite uncennected with digital comput-
ation. We shall usually adopt the terminology and motiva-
tion of the second of these.

A program, made up from such statements, is called
8 'program schema', because as yet the function
and test symbols which appear have ne corresponding
gemantic content, that is te say, no arithmetical or
logical functions are asscciated with them. An
'interpretation' of the language is an assigmment of
appropriate functions to these symbels and of initial
values to the locations, An interpreted program schema
ig then, in effect, & cemputer program which could be
executed on some idealized computer. We can define two
program schemata to be 'equivalent' if, under all
1nter§rttatinns, the two programs produce identical
regults. Of course certain imterpretations will be
quite unsuitable in &8 computational context, and we
can introduce various restrictions on the kind of
interpretation, considering perhaps recursive interpreta-
tions, or interpretstions over finite domains of values.

We ghould point out st this stage some of the

shertcomings of our formalism, which arise from the

wholesale removal of explicitly defined functions and

our consequent inability to express the self-modification
of computer programs. We have no way of representing the
recursive use of sub-routines or the indirect addressing
of storage registers, and we must treat any vector or
matrix as a single location rather than as an array of
distinct elements. An extension of our language to
include some such features would certainly be desirable,
but thig is beyound the scope of this dissertation.

The model of computation which program schemata
provide, allows uws te study the characteristic properties
of, at least, some kind of computational process without
the interference, and dominance, of the arithmetical and
logical properties of the basic operations involved. We
envisage a practical procedure for the autematic simplifi-
cation of computer programs, which would consist of
abstracting the corresponding schemata, applying te these
seme schemata-simplifying techniques which would be quite
independent of the computer or langusge concerned, and
finally translating back into the original language. In
finding simplification algorithms for schemata, however,

we have very soon to face the problems of deciding when

twe schemata are equivalent,

PART I. DEFINITIONS AND ELEMENTARY RESULTS.

§l. NOTATION AND PREREQUISITES.

We shall assume the familiarity of the reader with
some of the elementary results of mathematical logic
relating to computability and solwabilicy, which appear,
for example, in Davis [2] or Hermes [4]. We assume
known a formal definition of algorithm or effective

procedure. A decision problem enquires as te the truth

or falsity of each of a whole class of statements, and

such a problem is (recursively) unselvable if there is

ne algoriths which supplies all the answers. For
solvable decigion problems, we will refrain from giving
formal algorithms for the solutions and rely on intuition
to wverify that the informal procedures we describe could
be replaced by such. We say that a decisieon problem is

partially selvable if there is an effective enumeration

of the true statements in the class, or equivalently,
if there is an slgorithm which, when presented with a
statement of the class which i8 true, comes to the
correct decision, but otherwise fails te terminate.
We often wigh to use results from the theory of
Turing machines, The notation we adopt iz close to
that of Davis [2]. We give here ocur main definitions

and state the theorems we shall reguire.

Definitions.

A Turing machine M, is a (Z2m x 4)-matrix, {(m > 0},

of the form: - ™

Gp-l 1 bag g Gpp g

™ O bopey Gapagt

ey 1 blm om'

e =

where ql"**’qm are diatinet Iintegerzs and:
qi' £ {ql,...,qm] for i = 1,...,2m.

The q, are states and 9y is the initisl state of M.
Each bi is one of { 0,1,L,E,H }. We shall sometimes
denote 0,1 by Bos8y Tespectively.

A configuration &, ('instantaneous descriptiom' im

[2]) is a string of symbols of the form:
Pqiajﬂc
where P,{ are (possibly empty) strings of 0's and 1's,

j=0or l, and £ i5 a special swmbol.

o is an initial configuration if { = 1, and a is a

terminal configuration if 1:qi Ij Hgq " 4is a row of M,
for some q.

The consecutive configuration to o is:

(i) ﬂPqiajﬂﬂE if o is terminal {especial note !)
(11) GPankﬂﬂE if ' 9 Ej . "is & row of M,
(141) ﬂPaquq{bE if g, 8, R g '"'is a row of M,
(iv) DﬂqrakanUE if ! 9y aj L 9 ''is a row of M
and P = Ra,,
(iv)"! qrﬂajquu if ! a4 aj L 9. 'is a row of M

and P is oull,
A gomputation C, is a sequence of consecutive configurations
starting from an initial configuration. The D:h

—_—

configuration of € is the initial configuration and the

n+1th

is the consecutive configuration to the nth, for n > 0.
C halts if there iz a terminal configuration in C, and
diverges otherwise.

C halts on O if C halts and there is a terminal configu-
ration of the form:

Fqi £

and similarly for " C halts om 1 '.

10

Consider the computation © corresponding to

machine M and initial configuration:

ll....lqlDE

g —
which may be described as ' starting M onn '". We shall
say that:

C[Myn] = 0 4f C halts on O,

= 1 if C halts on 1,

and C[M,n] diverges otherwise.
The symbol 0 will be thought of as a "blank' symbol, anﬁ
the configuration:

qlﬂE
will be described as ' starting on a blank tape .

We now state, without proof, the few theorems
which we shall require. Each is readily derivable from
well-known results which sppear as main theorems in any
standard work on the theory of Turimg machines. (Davis [2],

Hermes [&4].)
Theorem A. The decision problem of whether C[M,0]
diverges for arbitrary M, is recursively unsclvable,

and is not indeed ewven partially sclwvable.

[Hermes, p. 144]

11

Let Hl‘HI"' be an effective enumeration of the

get of 2ll Turing machines,

Theorem B, There is a Turing machine U, with the
property that, for all n:

either C[U,n] = E[Hr,n]

or C[U,n] and E[Hn,n] both diverge.
[From Hermes, E30]

We will call such a U a universal Turing machime.

Theorem C. mere 45 a Turing machine U, such that it

is recursively unsclvable whether or net, C[U,n] diverges
for arbitrary n.

[From Theorem B and Hermes, p.l&4]

Theeres D. Given any recursive functiom £, there is
a Turing machine M, such that, for all n = 0,
c[M,n] = 1 4if £(n) = 0O
=0 of £f(n} F O

[Hermes, Sectiom 16]

12

g 2. 'FROCRAM SCHEMATA' AND SOME BASIC RESULTS.

§ 2.0 In this section, we give the defimitioms of

"program schemata' and "interpretation', of '(stromg)
equivalence’ and several other relations between schemata,
and justify our choice of some of these. We slso consider
alterpative formulations of thege relations which do not
involve the concept of an 'interpretation'. We introduce
the idea of a 'reasonable' relation between schemata,
which i= any relation intermediate to strong and weak
equivalence, and finally, we formalize as a 'rule-book',
the kind of slporithm which we would expect to be useful
in gimplifying schemats. These two concepts are due to

.M. Park.

13

2.1 Definitions.

———

The formal langusge we will use contains the following

gymboles:
(i} integers, .
(i1} Fi, F%, Fi,...,Fi,F§,+.. {operator or
function svmbols),
(111} Tl,TE,.dd,Tk (transfer or test svymbols),
(1v) Ll’LE""’Hl (location symbols),
(v} = (the assignment symbol),

{wdi) brackets, commas, and other amxiliary svmbols.
The mumber of symbols in the language is finite, but
we shall not usuvally be concerned with the precise

number .

The statements (or instructions) of the language

are of two Cypes:

(1} Operator instructions, {or computatiom

instructions.)
t
e Lj u Fu([-klsm--l-l:-]*ktj
and {2} Transfer instructions, (or tests.)

a. Tu{Lj} b,o

where a,b,c,j,kl,...,kn,t,u are integers. In bath

cageda, a8 is the Erefix or sddreas of the instruction.

In (1}, L, i=s the assigmment location and L, ,..., Lk
i kl t

are the retrieval locations. In (2), b and c are
the left- and right- transfer addresses respectively.

A program schema is a finite sequence of

instructions together with three integers, the initisl

address which is the prefix of some ingtruction, and
the left- and right- terminal addresses which are not
prefixes and are distinct, such that:

(1) the prefix of each instruction is its

position in the sequence,

{ii} each transfer address is either the prefix
of some instruction or eélse a terminal
address,

(111} either the last instruction in the sequence

iz & transfer instruction or else its prefix

iz one less than a terminal address.

We define s gegquence ¥, through a schema ag a (finite

or infinite) sequence of integers satisfving the
th

following conditicns (where #(i) denctes the i~ element

of =}
(1} ={1) is the initial address of the schems,

(2} 4f n{i} is the prefix of an operator
ipstruction then:

14

13

mi+l) = #(i) + 1

(3) 4if w(i} is the prefix of a transfer instruction
with transfer addresses b,c, them :

r{i+l) is either b or o

(4) 4if w{i) is a termimal address, it is the last

element of m.

The value of a finite sequence through & schema is
defined to be O or 1 zccording sas the finel element
of it is the left- or right-terminal address. The
value of an infinite seguence is undefined.

I1f the cperator symbols and transfer symbols
of a schema are interpreted as standing for particular
functions and characteristic functions over a suitable
domain, then the schema can be regarded as a computer
program which could be executed by some idealized
computer. A computation starts at the inmitial instructiom
of the schema with & specified initisl value from the
domain, asscciated with each location symbol. An
operator instruction assigns 8 new value to the
assignment location and the succeeding instruction
iz executed next. A transfer instruction leaves the
values of all Fhe locations unchanged but applies its

characteristic function to the current walues of its

lo

location and, accerding to whether the resulting wvalue
is 0 or 1, the instruction with the left- or right-
transfer address respectively, as prefix is executed
next.

More formally, an Interpretation I, is a mapping

from the location, operator and tranafer symbols into a
get O, and the szet of functions and characteristic
functions on I, such that:

{1} to each L, iz asgipned some element I[Li} e b,

1
(ii) to each F: is assigned some n—adic functien
1(1‘2) : 0™ + p,

(1ii) to each T is assigned some characteristic

function I{Tu} : D=+ {0,1}.

The execution sequence Ty and computation sequence #I{“I}'
corresponding to & given Interpretatien I, are defined

as follews, where ﬁl{wl}{i}{j} ig the jth element of thiz:
(1) ﬂI{l} is the initial address,
() Elfﬂll (1) = EI(LIJ,ii.,I(Lh)?

(3} if n (i) is the prefix of the instruction:

t
L := F(L ,...,L)
v u kl th

17

then:

mp(i+) = n (1) + 1
() (3#1) (1) = Al n) (1) (5) 4f § 4 v, and
ApC) (541 (0) =1 (A0 r) (1) (R, oy A0 o) (D) (k)]
(4) 1f n (i} is the prefix of the test:
Tu{L?} b;c

then:

m (i+l) = b if LT A (n }{d)(v)] = O

“L‘if e L1] -l
and

Ap(m) (141) = A (np)(4).

For any schema P and interpretation I, we define

valiPI as the value of the corresponding execution
sequence 7, if this is defined. In this case we shall

say that P converges under I, and succeeds or fails

when val(P) = 0 or 1 respectively. Otherwise val(P,)
1s undefined, and P diverges under I.

Definitien. Two program schemata P,0 are (strongly)
equivalent, P = Q, 1f, for all interpretations I,
either val(P_) = val(Q,)

or both P and § diverge under I.

18

This is & very strimgemt relation, but we shall
also study various weaker relations, which are all
obtained by restricting the range of the gquantification
in the above definition. For convenience, the more
important of these relations sre defined here. It will
be ¢lear that the domain D of any interpretation may
be taken teo be countable and, without loss of generalicy,
we may take for D either the set of natural numbers or
the set of finite strings over a finite alphabet. A
recursive interpretation over I is eone for which all
the functions assigned to gymbols of the schemata are
recursive functions over D. A finite interpretation
is one which can be defined over a domain of finite

cardinal,

Defipitions. Two program schemata P,Q are recursively

{respectively finitely) equivalent, P Er 0,

{regpectively P Zf §) 1if, for =ll recursive
[respectively finite) interpretations I,
either val(PI} = val{QI]
or both P end § diverge under I.

Two program schemata P,Q are weaklv equivalent, P = Q,

if, for =21l interpretations I,

val(PI} = val{QI} when both are defined.

19

B

Note: = is not an equivalence relation, since any two
schemata are both weakly eguivalent to a schema which
diverges under all interpretations.

The apparently weaker relations such as

weak finite equivalence, (F =f), obtained by

restricting the last definition to finlte Interpretations,

turn out te be the same as weak equivalence. For example,

Lemma. P =f Q => P ={

Proof, Suppose there is some interpretatiom I, for

which both Pl and QI converge, but PI succeeds and

qI fails, then there is clearly some finite interpretation

I', for which PI'

succeeds and Ql, fails. !
Thus we hawve the three implicaticns expressed by:
FEQ =rPz2r(Q =+ PEf{ => P =
and we will show later [Theorem 5.1] that none of these

implications can be reversed.

£2.2 Justification of definitions.

At this point it seems appropriate to explain
our choice of definitions for eguivalence ete. We
have chosen to ignore the final values associated with
the locations and to record only the final address.

We regard a schema more as a (partially defined)
predicate than sz a functiocn of Eransformation. We

can show, however, that our definitions are not really
any less general, by demonstrating how other definitions
and formalisms could be 'simulated' by our schemata.

For example, suppose we select some subset
R={ Lr ,...,Lr } of the locations, and call two

1 =
schemata B-equivalent, if, under all interpretations,

the schemata either both diverge, or both converge with
matching final wvalues associated with each location of
E. [This definition, with R being the set of all the

locations is used by Luckham and Park (7)]. Given any

test=symbol T, and new function symbols Fr ""*Fr .
1 b

we may append at amy terminal address of such a schems

F, the sequence of imstructions: (wiz. p.28 for notatiom),

Lrl:=Fr {Lr }

20

21

te produce the schema F' say. It is clear that, for
all P,0:

P BE=equivalent to J<=> P' =z '
and that similar results hald for recursive, finite
and weak egquivalences,

Instead of allowing a schema to halt, we may
have 1t produce 'output' during the course of its
computation, An 'output instruction' could be of the
form:

OUTFUT := Lj

vhich leaves Lj unchanged, but records its current

value as the next im & sequence, or 'output tape'. Two
schemata would be putput-equivalent if, under a1l
interpretations, the corresponding output tapes chey
produce are identical. For the simulation, we introduce
a new location N and a new function symbol H, and
replace each output instruction of the above form by:

N o:= B{(L,,H)

T(H) e “+1

0
Again, two schemata are output-equivalent if and only 1if
thelr transformations are eguivalent,

Gimilarly, suppose we allow "input instructions'

in our formal language, such as:

L, i= INPFUT

with the effect that Lj takes on the next walue from

a fixed sequence of values, or 'input tape'. This may
be simulated by introducing a new location W' and a new
function symbol F', and replacing each instruction of

the above form by:

L, = Fr{N")

M oi= F'(N')

go that the input tape is provided by:

f(x), £0£(x)), £CECECxDDD, ...
where f = I(F") and x = I(N'). By other constructions,
many other, apparently new, features (such as statements
of the form: 'I.i = Lj‘} may be simulated.

Jur definitions have their advantages im the
ease of presentation of results and proofs, and ia their
glmplicity. We mote particularly that only two kinds
of instruction are required. (For some purposes wWe even
reduce this oumber!)} The chief dissdventage is that,
given two equivalent schematz, it iz not usually an
equivalence-preserving operation to replace one by

the other as 2 sub-schema of a larger schema. However

where we are copcerned more with decision problems

22

than simplification slgorithms, this consideration is

of less importance.

