MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A. I. LABORATORY

Artificial Intelligence
Memo Ne. 217 June 1971

COMPUTER PROOFS OF LIMIT THEOREMS

W.¥W. Bledsoe*, Robert 5. Boyer®,
Willism H. Henneman

Work reported herein was conducted at the Artificial Intelligence
Laboratery, a Massachusetts Institute of Technology research
program supported by the Advanced Research Projects Agency of the
Department of Defense, and was monitored by the Office of Naval
Research under Contract WNumber HNOOO14-70-A-0362-0002; it was also
supported by National Institute of Health Grant GM 15769-03.

*Massachusetts Institute of Technmology and the University of Texas.

COMPUTER PROOF OF LIMIT THEOREMS

by

W. W. Bledsoe, Robert 5. Boyer,
William H. Henneman

Massachusetts Institute of Technology
and the University of Texas

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research program
supported by the Advanced Research Projects Agency of the Department
of Defense, and was monitored by the Office of Naval Research under
Contract Number N0OOO14-70-A-0362-0002, and was also supported by
Mational Institute of Health Grant GM 15769-03.

1. Introduction

In this paper we describe some relatively simple changes that
have been made to an existing automatic theorem proving program to
enable it to prove efficiently a number of the limit theorems of ele-
mentary calculus. These changes include subroutines of a general
nature which apply to all areas of analysis, and a special "limit-
heyristic” designed for the Vimit theorems of calculus.

These concepts have been incorporated into am existing LIGP
program and run on the POP-10 at the A.I. Laboratory, M.I.T., to
obtain computer proofs of many of the 1imit theorems, including the
theorem thﬂ£ﬁgFiimit ufT:Féum of two real functions is the sum of
their limits, and a similar theorem about products. Also computer
proofs have been obtained (or are easi]y obtainable) of the theorems
that a cnntirﬁ‘ﬁus function of a continuous function is continuous, and
that a function having a derivative at a point is continuous there,
as well as 1imit results for polynomial functions,

The 1imit theorems of calculus present a surprisingly difficult
challenge for general purpose automatic theorem provers. Dne reason
for this is that calculus is a branch of analysis, and proofs in
analysis require manipulation of algebraic expressions, solutions
of inequalities, and other operations which depend upon the axioms
of an ordered field. It is in applying these field axioms that aute-
matic provers are wsually forced into Tong and difficult searches.

On the other hand, a human mafhematician is often able to easily

perfarm the necessary operations of analysis without being aware

of the explicit use of the field axioms. One purpose of this paper
is to describe ways in which automatic provers can also avoid the use
of the field axioms and speed up proofs in analysis, Section 2 ex-

plains how this 15 done using a limited theory of types and routines

for algebraic simplification and solving linear inegualities.

In Section 3 we present the limit-heuristic, give examples
of its use, and discuss its “"forcing” nature which enables it to
curtail combinatorial searches.

The reader interested only in f@su]ut1an based programs should
skip Sections 4 and 5 and go directly to Section 6, where we explain
how resolution programs cam be altered to make use of the limit
heuristic and other conmcepts.

In Section 5 we give a detafled description of a computer proof
of the theorem that!gfiimit uftigﬁrnduct of two functions is the product
of their Timits. This proof was made by a program which is the same
as that described in [1], except that the subroutine, RESOLUTIOM, in
[1] has been replaced by a new subroutine called IMPLY. We have thus
egliminated resolution altogether from our program replacing it by am
"implication method" which we believe is faster and easier to use
{though not complete). This implication method is described briefly
in Section 4, and excerpts from actual computer proofs using it are
given there and in Section 5.

It appears that some of these ideas may have wider implications
than the Timited scope in which they were used here. This is dis-

cussed in the comments of Section ¥ and throughout the paper.

2. Types and Inegualities

In the work described in this paper we have used membership
types whereby the type A is assigned to x whenever it is known that

(x e A).

