BASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGEMCE LARORATORY

Artificial Intelligence Menn
No. 216 May 1971

THEORIES, PRETHEORIES,

AND  FINITE STATE TRAMSFORMATIONS ON TREES

Mitchell Vand

ABSTRACT: The closure of an algebra Is defined as a
generallzation of the semigroup of a finlte automaton.
FPretheories are defined as a subclass of the closed algehras,
and the relationship between pretheories and the algehraic
theories of Lawvere [1983] Is explored. Finally, prethenries are
applied to the characterization problem of finite state

transformations on trees, solving an open probhlem of Thatcher
[1969].

Work reported herein was supported in part by the Artificial
Intelligence Laboratory, an M.1.T. research program sponsored by
the Advanced Research Projects Agency of the Department of
Defense under Office of MNaval Research contract number
MOOO14=-700-A-0360-0002, and In part by the author”s MNatlonal
Science Foundation Graduate Fellowship.



0. Extended Abstract And Surmary

That:hnr_[fgﬁﬂl poses as an open prohlen the ahstract
definition of a "pretheary ., A "pretheory” 15 to be an algebraic
structure which is to be intimately related (in some unspecified
way) to the algebraic theories or algebraic categories of
Lawvere [1953], and which will give some insight Into  the
categorical approach to generalized finlte automata via more
familiar algehraic arguments. In addition, we are asked to
define two pretheories such that every homomorphism from one to
the other (again with an appropriate definition of homomorphism)
corresponds to a finite-state transformation on a set of trees,

In this paper we propnse a definition for a pretheory.
Pretheories turn out to be algehraic structures called “clones”,
Taking the clone of an algebra s seen to he analogous to taking
the semigroup of a finite-state automaton.

We explore the connection between theories and
pretheories. We construct the free clone over a theory (in a
manner similar to Ellenbery + Wright [1947]1) and the free theory
over an arbitrary set of maps (a2 construction alternative to
that of Eilenberg + Wright). In the process of this exploration
we Introduce an intermediate structure, called a “ecomplete

algebra,” which provides considerable Insight inta  the
definition of an algebraic theory.

Lastly, we apply prethecries to the characterization
problem of finite-state tran;fnrhatiuhs on trees, and complete
the last portion of Thatcher s program.

In this sectlion we Intend to summarize our results using
a minimum of symbolism, so as to explain the results rather than
obscuring them by attempting a precise statement.We divide this
summary into subsectlions, corresponding to the sections of the
main part of the paper.

1. Algebras, Clones, and Pretheories

Following the usual terminology, let any set of functlieon
symbols with unigue arities be called a “ranked alphahet”. If V
is a ranked alphabet, let a V-algebra he any Iinterpretatlion of V
(ie a model for the language). We call the domain of the
interpretation the “carrier” of the algehra.

. If ¥V is some ranked alphabet {(either Interpreted or
uninterpreted) we will often use the symhol Vn to dencte the set
of n-ary operations in ¥V, By a "set of operations” we will mean
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some interpreted ranked alphahet,

If V is a set of operations, we say 1t 1s a “clone”
[Gratzer 19&6E) I1ff

1) 1t contains all the projection fumctions, §.e, the
function

lambdalx?, .., xn)[xi]

Is in VYn for each 1 and n, We denote this function efli;n) or
just efil.

2) It Is closed under composition, f.e.t Let g be in Vn
and f1,...fn be in Vk. Let X denaote the string “x1,...,xk". Then
the function

lambda(X) [g(FI(X), .., fn(X))]
is in Vk. ¥We denote this composite function by g{fl,...fnl.

This notation allows us to “naturally” extend every
operation in V to cperate on arguments in V. Furthermore, if
fl,ss,fn are in Yk, then so0 is g{fl,...fn). S0 for any k we have
a V=algebra {[(VEk, V).

Definition. An algebra (V0, V), where V 15 a clone, is
called a pretheary.

Hote that every clone uniguely defines a pretheory, and
vice-versa, so we will often refer to them Interchangeably.

If ¥ is any set of operations, define ClL(V), the clone
of ¥V to be the smallest clone contalining V., If A is an algebra,
let CI(A), the closure of A, be the algebhra whose carrier is the
carrier of A and whose operations are the clone of the
operations of A. MNote that the closure of an alpebra 15 a
pretheory iff every element of the carrier is algehraiec in the
original algebra (i.e. the algebra has no proper subalgehras),

Theoremn. Let ¥V be any set of maps on a domain A. Then
CL{V) is just the set of maps A" --> A achievahle by composition
of maps in V.

This shows that the closure of an algebra s analogous
to the semigroup of a finite state machine, which is just the
set of all maps from the state set to itself achievable by
concatenatlion of symbols In the Tnput alphahet.
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Definition [Cohnl]l. Let V,W be clones., A Cl-norphlsm
{clone homormorphlsm) is a map F:V -=-% W such that

1} FiVn) e tn
2) Flel(iznl)) = o(l:znl)
3) Flg(fl,...fn)) = (F{(g))I(F(FfI),..,F(fn)}

Proposition. Cl=morphisms compose.

2. Theories, prethecories, and complete alpehras.

'In this section we explore the relationship bhetween
Lawvere s notion of an alpebralic theory and our notion of
pretheary. In order to make Lawvere®s ldeas clearer, we will
introduce an intermediate notion, which we will call a “complete
algebra.”

A complete algebra is not an alpebra; 1t is the
generalization of “algebra® to functions Inte tuples of elements
of A. The name “corplete” algebra was chosen because it 1s this
type of structure which Arbib and Giveon [19467] call the
completion of an algebra.

Definition. A complete algebra consists of a2 carrier A,

and for each Eair of non-negative Integers m,n a set Alm,n) of
maps A™ --> AM such that

1Y If f ¢ Alm,n) and ge¢ A(n,p), thelr composition,
E+F, 15 in Alm,p)

2} The maps are closed under direct product, [.e. If
fl,...fn & Alm,T1), there Is a unlque ¢ Alm,n) such that
(letting X denote an m=tuple of elenents of A)

glXd = (FICX), .., Fn(X))

Mote that the value of of glal,...am) Is Indeed an n=-tuple of
elements of A. We write <fl,..,fn» for this unigue g.

3) All the trivial maps are present: l.e. any dlrect
product of the projections 1s present, (Mote that with condlition
2 it would have sufficed to reaguire the inclusion of Jjust the
projections in Aln,1). The present definition is adopted in
order to conform to the standard definition of the completion of
an algebra.l
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We prove the following characterizatlion theorem for
complete algebras: The mappings Aln,1) of a complete algehra
form a clone. Furtherrmore a conplete alpehra consists precisely
of all the direct products (axiom Z) of Tts maps A(n,7). Thus
we can construct the completion of an algebra in twe steps:
First, take the closure of the algebhra, and then take direct
products.