§2.3 Syntactic characterizations.

Row we establish an alternative, more syntactie,
definition of equivalence, which is due te D. Luckham,
who proved essentially this result in [BEN Memorandum,
October 1962 (unpublished)]. To this end we define,
for any schema F and any sequence ¥ through P, the
free computation sequence, A(7), which is a sequence of
m~tuples of strings of symbols, where m is the aumber
of locations used in the schema. A(n) iz defined

inductively hy:

(1) Afm)(1) = < L,,...,L =

(2} 4if w{i) is the prefix of the instructiom:

t
L = F (L ,...,L_ 1)
v u Wy L

then:
A{nd (1) (3} = Alnd (i) (j) for j #F v,
and:

t
Al (i+1)(w) = F X X ...X
LB 'H'l 'H'E 'lii':_

where KH iz the string h(nj{i]{ws].
s

23

24

{3) 4if n{i) 1s a transfer instruction then:
Aln) (141} = Aln) (1)
For any sequence m and any transfer symbol T ,
u

we define two sets of strings lh{“) and !Ih} as

follows:
Consider the set of 211 1 such that = (i} is
the prefix of an instruction of the form,
T (L)) b,e
and b # ¢, then,
Alp)ii{v) ¢ thftj if n{i+l) = b,
E]h(Ij if n{i+l) = ¢ .

(F) (@) (R}

§1 S |

Definiticn. A set of sequences ¥

through schemata P,Q,R,... are consistent if, for all

ttansfer symbols Tu’ the sets:
Lo @) v

and E“(HI:P}:I L Eu{'IT{m] L

are disjoimnt.

Thecrem 2.1 For any two schemata, P = § 1if and only

if, for mll pairs of sequences “EP} and “{Q} through
(F) ()

P and 0§ respectively, 1f = and 7 are conpslstent

then the values of “(P} and “{Q} are egual or are

25

both undefined.

Proof. Suppose that F = @ and that 1 ¢’ and 5 &) 2F€
congistent. Let I+ be the interpretation ever the

o
domain I’ of strings of function and location symbols,
defined by:

(1) I+{Li} =L, for each L,

+
(1) 1 {Fz}{xl,....xt} - F:xl...x: (i.e. the

gtring obtalned by concatenating the symbol

Fz and the strings xl,...,xt} for each FE,
1) 17 =0 1f x ax(rHus (@)

=] atherwise.

(F) (F) Q) _ “{Q}, where

Clearly Tr+ =73 and mo+

ﬂf+{R} is the execution sequence in R corresponding to

I+. for B = F,}). Therefore the valueg of W{P} and 1[Q}
are equal or are both undefined.

Conversely, suppose that ﬂﬁq and val(PI) f'val{qI}

for gome I say. Any interpretation I, defines a natursl
%

mapping I from the symbol strings which cccur in free

computation sequences into the domain of I, by:

*
(1) T (L)) = I(1,)
hoot t * *
(11) T (F Ej...E) = T(F [T (E;),..., T (E)]

where El,...,Et are strings.

26

Clearly, for any execution sequence Tt

L
T (aln) (1) (5)) = A (xp) (1) (1) for all 1, .
Go for each transfer symbol Tu, and all strings E,
*
E ol (v;) 9 TTIHII(E)] =0
and similarly for B and 1. Since this holds for both

I{P} and HI{Q}

m s they must be consistent, but we know

that they do not have the same value. _

Corollary. A sequence is consistent if and only if it

iz the execution sequence of some interpretatiom.

An interpretation which has the form of I+ in the abowve

proof is called a free interpretation.

It is natural now to attempt to find "syntactic’
definitions for the cother relaticons defined above. To
obtain analoguous results to Theorem 2.1, we must impose
some further cemdition apart from consistency, on the
pairs of seguences I(PJ, “{Qj considered. For weak
equivalence the way iz obvicus and we state without
proof:

Theorem 2.2 F = § 1if and only if, for all pairs of
finite sequences ‘{PJ and 11';:|:i!:I which are consistent,

(F) Q)

the wvalueg of ¥ and 1 are egual.

27

Definitions. A sequence 7 through a schema is ultimately
periodic if there exist integers h>0, k > 0, such that,
for 811 n > h, w(n) = n{ntk) if these are defined.

Hete: any finite sequence is ultimately periodic.

A sequence through a schema P ois recursive, if =,
regarded as a function from the integers into the set

of addresses of P is recursive,

Theorem 2.3 For any schema P and interpretation I,

(B}

(i) 4f I isg finite then “I

iz ultimately
pericdic,

(i1) 4if I is recursive then “I{P} is recursive.

Froof. (1) Denote the (m+l)-vector,
<1, %W, a0, %W -

by a(i). Since the nmumber of addresses

of P and the domain of I sre both finite,
there are only a finite number of distinct
values for a{i). Furthermore it iz easy to
verify that if o(i) = w(j), then

a(itn) = a(j+m) for all n > 0, so that a

iz wltimatelv periodic.

(i1) The definitiom of n iz clearly recursive

in the functions of I. Hence if these are

recursive, so is Mpe ;

28

Unfortunately, and perhaps surprisinglv, the
implications in Theorem 2,3 do not hold in reverse, and
the problems of finding syntactic characterizatioms of
the execution sequences of finite and recursive inter-
pretations remain ocpen. An example of a recursive
execution sequence which cannot correspond o any
recursive interpretation will be produced im §5.1, but

a simple example for the other case can be given here.
Schema Etl
= F{H1}

t= HOM M)

r.i
e
n

O, M)

o
-
B

FOL)

=
k|

FOL)

M, 1= F{Hz)

T{Ll] a "+l

1]-

TELE} 2, 8

Infermal netation.

In the interests of clarity, we employ certain
conventions and contractions when we give examples of
schezata. Unless otherwise specified, the first imstructiom
isg the initlsl inmstruction, and the terminzl addresses are

galwavs dencted by 20 and e, respectively. Frefixez are

1

in general cmitted except where transfers are involved,

29

in which case the prefix is uwswally denoted by a small

' "+1 ' wherever it occurs as

letter. The expression
a transfer address denctes the prefix of the following
instruction in the schema, The effect of a transfer
instruction of the form:

Tu{L1} a, a

is independent of w and 1 and will be called an
unconditional transfer. Where it is convenient to awvoid
the arbitrary cheoice of u and i we introduce the
statement:
goto a

as an abbreviation for such a transfer instruction.
HMipor points Lo note are that subscripts and superscripts
are often dropped, where this cannot lead to any confusion,
and & variety of different capital letters are used as
symbols.

As we examine the schema 51, we ohserve that
there is only one infinite segquence through it. Let I
be some finite interpretation with this as its execution
sequénce and we write:

fﬂa for IEHl}

L
and 91 for I(F)[f a], n > O.

AL successive points in the computation sequence which

a0

correspond to the address a of the schema, the

guccessive walues associated with the locations M, and

1
.'FII Are:
fﬂa fla
fla fja
fla fsa
fza f?a

Since I iz finite, not all these values are distinct,

&0 suppose:

g+T

577, = £°a for some r,a > 0

Therefore:

£5, = f5+rﬂ - fE|+2ra 25+t+lEI

= R - f

for some t » 0. Hence, putting u = s+t:

£ = f2u+la
TWhen locations L1 and L2 are tested for the Eu*l}th time,
their associated wvalues are:
by = L) [£ a,f"a] and b, = 10H) [£%, 575 1a]

To continue for ancther leoop requires the conditions:
I(T) [hl] =1 and I(T)[By] =0

but since bl = bz, we have a contradiction, Hence 51

has the affirmed property.

3l

2,4 'Reasonable' relations and rule-books.

The relation of (stromg) equivalence is a matural
one and the strongest among the sort of relations we are
congldering., Weak 'equivalence' is rather less natural,
but it seems to be the weakest relation of interest,
gince it 15 difficult to reject, on any perfectly general
grounds, anv interpretation for which both the relevant
schemata converge, of more precisely, to reject any
consistent pair of finite execution sequences. Finite
and recursive eguivalence are again more naturally
motivated, because we consider, for ths former, just
those interpretations which are thearetically realizable
by & finilte sutomaton (such a5 & digital computer with
a8 limited amount of storage), and for the latter, just
those which could be realized by a Turing machine (or
a digital computer with unrestricted storage space).
HMany other relations, which fall between strong and weak
equivalence, could be of interest, and it is conwvenient
to be able to prove, at one stroke, theorems sbout =211
such relations.

Definition. A relatien ~ on program schemata iz reasonable,
if, fgr all P_0O;

(1) 4f P~ Q thea P = Q

L1

{ii) 4if P = Q@ them P "

3z

Weak equivalence is an intrapsitive reasonable relation.

The relation '{ y defined by:
P40 if val{PI} = val{QI} whenever val{PIj is defined

is an example of an asymmetric reasonable relatiom.
Finite and recursive egquivalences are, of course, reasonable

equivalence relations.

We may expect any practical algoricthm for
improving the efficiencey of computer programs to include
& set of tules which may be applied locally, to some
part of the program, to produce some improvement or
rearrangement. We will give a few illustrations of such
rules applied te schemata. In each case It is easy to
see that the transformation results in am equivalent
schema.

(I). FPermutatiom of computation instructions.

I..1 tm F{LI} L

— ’

L3 = G{LEJ Ll

] G{LE}
L F{LE}

(IT}. Deletion of 'wvacuous' instructions.

L, = F{LEJ

L, = G(L,)

_— Ly = GlL,)

(II1).

(IV).

, T

().

Substitution and deletion.

L:: = I"I_'LI} \ 'Lj j= F(Llil
i

L3 = F{Ll} L2 1. c{le

L, i= G{LEJ

Removal of redundant tests.

Bemoval of repeated tests.

e e e & R
» .__.“:b_w,l
S Ly i= F[L:l'
(L) -:-....

13

(VI}. 'Unwinding' loops {(or the reverse.)

(VII}. 'Tightening' of loops.

|
]

Ly == {}fl:}l
_'1::':9 F'[J.':}Il
A P _;-.
Tiky]

33

As we will see in retrespect, it iz inappropriate
to consider such transformations im more detail at
present, If » is anv relatiom between schemata, a
% =rule iz & recursive procedure, which, when applied to
a schema P, produces if anvthing & schema 0 such that
P%0, We are only interested in % =-rules when ~ is
a reasonable and transicive relation, for then we can
apply a segquence of such rules and produce at each stage,
a schema which % =related to the original schems.

The transfcrmations giwven above are all simple Z-rules,
but we can have werv much more complicated rules such
ag the (possibly non-terminating) construction of E(F)

deseribed in §3.2. A rule-book for ~ is a finite set

of " =rules; and we will want to see to what extent a
rule=book can serve to produce & "simplest' schema

“u —related to a given schema. Firstly though we show
how a "direct' decision procedure and simplification

alporithm can be obtained for & special class of schemata.

36

£3. SOME SIMPLE EQUIVALENCE PROBLEMS.

83.0 Marill [B] has considered some of the problems

of simplification and storage minimization for schemata
with input and output statements but with no transfer
instructions. We now give a complete decision procedure
for the equivalence of schemata of & more general type,
schemate without loops, and =show that this can be extended
to cover any schematas which always halt. We chserve
that, for such schemata, strong and weak equivalence, and
hence all reasonable relations, are the same, so the
decision problem for any reasonable relatiom is solvable.
It will be evident that a 'canonical form' fer schemata
without loops can be obtained and we deo not pursue this
further. The secticn ends with an unsolved problem

presented by a certain simple schema.

7

1.1 Loop-free schemata.

A loop-free schema is one for which no segquence
can contain the same address twice, For these schemata,
the equivalence problem is, in a sense, finice, and
fairly easily solwable, so we will give only a sketch
of the soluticn together with an illustrative example.

Since all sequences through & loop=free schema F,
are bhounded by the size of P, there sre only a finite
number which go Erom the ipitial instruction to the
left=terminal address Eﬂ‘ For amy such sequence w, we

"determine the finlte sets Eh{n} and lﬁ{ﬂ} y for all
test symbols Tu. Any 7 then, correspomds to a conjunction
of conditions, each of which may be expressed in the form:
TuI{Ej] -

where Ej iz a string of symbols and ¢dis 0 or 1. The
condition (om the interpretatiom) that PI succeeds is
a disjunceion nf such conjunctions, with one conjuncticom
corresponding to each successful sequence. If we write
just:

Tu(Ej} for Tu(Ejj = 0
and ‘*Tu{Ej} for Tu(E I} =1

3
then the disjumction, let us call it prop(P) , appears

38

as a sentence of the propositional calewlws with the

‘TH{EJ}' as atomic feormulae,

Gince all the functions are independent, any
assignment of truth-values to the atomic formulae i= the
assignment cerresponding to some interpretationm, and P
succeeds under this interpretation if and only if the
value of prop(P), after substituting in these truth=-
values, is "true'. Given two such sentences, prop(F)
and prop(Q);

prop(P} <=> prop(Q)

ig a theorem of the propositional caleulus, Lf and only

if they take the same truth-valuve for zll such assignments.
Hence:

Theorem 3.1 The equivalence problem for loop-free

schemata is solvable.

For am exsmple of the application af the solution
dezscribed, we consider the schema 32_ glven below, whose

flow=disgrem is given in & self-explanatory form in fig. 1.

Schema 52;

El' Ll

1.3 i E{LE}

i= F(L,L,)

T{Ll} 33* a2

Ay T{Lj} A0 g
aye Ly 3= F(L},L,)
T{L3} B0 By

dy Ly &= G(L,)
T{Lz} 24 8
ac. L3 1= F(LI’LH}
T{Lﬂ} ers 8y
g+ Ly = G(L)

By L3 a= F(LI,LEJ

T{La} e

ot %1

The sequences Erom &l ta Eﬂ are gpecified by:
Py 37 Bpe@gBadnty
Py 37 Bpa858..0,0,

Py I= BpadgaBoad 80,8,

fig. 1.

4

FlL.Li)
G{LI}

Ls:
La:

40

41

Let E1 = FLll.2 N E2 - GLI* and 53 = FFLlLEGLE'

prnp{EE} is then (the notes to the right of the schema

may bo of assistance):
T(E;) 7 T(Eg) "~ TiE,) ° TIE,)
Mo AT(E)) © T(Ey) ° T(E,) * T(E,)
Mo aTE) " STE,)) " 4T(E) ~ T(E,)
which simplifies to;

T{E,) = T(E,)
5, is therefore equivalent to the schema 53 given as:

Ly = F(L),L,)

1
L, := G{LE}

T{LE} +1, e

L1 1= F{Ll,LE}

T{Llj Eqs &y

The flow=-diagras of 54 is shown in fig. 2.

42

£3.2 Schemate which alwavs converge.

Let € be the class of schematz which converge
under all interpretations. We shall pgive an effective
method of constructing, from any schema in €, a finite
loop—free schema which is egquivalent te it. This
golves the eéquivalence problems for &, since we solved
the general problem for loop-free schemata in 3.1

Any schema may be regarded as a directed graph,
ite flow-diagram, in a natural way. To each computation
instruction there corresponds a node of the flow-disgram
with one branch leaving it, and to each transfer
instruction, & node with twoe branches leaving. Given
any flow-diagram P, we define the 1lift of P, L{F), which
is a tree with a copy of the initial node of F as the

roeot, and for every mode Hﬂ in P with successor(s) Hl

(and K,), every copy of By in L(P) has copies of N, (and

1
HE} as successor(s) in the same way. Unless P is
loop=free, L(P) is infinite. We illustraste the constructicn
of L{F)} by an exasmple, (figures 3 and 4

below}. Part of the (infinite) 1lift of a schema 5, is

shown end dotted lines Indicate where parts are emitted.