Let <a b> denote the open interval from a to b , R ® cem =

P=c<0= , and N=<e= 0= . We are primarily interested in interval

types, including the types R, P, and N. Thus in trying to prove
(0<x + 0Q(x))

we would assign the type P {or <0 =>) to x and then try to prove Q(x).

For example, suppose that we are to prove
(1) (0<b » SOMEx (0<x A x<Bb)).
One valid approach is to solve for x in
(2) (0<b + 0<x)
and thenm try to verify
(3) (0<b = x<b)

for that same x. But using matching we would get as a solution of (2)

Z
the substitution [b/x] . and require

(0<b = beb)

1. We use the words "SOME™ and "ALL" as our existential and universal
guantifiers. Thus “SOME x P(x)" means "for some x P(x)", and "ALL x P(x)"
means “for all x P(x}".

2. We follow the usual practice of denoting a substitution by a 1ist
[b,/ay, B faz, e bnfanﬁ where each A is to be replaced by the cor-
relﬁuld1n§ by

in (3) which is impossibie.

0f course (1} is unprovable without further hypotheses (or
axioms) but it can be easily handled by the use of types [which impli-
eitly assumes certain axfoms). Our approach in proving {1) is to

ass1gﬁ; <) => to b, and then try to prove
(4) SOME x (0 < x A x < b) .
We first solve

(5) (0 < x)

by assigning type <0 => to x and then solye
(6] (x < b)

by assigning the type <0 b> to x. The resulting type of x, <0 b>, was
derived as the intersection of its initial type <0 => gotten from (5),

and the interval <-= b>, which would have been the type gotten from (6)
alone. Since this intersection is not empty (because b has type <0 =),
it is assigned as the resulting type of x. Even though the variable x
had already been "solved for" in {5) (typed), it remains a variable in
the solution of (&) (though limited in scope) and therefore could be

"folved for" again (retyped). In the examplesof Section 5 some of the

variables are retyped two or three times, and this greatly simplifies the

proofs.

Types are used by the routines S0LVE< and SET-TYPE which are

deseribed below.

2.1 SOLVE=<

This 15 a routine for solving linear inequalities. (SOLVE< A B)
chooses a variable from A or from B and attempts to solve the ineguality
(A < B} in terms of that variable. If this fails it then chooses another
variable and tries again. S5ince the terms and variables of A and B may
be typed, this routine must take into consideration such types and reset
the type of the variable when the solution is obtained. In fact the ans-
wer is completely given by the new types. The examples below best illus-
trate this point. If it can show that A is less than B, then the routine

will return the answer "T" whether or not A and B have any variables.

Examples.

INPUT
A
1. X
(no types)
2. X

Type x i5 <0 ==
3. 1]

4, xsa+c
Type a i5 <0 =»

5. ®
Type x is =0 DE}

Type D, is <0 ==

B Value of

- (SOLVE= A B)

1 X

I :

1 T
(=x+d) X

OUTPUT

Hew Type of x

com |

<0 1=

d =
<=7 - T3

{intersection <0 D1;¢n DE}]

In this example the type of D in the answer could have been
given as <0 (minimum D1DEJ: but we find the

convenient.
d
b. r
Type x is <=0 ==

Type a i5 === 0>

Type b 15 <0 ==

intersection form more

In the actual theorem proving process, SOLVE< is applied to
formulas that have been converted to quantifier free form by the intrg-
duction of skolem expressions.> Precautions are taken by SOLVE« to
insure that it does not solve for a variable x in terms of a skolem
expression in which x occurs. This is essentially the same precaution
taken by J. A. Robinson in his Unification Algorithm [2].

For example, consider the false statement
SOME x ALL ¥ (y < x) .
The skolem form of this is
(¥ x) <x .

The result of a call to (SOLVE< (v x) x) is NIL, since x occurs in
the skolem expression (y x).

On the other hand, the theorem
SOME x ALL y SOME z (y < x+z)
which has skolem form
(y x} < x+z

can be proved by a call to (SOLVE< (y x) (x+z)) which correctly assigns

type <(y x)-x == to z.