We may then form the free theory of a complete algehra
by letting T{m,n} be just Aln,m). This construction provides an
alterate to that of Ellenberg and VWright [19467]1. The proof that
the so-called “free theary” is indeed an alpebraic theary, while
trivial, provides insight Into the definition of algehraic
theory. It 1s seen that T is a category essentlially bhecause
complete algehras are closed under composition; that 50 is a
subcategory just because the trivial maps are In the algehra,
and that the direct product condition for theories follows from
the direct product condition for complete algehras. In this
manner we obtain a deeper understanding of algebraiec thearles.

We can then construct the free theory over a pretheory
by simply taking the free theory over Its completion. Ve can
also go in the other direction, constructing the free clone and

free complete algebra over a theory., These constructions are
seen to commute.

Furthermore, the notions of homomorphism of theory,
complete algebra, and clone are shown to be related such that
the following ladder diagram cormutes:

Tl =====3 T2
CAl =----> CAZ
Cl] ====> Cl2

where the horizontal arrows are homomorphisns of the appropriate
tvpe, and the vertical arrows are any of the free constructions,
In fact, given any of the horizontal maps, one may construct the
other two homomorphisrs such that the diagram cormmutes (no
matter how the vertical arrows are drawn), and all these
constructions themselves commute.

Thus the clenes (and pretheories) are seen to he very
intimately related to the algebraic theories of Lavwvere,

3. Pretheories and Finite-5tate Transformations.
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In this section we apply pretheories to the study of
finite-state transformations on trees, This ITnvestipation was
motivated by @ renark of Thatcher [T1947], He noted that every
finite state transformation on trees Induced o horonorphisn on a
certain semigroup. He called these semiproups prethenries,
Unfortunately, not every homonorphisn on these serigroups was
generated by a finite=state transformation, Thatcher
conjectured that with the proper definition of pretheary, the
converse of his observation would hold. e finish the program by
presenting two pretheorles such that the Cl=morphismns from one
to the other correspond in @ very natural vay (In faet, by an
elementary lambda conversion) to precisely the finite state
transformations on the appropriate set of trees.

Let us use the symbel “:° to dernote the center-dot
substitution operator of thatcher (1%67). If 2 15 any set, let
Trees(Z; V) denote the set of all trees with nodes In the ranked
alpphabet ¥V and with additional variables In 2 appearing at the
leaves. Where V is understood, we will often write Trees{Z) for
this set. Ve will often use the set % of canonical variables
x1,x%,... « ke denote Xn the set xl,..,%n. Ve define the set of
terms over V to be the direct sum of the sets Trees(Xn; V) for
each n, The significance of this perkaps roundabout definition
iz that every term can be uniquely identified as k=ary for sone
k. This allows us to treat any term as a function on trees:

If t Is a n-ary term, and tl,..,tn are trees, define
titl,..,tn) to be the tree

t:{lambda{xil(tl))

where this denotes the expected substitution operation. Hote
that the lambda expression 1s only defined for x1 in Xn.

This merely extends the normal notation s{tl,..,tn} for
5 in Vn, Thus individual letters in V and terms over V mav be
cons ldered as functions on trees. e confirm that the set aof
terms is in fact a clone, and is the clone generated by V. e
denote this clone V¥, This is the first of the two pretheories,

The second pretheory is somevhat more Tnvolved, It is
the clone of the theory which Thatcher calls the theory of
finite state transfornations on trees. I will not describe it
fully here, but its n-ary symbols are maps from 5 (the state

set) to Terms{Xn x 5, V), and the function assocliated with such
a map t is

lambda(t!,...tn){lambdals)it(s):{lanhkdalxi,s){(ti(s))}))
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This Is seen to mimic the linking action of a
finite=state transformation. !ote also that the carrier of the
pretheory 1s the set of maps from 5 to variable=free trees over
V. We confirm that this algebra Iz a pretheory, and we denote

We recall that a finite=state transformatlion on trees
{or FST) is a eertain type of function from Trees x 5 to Trees.
Hote also that a Cl=morphism from V% to V%5 takes a tree and
vields a map from 5 to trees. Thus an expression f{t){s) is a
tree if f Is such a morphism. e are now Iin a pasition tn state
the main theorem of this sectlon:

Theorem. (i) if f is an FST, 1t Induces a Cl-morphlsm
f# from Ve to V&5 by

f=(t) = lambda(s)(f(t,s))

(I1) Every Cl=morphisn f from V* to V5 Induces a map f+
from Trees x 5 to Trees by

fFé(t,s) = flt)(s)
and f+ is an fst.
(Hif) fé% = f; f=é = F,

In the course of the development, we also prove that all
F5Ts are total, The key to that argument Is that certain
functions are defined for every argument with which they are
called, It turns out that the requirement that funetion
symbols be uniquely defined as to arity, which heretofore sesmed
a rather technical point, and the requirement that Cl=moarphisms
map n=ary functions Inte n-ary functions are a model of this
variable-binding argument, Furthermore, it develops that the
requirement that Cl-morphisms preserve the projections s a
mirror of Thatcher®s “boundary condition” In his definltion of
F5T. These observations, as well as the actual result, glve us
a greater insight into finite-state transformations.
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1. V-algebras and clones.

In this sectlon we define V-algebras and an operation
{closure) which generalizes the eperation of taking the
semigroup of a finite state machine,

pefinition. A ranked alphabet is a pair <V, r», where V¥V Is
a set and r is @ function from V te the nonnegative Intepers.
Where no confusion results, we refer to the ranked alphabet
¢V,r> by V alene. e denate by V, the set Jsc¢ V ; ris) = n}.
We will often call this set Vn.

& ranked alphabet Is nothing more than 2 collection of
function symbols (names) with Indicated functionalities given by
the function r. We Interpret such an alphabet by specifying a
function on an appropriate domain for each fucntion nane. The
resulting structure is called a V=algebra, or just an algebra.

befinition. If V¥V is a ranked alphaket, a V-algebra/, is a
pair <A, d» where A Is a set and d:V == [A®% =» Al such that If
5 £ ¥n then dig):MM==> A, We say A is the carrier of L. We
sometimes write s% for d(s) and write <A, V> for <A, d>,
purpose ly confusing the alphabet V of function symhols and the
set dIiV] of functions, We will use capital script letters &, % .
£ to denote algebras, and roman letters A, B, C te denote thelr
carriers.

Let us conslider very briefly @ few examples of algebras.

Example 1, Let € be a group, Let P = [.], with r(.] = .
(so €P,r» is a ranked alphabet). Let 1(.){g,k) = gh
{(multiplicatlion In G). Then <G,i> is a P-algebra.

Examﬁle 2. Let M be a monald of aperations on a set A,
Make M a ranked alphabet by setting rim) = 1 for each m Iin M.
Let d(m) :A => A be given by dirmd{a) = m(al. Then <A, d2 is a
ti-algebra.