In these figures, and in the remaining figures of this

section, we sbbreviate:

43

! i

Li:e F(L Ly

% T
¢

Li= FlLD

:

by

We can 'prune' away parts of the tree L(P),
replacing cenditienal tramsfers by unconditicnal transfers
wherever certain branches are inaccessible from the
root wnder anvy interpretation, leaving an egquivalent
flow=diagram. Im fig. 4. such branches are crossed by
double lines, as for instance the first time that

location L. 1s tested, the walue associated with it is

1

one that has previously been tested in LE and found to
have test=-value 0, so0 that the crossed branch can never

be selected. The sub-tree of L{P) remaining when =11

such excisions are made, we call the execution tree of P

E{P). For the schema ﬁﬁ the execution tree happens to

be finice and is presented in fig. 5.

fig. 3. Flow-diagram of P.

La

L= F{L.:I

Lz

L.

fig.

4,

Pare of L{P).

el

1

Laix FL)

TlLs)

L

/L:.

L

Ls

=0

L

| Lot= FiLy)
T(L)
L: e,
La
L
Le
L
/w{ -
e
Lyi® Ff_[_..:l

N

=

L5

The construction of E(F) for a general schema F,
is described now in more detail. Given the 1lift of F,
we mark the initial node. The construction is then
carried ocut in steps until, maybe, no furcher step is
possible. At any step, we select amy unmarked node N,
whoge predecessor is marked. If N is a computation
node or a terminal nede, we immediately mark it and the
step i5 complete. If K is a test node, we examine the
{unigue, finite) path from the initial node to M and
determine what expression (of the free computatiom
sequence) is being tested at N, We further determine
whether that expressiom has been calculated and tested

by the same test function at any previcus node cn that

46

path, If not, N is marked; if so, then by the constuction

it will have been tested just once and we can anticipate

the result this time. We replace M by a marked 'empty'

node and delete the inaccessible succeeding node and

its following sub-tree. The step is then complete,
Suppose the construction does nmot terminate, then

the execution tree¢ comteins infinitely many nodes which

are accessible from the initiel node, b_ say. One or

o
octher of the successors of bﬂ' say hl, must alsc have zan

infinite number of nodes accessible from it. Similarly

S ome bz, a successor of bl' and some hj, a successor of

ai

b and so on, sach have an infinite number of nodes

L
accessible from them, Therefore there is an infinite
path bﬂ’hl’bz’h3’*** in the execution tree. (This
is an application of the well-known Infinity Lemma of
graph theory.) By the constructiom, any path in this
tree iz comsistent and so, by the corollary to Theorem
2,1, is an exXecution sequence of FP. Therefore, if F
belongs to &; the construction of E(F)} must alwavs
terminate. In this case, there is an &Efectiu;, finite,
procedure which produces the execution tree corresponding
to P, and it Is then easv to produce from this, & schema
in conventional form, by ignoring espty nodes and
introducing unconditional transfers where necessary.
E(F} is equivalent to P and loop-free, and we have a
decision preocedure for the equivalence of such schemata,
{Theorem 3.1). Hence:
Theorem 3.2 The equivalence problem for schemata
which converge under all interpretations is solwable.

We conclude this section by demonstrating that,
even in apparently simple cases, it is not always a
trivial matter to determine whether or not a given
gchema iz in the class & The following schema always
converges, but has an execution sequen:é of length 147.

(see fig. B)

v

L= Flrm)
pi= F {4-3

T

- ‘1

49

The schema in fig. 7. seems likely 'om general grounds'

to be in €, but execution sequences of lengths greater

than 600 have been found. I have been unable to settle

this matter, which is left as an exercise for the reader.

30

PART II. UNSOLVABLE PROBLEMS.

Luckhem and Park [7] first proved the
unsolvability of the equivalence problem for program
gchemats and pointed out that this precluded the poss{i-
bility of there being any 'completely adequate’
simplifying transfeormatien. Their preoof was rather less
direct than that presented here and imwvolved the use of
many locations. R, Floyd [unpublished communication] also
has reacently preduced an elegant "indirect' proof of the
abowe result.

We prove somewhat stronger results about cther
reagonable relations and for schemata satisfving wvarious
conditions. Our Gnsnlvahili:y results are proved for
schemata with only two locatlons and in Part 111 we shall
gee that this number is the best possible.

In the next section we apparently digress to

congider & variety of finite automata,

al

B5, TWI-TAPE AKD TWO~HEADED AUTOMATA

§4.0 Our unsolvability proofs for schemata depend on

a class of schemats which csn be regarded as 'simulating'
two-headed finite automsta, (The reader will hawe
already had a taste of this simulation in following

the execution of the schemats given in £3.) Although

we could preceed independently of such anslogues, it
seems more natural and gives uws greater versatilicy

of exposition to derive our main theorems inicially in
this guise. Besides, scme of our results teke on an
extra interest in their 'machine' form.

Bosenberg [14] has independently obtained
several interesting results on multi-headed automata,
including what is essentially our Theorem 4.2, The
questions considered by Elgot and Rutledge [3] are related
but do not seem to be directly applicable in the context
of schemata.

In this section we esteblish the basie theorems
on the correspondence with Turing machines and prepare
for the similation of two-hesded automata by program
schemats. Theorem 4.4 could perhaps be endewed with

some philosophical significance.

52

54,1 Two-tape sutomata

Rabin and Scott in [13] investigated two-tape,
cne-way finite sutomata. Such a two—tape automaton M,
iz a finite automaton equipped with twe scanning-heads
each of which reads its owm input tape, one symbol at a
time, With each internal state of M (except the terminal
state or states) 1s associated an integer speclfying the
tape from which the next symbol is to be read, and a
transition function giving, for each tape-symbol read,
the next state of M to be entered. One state of M is
designated as the initfal state, The readey iz referred
to [13] for definitions given in more detail.

Our treatment differs in that we dispense with
special 'end-markers' on the tapes and consider the
behaviour of automata presented with pairs of infinite
tapes.

For any automaton M and terminal state g, we
define TEJH} as the set of pairs of (finite) sequences

—_—
of input symbols, which take M from the initial state to
the state 5. Dften the sutomaton M, will have just two
terminal states, denoted by & and r, then, it is convenient
‘to say that M accepts those pairs of tapes with initisl

segments in ?EFH), and rejects those with initial segments

in TIEHJ. M will diverge on the sef TD[H) ef those pairs

of tapes for which M never enters a terminal state.

53

We shall present particular automata by specify-
ing all or part of the transition function either im a
table or illustrated in a flow=diagram. In the latter
the imitial state is indicated by an arrow which does not
originate at any of the nodes, and the number in parentheses
at a node indicates which tape iz to be read for the next

gymbol. For example:

|

el(1) T/ : =],3{1}

!u i

Y (2) o

i o

§) — i r

i

v
@

fig. 1. Flow-diagram of Hl;

It may be verified that:

T,) = L 1%, 1™ >

mz0 1

T) = €< 17, 1% 5, <o, 10 -,

< 1%, 1™% 5| mw0)

- " L] - 1
TyiHy) {1 ,1=1

54

We now describe the construction of an important

class of two—-tape automata.

Lemma 1. Giwven any Turing machine U, there iz a two-tape
automaton HU' with terminal states m, a and ¥, such
that, if c is & configuration of U, and ¢' is the

succeeding configuration (see 1),
< g, 2" g ?E[Hu} if ¢ is not terminal,
< g, e' > e ?E{Hﬁ} if e 1s terminal,

and if the second sequence does not start with e¢', the

pair is rejected.

Proof. We outline the operation of HU' Given &
configuration under Head 1, it checks that the tape

under Head 2 iz idemtical, except for an extrs 0 symbol
at the left end of the (Turing machine) tape, until

gome state symbol of T iz encountered on either tepe.

Hﬁ then verifies that the difference between the con=
figurations is compatible with the rules of U, and
finally checks that the remainders of the configurations
are identical up until the final terminating symbol £,
except again for an additional 0 on the second tape. The

transition table for HU ig given in fig. Z. Where a

33

fig.2 Transition table for a 2-tape automaton HU’ to

check successive cenfigurations of a Turing machine U.

state head symbol new state
Iaj:- _] 2 Ej [T -]
9y [&j.qi]
E- -I -'] l Ej [ajl -]
qi [q.i!- -]
E [£ ‘]
lx.qrx] 1 qy [xq,.q_x]

Eqii -I 1 HJ_ [qiaj!-]
[qiaj,-] 2 2 [qiaj.aj]

[xq;.q =] 1 2, lay, -] if 'qga;Lag ' isdn U
[qi:j,aj] 2 Uy [=, =] if ! 1y 8y Roa_ ' is in U,
[qiaj,qr] 2 i, [=5 =] if ! 9y 8y 8 q, ''is in U,
aj [-, -]* if ! 4y aj Hqg "1ig in U, 1 = r,
I] _]* 1 &j [Hj! -]*
[. Notes,
€ £ 1. The initial state is
- - =]%
[Bj- * 2 aj [= =] [aﬂ' -] (where 2 =0y,
[e, =]* 2 g, [e, O]* 2, Transitions net given
[e, 0]% 2 . A are transicions to I,
’ —
[e, =]- 2 a [e, 0] 3. The gquantification 'faor
Q
[£, O] 2 E n all 4,4,r ' is supposed

for each entry here.

tranglition is not given, a transition to the terminal
state r 1s to be assumed. The names of the states are
supposed to have mnemonic walue, and the proof that Hﬁ

has the required properties is by inspection. _ f

B4 .2 Two—headed automata.

A Ewo-headed (one-tape) automaton is identical
with & two-tape automaton except that the two scanning
heads are regarded as reading independently the same
input tape. Alternatively, we can regard it as a
two—tape automaton which is always presented with
identical pairs of tapes. For any two-tape automaton M
with terminal states a and r, the corresponding
two—headed automaton M' is sald to accept (respectively

reject, diverge on) those tapes t such that:

€t t, *E ?E(H) (respectively TE{H}. TDEHJ)]
for some initlal segments tl,:z af E.

Given a number of ftwo-tape (similarly two<headed)
automata HI,HE,-ii, we can construct & new asutomaton M,

by replacing terminal states of the M

1 where they occur

36

in transition tables, by either new terminal states or
the initial states of some H.‘l‘ The inicial state of
one of the Hi is designated as the initial state of M.

For example, if:

| o

e’ (1)
b denctes j/ \
l/ \ 2a 2
g gy
and ™, iz the automaten of fig. 1., then:

i=]
)

o' (2)
denotes
e |2 / \\
Kispt)
H{I'}# ﬁ H?""-i- r
M, e, 2
¥ (2)
] %iTh
T 1 i
ELE. 3. F W

58

This automaton F, could of course be simplified by
taking ¢ &s the initial state and deleting the state a'.
F, regarded 88 & two-headed autoematon, cean only diverge
on the tape:

0101101110111101111301111110.

The behaviocur of F on such &2 tape iz that, whilst Head 1
is scanming each sequence of 1's, Head 2 is scanning the
succeeding sequence and, unless this contalns precisely

one more 1, the state r is reached.

Theorem 4.1 There iz a two-headed automaton F, which
diverges on scme tape but rejects any ultimately pericdic

tape.

A consideration of the modus operandil of F serves
as an introduction to Lemma 2. OGiven any Turing machine
U, and initisl configuratiom o (= C(0}), let C{1l), C(Z),

C{3);.... be the sequence of successive configurations.

Lemma 2. There is a two=headed automaton Hu,c which
accepts just those tapes with an initial segment of the
form:

c{0) cf{1) c{2} c(3) Cin) C{n+l)}
where Cin)} is & terminal configuratiom of U (and the

first in the seguence). If machine U doss not terminate

59

wien started from configuration e, then HU o camnot
¥

accept any tape, but diverges onm the tape:
C{0} C{1) C{2) C(3)

Otherwise M, . never diverges.
¥

Proof. It is a simple matter to construct, for any
cenfiguration ¢, an automaton which reads only from
Head 2, and accepts enly the sequence c, rejecting

anything else. We denote this by:

Mc
v
7N

We cembine this with the autematon HU described above,

to produce H, o in the fellowing way:

e e

Gl

Because of the cperation of Hc, any tape which dees not
comnence with C(0) is rejected. Head 1 then scans this
C(0) while Head ? resds the next part of the tape. The
properties of HU ensure that if this next part is not
C({1), the tape is rejected. After this stape, Head 1

iz at the start of C(1) and Head 2 iz againm Teady to

gcan the next part of the tape. While Head 1 iz scanning
any conflguration, Head 2 scans the subsequent part to
check that it represents the succeeding configuration,
These operations continue until a check fails or until

a terminal configuration is read by Head 1. __ f

Therrem 4.2 For any Turing machine U, there is an
effective comstruction aof a two-headed avtcmaton EU
with the following propercies:

(i) 4if U halts when started on a blank tape,
there is nmo tape on which Au can diverge but it can
accept some tape,

(ii) If U diverges when started on & blank tape,
EU can diverge but cannot asccept any tape,

{iiil ﬁu cennot diverge on any ultimately

periodic cape.

Propf. If c' = qIGE, then AU iz the auvtomaton HU.:"

whese copstructlon is clearly effective from U, and

61

which, by Lemma 2, satisfies (i) and (ii). Property (iii)
ig satisfied because Au can only diverge on a tape which
represents & sequence of successive configurations.
On such tapes however, the end-of-configuration svmbel e,
occurs only at steadily increasing intervals, and so no
such tape can be ultimately periodic. __I

With the help of Theorem A, we immediately derive:
Theorem 4.3 For two-headed automata A, the properties:

{1} A accepts no tape, [TE(A) =@],

(11} A diverges on scme tape, [T (4) # @],
are not partially solwvable, even when restricted to

automata which converge on all ultimately periodic tapes,

We remark that the negations of these predicates are both
partially solvable. This iz obvious for:
Tz!‘ﬂ
For the other, the mathod of proof 1s wery gimilar to
that waed for the corresponding result sbout program
schematsa. There iz a procéedure which generates, for
any A, & tree whose nodes are states of A, such that

any sequence of states describing &n initial portiom of

the behavior of A on so=e tape, corresponds to scme

62

path in the tree starting from the root, and vice wersa.
There are at most finitely many cutgeoing branches at

each node, so that, 1f A never diverges and all the paths
in this tree are finite, the infinity lemma assures us
that there sre only a finite aumber of nodes in the tresa.
In this case the generating procedure terminates, and

so provides, in general, a partial decision procedure

for the property:

T, = g

i4.3 Eecursive tapes.

The next four lemmata prepare the way for an
even stronger theorem, im which we replace 'ultimately
pericdic' sbove by 'recursive'. A tape is recursive 1if
tﬁa_ﬂaquenﬂa of symbols is given by & recursive functiomn
from the positive integers to some finite alphabet.

Let n denote & sequence of n 1's followed by a 0.
Lemma 3. There is a two-tape automaton N which, for
arbitrary n > 0, when presented with a sequence:

ap-l...10

under Head 1, will accept only the sequence:

83

m2otl ., 3210

under Head 2, rejecting all others.

Froof. N is illustrated. Any transitiom not shown is te I.

!

nﬁiiﬁ;&ﬁ{ﬂ
4 N
C(2) F[*]—“—@ﬁh}-"—k@{E'J-G—-}Lf1}L}g
o]
E{i’}""—._—i—_:» g(z) fig. 4. N.

Let U be some fixed, universal Turing machine,
(Theorem B,51). We dencte by ' Cnﬂ ", the initisl
configuration of U started on n, and by ' C, '+ the

configuration resulting after m steps of the computation,

Lemma 4. There is a two-tape automaton EU' which, given
the sequence n under Head 1, can accept either of the

sequences:

nll nl LB

where a,b are new symbols, and rejects any other,

a 0B Orf ac

Fropf. The construction of Cﬂ is easy. _ [

)

Lemma 3. There is a two-tape automaton Hﬁ, which, piven
che sequence:
Enmé for arbitrary n,m * 0, and & = 0 or 1

under Head 1, can accept the sequence:

ﬂn{m-l}ﬁ
under Head 2, just when C“m is mon=terminal, or when
Cnm represents a halt on the symbol 4 (= 0,1), and

rejects anvthing else.

Frogf. It is a simple matter to modify the automaton M
of Lemma 1, so that the terminal state a, corresponding
to a terminal comfiguratiom, is replaced by two states,
£ and B which are reached according te whether the
configuration under Head 1 represents a halt on a 0 or

& 1 respectively. If this new automaton is HU', then

Hﬁ is given by:

65

Lemna 6. I U is a undversal Turing machine, as
descrited in Theorem B, there i1s no recursive funection £,

such that:

D =rfin) = 0
1 =fin) = 1

c[U,n]

and c[U,n]
Proof. Suppose such an f iz recursive, then, by Theorem D,
there isanﬂﬂlﬁn&ﬂ,a.tﬂsa;.rr{=m, themthin‘:h&
enumeration, such that:
G[Mm,n] = 1 if f(n) =0
and ot ,n] = 0 if £fln) # 0

Then:
fim) = 0 = C[Hm,:m] =1
= Cc[Ulm] =1
= f(m) =]
and: fim) # 0 = GDﬂn,m] =
= CcUm] =0
= rim) =0
These contradietiors prove the lemms. ./
This result is of course well-lmown, but prowved here for
convenience,
Conslder now the two-headed automaton R, whose [low-dlagram

is glven below (with transitions to r suppressed).

&6
sl n{f}i*:-llgm-t—":-‘z'{l) -ﬂ—':- S(2) —EJ:- El1) =

AN

Ciz) c
PP

w

u N

e} t‘}

fig.6. Flow=dliagram of R.

E rejects any tape not of the form:

bl0atCy,é b 2 1 0 8 €5 ssus

which is more comveniently displayed es:
b 1 0

alﬁmalbglg

|=

a Cy & a C 4, b 3 2 1
aClEﬁlaCElﬁEaEBDﬁEbﬂ_iglg

3.513-51:14:22&2&0 &

A

\m&r’& ﬁiiﬂ'ﬂrlfﬂl‘i'l,z,“-
Furthermors, HE iz designed to ensure that R can only
diverge on such a tape 1 the sequence:

By sbaafigaes

= |+

e

a7

iz puch that the function [, defined by:

f(n) = . farn=1,2,3,...
satisfies the conditions deseribed in Lemme 6. Suppose that
R diverges on some tape defined by & recursive functicon, g say.
The sequence of §'s is recursive in g, to be preclse:

fln) = §, = &l 2;"3{n3+5n2+~5nzl)

Therefore f is recursive, which contradicts Lemma &.

Henos:

Theorem 4.4 There is a two-headed automaton R, which
rejects any r*e-cursiyre tape, but can diverge on some (non-

recursive) tape.

For any Turing machine M, we can modify B so that tapes it
does not reject have the form of the triargular reprezentation above,
except that at the beginmings of successlve rowe there appear
the succeszelve configurations corresponding to M started on blark
tape. This new automaton checks thaet the tepe has this form,
but accepts the tape if & termingl confipmration of M is ever
reached. - Again, 1t carmot diverge on ey recursive tape, so

we have:

Theoram 4.5 For ary Twing machine U, there is an
effective construction of a two-headed putomaton HU"
guch that:

(1} 4if U halts from a blank tape, there is no
tape on which P'IJ can diverge, but it can accept scme tape,
(11} 1f U dlverges from blank tape, R, camot

accapt any tape, but can diverge,
(i11) F‘U cannot diverge on ary recursive tape.

8.4 Translation to binary automata.

Tre theorems of this sectlon hawe been proved
for automata with large (but finlte) alphabets, but it
is more comverdent to set up & correspondence between
program schemata and binary automata, that 1= automata

over an alphsbet {0,11.

Theorem 4.6 Thecrems 4.1 to 8.5 are walid even if the
automata are restricted to belng bilnary.

Froof. Let us rewrite the dphabet, (8,b,e,1,0,...10,
we have been using as:

E = {53’51’52""’Eh}

]

ard let p be the map rom sequences ol 3 Lo Seqguences

ari {9,1}, which 1= obtained by replacing:

24 by
54 by
54 by

L}

-

eteo.

0
10

110

For any automaton & over 5, let p'(A) be the binary sutomaton

cotained by introducing, for each state q,

the new states ql;qg,...,qh, and by replecing each

line of the table giving the transition function of A:

next state
state|i-[ea|:1 Sy 8y B+« - By
q | i Ty Ty Ta o - T
88y, by the new lines:
next state
gtate| Head [O 1
g 1 Ta 511
1 2
4 i roq
=1 h
q 3 Thoy
h
q 1 T &

uwhere we recall that r is the reject state,

It 1= easy

7o

to verify that the automaton A will accept, reject,
or diverge on, any tape t, precisely a= the automaton
p'(A) accepts, rejects, or diverges on, the tape p(t),
respectively. Also, for any binary tape t', not of the
form p(t) for any t,
{1} if some p'(A) accepts t', then it also
accepts some tape plt),
(11) no p'(A) diverpsson t'.
Fer any tape t owver 5,
(1) t 1z witimately periodic if and anly if
plt) is ultimately pericdie,
(2}t 1s recursive if and only if p(t) is
recursive,

We can therefore 'translate' sach of the thecrems in this section.

s

T1

§5. UNSOLVABILITY OF FROBLEMS OF FROGRAM SCHEMATA.

§5.0 The first Two lesmmata show that the two-headed
automata of the last section can be 'simulated' by
schemata, and provide an effective 'translation' procedure.
We prove that recursive equivalence is properdy

weaker than strong equivalence and also that recursive
interpretations are not characterized by thelr recursive
execution sequences. Theorems 5.5 and 5.6 answer all
the solvability questions of the kind we are consldering.
Flnally we strengthen one of these results to show that,
urder certain very acceptable hypotheses, there can be
no ' adequate’ rule-book of simplifying transformations.

T2

§5.1 Simulation and first results.

We have only to show that any two-headed binary
automaton can be 'simulated®, in a suitahle sense, by
some program schema, o be able Lo apply the theorems
of §4. Suppose that our formal language contains at
lepst one test-gymbol T, and at least one function symbol.
We ean assume, without loss of gernerality, that there is
some monedic Dunction symbol F, since otherwisze we could
take gy Dunetion symbel and use 1t as a2 monadie function
by always using 1t with all of its arouments identicsl.
We reguire that the language contalns at least two
location symbols, L1 and Ly. For any interpretation I,
of the language, let:

xg = LRI I(L;)]
and X4 =IHFx,] foralln:0

We define the tape of I, Eys 85 the sequence:
El_.,EE,EE_.. .« « Where _ (T X,] for r=l
For any (infinite) binary tape s, there 1s clearly an

interpretation I, such that s = E1

T3

Lemma 1. (1) A tape s, is ultimately perdiodle if and only
1f there 1s a finite interpretation I such that s = £1+
{11i) A tape s, is recursive if and only if there
iz a recursive interpretation I, such that = = Gy
Proof. The sufficlency is immediate in each case. As
for the necessities, in (1), suppcse that:
g = 5-1,53, .
and for sare h*0, k0, and for all n=0,

bl - °

i+
1=t I be an interpretation over the domain of non-negative
integers less than itk such that:
IRl 1= 0
I{F)[m] = ml 4f m < hk-1

h if m = htk-1

ard I(T) [m]
Clearly s = Exe For (11}, suppose that = iz defined by

-ﬁmfarallmiﬂmedm:ain.

the recursive functicon f; then s is the tape of an Inter-
pretation I, whose domain is the non-negative integers, for
which:

IR 1(L,)]
I(T) [m]

0 and I(F)[m] = ml

f(m). A

T4

Glven a two-headed binary automaton 4, we show
how to construct a program schema P(A), such that the
behaviour of' A started on any tape s, will be paralleled
by the exscution of P{A} under any interpretation I,
for which s = ;. At parallel stasges in the cperatlons
of A and P(A), a3 A reads the n"" syubol §_, of & with
Head 1, P(A) camputes the value %, as defined sbove,
assigns 1t to L, and spplies to it the test function I(T),
thus chtalming the valus -in. In deperibing the schema
P(4), we shall prefix certain of the instructicns with
symbols Qpsdysens corresponding to states of A4, and
then use these symbols as transfer addresses in instructions.
The first irstructions of P(A) are:

L, = F(L})

L, == F(L)
after the execution of which under I, each location
holds the value Ky The next instruction of P(A) 1=
that which is prefixed with the initisl state of A.
For each state q of A, which reads with Head 1 and has
transiticns to states g', ", according to whether the
gymbol read 18 0,1 respectively, we have the two
Irstructions of F(4):

2. Lg = FlL)

L) at,ae"

>

The left- and right-terminal addresses are g and r
respéntivel;..r, which are replaced by &y and e, as usual.
This concludes the deserdption of P(A).

To illustrate this constructlon, suppose A' is

the S5-sztate automaton shown below, with indtilal state Q-

—— e (1) ! - I
Q 0
ae—=©= . q, (1) f._‘—'._l_—_—‘*' g2 (1)
Automaton A'.

The schema P(A') is the following:

L, = P(L,)
Ly &= FCLy)

T'::E:' QD.-. ql

76

Mote: FP{A') can only diverge under an interpretation

whose tape 1s of the form:

0101101110111101111101111114,,.,

It succeeds under an interpretation which brezles this
seguence with an unexpected 0, and falls under interpret-—

gtions which give an extra 1.

Lemma 2. For any binary two-headed autecmaton A, and
binary tape 8= €1 » A gcoepts, rejects, diverges on, 5
according as P(A) succeeds, fails, diverges under

interpretation I.
Proof. Immediate, from the corstruction of P(A). _/

Using Lemmata 1 and 2 and Theorem 4.6, we can
"translate' Thecrems 4.1 ard 4.2 to obtain:

Theorem 5.1 There are program schemsts E.F and E:H
guch that:

(1) z¢

diverges under some Interpretation but
fails under anmy finite interpretaticon.
(11} " diverges under some interpretation but

falls under any recursive interpretation.

With the ald of these results we can settle several

gquestions which were mentioned in 2. We promiszed to

pho

Theorem 5.2 The sequence of relations:

is one of strictly increasing strength.

Definitions, Leb:

Ea dencte the schems ' goto &g !

1 m L L] i]
E‘.l goto g

o L1 1L ik 1 B, Eﬂ‘tﬂ‘ A]

ED glways succeeds, El always falls, and D always diverges.

Prool’ of Theorem 5.2 We note:

(a) E, =D but E;, #f D

() E, =f Z but E Ar I

a - R R

(e} E, =r &' bt E, £ 2= _/

We can medify I to produce a counter-example to the
terpting supposition that any recursive execution sequence
through a schema is the sequence corresponding to some

recursive interpretation. In terms of automata, we remove

the zequence of &'z from the medn fape, and put 1t
inzstead on a second tape. The automaton stlll demands
that this sequence predict on which symbol, if any,
each Turing machine halts, and so can only diverge if
the second tape 1s non=recursive. Howewver the automaton
is designed so that 1t does not take account of a symbol
on thils tape untll after the corresponding Turing machine
has halted. In this way, the sequence of EI;ta.tes wher
the autcmaton diverges remains recursive, In terms of
schemata, we introduce two new locabions]'-11 and HE" &nd
it is the 'tape of I' correspording to the location [~1l
which is the d-sequence. M, iz used as a 'scanning head',
while Ml steye constant. The instructions of Zﬂ concernad
with 'reading the s-sequence' are deleted, and in their
place:

(i) whenever "the symbol b iz read by Head 110
{in autemsta terms) the instruction:

My = F()

is executed, which corresponds to re-setfing the scarming-

head at the beglnndng of the tape, and then the c:-riginai

course of lnstructlions 1s resumed,

(11} in simdlarly hybrid terms, the schema/
automaton M:r , Whozse defimdng diagram was fig.6 (§4.3)

iz replaced by:

T8

3

——tee > Bl4) 0
—) D, wlf) 2P a
@,)

o
where 1{;}{ B translates to ' M, i= F{ME.J

Z TIII'JE}I v, z !

Thus, for any interpretation under which the new automaton
diverges, the value of each '51". has no effect on the
execution sequence util the simulation of the nth
Turing machine computation hes halted, and so the

(undgue) divergent exscution sequence iz just a 'diagonal'
similation of U started on every n in turm, and is
clearly recursive. There are interpretations I, with
this diverpent exscution seguence btut since the tape of

I correspording to locatlon]'-'[l haz to be non=recursive,
by Lemma 1 any such I is non-recursive,

Beczlling the resulte of :2.3, we have:

Theorem 5.3

(I) Any finite interpretation gives rise to an
witimately pericdic execution segquence, but there are
ultimately pericdic execution sequences which do not

8o

correspond to any findte interpretation.

(II) Any recursive interpretatlon glves rise to
a recursive executlon sequence, but there are recursive
execution sequences which do not correspond to any

recursive interpretation.

$5.2 Deeclsion problems for equivalences.

Theorens 4.2 and 4.5 translated intc program
gchemsfa terms, yleld:

Thecren 5,4 There 1s an effectlve aconstruction which

produces, for any Turdng machine U, program schemats
PT_I and].:'U]:1 with the propertise:

(1) If U halts frem a blank initlal tape, there
1s no interpretation under whiéh either ?u or Pur CEn
diverge, but each can succesd under some interpretation.

{ii) If U diverges from & blank tape, relther ecan
succeed under any interpretation, but each can diverge
under some interpretation.

(1ii) P_.Jr converges under all recursive interpret-
atlons, but, in case (i1} above, P‘J can diverge under a |

recursive interpretation.

We shall use the symbcls F,& as variables to
range over the class of program schemata, In a mild

abuze of lanpusge, we shall write, for example:
' P A Q 1= partially solveble !

Lo mearn:

' There 15 a recursive procedure whilch, for all
palrs of schemata FP,Q, when applied to P and Q,
terminates if and only if P 2 Q .

We write, for exarple:
1 P ['ir.]. Q]
as an acbreviatlon for:

"P @ for all relations ~ , satisfying,
(1) == = =

)~ = ="
Thus {_} stands for all reasonsble relations.

Lemma 3. {1} P Zf Q is partlially solvable.
{11} - P # Q@ 4is partially solvable.