Exarmple 3. Let VW be a finite ranked alphabet. Let £ be
any set, Let Trees{(Z; V) dencte the set of treés built up from
YV with variables In 2 as follows:

i) If 2é& Z, then 2 & Trees{(Z)

117 if s &€ V@, then s & Trees,

iii) if s ¢ Vn, and t!,..,tn & Trees, then the tree
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ti tE L] £n
is in Trees, We denote this tree s{(tl,...tn).

We have made hoere a couple of chanses fron normal
mathematical notation. First, we will allow ocurselves to use
syntactle variables with names longer than a sinple letter (e.g.
Trees, tl}. We will use the symbal “.7 te denote
multipllication, concatenation, or other normally notation=-free
cperations where this may cause confusion, Ve will occasionally
write things like lambda(i)(,..x1...). It Is hoped that this
usage is at least moderately clear. Secondly, note the order of
variables In Trees(Z; V). This will allow us to drop later
arguments when they are clear from context, e.g. Trees(Z, V) may
be abbreviated Trees(Z), or just Trees, as, Indeed, it is In the
definition. If 2 iIs empty we write Trees (V) for Trees (Z;¥).

Let | be defined as follows:
ifs) =5 Ifs& VWOw £
iCEJEt’plr;tn} = S{tlfliftn} iF 5 IE ﬂ‘ﬂF?a

Then <Trees{ V), 1>is a V-algebra, It is called the generic or
totally free V=algebra, since it can be shown that any V algebra
is a homomorphic image of the generic V algebra,

Example Z, the monoid, has an interesting property. Let
MM, 0,P,... be elements of M (ie functions A =% A) We can
compose these functions to get new functions, le
lambda(x) Im{n{p(x))})]. M has the property that, whatever
composition one creates, there Is always a single function In M
which gives the same map. This property, closure under
composition, is extremely important, Ve generalize it to
functions of more than one variable as follous:

Definltion. (P. Hall) Let V be a set of operations on some
domain, and let VYn denote the set of n-ary ocperators In V., WHe
say V is a closed set of operations (or clone, for short) iff

1) for each n » 0, the function E; = lambdal(x?,..,zn){xl) &
Vn and

ZYif g is n-ary, and fl,...fn are k-ary operations In V¥,
then the operation

lambdalxl, s ., xk)(g(fT(xl, .. a2kd, ... fnlxl, .., xlt)))
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is in Vk, We denote this operation gi(fl,..,fn).

Exanple 4, Let R be 2 ring. Let P he the set of pely-
nmials with coefficients in R and varlables in % = [x71,.,
xn,...1. Then <R, P» is a P-algehra. (llatice that we have used
the “natural” interpretation of polynomials as functions an ).
Furtherrore P 1s o eclone, since plpl,..,pn) is just the
polynemial obtalned by substituting pl for xi unifornly in p,
Hote that R Is just PP,

Definition., Let ¥ =[x!,..,xn,...]. Let Xn =
[#1,...,%n). Hote X0 Is the empty set.

Hote that the definiton of the set Trees Is very much
like the definition of the set of terms over a set of function
symbols and constants, This duality is cruclal to many of our
arguments, We therefore define:

Definition: Let V be a ranked alphaket. Define the set
of n-ary terms over V to be the set Trees(Xn: V). We denote this
set Terms(n; V). As usual, we will delete the second arpument
where it is clear from context,.

Definition. The set of terns over ¥, denoted Terms(V) |s
defined as the direct sum of the sets Terns(n; V) for every
non=-negative n,

Mote that the sets Termsin) are non-disjoint; in fact
Termsin) € Ternsin+l). In the set Terms, however, we can
uniguely ldentify any term as to its “arity” (by the definltion
of direct suml). Thus In our definitions we will say “let t be a
term. If t Is k=ary,...” and this will be non-ambizuous.

We can now make Terms(V) a ranked alphabet by letting
Termsy be the Image of Termsinl). To each t In Terns,, we asslign
a function 17(t) as follows: Glven t1,...tn, i“(t)(t],..,tn) Is
the tree resulting from substituting ti for xi in t. This
substitution 1s to be done sinultaneously for all i and for all
ovccurrences of each xi. (This idea will be made somevhat more
rigorous later., See Thatcher[19£9]).

Example 5. <Trees(V¥), 1> 1s a Terms(V)-algebra,
Furthermore the set 1“[Terms] forms a clone, In fact, the
desired function g(fl,..,fn) is ohtalned by applyinz i7(g) to
the terms (trees) f1,..,fn. The reader will verify that a) this
operation is well-defined, even though fl,..,.fn are not
variable-free, and b) that it glves the desired function. (Hint:
prove that substitution Is asseoclative). The reader will rote
also that the n-ary term xi yields the i=th n-arvy projection
funetion E?.
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This cxample is a key one; we will refer te it many times
in the future, :

Hote that we can naturally extend everv operation in a
clone V to operate on arpuments In ¥V via:

Let fl1,..,fn & Vk, pm & Vn. Then let g(fl1,.,,fn) bhe the
composition of g with the f's as in the definition of clene,
This composite is in Vk since V is a clone, So for each k,
z:(VE)™ =» Vk. So for any k we have an alpgebra <Vk, V3,

Definition. An algehra <V0, V¥, where V Is a clone, Is
called a pretheory.

Example 6. <Trees(V),Terns(V)> Is a pretheory, This
pretheory is called the generic pretheory over V, and is denoted
Vo

Definition. Let d = <A, d» be a V-algebra, Let V be the
smallest clone_containing d[V]. ThenEL, the closure of &, is
defined as <A,V 2,

? , as defined above, is just the closure of the algebra
£Trees(¥), V> (The algebra of Examnple 3).

Froposition., For any algebra &E#ﬂ# .
Proof. Trivial from the definition.

Our next goal is to provide an expliclt construction of (L.,
This will, hopefully, make the concept of clene guite a bit
clearer.

Definition, Let (L= <A, d>» be a V-algehra. Ye define
P{l), the polynomial algebra over (L, as follows: P{A) = ¢ A, 47>
will be a Terms(V)-algebra, d” is defined as follows:

i) if s & V, then d"(s) = d(s)
1) If xi & Terms, , then d*(xi} = ef

Pii) Let t & Termnspg. Then t = s5({tl,..,tk) for some
tl,..tk In Terms, and s In V. Then let d°(t) =
lambdalxl, . .,znd [disd{d" (el 3{xl, . ..xnd, .., 2" Ctkdlxl, .., xnd)].