Proof. For any finlte interpretation I, and schema P,

gince each locatlon can only take on & findte rumber of

Bl

different values, the computation sequence AI{ﬂI{E‘j:I

must elther terminate or repeat itself. 3o 1t 1s
determinable in a finite rumber of operations whether
val{PIjl is 0,1 or udefined. We showed In 62,1 that

= iz the same a5 =f. The set of Cirdite interpretations
iz effectively ermumerable, and the partizl procedure
for both 2 and £ consists in investigating the
values of PI and QI for each I in turn, terminating

anly when a sultable dleparity is found., _ /

Legma 4. (1) P+ D is true for all P.

(11) ® ('} D 1s partially solvable,

Proof of (11). If P # D, then P converges under

gome Interpretation, and therefore also under some
firdte Iinterpretation. The result follows from

Lemma 3. __/

Lemma 5, F {:f} D is not partlally solvable.,

Froof. Let PU‘ be the schems PUJ:-E' Thecorem 5.4

modified by introducing & "dynamic stop' :

gy gcto gy

at the cld right-terminal address, so that a failure of

'E'U is a divergence of PU'. Then PU" = I Af and only
if U diverges from & blank tape. The lemma follows

from Theorem &4, snd the proof of Lemma 4., /

Lemme 6. (1) P EE1 1z partially solvable.
(11) * {7} E, 1s not partially solvable,
(even when restricted to schemata which

coppverge under all recuraive interpretations.)

Proof, (i) We showed in 53.2 that the equivalence
problem for schemata which comverge under gll
Interpretations 1z solvable, and 1T P = El g 1t is
certainly sueh a2 schema, 50 we Already heve an
appropriate partial procedure,

(11} If U halts from a blank taps, PUP ¥ E,
If U diverges from a blank tape, Py =r E,. The
result follows from Theorem A. S

Er

Iemma 7. P {;. } E, is not partially solwvable.

1

Proof, Let PU” be the schema P,, modified by inserting

an "uneondltional transfer' to et

By EOtO 2y

By

as a new instruction, with prefix the old left-terminal
gldress of B,,, 1.e. by 'counting success as failure'.
Then:

(1) 1f U halts from a blank tape, Pu“ E

l >
(11) 4if U diverges from a blark tape, F" #r E, ,
gince Pl.f" can ddverpge under zome recuraive interpretation.

Theorem A again gives the result., _/

Although the last two lemmata show that, for
gry reasonable relation = , 1T 1t 1= stronger than or
weaker than recursive egulvalsnce, F ~ E.l 1z recursively

unsoclvable, there remains to prove:

lemma H. P {E} E1 is recursively unsolvable, even when
restricted to schemats which corwerge urder all recursive
interpretations.

Proof, (due to D. M. Park) Let U be a undversal Turing
machine., Using the technigues of this section and §4,
we can construct for each m, a schema Prn which converges
under every recursive Interpretation and
(1) 1rcfum] = 0, B can succeed,
(i1) ircfum =1, B, always faile,

aSuppose there 15 a reasonable relaticon ~ , such thet

" P E;L ' 45 solvable, then there 1s A recursive function

f such that:
E[U,m] = [' -;-‘ Pm can succeed
= WPER
— F] El
= fim) =20
and:

o] =1 = P =g
= v B
= f{m) =1
This centradicts Lemma 6, $k.3. _ /

Lerma §. P {7} @ 4s not partially solvable, even if
P,Q are restricted to schemata which corverge under

all recursive interpretations.

. .
Proof, Let PUI' be the schema cbtained frem Purhl.f
Toounting success as failure'’ just as in the proof of
Ilemma 7. Then:

w it

(i} if U halts from a blank taps, Py F Py o

Ll
(44) 4if U diverges, '.:U" = ?U-I.”- \

and both these schemata converge under all recursive

interpretations. _ /S

&5

This result differs sharply from the main result
of §3.2, where we showed that any reasonable relation
has a solvable declslon problem when restricted to
schemata whlch converge under all Interpretaticns.
We surmmardze the results of thls section, (abbreviating

'partially solveble' to 'p.s.').

Thecrem 5.5
= : £ .
A F {;f} D iz ot p.B.; F Ef } Iris p.a.;
F = D is true; F # D is false.
(B) P = E, is p.s.; I 18 rot p.s.;
= 1 Setd oy .E El i |

F ZF E, is p.5.;

:"1“'
F (7} E, 1= not p.s.;
- F # El iz p.s.

=
(B') F {)} E, is recursively unsolvable.
[of course the same results held with Ej in place of E;.J

€y P {3 Q 1s not p.s.; P {?‘} Q 4= rot p.e.;
P Zf Q is p.s.;
F A7 @ is p.s.

in asterdzsk sipnifies that the result is true even il

BE

the relations are restricted to schemata which converge

under a1l recursive interpretations.

Related guestions are settled by:
Theorem 5.6

{(A) Can P diverge under any
(1) interpretation,
(11} recursive interpretation,
(111} finite interpretation ?

{BE} Does P converge undser every
(1) interpretation,
(11} recursive interpretation,

(1ii) finite interpretation?

(A) (1) i= not p.s. (B) (1) i= p.s.
(1) 4is not p.s. (i1} 4= not p.s.
(ii1) i= p.=. (i1i) 1is not p.s.

Proof. The results for (A) (1) and (i1) come from the
proof of Lemma 7, end (1ii) holds becasuse there 18 an
effective method of determiming if a given schema
-:iliv&rges under a gplven findte Interpretation, and
because the set of finite interpretations is countsble.

The result for (B) (1) follows &t once from

a7

BE

there belng an effective procedure which produces,

from any always-convergent schemm, an equivalent schema
without leops. A= for (B)(11) and (iii), consider the
schema PUI", which 1s Fu"“ with a 'dynamic stop' inserted
at the old left-terminal address, so:

e+ Boto g

If U diverges from a blark tape, PHP' carmot diverge
under any recursive interpretatlon, but if U halts,
then there is a finite interpretation under which the
similation of U terminates and Pur'diw:-ges in the
‘dynamle stop'. /S

5.3 'Adeguate' rule=books,

To prepare for ouwr chief result on 'rule-bocks!
for slmplification, we must prove 2 result as broad as
that of Lemma 9, for the case when § is some particularly
simple, fixed, schema, Z say. Nore of Eqs E‘l or D is
a posslible cholee for Z. OfF course 1f we are demanding
that £ be slmple, we carmot hope to prove:

b oL R ¢S

P{

(1.e. with the asterisk) to be not partially aclvable,
because if I does not conmverge umder all recursive
interpretations then (X) 1s always false, and if Z does
then it must surely always converge ard (X) 1s partially
solvable,

Let £ be the followlng schemas:

a, :"l 1= lT'[Ll}
T{Ll} 80 &

“which, for any I, fails unless the tape of I consists
entirely of 1's. For ary Turing machine U, we can

construct 4 schems ZU uhich starts:

L2 = F(Ll:l
Ll o FI[L]_]I

T'[LE,,:I goy *l

1!
L, = F(L,)

T{LE:' 41, &

=1

and succeeds precizely under thoze interpretations with

a tape of the form:

n C(0) n=1 C{1} n=2 r=r C(r) for scme n=> 0

9

Q0

where C{m) denctes the m™" conflguration of U started
on & blank tape, Clr-l) is terminal and r<n. If the
computation of U has not halted after (r=1) steps the
gchema feils. The only interpretations for which ZU

can diverge are those with:
#
I ':F']Ti.l}' =1 forallm

which corresponds o n = = gbove, FProvided n is finite,
& "time=-1imit® will have been set and Ey; MUSt converge
at least by the time this is excesded. If U halts

from a blank tape, then there is an interpretation
which provides a sufficlently large "time-1imit' n, for
Z‘L] to succeed, but for which Z still fails, so:

Z, # E

U

. Altermatively, 10 U dees not half:

7 * 2

since any finite "time-limit' will be exceeded. Thus we
hawe proved:

Theorem 5.7 There is a very simple 2-instruction

schema 7, such that, for amyrreasornable relation v

P = Z is not partlally solvable,

In 52.4 we dizcussed "rule-bocks' for transitive
raasorable relstions, a8 the possible basis of a practicsl
siplification algorithm. Let ~ by some fixed transitive

reasonable relgtion.

Definition. A rule-book B for ~ 1z adequake (with
regpect to some concept of 'simplielty'), if, for all P,
if P oand @ ie "elmpler' than P, then @ iz derivsble

from P by a sequence of rules of B

(H): Hypothesis (sbout "simplicity' amd ~).

If' 2 is the 2-instruction schemg deserdbed above,
then F ~ £ is partially solvable for a1l F which are at

least as 'slmpls' as Z.

Under this hypothesis, which is trivially true if, say,
only finitely many schemata are at least g2 'simple' as

Ly wWe have:
Theorsm 548 There 1z no adequate rule=book for o~ .

Proof. Suppose Eis an adequate rule-book for ~ , then,
for ary P, if £ 1s simpler than P, 2 18 derdvable from
F b:j.f rules of Band sc P 2 is establi=hed by a2
partlal procedure whilch merely ermmerates seguepces of

guch riles, and if 2 1is not simpler, P F is established

a1

G2

by the partial procedure of the hypothesis (H). This

pontradicts Theorem 5.7 and the theorem follows. /S

We describe brielly how we can obiain & similar
result to Theorem 5.7 with P restricted to schemata
whlch converge urder all findite (or recursive) inter—
pretations. We recall the schema ZF of Theorem 5.1,
which could only dlverge for an interpretation with a

tape of the lorm:

EnFrweyy-—1F =N -

By using EF in place of £ as the initial portion of Eu,
we chtain a schema EUF with the following properties:

(1) E.UF porverges under all finite interpretation,

FP__F
v =%

can sucessd Under an

(ii) 4if U diverges, I

F
U

interpretation wihose Tape starts:

{(111) if U halts, Z

012...nC00) p=1C(1l) r=r C(r)

for scme ner=0, and termdnal Clr-1), so:

zT-TFJ‘tr EF

& similiar comstruction produces Z.UF‘R'I:IH Uand B, Thus

We hane

93

Thearem 5.9 There are schemata EF, E.'H, such that, for

21l reasonable relations » ¢
P ooz { P " T respectively)

1s not pertially solvable, even if P iz restricted to
schemata which comverge under all findite (respectively
recursive) interpretations,

There is a T-instruction schema which may be
taken as T , 8o the hypothesis corresponding to (H) is,
in this case, stlll very acceptabls, but in the case of
ZE, the restrictlion seems rather stronger, Of course,
urder these hypotheses, we obtain results corresponding

to Thecrem 5.8,

Just cre more feature of a construction in this
section is worth pointing cut. We define & frivial loop
&5 cne with no exits, e.g.:

a. goto a
and a udtary loop &8 one with Just one exit, =.g.:
a. L :=F(L)
L) a, b
In §3.2 we found a decision procedure for schemata
whi:h.a.lm;}rs corverge, and we could extend this to

schemats which elther converge or enter a trivial .1131::-;:.

We might expect that in any class of schemata with
uneolvable decision problems, some schemata should
diverge in complicated ways, however even for the class
of schemata which conwverge or elee diverge In some
specified unitary loop, the equivalence problem is
unsolvable. Furthermore the unitary loop may be of
the very aimple form of the example in the defindtion.
We merely remark that the schemats Z of this section
have this property. (This result can be strengthensd
glightly to show the unsclvability for schemsta which

diverge in such & unitary lecp or fail.)

95

PART TIIT. SOLVABLE FROBIENMS.

Eince we are motivated by the desire to use
program schemata as & tool in the simplification ard
'proving' of computer programs, the results of the last
section can only be regarded as negative, The remainder
of this dissertation is devoted to the more positive
resulta we have obtained, which hold cut some hope of
providing & basis for practical techniques. From now
chl Wwe restrict ouwrselves to the declsion problem for
(strong) equivalence. In some cases the corresponding
results for other relaticns are readily obteined, bubt
in others there are further difficulties, We describe
results obtalned in two main directions.

A characterdstic feature of the schemata with
uneolvable decision problems that we have been conslder—
ing, is that most expressions which are caloulabed are
recaloulated later on in an executlion seguence, a feature
which would be unusual and undesirable in an actual
computer program. We shall imvestigate various restrictions
which can be impossd on schemata to Inhibit this repstitive
behavicur. Firstly though, we shall examine schemata whose

Flow=diagrams have z partloularly simple strusture.

A typlcal form for the "simulation' schemata we
have been uslng is the following:

{
X

where we neglect transfers to terminal addresses, and

where ¥ 'checks an initial configuration' and ¥ 'checks
that sach eonfigporation follows from the previous onet.
Furthermore, by simulating a universal Turing machine

we ¢&n obtain a class of schemata with unsclvable decisicn
problems by keeping ¥ fixed and varying X. We cbserve

that ¥ iz always loop-fres, =o we do not require arbitrarily
eompli cated loop-structures in an unsolvsble class of
schemata. However, takdng the structure of ¥ into

aceount, the typleal flow—diagram can be put in the form:

T]
T3 5

and we see that the loops in the schemats sre "nested!
to a eonsiderable degree. The schemata we investipgate
in the next sectlon are those with no "nested' loops.
8o far only a declslon procedure for such schemata with
only monadie functlon syrmbols, has been found, I
cuﬁ;l&c!ture that there iz also one for the general case,
but there are cbstacles to extending the present

procedure.

ay

g

§5. SCHEMATA WITH NON=INTERSECTING LOCPS AND

MONADIC FUNCTION SYMBOLS.

;.5;-:1 We express the execution of & findte sequence
of computation instructions as the multiplying of the
vector glving the values of the locatlons by a certain
matrix, and show that ary path, whether finite or
infinite, in a schema with non=intersecting loops can
be campletely specifisd by a vector of integers with a
bounded number of components. The value of a location
after the execution of such & path proves to be
expressible by a '"linear word function' and a formula
of the additive theory of the naturzl numbers with the
coponents of the path=vector as fres varlables. Henes
we find a formula which expresses the eguivalence of
two glven schemata, and a8 the truth of formulse of this
theory is decidable [5], the equivalence problem is

recurslvely sclvable,

6,1 Preliminaries,

We define & as the claess of schemata satisfving
the restrictiona:
(I} No ucuu:-utatiﬂn.mstr'uctinn iz in more than
one loop.
(IT} The programming language contains only
function symbols which take one argument.
we shall assume that there is Just a slngle test symbol T,
but, in dlstinetlon from the above two condltions, this
assumption involves no real loss of generality. For
suppose we had the test funetion T, then we merely
introduce the new location L' ard rew function symbol FY,

&nd replace each:

™({L) b, c
by

L' = FYL)

T(L') b, c

This i= an equivalence=pressrving transformation ard

one which alsoe preserves conditlonz (I) and (II) above.

Let P be g zchema In & We can assume that there
iz some computation instruction in each lcop, Decauss
there are chvicus waye of profucing a schema equivalesnt

to F and having this property if P does not hawve it,

and we select one such as a base-point in each lcop.
1=t their addresses be bl*bg"”'bq’ which are distinet
by cordition (I).