Hote that d”[Terms(V}] consists of all the functions A"
=-=» A obtained by composing functions In L tie by composing
thefunctions in d[V]). Thus going from (L to P(L) is analogous to
taking the semigroup of a finite=-state machine, since the latter
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operation is performed by taking all the functions O ==> 0

obtainable by concatenating elenents of the Input alphabet V
(regarding the elenents of ¥ as maps 0 =-3 0),

Theorem. d* [Terms] = ¥

Proof: We need te show that d(Terms] is a clone, and
that any clone centaining ¥V contains d*[Terns],

To see that d”[Terns] Is a clone, let d+= he a ripht
inverse of d” (le d+«{f)} Is some tree such that d”(d={f)) = F),
Dne may then easily confirm that figl,...gn) =
d (i (d={f))(d=(gl},.. ,d=(pn})) (1" 15 the tree=substitution
function of example 5),

low let C be some clone containing V. Ue want to show
that d”[Terms] € C. lie do this by induction en the depth of t
€ Terms.

If t & V0, then d"(t) € .

If xn & Terms,, then d”(t) is s C

Otherwise t is s{t],..,tk). By the induction
hypothesis, d"(ti)e& C for each i. EBut then d*(t) =
d (s(tl,..,tk)} =
lambda(x?, .., 2n) [d™(s)d (L) 0xt, ., ,xn), .., d®Ctk)}ixl, .., xn))] =
d (s 0d"(t1),..,d"(tk)) in C, so d*(t) is 1n C. OED.

Thus we have the closure operation, as well, as
analogous to taking the semiproup of an automaton. In the
remainder of this paper we will discuss eclones, oceceasionally
referring to this characterization theorern where needed,

As usual, we will define a hormormorphism for clones.

Definitien. Let V, W be clones. A Cl-morphism (clone
hemomorphism) is a map F:V =-=% U such that

i) FIVn]l <€ Uin

i) Fle = &

ii1) FOflel, . ,gnd) = (F(FIMCF(gT), .., FlEN))

Since any clone uniguely defines a prethesry (and
viceversal, we say that a hormomorphism between pretheories o
just & Cl=morphism on the sperators, with the map on the

carriers regarded as the restriction of the Cl-nerphism to V0.

Propositien. Cl-norphlisns compose,
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Trivial.
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?. Theories and Prethearies

In this section we will explore the relationship betueen
Lawvvere”s notion of an algebraic theory or algehraie catepnry
and our notion of pretheory. In order to nake Lauvere®s [deas
clearer, we will introduce an intermediate notien, which we will
call a “complete algebra.”

Definition. A complete alpebra T2 a pair
(.= <A, fAlm,n) ; m,n integers}>
where Alm,n) is a set of maps A® -=-» A" such that

Cal) If f & Alm,n) and g & Aln,p), then their
composition, g.f & Alm,p).

CaZ) If fF:{1,....,n} ==» {I1....m}, there exists a
function f+ in Alm,n) such that f+«(x,.,...x.) = ( see¥n ), Thse
maps are called the trivial maps. PrrTeTm o pﬂmﬂ

CA3) If fl,..fné& Aln,1),then there Is a unique g ¢
Alm,n) such that

E{aIJ‘*‘ﬂam} = {FI{EF;.-;EHJ;-;.pfn{E];--pEH}}

Note that the value of glal,..,an) is Indeed an n-tuple of
elements of A. Ve write <fl,...fn* for this unique g.

A complete algebra‘Ts not an algebra; It Is the
generalization of "algebra® to functions into tuples of elements
of A. We now proceed to characterlze the complete algehras.

Lemma. If & Is a complete algebra, then the direct sum
of the sets Aln,Jl) forms a clone.

Proof. If f:{1} ==> {I,..,n]l := lanbda(x)[i],then f+ =
flgl,...gn) = f.<gl, .., gne. QED.

Definition, Ifd. is a complete algebra, we call the
algebra <A, U{Aln,1)3¥> the base of f and denote it (L=,

Definition. An algebra <A, V> 1s said to be closed iff
¥V is a clone,

Lemma, Let (b= <A, V> be a closed algebra. Let

Alm,n) =
Llambdalx?, .., xm) LOFTCeT, oo mm) ., fnlxl, .., xm))] & F1,...fne
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Vmk.

Then <A, [Alm,n)l» is a complete alpehra. In fact, It
is the smallest conplete algebra containing &, in the sense that
if <A, Bi{m,n)]> 15 another conplete alpebra such that Vn<€
B({n,1), then Aln,m)< Bin,m) for all n,m.

Proof: lie must verify that the sets Alm,n) satsfy
conditions CAT - CA3Z

1Y Let f& Al{m,n) , and g« Afn,p). Then f =
(fl,...fn) for some set of fie Vm, where the tuple notation
indicates taking the conkining process of the hypothesis, (Hote
that this decomposition Is well=-defined), Similarly, g =
(gl,...ep) (gi € Vn)., Let a denote an m-tuple (al,..,am) of
elements of A, Then

g.fla) = g(fllal,..fnlal)
=(gl{flial,...fnlad),..,gpl(fllal,..,fnlalll.
But since V 15 a clone, for each gi,
lambdal{xT, .., xn) (g1 {FfT{xl,ca,2znm), .., fnlxl,..,xm))] &€ Vm
Call this function hi. 5o p.f =(h!,..,hp) &€ Alm,pn).

- fk‘ Let f:471,..,n}F ==> d1,..,n}F., Then f+ =
e =€ fed -

3} This is guaranteed trivially hy the construction.

Hote aleo that the “smallest” conditlien follows directly
from condition 3, for 1€ f & Alm,n), then f = (fl,....fn) for
some set of fi”s in Vm (and therefore in B(m,7)). 5o f is In
Bi{m,n) by CA3, QED,

We call this algebra <4{i*, the completion of (L.

Corollaries. If (L is closed, then <»*=d . If { is
complete, <d=>=({. .

Froof. Easy. Ve go from closed algebras to complete
algebras by taking n=-tuples; we go In the other direction by
cimply restricting ourselves to the T=-tuples.

Having established the intimate connection hetween
elosed alpebras and conplete algebras, we nou proceed to the
second half of our exposition: the connection between complete
algebras and algebraic theories., For conpletenass, we hegln
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with a standard definition,
ODefinition. A catezory T consists of
i) a set OLJ(T) of ohjects of T

ii) for each AT, A2 & OBjJ(T) a set T(AI,AZ) called the
set of T-rnorphisns:iAl == AT

111) For each AT, AZ,A3 & 0OBJ(T) a map “.°
JtTUAZ,A3) x TCAT,AZ) ==3 TCAT,A3)
satisfying the folloving axions:

C1) 1f fe TLAI AZ), pe TCAZ,AZ), and ha T(AI AL,
then h.{z.f) = (h.g).f

C2) For each A € QOhj(T) there exists a T-mnorphism Iﬁé
TCA,A) such that for any f & TIA,B), F.ly = F = Ig.f

We often write f:A =-=-> B for f ¢ T{A,E). filote that we
are using “left notation®: g.f reans roughly “f then g°.

The study of categorlies can be reparded as the study of
generalized composition, Thus if the ebjects are sets and the
marphisms functions between them, then the resulting object is a
category. However, the morphism need not be set-thecretc
functions A -=» B. In fact, one can choose T{A,B) to Le the set
of all functions B == A (1), The reader may verify by

appropriate symbol-pushing that the resulting object is a
category.

totation, Let [n] denote the set {1,..,n}. lote that
[0] is the empty set, and [1] Is a singleton. We will often
write T for (11, and 0 for [0].

Netation. Let [, dencte the map I ==-2> [nl] whose graph
s L{{1,71)F. Do not confuse I, the map L(71,1)} in T(I,[nl),
with h* the identity on [nl,

Definltion, (Lawvere [19463), Eillenberg and Wripht
[124671) A theory T is a catepgory such that

T1) OBJ(TY =dIn] ; n = 0,01,2,3,...}F

T2) 50, the category of sets [n] with all the
set-theoretic functions between them as morphisms, is a
subcatezory of T (ie all the S0-morphisms are T-morphisms, and
the identities and compositicn rules agreel.
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T3} Civen any set of T-morphisms
fl,aa,fnel ==2> [p]

there exists a unique T=morphisn g:lnl == [p] such that

in
[ ======——— *[nl
fi £
[pl
cormutes for each | & n. Ve write <f!,...fn» for this unigue morphisn.

Thus for any f:ln)] ==>[pl, f = {f.l,,...f.n,> A more
useful form of this statement is that any f e T(Inl,[p1) is
expressible as <fl,..,fn» for some unique set of f1 In T(I,([pl).

The notion of an algebraiec theory 1z admittedly an
obscure one, The primary purpose of this sectlion 15 to show how
this notion can be reduced to the simpler notion of an algebra
{actually pretheory)., WHe will now show the relatlonshlp between
theories and complete algebras. To do this, we will first showu
how to construct a theory given a complete algebra. This
construction will hopefully shed some light on the source of the
definition of a theory.

Definition. Let (Lbe a complete algebra <4, {Alm,n)}>,
Let Th{J) be the category T constructed as follows:

1Y Obj(T) = {[nlk
2y T(Iml,[nl) = Aln,m) (note the reversal.)

3) Composition In T Is the reverse of compesition in
i.e., if f& Tllnl,Iml) and g &€ T(Iml,C(pl), then g.f In T is
just f.g 1n . The reader should confirm that this makes sense.

We eall Th{l) the theory of (L. (See Eilenberg and Wright
[1967] for an alternative construction). Lle must, of course,
ceenfirmn that what we have constructed Is a theory. While the
proof 1s trivial symbol-pushing, the astute reader will note the
parallel between the axions of a conplete algehra and the axioms
for a theory. 5o:
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Proposition. If (. 1s a complete alpehra, then Th{l) is
an algebraic theory.

Proof. 1. Thill) 1s a eaterory. Closure under
composition follows directly from the closure of complete
algebras under conposition(CAT). Assoclativity (C1) therefore
follows from the assocliativity for set-theoretic functions.
From CAZ, we know that the identity on A" is in Aln,n) for each
n (It Is the function induced by the ldentity of [nl).
Therefore it serves as the identity I In TCIn1, [nl).

T1. Oby (T) = {Inl]k,

2. 30 is a subcategory of T via the Insertion sending
f:ln]l ==> [m] to f=:A™ --> A", tote that f e 50(Inl,I[n]), so fe
e Alm,n), so f+ & T{I[nl,[m]l), as desired. MNote that (f.p)+ =
f+.g+, and ET-%* {ie = of the ldentity on [nl) is T (the
identity on e . From these two observations 1t is easy to
confirm that composition and identities agree om 50 (or |ts
image) and on T, so0 50 is indeed a subcatepory of T. Mote that
this fact depends almost entirely on the axiom CAZ, which
guarantees the existence of all the trivial maps in fl. Thus the
axiom T reguiring 50 as a subeategory may he viewed as simply
requiring all the trivial maps to be In T.

T3, Given any set of T-morphisns f1,..fn: T == [p], we
want to find the unigue T-morphism <fl,....fn». f1,....fn are just
maps in Al(p,1), so let g = {FI,.,.,.fn>» In Alp.n) {(whose existence
is guaranteed by CA3). e would like g.i, = fi in T, g.i, inT
= (T,0+.g in (L= e*.<f1,..,fn> = fI inf = fi in T. So the axiom
T3 may be viewed as requring the existence of direct proaducts
(CA3). QED.

Definitien. If (L 1s an algehra (rather than a complete
algebra), then let Thi{{l denote Thi{<d>),

Having established that to every algebra there
carresponds a theory, we naturally ask the next guestion: Is
every theory the theory of sorme complete algebra? To answer
this question we will associate a conplete algebhra with each
theary.

Definition. The free clone over T, CL(T), Is the set of
maps TL(I,[01)™ ==» T(I,[0]1) defined as follows: To each
T-morphism f& T(I,[nl]) we associate the map in Cl{TI, elven by

lambdalal,..,an)[<al,..,an>.f]

Hote that this definlition makes sense, for , if al,...an
e T(I,0), then <al,..,an> & T(Inl,0), and f ¢ T{(1,[nl), so the
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composition <al,..,an>.f is defined and Ts & menber of T(I,0).
e leave it as a simple exercise to show that CL{T) is really a
clone.

Definitien, The free conplete alpebra over T, denoted
CACT), is <CL(T)>», the completion of the clone of T {or actually
the completion af the pretheory <CL(T),, CLCTIS.

To pget the deslired result we will develop a series of
technical Llemmas.

Lerma. There is a natural bijection T:fTEI,[n]J]I'Il -
T(Iml,[nl).

Froof. i is given by (f1,..,fm) == (F1,..,fm», I=l=-ness
and anto-ness are both trivial.

Corollary. A theory T is uniquely determined by the
morphisms T(I,[nl),

This is analogous to the statement that a complete
algebra 1s uniguely determined by its base.

Theoren, T1 = TZ 1ff CAITT) = CA(TZ).

Proof. ==2 trivial, <==: It will sufflce to show CL{TT)
e CI(T2) ==2 TT= TIZ. But it is clear that CL(TI) = CL(T2) ==>
;éil,[nll = TI(I, [(n]l). But then, by the last corollary, TI =
« QED.

Definition, A complete algebra is said to bhe self
generated iff A is lsomorphic to A(D,T).

Corollary, A complete alzebra is self penerated 1ff 1t
is the completion of a pretheory.