A path is & sequence through a schema which dose not
necessarily start at the Indtial address nor reach a

terminal address,

Lemma 1. If there iz a path from b, to b, (i#]) then

1 J
there 1e not also a path from b, to b,

Proof, Obvious from conditien (I). = /

For any finite path p in P, we define, for each

1=1,...,0, the ith loop-coefficient, Tss to be ore

legs than the mmber of occurrences of h:L in p if

posltive, and zero otherwise. Lemms 1 gssures us that the

ocecurrences of different base-points do not interlace
each other. We now cbtain the reduced path, p', by

cutting ocut, for each posltive loop-coefficient, that
part of p which follows the correspording base-point
up to and including it final ccourrence. The reduced
path cammct contain any loops more than once, and so
the mumber of possible reduced paths in any schema is
firdte. Let us call them Ppa==eab, for P. Any finite
path path p, in P can be specified camletely by the
reduced path p' = g 3 say, ard the loop-coefficients

'1'1}1 - 1"|‘q-

100

101

Suppose the fPunctbion symbols Fl"“Fp ard
loeatlon symbols LJ"“’Lm are in our language. Let
7 be the free semigroup with gererators F,, i=1,..p,
and LI:1JI j=1,..,m ard zero and identity elements. (0, 1)
adjoined 1n the natural way. We use concatenation to

denote the semigroup operation.

Definitions. An (m=)transform i= an (m x m)-matrix
over Z with exactly ong nor=Zero element in each row.
Multiplicaticon of transforme 1= denoted by concatenation

and is defined by:

':"!‘B}rs = ’h‘r-tE'ts. where t 1z the undque integer
such that A 0D

Multiplication is associative and the product of two
transforms 12 a transform, It 1s copvendent to

ghbreviate the Instruction:

L, 7=.FR{LJ}
by s

T3k
M{Tijk}‘ the transform corresponding to the instruction
Ti,jl-::’ 1z defired az 4 where:

Ay = F

A =1 1ifr# 1L

0 octherwlise.

Ars

102

(h
M(T, ..) has the form: Pl 0 Jz
1k B 0 ' |
| 10
itﬂ : .D D LN D D U * *# Fr ¥ & D
| a1 - s
: . 1
! :
| ; :
' 1
d 1 .
0 1 ’
~ J

A segment 1is a sequence of computation instructions,
We define M{=}, the transform corresponding to the

segment o, Inductively as follows:

M=) = I, the identity matrix, if = is null,

H(TUR)I{{E) if = consists of & followed

by th instruction Ti_ﬂ-:'

Lemma 2. If the colum vectors X = f)&,...,xmjl ard
¥ = E:,'J,,,.,;,rmj denote the values of the locations
Ll’lll?
before and after the execution of the segment =, then:

L, in & free computation sequence, respectively

¥ =Mm=)x
Proof. By inspection, and induction on the lsngth of =. _

A word Tunctlon 1s a function with integers as arguments

whose values are elements of E.

103

A 1inpear word function (1lwf) iz a word functien of the

Torm:

UE u -.'l.r-:{.

H b
Wy ovem) = Ul'“l 2 gk

where U, ¢ 2 for i=1,..,k, and Iy 1s a nor-negative
integer.

Uimi=UU +++U

«m, times -+ ifm -0,

=] ifmi=E'

§6.7 FP=representations.

Let FPbe the first order theory of the natural
mumbers (non=regative integers) with addition as the
orly cperation. Hilbert and Bermays ([5], vol.l, pp 353-366)
have glven a decision procedurse for the truth of formulse
in thie theory. (Presburger [12] proved the elementary
theory of the integers to be decidsble somewhat earlier.)
We shall cell a formula of I a Presburger formula or

P=formula. & F-formule ¢{t1,”,tr;nl,..}n$}, with the
free variahles as indiceted, will be called & P-function

if, for gll nstural nurbers Fy g el there exist unique

Ell

natural numbers t,,..,t, such that ¢{tl,++,t1_;:1.l,..,n53

1
iz true, Thiz eondition can be succintly erxpresssd as:

104

(B ¢ltsn)]

where the guantifier ' E ', whish states unlgue existence,
is resdily definable in terms of the equality relation

and E, the standard exdstential quantifier. We shall
often find it corverdent to express metatheoretical

statements in the formali=sm of the predicate caleculus.

A word functlon G(ng,..,n) 1s Porépresentsble if there

is & Iwf W, and a P-funetion 4, such that:
(L)) eltin) = Gla) =)]

Lemma 3. If G (m), G,{n) are P-representsble then so

are:
1) Gglm,n) = G (m)G;(n)
(11) Gylmn,r) = G (m) if &(r)
= :5...':&} if qﬁ{rj
[
where § iz g P=formala
Froof. Suppose:
(.mif oylzm) => G im) =W (s)]
and (L.o)f 45(0im) = Gyln) = W(t)]
then:

(1) (stmam] 4 (mm) 5 oo(tin) =,

Glmn) = W, (2, (t)]

(11) (2.2mn,rI[6(r) A ¢ (s3m)n g

|
<

!

~ilrd A gyltind A

&, (mn,r) = W (e, (L)]

Lemma 4, If A i3 an (m=) transform, there exist hk > 0
with h < o', sueh that:

+
AT 2 4P vhere D is a dlagonsl mabrix.

Proof, We can find B,D, where B is a transform with

1
elements elther 0 or 1, and Dy iz a dlagonal matrix,
such that:
A= IllEl
Slmilarly there iz a dlagonal matrix DE such that:
Eﬂ}l = DEB
and we define Dn-l-l fer each n > 1, by equations:
mo= DmlE-

and denote D;D,....D, by D! . For each r, B is a

transform with only 1's as 1ts non-zero elements. Thers

are at most m" such transforms, S0 not all of I,B,BE,..,B&]{“:'
£ s

are distinet. So fl K= B say, for some h,k with

He = m'. Then:

btk _ htkc

=Y
|

(o)

h ke
{DlE.]l (D,B)

105

106

[h 1 k
= D'B DB

D£E3h+k where EhDﬁ = gph

R '
D EB

nﬁshnﬁ
= Ah]j'::
But D} is a diagonal matrix. _ /

Let ¢« be a segment, and let Gu.i{n] be the word-
function whose value for each n is the expression
associated with L; after n iterations of e, starting

from the initial expressicns L = LyseewsDip-
Lemma S. G. i{n] is P-representable.
i

Proof. By Lemma 4, there is a diagonal matrix
D= [dl,...,dm], such that;

(M(a))" = (M(«))PD for scme h,k with h+k < m™.
Therefore we can find words in E, say Virer o sV 1oWoe = ees

Hkul’ and integers Jl,...,jh_l,ig,...ik_l af the set

{i....,m} sgo that:

107

G, iln = Ly ifn=0
= vlel if n = l
= v L. if n = h-1
h"‘l :Ih-].
e wudirL if n=%.r + h for some r >0
o i =
= Wllﬂ.irLj_ ifn=%k1r4+ h+1 " "

r

w, .d Li ifn=k.r + h+ (k-1) =
el ik-l k-1

For fixed k,h,s, we express ' n = k.r + h + 3 for some r >0
A5z

{EIJ[n = r4r+....+r + h + g
=% Cimes—=

which is a P-formula. Using Lemma 3(ii) repeatedly, we can

nst t - f tion - .
construct a P-functien and a lwf which P-represent Gn,itn} s

Given P-representations of G, . for j=1,...,m, and of
#

Eﬂ j+ We produce a FP-representation for the word-function
¢

Gn 5 i{r,s}l of two arguments which gives the value of Lj
¢ i

after the seguence ' «%3% ', by 'substituting' the lwf's of

Gﬂrj for the appropriate Li‘'s in the 1lwi of Eﬂ,i'

los

For a particular location Li and reduced path By in a
schema Q, the word-function Gu,itTl""’Tq}’ which
gives the value of location Ly after the execution of
the path p, with reduced path p, @nd loop-cooeficients
?1""'1q' if such a p exists (and has the value 0
otherwise), is P-representable. This result is readily
cbtainable from Lemmata 3 and 5, and the last remark.

How let h = (u,i,~ ,.++,?q] be a (g+2)-vector,
which is intended to specify both a path in ¢ and a

location L;. We define the word-function:

Qih) = GuriITl.---ITq} if this iz defined,

= 0 ctherwise.

Obviously Q is P-representable too.

We shall be interested in both finite and infinite
paths through schemata. In schemata of the class §, any
infinite path must ultimately remain in a single loop.

We represent such a path by its finite initial segment
which terminates at the first occurrence of the correspond-
ing base-point. We adopt the convention that the leop-
coefficient for this ultimate loop shall be 0. For any

schema J, let:

(i) :Einucl (h)

(1) £in, 2(h)

(iii) infR(n)

(iv) sub®(k,h)

) 1,2k, n)

(vi) 7%k, n)

109
be the condition that h represents a
path in Q@ from the initial address to
the terminal address =5
be the corresponding condition with 211
be the condition that h represents an
infinite seguence from the initial node
of 2, under the convention given above,
be the econditien that k represents a
path in Q@ which is an initial seoment of
the path represented by h,
ba the condition that suhﬂ{glg} and that
the path k is finite and leads to a
transfer instructicn at which the location
corresponding to k is tested, and which
reguires that the test-function takes the
value 0 in order that the path h be
continued, and
be the corresponding condition with 1 in

place of 0.

We notice that ‘finna(h}', 'finlﬂlﬂi'. and

'infn[g}' just take the value 'true' for a certain

finite range of values of u [=hl} under some corresponding

conditions on the loop=coefficients. 'gub®' is a

110
straightforward predicate involving only a finite
number of possibilities for h; and ky, scme equalities.
and one ineguality between some loop-coefficients.
'Tuq' and 'qu' involve ‘sub¥®', but are otherwise Jjust
enumerations of a finite number uf.pnsaihilities. I
elaim that ‘fin %', tein @ e, 72 ana r @
are predicates definable in P, and there is an effective
construction of them from a given schema . Detailed

proofs of these claims would, however, be cumbersome,

tedious to read and, surely, superflucous.

We now regquire a method of constructing a
P=-formula from two given lwf's, specifying the precise
conditionse on their arguments, that they take the same
value. This is given by Theorem 6.1 bhelow. First we

need to prove:

Lemma 6. Let U,V be words in Z, and u = length(u),
v = length(V). Suppose that v2u and n is an integer
such that n > (v/u)+l. If:
utx ; VWY for some words X, ¥
then there is a word W and integers r,s (21) such that:

U=wW and WV = WS,

111

proof. Assuming that T.Jr ¥ v for any r, we can suppose
that:
Urzlzz...zt = V for some r>»0, and some t< u,
where U = £125---2, and the z's are generators.
From the hypothesis, we have:
Et+lzt+2¢ L] +Eu31-..zt = 3132- " -znuq.
Bo:
m > 0, where [_']] = j (mod u) and 0 £ []] £ u, for i g u.
Laet h = hef(u,v) = hef (u,t), then:
Ei = zi_mh for l€i<h andm=20,1,..., (u/h) - 1.

Therefore if W denotes '315:2, ..zh' :

U=W andV =W® where rh = u and sh = v . s

$6.3 Degcision Procedure

Theorem 6.1 If H and K are lwf's, there is a P-formula

'PH B which is effectively cbtainable frem H and K,
such that:
for all h,k, H{(h) = K(k) if and only if

¥g,x(B.E) is true.

112
- 1 2 =
proof. Let H(h) = vt u22 ..., uﬁm , K(k) = Vil vE2 ... vin,
The result is triwvial if m=0 or n=0. Suppose that the
result holds for all pairs with m+n <« t, where t = 1.

we show that we can construct a P-formula ¥ far -the

H, K

case when m+n = £, then the result follows by inducticn.
We write 'U < V' for words U,V when U
properly divides V on the left, i.e. when UW = Vv for

soma non-null W.

Case il! T'Tl = ‘i.?]_

ﬂH,H{ELE} is eguivalent to:
{Eh:[ufug‘ﬂ s UM = VB2 L iR oAp - h+}=:l]. v .
{Ek}[ulgi U = VRS2 L vEnAak, =]H—hl}
and the induction is complete.

Case (ii) U, ¢ vl and WV, 4 U, and U #V

¥ (h,k) is equivalent to:
H,K'='=
2 by _ %1 n
[52 ool WA m o] Ly
n 1

il k * '
[ulill T.I:lm = V32 ...V Ak = DJ

Case (iii) U, <« V

i and similarly for vl < U

Applving Lermma 6, we see that there are two

113

alternatives:

EEEEE.I_ (a) Ul = Wk, 1?1 = w® for some word W and

integers r,s, when *n Etglhl is eguivalent to:
L3

. i ha e _ 2 kn -
tEl}['ﬂ UE e w UI'I] gl.zt ...".?'n A L+E.kl—r.hl]

sy [P2 B L et 2 kn _
{E]][Uz cen U 1|i'rilv2 vn 3 + r.hy = B.'J-::l]

where 'r+hl' denotes 'hl + hy ¥ c:o0s + hl' .
-—r tilmes

gor (k) there is no such W, and h, < r+l or k, < 2,

where r = [length (V11 | . 1In this case, ¥y g can be
length (Up) '

written as the disjunction of the r+4 possibilities

corresponding te h, =0,1,...,r+l, or ky = 0,1. 1In

1
each of these the initial factor of either H or K can
be replaced by a fixed word, so we reguire a P-formula

to represent an eguality of the form:

h k
wuo? L..utm o= vl L vFn or similarly with W en
2 m n
the right hand side. let r = [i:ﬁgtg Egi}]. then we

distinguish two further subcases:
+1 '
(by) Lif W# u{ , then k; = 0,1,..., or .

Each of these possibilities gives rize to an eguation

of the form:

114

ha
2

K2 kn

P _
mI = mom um _Hvz R ow vn

and then either W = W'W" and the eguation is

representable by:
h
[w"hu 2 ouPm= v L yKna g = 1]
2 m 2 n

or else W } W' and the eguation is always false
(and so representable by '0=1', say). In either

case the induction is complete.

2} If WY = vlr+l and vl = ¥¥ for some X and Y,

then we have the possibilities of thl} or else

(b

kl.E r+l. The latter case reduces to the equations:

ng P Uﬁm = E?E . ﬁkﬂ where k+r+l = k

n 1

We now repeat the whole process on this eguation,

taken in the form-

ha h 2 Kn
LA = (vx)*yvh N A

If cases (i), (ii) or (iii)(a) eccur, the induction
is completed. In case (iii)(b), we cktain equations

of the form:
hp by _ 2
UE & & # Um —mﬂg L] I‘Irin

or: Wﬂh3 I Uﬂm = Y{inkvEE ... vEn
3 e

115

both of which can be dealt with as in case {iiiJ{hl}. /

For any schema Q and path/location vector for Q,
h, we defined Q(h) to be the word-function giving the
value of the location corresponding to h after the
execution of the path h, and we showed that Q({h) was
P-representable. 5o suppose ﬂﬂ is a P-function, 0% is

a lwf, and:

(s.2) [8,(s:h) == Q(h) = Q*(s)]

For two schemata Q,R, the condition diffQ E{EHE} on

h and k that Q(h) # R{k) is the P-formula:
(5.8 8 (&h) A Bpltsk) =3 =90, tulst)]

where “o* m* is the predicate of Theorem 6.1 for the
4

Iwf's 0% and R¥.