Theorem. Ifid is a pretheory, then L& CL(Th(L))

Proof. Let (L= <v@, Vv>. Let T denote ThiQ). Let P
denote CL{T). We know that T(I,[nl]) 12 just Vn, and that Bn 1s
just T(I,[nl). %o we have a natural bljectlen e:V¥n -=> Bn for
each n. It remains only to show that the map & Is a
homomorphism, ie

e(flal,..,an)) = e(f)(elall,..,elan)),
How & is the identity on the 0-ary elements, so we need

only show that e(f) = f. How the Image of f In T is just the
morphism f. The image of f in CL{(T) is the map
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lambdafal, .. an)[<al,..,an*,.f]

How the . In that expression is the composition of
Thitk), which is defined to be just the reverse of composition In
¢y, So <al,..,and.f in T is f.<al,..,an» in <>, which is just
flal,..,an). 5o the image of f In &= CIL(T) is

lambdal{al,..,an)[f{al,..,an)] = f, as desired, 0QED,

Corallary., If (L is a self generated complete algebra,
then (L= CA(TR{L}),

Corollary. If T 1s a theory, then T = Th{CL{T}).

Proof. Let (L be CIL(T) in the theorem. Then CL(T) =
CL{ThR{CLCTY2), But by the first theoremn in this section, this
implies that T & Th{CI(T)). QED.

What we have shown so far is that there 1s & natural
correspondence

theory

complete algebra

|

prethecry

such that all of the arrows commute. In fact, we can assert
sonething strnger., If we define a homormorphism of theorles (as
we will very shortly), we will get the following ladder diagram
to be cormutative:

T ==mmmmmmme > T2
CA] ====mmmm- » CAZ
o I » ClLI

where the vertical arrous are any of the correspondences of the
previous diagram, ad the horizontal arrows are the appropriate
homomorphisms. In fact, specifying any one of the hnrizental
arrows will Induce maturally the other two horizeontal arrows,
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Furthermore, all of the Inductlons cormute, e.gp. If a
Cl=morphism f induces a Th=rinrhpism f#, then the Cl-rnorphism
induced by f¥ will be precisely f.

Our first tasl Is te define homomorphisns for thesrles,

Definition. A Th=rarphism {(theory homomorphisnd T1 =<3
T? is a functor preserving 50, ie o map F on the morphisms of T1
such that

THIY F:TI([n),[m]) ==> T2([nl, [m])

THZ) If F &€ T(Inl,Iml) and g € TI([pl,[n]) then
Fif.zg) = Ff.Fx

TH3) If f & S0, then Ff = f ,

One should not ecnfuse a Th-morphism, which Is a map
between two theories, with a T-norphism (or, sav,
Thi{dd-morphism), which is a map inside a particular theory. We
will avoid naming any theory Th, so this notation will he
unambiguous,

Definition. A CA-morphism (Complete algehra
homomarphism) frem to B is a map F whose domain s AW
ULA{m,n)} such that

1) Fla)y € E

2) F:almun) == B({m,n)

3) F(f.g) = Ff.Fp

4) If f is a trivial nap, Ff = f,

Both Th= and CA= morphisms may be viewed as
homomorphisms (conditions 3 and TN?) which preserve the
dimensionallties af their donains and ranges{conditions ¢ and
TH1), and which preserve the trivial maps (conditions 4 and
THM3). Similarly, ene can view Cl-rorphisns in the same light.
The ladder theorem, then, should not be greatly surprising.

Ve will also need the technical result that Th- and CA-
morphisms preserve their direct product operations as wall.

Proposition. Let F be a Th=rworphism, fl,...fn & T(I, [k]).
Then F(<fl,...,fn>») = <FFf1,..,Ffn2»
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Proof, FOCFT,.. .. fn2d.l = FOCFT, ., Fn2l F(T) =
F(<FY,eu,fn2.i) = FFfi, for each i, By the uniguencss condition

of the definition of <,..%, this is sufficient te show that
F(<f1,..,fn2) = <Ff1,..,Ffr2, NOCD.

The proof for CA-norphisms is similar.

Theorem. i) Let &B he cornplete algehras, F:@L-->F be a
Ch=-riorphism, .hen the restriction of F to the sets Alm,T),
denoted MICF), Ts a Cl=mnorphlsn on the clones Q= =-=3 EH
satisfying the ladder condition of the previous discussion.

ii) Let L,% be clones, F:fl==->% a Cl=morphism. Then
F induces a ChA=riorphisnn MZ(F):<dy ==><B> satisfying the ladder
condition.

P11) HI(MECFY) = £; NEZCHI(F)) = €

Proof. i. Trivial,

11y M2 is given by: M2{F) on A is just F, Let fé&
Alm,n) be <fl,...fn>. Then let MI(F)}(F)} = {FF1,..,Ffn>. Ve need
to cenflirm that MEI(F) is a CA-morphism. Condlitions 1 and 2 hold
trivially., To wverify condition 3, let MZ{F} be denaoted hy G.

Let f = <f1,..,fn¥*, g = «gl,...,gm*. Then
G(f.g) = G(<fl.g,...fn.g>) = <F(fl.g),..,F(fn.gl>
s (F{f1(gl,.uogm)d,..,Fifnlgl,. .., Er))>

= SF(FI)(F(gl), .., FlEgmd), . ...F(fr)(F{gl), .., Flgm)]>

CFOFT).<Flgl), .., Flamdd, .., F{fn) . <F(gl), .., Flgn)a>

CFOFT).Glgd, . ., FIfn).Glm)2

n

CFOFTY, ... FIfni>.G(R]
G(F).G(g)

To verify that the trivial maps are preserved, note that the
trivial mapes are the direct products of the projections, which
are presarved by F. MNote that the ladder cendition follows
immediately from the natural inclusion of L in <@,

iil) Obvious, slince MI on A(n,7) is the Tdentity.

Theorem. Let T1, T2 be theories, F:T1 ==-> TQ a
Th-morphlsm. Then F induces a Cl-rorghisn MI{F):CL(TI) ==
C1ET2), such that the following diagramn cormutes:
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.F
T] =emmmemm——— > T2
CULTT) ====r—=—===a > CL(T2)
13 (F)

where the vertical arrows are the natural Insertions of the
construction of CL(T),

Proof. Let s & CI{T1)u. Then s is the Image of a unlgue
morphism (alse denoted s) In TI(I,[n)). Let M3(F)}(s) be the
image of Fl(s) in CL{TZ)., N3(f)(c) &€ CL(T2),. MI(F)(e(sl,..,5n))
= F(¢s],.,.,5n*.8) = Fl(<{s],..,5n»).F(s) = {F(s]),..,Flsn)>»,.F(s) =
M3(F)(s)(M3(FX(sl),..,M3{F)(sn)), so the homomorphlism cordition
holds, The projections are in 50, so they are preserved. 5So
M3(F) is a Cl-morphism. Again, the diagram condition Is
trivial, since the vertical arrows are Insertions, and M3 is the
identity on the inserted Tmage.