Theorem 6.2 For any twoe schemata Q,R, there is a

P-formula, TQ*R- free in the variables h,k, such that;
Tq R{QLE] is true if and only if the paths
¢
corresponding to h and k in the schemata Q and R are

consistent, and represent executiecn sequenceas.

lle

procf. T {h,k) is the formula:
e Q'R -

Q o .
? {hﬂfhlrhurﬂl}[Tﬁ{lﬁ-ﬂ'hl "'.“'Tl :EJ_:E:I 't::" dlffﬂ G@ﬂ;ﬂll

R .
s T (kg k) A Tliuq_l.y =D . Aiffy (koK)

Q R _ .
1/ Tnﬁﬂﬂ.ﬂ}h Tliﬂl,y -=e dlfo'R{ED,]-_il]

0 R) |

e T {Elfhl e TD{EGJ]_{} e dlfo‘R{E_]_rEDI]
Q .2

T finﬂq[]l} s f."l.nl {h) v-lnf (h)

R _
cims. £in () o fin (k) v infR(R) /

Thecorem B.3 given schemata Q,R, in 8, there is an effective

construction of a formula Eg(Q,R) of P wHich is true if

and only if Q are R are eguivalent.
Procf. Eg(Q,R) is the formula:
{EHEJ[T (h,k} =23 finuﬁtgjxﬂ finDR{E}
~ve £in @) A fing N (K)

cw. inf(h) ninfﬂcy] -/

The thecry P is decidable [5}, s0 we have proved:

117

Theorem &.4 The equivalence problem for schemata in

the clags 8 is recursively soclvable.

118

7. Free, liberal and progressive schemata

57.1 Freeing liberal schemata

pefinitions. A schema P is free is every seguence through

P is an secution seguence.
A gchema P is liberal if, in every segquence through P, no
expression (under a free interpretation) is computed

more than ocnce.

Theorem 7.1 Given any liberal schema P, there is an

' 3 . "]
effective construction of an eguivalent free schema P .

(This construction will be called 'freeing P'.)

Procf. We have only to ensure that no location P is
tested more than once by the same test-function between
successive assignments to it, for then, any seguence is
necezsarily consistent and therefore an execution
sequence. The construction of Pw.ia'h? stages. At each
stage, for some u,j, we 'free the schema with respect to
T (L)' , in the following way.
el |

Three copies of P are made, PH*PG,PI, sgay. The
addresses corregending to each ‘a' in P will be deﬁﬂted
Ty aH,aD.al respectively and the transfer addresses in
each copy altered accordingly. Any test in P of the form:

T (L b,

jl

119

is replaced in PN by:

T (L) bY, et

ut3

in P? by:

go to hD
and in Bl by:

1

go to o .

Any computation instruction in P of the form:

a. Lj L
is replaced in both FD and Pl by:

go to al,
The initial address of the new schema is ag. where ag is
the initial address of P. BSince the part of the new

0

schema corresponding to P° is only accessible when the

expression in location L. has already been tested by T,
and Tu{Lj} = 0, and similarly for Pl, it is clear that
the new schema iz eguivalent to P. Purthermore, in the
new schema Lj can be tested at most once by T,; between
assignments.

When we have successfully freed P with respect

to each pair of location and test symbol, the result is

the new eguivalent free schema PW.

The application of this construction to a simple
schema is illustrated in flow-diagrammatic form in Figs.

(i), (ii) and (iii) on the following pages. [(Note that

120

L Fig. 1.
Schema P.

'L' Fig. 2. Schema P’
- - Li= G (N = P freed w.r.t. T(L).

——N= FlL.m, N Nee HILN)

T M=o

L I'f-. N:

FleH,N)

(2 (2

Fig. 3.

Fig. 4.

Schema PV
= p" freed w.r.t. T{HJ
L= G{T‘l}

Abbreviated form of P".

1. L := G(N) r,2
2. K = H{L;H] ErED
3‘1- H = F{L‘.H.H} H.ﬂl:l

Ta gota «

122
for the sake of clarity various ‘'inaccessible' parts of
the schemata have been omitted.)

Without losing any generality, we may assume
that in any schema, no location is tested before it has
been assigned to, because given any schema P we can, if
necessary, introduce a new monadic operator K, say, and
precede the schema by the new instructions:
.

1 < K(Lq)

L, := K{LE}

eto.
to produce the schema P'. Clearly,
P=¢g 4if and only if p' = 0Q°
and if ¥W(P') is a canonical form for P', then a canonical
form for P is produced by just deleting from W(P') all
those instructicns invelving K.

Ssuppose we take any schema satisfying this condition,
and, for each location L, insert after each computation
instruction assigning to L the trivial seguence of test
instructions,

Ty (L) 41, "+l
Ty (L) 41, *+1

Tk{L} *+1, *+1

123
wheare Tl""*Tk are all the test symbols. The resulting
schema 18 eguivalent to the original one and we note
that, after applyving the freeing construction described
inn Theorem 1, the new schema still has the property
that each location is tested in turn by each test symbol
after each assignment to it. Following this seguence of
tests, the next instruction may be one of up to 2k
successors. For our purposes it is a convenient abbrevi-
ation to express the computation and succesding tests
in a single statement as, say:

Lj s FE{L_4.1.:i) ByiB rene,

i1 . 2’ 2k
so the next instruction has address a, where
_ vk r=1
n=1+ 2 LTOL L)
il r 3

We are therefore considering schemata whose statements
are all either of this form or else are unconditiconal
transfers. The latter, however, are clearly eliminable,
provided that we allow just one new instruction of the
forms
T. goto «

which provides an eguivalent for any loop consisting
entirely of unconditional transfers.

At this stage 1t is convenient to make some

further simplifications. The initial address is marked.

124

All successors of marked addresses are marked and this
step is repeated until no further addresses can be marked.
The marked addresses are then precisely those which are
accessible by a seguence (and so an execution seguence)
through the schema. All other instructions can be
deleted, without loss of eguivalence. In a similar way,
though proceeding in the reverse direction, we can find
all addresses from which either of the terminal addresses
is accessible. All other instructions can be deleted and
transfers to them replaced by transfers to r. Finally,
if all the successors of an instructicon are e, {el respect-
ively) then the instruction can be deleted and transfers
to it replaced by transfers directly to eﬂ tel respectively) .
In some trivial cases, sensible alternatives to these
simplifications are reguired.

As a result of these considerations we state,

without further proof:

Theorem 7.2 There iz an effective method whereby,
fram.any liberal schema, an eguivalent liberal schema
may be constructed with the following properties:
(i) it iz free
{ii) it is expressible in the abbreviated form given above,

{iii) any (partial) sesguence in it which has not reached

m, may be extended to a terminating execution seguence,

125
{iv) any (partial) seguence in it which has not
reached EU [El respectively) may bhe extended
to an execution seguence which never reaches

en [el respactively) .

It seems likely that the decision problem for the
equivalence of free schemata is solvable, and certainly
none of the techniques we have used so far to prove
unsolvability is at all applicable. Theorem 7.1 shows
that, for ﬂli practical purposes, any liberal schema can
be considered to be free, but the reverse is not the

case. For example, the free schema:

can be readily shown not to be egquivalent to any liberal
schema. The difference between the two classes is apparent

tas in the next two theorems.

126

Theorem 7.3 The property of being free is not recursively

solvable.

In the proof of this Theorem we shall require a
result of E.L. Post [ll]- The 'correspondence problem'
is the following:
Given a set of pairs of words {tui’vi:* i=1,cau,n }
over a finite alphabet, to decide whether there

exists a seguence of indices il'iz"“i 'k E:lj

k
where 1 < ij < n, such that:

Post proved that the correspondence problem (for an

alphabet with more than one letter) is recursively solvable.

Propf of Thecrem 7.3. For any word W = FﬂFh"'Fh Over an

alphabet | F(,F ,.“,Fm}, let: +

dencte the seguence

of instructions: .

:_;L_‘: Ll = Pa {Ll]l

Ly 1= Fh{L1]
and:+ ‘l,
- the corresponding seguence
Wt2]|
1 | with I..2 in place of Ll‘

Y

127

Y
Li= Fﬁ{L"‘:'
denotes
[=] i
Consider the schema:
Ly i=. Fo {l—1]
L= Fa (L)
%
L ™

This is evidently free if and only if the correspondence

problem 1-:'[]1,1.? - P {Un,‘i.if ‘::.} has no solution. r
n —

1

128

Theorem 7.4 The property of being liberal is recursively

solvable.

Proof. For any segquence in which the same expression is
computed twice, we consider the first such eoecurrence.
We ocbserve that, for this to happen, the two relevant
computation instructions must be identical up to the
choice of assignment location, and none of the retrieval
locations is assigned to between them. Let us call this

an immediate repetition. A schema is therefore illiberal

(i.e. not likeral) if and only if there is an immediate
repetition in some execution sequence. We can apply the
construction of Theorem 7.2 to any schema, and produce an
equivalent schema which is free if the original is liberal,
but is illiberal if the original is illiberal (because
corresponding sedquences of computation instructions are

the same). The decision procedure is merely to look for
basic repetitions in any sequence through this schema. If
there is such an immediate repetition, then there must he
one where the number of intervening instructions is less than
the total number in the schema, therefore the search can
obviously be made finite. If no immediate repetition is
found, then, if the schema iz free it has been found in an
execution seguence, and if not this can only be because the

ocriginal schema was illiberal. A

129

£7.2 Progressive schemata

pefinition. A schema P is progressive if, in any

sequence through P, the assignment loecation of any
computation instruction is taken as a retrieval location
by the next computation instruction, if any.

The 'expression computed by an instruction' in an
execution sequence will mean the string whiech is produced

under the corresponding free interpretation.

Lemma 1.
(i) The lengths of successive expressions computed by a
sequence through a progressive schema are striectly increasing.
(ii) Given any expression E computable by a seguence through
a progressive schema, there is a unigue integer n, and a
unigue segquence s, of expressions

B = {El....,En=E‘:s-
such that any seguence of a progressive schema which computes

E computes precisely the expressions of s in turn.

Proof.
(1) Each expression must contain the previcus cne as a
proper subexpression.

(ii) E is uniguely decomposable inte its immediate

130
subexpressicons and either each is an initial symbeol, i.e. an
L;, or else one of the subexpressions was the expression
computed immediately befeore E and so is distinguished by
being the longest, in view of (i). The result is then proved

easily by induction on the length of a seguence which computes

E. ___/

corollary of Lemma 1(i). Any progressive schema is liberal.

Definition. Let depth (E)}) ke the number n of Lemma 1 for

guitable E (and undefined otherwise).

=

Lemma 2. Let £_,t

1%, be seguences through the progressive schema

F, which compute El’Ez respectively, and suppose that
depth [El} = depth {EEJ

be continuations of £_,t

but El # Ey. Let tl':tz' "

respectively, which compute El' and EEI' gay. Then E," # EE1‘

Progf. Trivial from Lemma 1{ii). r

Suppose P,Q are free, liberal, progressive schemata

with the properties described in Theocrem 7.2.

Theorem 7.5 If P = Q, then for all interpretations I,
(P)

the executicn seguences “I and ﬂI{Q} compute precisaly

the =zame seguence of expressions.

131

Proof. Buppose wI{P} only computes n expressions in the
sequence t;, which then terminates or reaches the address w,
while rl{ﬁj computes an (n+l)th expression in the seguence
tye BY Theorem 7.2, there is a continuation t,' of r_2
which behaves differently from tl. and clearly t; and ta"
are consistent. So P # Q.

Alternatively, suppose the (n+l)th expressions calou-
lated by rI{P] and HI{Q} exist and are different, and

denote the seguence thus far by t, and t2 respectively.

1
There is some continuation, t;' say, of 1:l wnich terminates
at e{=eﬂ or ;). There is also some continuation tz‘ of
tz which never reaches e. Since ty and t, are consistent
and, by Lemma 2, the sets of expressions computed in the
continuation parts of tl' and t,' are disjoint, it follows

that tl' and tz' are consistent, and so P # Q. These

contradietions prove the theorem. s

In a $7.4 we shall produce an algorithm to decide the
eguivalence of any progressive schemata, however it seems
desirable to present first the easier decision procedure for

progressive schemata of a more restricted class.

7.3 Full schemata

Definitien. A £ull (or fully progressive) schema 1s one

in which each computation instruction takes every location

as a retrieval location.
Corollary. A full achema is progressive.

Lemma 3. For any two sequences in full schemata which
compute the same sequence of expressions, the two
corresponding seguences of computation instructions are
identical except perhaps for the last instructions of

the segquence, whose assignment locations may differ.

Propf. Assume that the result is true for seguences
which compute 5ust r expressions and further that for
such seguences the two corresponding free computation
saquences are identical except perhaps after the last
ire tructions. This hypothesis is trivially true for

r =1. Buppose it to be true for r <« k (k = 1), and
suppose two seguences compute identical seguences of
expressions of length k. The elements of each member of
the free computation seguence are clearly distinct and
each occurs as a subexpression of the next computed expres-
sion, so the penultimate computations must replace the
same expressions. Hence the penultimate assignment
locaticns are the same and therefore so are the next
members of the free computation sequence. The last com=

putation instructions must therefore agree to within

choice of aszsignment location and o the hypothesgis holds

133

for r = k. The result follows by induction. &

How we define an eguivalence relation =~ , an the
statement addresses of schemata in the abbreviated form

degcribed in Theorem 7.2.

Definitiens. If address a has the successor addresses

al,..‘,azk, then we defines

= 3 —_— k
succ, (a) ai for i leau,2

The instruction associated with the addresz a3 is

denoted by inst{a).

Definition of ~ .

Clause (i).

a ~Db 1f and only if inst(a) = inst(b), and for each
i= l..*..Ek, sunci{a] . succi[h}
{or 5ucci{a} = succy(b) if either one is

Bns 2, O r.)

1

Clause (ii).

~ is the weakest relation satisfying Clause (i).
Lemma 4. The definition of =~ is welldefined and effective.

Procf. For certain pairs a,b, Clause (i) gives a # b.
This set of pairs can be effectively constructed by

stages. At stage n (n z 1), we add just those pairs

whose ineguivalence follows from Clause (i) and, if
n >»1, the pairs added at the previous stage. When
this construction terminates, we can clearly define all
the remaining pairs te be eguivalent, without cktaining

a contradiction from Clause (i). The relation so defined

also satisfied Clause (i1i). r
Lemma 5. ~ (and indeed any relation satisfying Clause
(i)) has the ‘'substitution property' , that isa,

'Given any schema P, with addresses a,b where
a ~ b, the schema F', obtained by replacing an
occurrence of "a' in a transfer address by 'b',

is eguivalent to P.°"

Proof. Under any interpretation, the execution seguences
in P,P' can be shown inductively to have corresponding
addresses egquivalent and so containing the same instructions.

Hence the wvalues of the two seguences are the same. s

. . o~
Construction of the ‘'canonical form' P.

Gi?&n.any full schema P, we can effectively construct
an eguivalent schema satisfying the conditicns of
Theorem 7.2. Assuming now the abbreviated form, we
replace the assigmment location in any statement all of

whose successor addresses are T, Sn OT SR by some fixed

135
location, Ly say. This produces, of course, an eguivalent
schema. Now we select one from each ~ -eguivalence class
of addresses and replace each transfer address by the
chosen address of its class. Repeated application of
Lemma 5 shows that the resulting schema is equaivalent to
the original one. With the representative from the class
containing the old initial address as the new initial
address, all except the chosen representatives are inac-
ceggible and may be deleted, leaving a set of addresses
no two of which are ~-eguivalent. This schema with a
suitable renaming of the addresses isj?. One method of
naming which suggests itself iz to label the initial
statement with 'l', and then proceed by using the lowest
integer not yet used, to label the earliest successor of
the lowest-labelled statement that is not wet labelled.
By Theorem 7.2, each statement is accessible and so gets

labelled eventually.

We reguire to prove that for any eguivalence class
of schemata the canonical form cbtained as described is

unigque.

Lemma &. If P= 0, then corresponding statement addresses
of any consistent pair of execution seguences through P

and Q@ are =~ -—eguiwvalent.

136

Proof. Suppose P = 0, and that x = % ,xz,... and

1
¥ = erEE;*-- are such a pair of segquences and that
X~ ¥ for r « n, but x n 7 ¥y e

Then, by the proof of Lemma 4, there is a consistent
pair x',y' of extensions of xl..*i,xn and yl,...yn
respectively, such that for seme m > n, either
inst(x',) # inst (y'), or one of x' ,y'_ is e ,e_ or

m m m 0
T and x'_ # ?'mi From Theorem 7.5, Lemma 3, and the
conslideration that the exceptional case of Lemma 3 has
been explicitly prevented, the first case is impossible.

By Theorem 7.5, x' and y¥' reach one of e gimul-

ﬂielri

taneously and soc the second case is a contradicticon of
P = Q. /

- Theorem 7.&. If P,Q have cancnical farma'ﬁﬂﬁ“aﬂ deg=

cribad abowve then:

P=Q if and only if 5 and @ are identical.

Proof. Since a schema and its canonical form are egui=
valant:
I ; .
F,0 identical implies P = Q.
For the reverse implication, if P = @, then by Lemma &,
P
the initial statements of P,0, and hence gf'$:ﬁ, are
~ —eguivalent. By the definition of ~ , corresponding

successors of eguivalent addresses are equivalent, and,

137

by the construction of the canonical form, there is

only one representative of each eguivalence class in
P

each schema. Therefore P,Q are the same to within,

possibly, renaming of addresses, but both were named in

a standard way which depended only on the structure, so

?,ﬁ are identical. i

Hence we hawvas

Theorem 7.7. The problem of deciding whether or not

two given full schemata are eguivalent is recursively

solvable.

Cﬂ:ﬂliarx. The eguiwa lence procblem for schemata which

use only one location is recursively sclvable.

l3g

57.4 Decision procedure for progressive schemata.

We can assume at once that any progressive schema
iz already in the abbreviated form guaranteed by
Theorem 7.2. For any statement:

a. Lj p= FE[Lkl,-..,th} al,;.,,azk}
we defines:
fnla) = F N

the assignment index of a, asgla) = j.

the retrieval wvector of a, Ret{a) = < kl""*kt =

and denote the ith cemponent of Ret{a) by ret;(a).

A location L, is alive at address a if there is a seguence

3

through the schema from as:

a = hﬂ*h Y - TR (n = 0)

1"z n

such that:
(i) 3 € Ret(by)
but (i1} 3 # asgthi} for any i, 0 £ i < n.
(Mo location is alive at a terminal address.) If there
is such a seguence, then there is clearly one of length
less than or egual to the number of statements in the

schema, 80 there are effective and efficient algorithms

for determining the set:

Live(a) — ![j1 Lj alive at a :»-

daf

139

For any point r (n) of a seguence » through any

schema, we define the free configuration, C{(=x ,n), as

the (m+l)-vector:
C{=,n) = <«rn}, A(r)(n)=>

and the reduced configuration, C'(r,n),

C'{r,n) = <7(n), A" (=) (n)>
where A'(r)(n){(j) = A(r)(n)(j) if L5 ig alive at =(n),
= [otherwisa.

Also Range(r,n) is the set of all non-zero elements of

A'(r)(n), (which are necessarily all distinct).

It is evident that, for any interpretation and
for any point of the correspending execution sequence,
the continuation and value of the seguence depend only

on the reduced configuration at that point.

Lemma Y. F = Q implies that, for every interpretation
I and integer n:

(Q)

Range(“I{P},n} = Range (TI 1) .

Proof. Suppose ¥, 7' are consistent sequences in P,Q
respectively and some expression E is in Range (7,n)

but not in Range (#',n). There is a seguence ceontinuing
from w(n), in which E is taken as an argument in the

computation of some expression E', say, but no continuation

140

from ='(n) can ever use E as an argument and so can ever
compute E'. Thus there is an interpretation for which
the two corresponding execution seguences compute differ-

ent segquences of expressions, and 5o, by Theorem 7.5,

F ¥ Q. s

Let m be the (fixed) number of location symbols
involved in the schemata under consideration, and let Em
be the group of all permutations on m elements. If

v £ 8, we define for any vector of integers in the

set {1.‘...m }:

v {<k k ») = ﬁqﬂ[kl},...,w{kt}}

1 t

and for a set of such integers:

w(T) = {wtj: | 5 ¢ T}

Definition. Address a is ¢ -—similar to address b,

a * « (b), when:

(I} 4if a,b are terminal or egual = (the 'dynamic

stop'), then a = by
(II) if a.b are prefixed of statements, then:
(i) fEn(a) = £n(b)

(ii) Ret(a) = ¥ (Ret(b))

141

(iii) either [asg[a] = ¥ (asg (b))]

or [asgla) ¢ w
i

and «lasgi(b))ld o Live(succ, (a))]
i

¢ (Live (succ, (b) 1)

(iv) Livel(a) = #(Live(b))

p 2D is defined as +.(rs) where r = asg(a) and

s = # (asg(k)) (i.e. the permutation ¢ follewed by the

transpesitien of r and s).

For any configuration e = < a,D >, we define:

o)ty

If configuration § immediately follows a in an execution

sequence corresponding to some interpretation I, we write:

I
g or just ﬂ—_—ﬂ

= (g, >, §= <4,

Let e = Ca,pA>», B ={b,B>» ., ¥

_-———==

Lemmz 8. Suppose & = ¥ [E]. the expressions computed at

and & are the same, and for all interpretations I,

I

a
and f —i

I
Range(¥) = Range(&) where g—m—s7

thens

(1) ¢ = w“‘-bl'_n] for such 7,

(2) 2=+ ¢ (b)

142

proof. Part (L) is triwvial. For part (2), the conditions
(i) and (iv) of the definition of 'a = ¢ (b) ' are
clearly satisfied, and since the non-zeroc components of
any reduced configuration are always distinct, so also is

condition (ii). Suppose that:

asg(a) # vlasg(b)) and e(asg(b)) £ Live(e)

for some Y =<c,C >, say, where a

¥ . Then:

asg(p) | ¥lass®)

= Ew{asg{h}l sin?e only Lygg(a) is
aszsigned to.

Ple 2/0)-1(4 (asg (b)))

D e-Lliasg(a))

B _

e~ (asg(a))
which is impossible. A similar argument is followed Lif
asgla) € w(Live(d)), and so condition (iii) is smatisfied,

and part (2) is proved. /

For any two seguences r,w', we defined perm(r,m"',n) by:

perm(r, ', 0) = [= identity permutation

[Permtnrwftn}] *({n), =" (n)

perm(r, v',n+l)

for n = 0.

143

Thecrem 7.8. For any schemata P,Q: P = Q if and only if

for all interpretations I and integers n:

« (P)n) .MTI“'” (n))

I

Q
where ¢ = perm{rIlP},nI{ },n]

Proof. The sufficiency condition follows from Part (1) of
the definition of ¢-similarity. The necessity is a con-

geguence of Theorem 7.5, Lemma 7, and Lemma 8, and is

proved by induction on n. /

A triple ¢a,b,e>is valid if a = e(b), and invalid
otherwise. A triple J{ec,d,v'> follows a triple
¢ a,b,er 1if ¢ n-ﬂa'h, and for some i, c = succ, (a)
and d = succ; (b). A chain of triples is a seguence

HprHosXgrese of triples, where x 1 follows ¥ for alln =1.

n+

Theorem 7.8 can be alternatively expressed as:
'"P =0 if and only if there is no chain starting
from {Pu,qﬂ,{ % , where P d, are the initial
addresses of P,Q respectively, and containing an
invalid triple. '
Since it is effectively determinable whether or not a given
triple is walid, and there are only a finite number of

triples involved, we have:

144

Thegrem 7.9. It is recursively scolvable, given any two

progressive schemata P and Q, whether or not P = Q.

145

57.5 Conservative schemata

A conservative schema is one in all of whose compu-

tation instructions the assignment location appears as a
retrieval location, e.g.:
L, 1= H(L,,L

E'Ll}

Lemna. AnYy conservative schema is liberal.

Ezégi. The proof follows by induction when we note that:
(i) the expressions associated with the locations
are all distinet,
(ii) whenever any new expression is computed, one of
its subexpressions is lost by being ‘'overwritten' ,

so the computation cannot be repeated. s

If we delete the first instruction:
LE = F(L,)
from each of the simulation schemata of 55, the resulting
schemata are conservative. There is an cbviocus isomorphism
between conservative schemata with a single monadic func-
tion symbol F, say, and m locations and m-tape finite

automata. @Given such a schema, we prefix it with the new

seguence of instructions:

146

Ly := F(L;)

-

L

Ly = F(L
m ([m}

and then we can construct the eguivalent free schema,

as in Theorem 7.2. To each abbreviated statement:
1

au. L: =m F{Li] al.....agk

of this schema, we make correspond the state qn in an

m=tape automaton with the transitions:

next state
El .E2 - = o= SER

state | head

qﬂ i ﬂ.l EIE & & ® azk

The trivial loop at = corresponds to a trivial loop in

the autocmaton. The reverse correspondence is obvious.

Theorem 7.10. Two such schemata are eguivalent if and

only if their corresponding m-tape automata are eguivalent

(that is, accept and reject the same sets of tapes).

Proof. We just extend the correspondence by noting
that an m-tape automaton accepts, rejects, diverges on,
respectively, an m-tuple of tapes, just as the correspond-

ing schema succeeds, fails or diverges, under the

147

interpretation which corresponds with the m-tuple in

the obvious way. Any interpretation corresponds to an

m-tuple of tapes. /!

The eguivalence problem for multitape finite

automata is well known, but to date is unresolved.

148

SUMMARY
In 32 and £3 we introduced program schemata, gave
some justification of the reasons behind our definitions,
and began to discover the sort of problems we ought to
investigate. If the formalism is to provide the basis of
an adeguate optimization procedure, it is preferable
that the eguivalence problems involved be at least par-
tially soclvable. In Part II we began to chart the unsolv=-
able domains that would have to be avoided. Some of the
general conclusions we can draw, as a result of this, are:
(1) By electing to restrict the range of poassible
interpretations in scme general way, we can gain, at mest,
(2) It avails us nothing in solvability to reduce
the number of function and test symbols to the minimum
which leaves a nontrivial language, and unsolvability is
with us already in schemata with just two locations.
{3) We do not reguire arbitrarily complicated loop-
structures in the flow-diagrams for unsolvability, but
we can hope to find decislion procedures under certain

nontrivial constraints on the structure.

In Part IIT we started to investigate some of the

possible solvable domains. In 56 for example, we found

149

a decision procedure for a class of schemata suggested
by (3). While this is encouraging, we shall have to
extend this result somewhat, before it can have very
general application. A very noticeable feature of the
schemata used to prove unsolvability results in Part II
is the high degree of repetition of computation and test-
ing of values. This suggested that some attention be
given to 'free' schemata, which nevé: test the same value
twice, and to 'liberal' schemata, which never compute the
same value twice. In $7.1 we derived some information
about the relationship between these different classes,
but we reguired the further réstrictinn to 'progressive'
schemata, before a decision procedure emerged (57.4).
The final short $7.5 on 'conservative' schemata merely
serves to introduce a class of schemata, with a potentially
solvable decision problem, and which is wide enough to
encompass a usefully large variety of schemata. A solu-
tion to the eguivalence problem for multitape automata
would be a major step toward a decision procedure for these
schemata, and we await this sclution with interest.

The need now arises to develop technigques by which
actual computer programs may best be expressed in the form
of program schemata, and if possible program Béhem&ta in

a sclvable domain. This abstraction may be carried out at

150

several levels in turn. At the 'deepest' level, we may
express single 'machine-orders', or even parts of such
orders, as schema statements and consider simplifications
of the program, a small portion at a time. For ‘straight-
through' EEQUEncéa of instructions, existing compilers

use various ad hoc technigues for, say, eliminating redun-
dant orders or collecting together common subexpressicons
of expressions to be calculated, and it would be wvaluable
to have a formalism in which to express these technigues,
and to develop new cones in a 'machine-independent' form.
At 'shallower' levels of simplification, we might use one
schema stement to represent a whole subprogram or routine,
operating perhaps on complex data structures. Abstraction
to a schema would allow the convenient manipulation of
these blocks of instruections and permit simplifications

of a grosser kind.

These ideas have provided the motivation for the
present research, but we do not discuss the practical appli-
cations in any detail in this dissertation. We have set
down a thea etical basis of this model of computation,
investigated some of its immediate ramificaticns and

indicated some of the directiens in which we hope to progress.

A51

Beferenceas

[1] COOPER, D. 'Mathematical Preoofs about Computer
Programs.' Machine Intelligence I.
Ed: Collins and Michie. (0liver and
Boyd 1967) pp 17-28.

[2] DAVIS, M. Computability and Unsolvability.
(McGraw-Hill 1958).

[3] ELGS0T, €. and RUTLEDGE, J. 'RS-Machines with
Almost Elank Tape.' Journal cof the
Association for Computing Machinery
11 3 (July 1964) pp 313-337,

[ﬁ] HEEMEES, H. Enumerability, Decidability, Comput-
ability. English translation. (Springer-
Verlag 1965).

[5] HILBERT, D. and BERMAYS, P. Grundlagen der
Mathematik. Reprinted from Germaﬂ edition.
(Edwards Brothers Inc, 1944).,

[E] TANOV, Iu. 'The Logical Schemes of Algorithms.'
(Russian) Problems of Cybernetics I.
(1958) pp 75-127. English translation

(Pergamon Press Ltd. 1960) pp B2I-140.

(11

[22]

LUCKERM, D. and PARE, D. 'The Undecidability of

MARTLL, M.

MC CARTHY,

MC CARTHY,

POST, E.

the Egquivalence Problem for Program
Schemata.' Report No. 1141, Bolt
Beranek and Newman Inc.

'Computational Chains and the
Simplification of Computer Programs., '’
IRE Transactions on Electronie Computers.
EC-11, 2 (April 1962) pp 173-180.

J. 'Towards a mathematical theory of
computation.' Proceedings of IFIP
Congress 1962, pp 21-28.

J. 'A basis for a mathematical theeory
of computation,' Computer Programming
and Formal Systems. Ed: Braffort and

Hirschberg (Meorth-Helland 1963) pp 33-70.

'A variant of a recursively unsolvable

problem, ' Bulletin of the American

Mathematical Society 52 (1946) pp 264-268B,

PRESBURGER, M. "Uber die Vollstandigkeit eines

gewissen Systems der Arithmetic ganzer
Z2ahlen, in welchem die Addition als
einzige Operation hervortritt.' Spawoz-
danie £ I Kongresu Matematvkow Krajow

Slowlanskich, Warsaw 1%30, pp 52-101.

153

[13] RABIN, M, and SCOTT, D. 'Finite Automata and Their
Decision Problems.' IBM Journal of
Research and Development 3, 2 (April 1959)
Pp 11l4-125,

[14] ROSENBERG, A, " On Multi-Head Finite Automata.'
IBM Journal of Research and Development.
10, 5 (September 1966) pp 388-394,

{15] RUTLEDGE, J. 'On Ianov's Program Schemata.'
Journal of the Asscciation for Computing

Machinery. 11, 1 (January 1964) pp 1-9.