Theorem. Let @, B be conplete algebras, F: L --> B a
CA-morphism. Then F induces a Th-morphism M4(F):Th({L)==>Th{B),
such that the diagram condition holds,

Proof, We need only specify M4(F) on the rmorphisms of
Th{dd. Denote M4{F} by G and Th{L) by T. Let f& T{Inl,[ml).
Then f is the image of some map (also dencoted f£) in Alm,n). Let
G(f) be the image of the map F(Ff) in B{m,n). Again the diagram
condition holds obviously, Ve must confirm that G a is
Th=morphism. The dimensionality conditon, THI, holds trivially
from the corresponding dinensicnality condition (#2) for
CA=-morphisms., 50 s preserved, since 50 is the image of the
trivial maps In {4 which are preserved by the CA-morphism, Ve
need only confirm that the homomorphism condition (THM3) holds,

G(f.g) = Flg.f) = F(g).F(f) = G(Ff).G(g)
aen.

We hawve now established the follewling transformations
between the various kinds of homororphismis:
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Th=rorphisns
M3 Hid
Ch=rorphisns
1 e
Cl=rnorphisms
e have shown that M7 and M? commute, so
to complete our prgram, we need only one more result, which we will
leave as an exercise to the reader.
Propesition. M4,.NZ.H3 = the ldentity; M3.N4.12 = Tdentity.

Proof. Trivial frem the Insertioens,
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3. Pretheories and Finite State transformations

In this section we will apply pretheories to the study of
finlte state transformations on trees. Thils investigation was
motivated by a renark of Thatcher [1769). He remarled that the
finite state transformations on trees induced a herosorphism on
a certain semigroup of suhstitutions, which he called o
pretheary. He left open the guestion of an abstract definition
of a pretheory, and conjectured that with the proper definlticon
of pretheory every horomorphisn of prethearies would vield a
finite state transformation.

Definition. Let Z be some (infinite) set of varlable
symbals, Then we call any fun:tlnn-q:z == Treas(Z,V) a
substitution.

Definition. We define the substitution operator ! as
follows, Let t & Trees{(Z, V), be a substitution. Then ti is
defined by Induction on the construction of t:

Iy 1If f& Z, then by = Mit)

Pi)y i1f t = s(tl,..,tn), then t:ﬁ = s{tI:q,.*,tnnp, where
s & Vn, n= 0.

This definition is due to Thatcher, who also originated
the foellowing definition and proposition.

Definitlon. We can extend : to substitutions in the
first argunent as followus: IF'H'S are substitutions, then let

ﬂltg = lambdaizlﬁﬂtz):EJ

The reader will confirm that this definlition rmakes sonse,
Proposition (Thateher) Lq:g}:s = q:{i:s}
Proof. 5See Thatcher 1949,

Corallary. The set {Trnegtilfa of substitutions on a set
2 forms a monoid with the gperation .

Motation, For any s € Yn, let 57 denote the tree
s(xl,..,2n) & Trees(Xn, V).

. Prnpnthinhi hny tree in Trees{d, V) 1t decomposable as
5”9, where s° is uniquely deternined and% is a substitution on
rowell defined on in.
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Proof, This is just the definition of Trees(X) In
slightly different notation, Let t bhe s(tl,..,tn) and lets be
any substlitution mapping xi to ti for x1 in ¥Xn. Then t = s .

Definition., Let 5 be a finite set. Let fO0:V 2 § ==3
Trees{%xS, V) such that fO0[V¥,] & Trees(Xn x 3). Ve can extend 0
ta f:Trees{k) x 5 ==» Trees{(X x Z) by

1) tlxi,s) = €x1, s> (& X x5 < Trees{Xx5, V)]
i) f{a':ﬂ, 5) = fﬂta,s}:lambda[u,sl[f{ﬂ{x}, s)]

We can regard the substitution in (il) as the extension of f to
substitutions:

f{ﬁl = lamhdatx,sitftth}JEJ]
Then Fla*:ﬂ, 5} = fﬂta,sl:fﬁ1l.

Any function f:Trees(X)xS ==» Trees{(Xx5) defined In this
way Is called a finlte-state transformation. The rationale
behind this defintion is given In much more detall In Thatcher
[794%7]. The reader may alsc verlfy that this definition 1s
equivalent to the more intuitive formlatlon of Rounds [1949].
One may regard the function f@ as specifying the set of
productlions, and the recursion schema as specifving the actlion
of a gsm. A number of facts are easily proved about F5Ts.

Froposition (1) f Is total and well defined.
i1) flTrees(V) x 5]l c Trees(V)

iii) F{th]',s]' E t(t,sl:f{ﬂ]

Proof. (1) and (i1) are proved via recursion Tnductien,
The key point that wants verifeation is the following: In
evaluating f on a tree, we must evaluate fl%), for seme ™ which
is wall defined ony on zorme initial segment X¥m of X, We must
eonfirm that fi#) is called enly for arguments for wich it is
defined. Simllarly, we can show that 1f t is in Trees(V), then
the boundary condition (i) of the defintion Is never used [1)
The proof is elementary and will not be reproduced here,

(1i1) is proved by Thatcher [1949], q.v.

Froposition. fﬂi:g] = f-hl}:f[f,!l
Proof, Trivial from 1771,

This was Thateher®s key chservotion: That F5Ts induced
homomnorphisns an the semiprnups of transfarmaticons (in
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par‘ti:;ulari in this case, the FST f induces a komonorphism

(Trees{X))® ==2» (Trees (Xx3)) ? He therefore called these
monoids prethecries. Unfortunately, the converse was not true,
and Thatcher offered the apen problem of definlng an algehraic
structure in which the converse held, Ue will define tun
prethearies, such that a map Is an FST if and only if Tt is o
Cl=morphism between the two protheories,

If one considers ithy the converse of the last
preposition does not hold, one iz led back to the detall of the
proof that f is well=defined: It develops that one has to worry
about the transformation being called with arpurents for which
it 1s not well-defined, One rnoy offer necessary and sufficient
conditions on a hormororphlsn for it to bhe the homormorphism of an
FST. PRoughly stated, the conditicn is that the hemomocrphisn he
bounded, In the sense that Its value at x depend only on the
value of the argunent at x. This boundedness s again roughly
reflected in the algebraic theory which Thatcher mentions as the
theary of F5Ts. It develops that any Th=rmerphism inte that
theory Is an FST (in a natural sense). The “boundedness”
condition thus stated is merely a reflection of the conditions
for 2@ Th-morphisn: that if F T(Inl,[ml), then Ffeg
F(T)([nl,Iml), and that 5S¢ Is preserved, The pretheory we
will offer is just the e¢lone of the theory of Thatcher., This
description i not meant to be clear, but merely sugmestive of
the considerations that guided tkis research. Ve will now
present our finished product Im a “standard” mathematieal
presentation, e the framework of this development will be
(unfortunately) well=hidden.

Motation., Let Ve denote V , the free clone over V

defined in Section 1. We recall that this is
{Trees(V¥),Terrms{V)>, with the interpretation that If t & Terms,,
and t1,..,tn are trees, then tl{t?!,...tn) = t:lambdalxi)[til.

{The reader may confirm that this Is eguivalent te the previous

definition, with an appropriate reading of our screwvhat informal
lambda=notation). Hote alse that the substitution In question 1s
well defined only on Xn, as desired.

Motation. Let Maps(S:A) denote the set of all fumctions
F:E ""} Al-

Motation. Let the n=ary terms in Xx5 be the set
Trees{%n x 5; V). Let the terns over Xx5 be the dlrect sun of
the sets af n-ary termns over XxS. Denote this set by Terns
(Xx5). HMake Terms(Xx5) a ranked alphabet In the usual way by
setting Terms(ix3), equal to the n-ary terns.

Definltion. If A& Is a ranked alphabet, nake Maps(5;A) A
ranked alphabet by setting r(f) = max [r{fl(s)); s € 5] (This
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will always be finite since 5 s finitel,

Definition. Let ¥ be a ranked alphabket, 5 a flnite set.
Then let V+5 denote the alpebra

(Maps(S:Trees(V)), Naps(S:Terms(Xx5; V1)>

where ti{tl,..,tn) = lambdal(s)[t(s):lamhda(xi, ) [tifs)]], Ye
denote this operation t+{tl,.,,tn) to distinguish It from the
very=s5imilar=looking, but gquite different, operation In Vi,

Let us try to explain this, The carrier of ocur algebra
consists of maps from S Intoe Trees, So an element of the
carrier can be envisioned as an “S-tuple” (tl,..,ts) of
variable=-free trees over V. The ocperation symbols are S-tuples
of trees which may have variahbles in X x 5 at thelir leaves.
llhat are the operations of V=537 Let ti,...,tn be elements of V=5
(that is5, elements of the carrier, or maps from 5 to Trees), and
let ¢t be a r=ary operation symhol Tn V%5, Then we have to apply
t to tl,..,tn and get another map from 5 to Trees. Envision t
as an S5=tuple (fl,..,fs) (remembhering that these fl are trees
with some variables in their leaves). Our operation vields an
S-tuple (flm,..,fs9) for an appropriate substitutiony . The ¥
we have choseén savs: [f vou are at a variahle {xi,s> on f],
take argument ti (an E=tuple of nice, pure, variable-free
trees), take its s-th element {one nice, pure, variable=free
tree), and attach it te this leaf, thus turning fj Into a
HaP¥=F tree, and turning t into a map from 5 into HPV=F Trees,;
as desired,

This may look like so much legerdemain: after an
approprlate flash of the notational magic wand, we have pulled
an imaginary rabbit out aof an imaginary hat., The remainder of
this paper, however, will be devoted to demonstrating that real
rabbits actually llve In top hats or, more precisely, that V=35

Is a natural thing to study [f one s intereseted in F5Ts on
Erees.

Proposition. V%5 1s a pretheory.

Proof. The projection function ef is provided by the
n-ary term lambda(s)[<xi,s*], for

lambda(s) [<xi,s2)1%(tl,..,tn} =

= lamhdals) [lambhdafs) [<xi.s>){s):lambdal(xi,s)
[ti(s)1]

= lambda(s) [<xl,s»+lambdalizl,s)ltl{s)]1]



page 29

lambda(s) [lamhda({xi,s}[ti(s)]l({xi,5)]

lamhda({s)[ti(s)]

To get closure, let t & Maps(5; Terms(Xx3)),, tl,...,tn€
Maps(S; Termslﬁ, ul,..,uk € Haps(5; Trees).

We want h & HMaps 5; Terms), such that

h*{urj-il;Uk} = t*{tI*{Uif!!fuk}fll;thﬁ{u'f!lEUH}J
Let u denote the k=tuple ul,..uk. Let h = t={tl,..,tn). (Note
that while # was not formally defined on non variable=free

trees, there is nothlng In the definitlon to prevent us from so
using it. S50 we willl.

(ree(tl,..,tn))=u = (lambda(s) [t(s)«lambdal(xi,s)[ti(s)]1]l*u

= lamhda (s) [[t{s):lamhda (xi,s) [ti(s)]l:lamhda (xi,s}
[ujisldl]

= lambda (s) [ti{s):[lambda (xi,s) [tids)]l:lambda (x]i,s)
[ujl(slll

= lambda (s) [t(s):lambhda (xi,s) [ti(s):lambda (x),s5)
[ujfs)1]]

= |lambda (s) [t(s):lambda (xi,s) [(ti={u))(s)]]
= ta(tl#u, .., tn%Eu)

So V%5 1s closed. Hote Trees © Terms(XxS5), so the
carrier is just the [(-ary operators. OED.

Thearem. Every FST f Induces a Cl=morphism
foerWdr == V&5
by f#{t) = lambda (s) [f(t,s)].
Proof. We need ﬂnly-:nnfirm that this s a Cl=morphism.

i) fﬂ{ezl = lamhda (s) [f(xi,s)] = lamhda (&) [<xi,s>],
which 1s, as seen previously, the projection eperator In V5.

if) f=lrltl,..,tn)) =
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= lambhda (s5) [fi{t:lanbda (xI) [til,s)}]
= lamhda (s) [flt,s):f{lambda (xi1) [t11}]

= lamhda (s) [flt,s):lambhda (xi,s) [f(lamhda
(xi) [ti1)(xi),s5)]]

il

lambda (s) [f(t,s):lambda (xi,s) [f(ti,s)]]

lambda (s) [f=(t)(s):lambda (xi,s)}
[f=(tl)(=s)]]

(felt))e(fel(tl),..,feltn))
niEiEIl
Although the “linking mechanism®™ in V%5 1s admittedly
cbscure, this theorem shows how it is naturally related to the
linking mechanism of the F3T,

Theorem. Every Cl=morphism fiVWe ==3 V&5 induces an F5T
(with state set 5) via

f+ = lambda (t,s) [Flt)(s)]

Proof. HNote that for t € Trees, fl(t) ¢ Maps{5;Trees),
so f{tl{s) e Trees, as desired. Our proof will he by recursion
Induction., We will show that f+ satsfles the recursion scheme
in the definition of F5T. 35ince we know that scheme 15 total,
we conclude the f+ s precisely given by 1t.

filxi,s) = fixil(s) = ep(s) = lambda (s) [<xi,s>]1(s) =
Cxl,s?

f+lalel, .., tn),s) = flaltl,..tn)lis}
= (fla)*x(f(tl), ... flend}i(s)
= (fla)(s)):lambda (xl,s) [fl(ti)(s)]
= fila,s):lambda (xi,s) [f4(ti,s)]
QED.
Proposition., f&é = f; fFfix = f,
Proof. Trivial,

This completes the proof of ocur desired result: That
the F5Ts correspond, in a natural way, to the Cl-marphsinms
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between the given prethenries.
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