3. A skolem expression is a term whose main function symbol is a
skolem function. cf.-thefootnete in Section 4 which describes the
elimination of gquantifiers by the introduction of skolem functions.

The CalVeEx
Actually, +his rﬂutinEAjust retypes a variable in a way that

guarantees the solution of the desired inequality.
Yore extensive routines could easily be written (indeed have
been written by others) to solve nonlinear inequalities, but these were

not found necessary for proving the examples reported here.

2.2 SOLVE=. This is a routine for solving Tinear equations. Given
two arithmetic expressions A and B, it selects a variable x from A or
B and trys to solve the eguation (A = B) in terms of x. If it succeeds,
with answer y, it returns the substitution, [v/x] . Otherwise it

selects another variable and trys again, returning NIL if all fail.

2.3 SET-TYPE. This 1s a subroutine which assigns types to certain

skolem expressions. If a formula of the form (A & B) 5 in & conjunctive
position of £ (i.e., E can be expressed as ((A e B) A D) for some D),

and if A is a skolem expression which does not occur in B, then (SET-TYPE E)
assigns the type B to A and returns D, the fﬂTﬂﬂTﬂ.ﬂUttEﬂ by removing

(A e B) from E. If A already has type C, then SET-TYPE assigns the inter-
section (B~ C) as the type of A, if (B A L) 95 non-empty. If (Bal)

is empty it returns E. - If (B) 15 not empty, but cannot

be given specifically then the formula (intersection B C) is given as the
type of A.

For example, if E is the formula
(A A (xeP A (B + yeR)))

then (SET-TYPE E), assigns P as the type of x, and returns

(1) {A;-.{E+;.r;£ﬂ,

If, in this example, x already had type R,
then B is assigned as the new type of x;
if it already had type <-1 1= then it assigns type <0 1> to x; if it
already had type <-= -1> then it returns [Aa Sl t LA (B—r Y& R)).
In a similar way, it assigns types to skolem expressions which

satisfy certain inegualities. For example, if E is
(A <0 A (B=<1 v C))

then (SET-TYPE E) assigns type <-= 0= to A and returns
(B <1y C),

and if E 1is
(A<B A C)

then (SET-TYPE E) assigns type <-= B> to A, and type <A => to B and returns
C. Similarly, (SET-TYPE (A # 0)) can be made to assign type (union <-= 0=
<0 ==} to A, but this sort of typing was not used in any of the examples

given in this paper.

2.4 SIMPLIFY

This is an algebraic simplification routine which converts al-
gebraic expressions into a canonical form, sorts its terms, and cancels
complementary terms of the form (a+(-a}) and {a*%i, It is used in all of
our routines which manipulate algebraic expressions. Such routines are

not new to the literature.

Examples.

INPUT

(a-(b+c))

[a-h'éﬂ
{-{a+%J+{h+c] + ¢-a)
(|b+c-b| + a)

(~I(a-2) - 1))

QUTPUT

(asb + a-c)

b
(=(a-b)+{-1)+(=(c-1)))
(fe] + a)

0

3. Limit Heuristic

The Timit heuristic rule defined below, in conjunction with the
routines described in Section 2, 15 used to help prove limit theorems.
LIMIT-HEURISTIC: When trying to use a hypothesis of the type

IA]<E"
{and possibly other hypotheses) to establish a conclusion of the type
|B|<E,
first try to find a substitution o which will allow IZ'I_::I:‘r to be expressed
as a non-trivial L‘.nmb'inatinn5 of A, (B = KA + LJu. and then try to
establish the three new conclusions:
A. [|K]| cH}ﬂ, for some M,
B (IA] <E/2M),
C. (JL]<E/2)_
Such a procedure is valid because if we can indeed find such a g

and prove A, B, and C, then we would have

8],

k=R + L[c

CIK] AL+ LD,
M-E/2M + Ef2

= E.

LI

N

Of course, this is based on the triangle ineguality, and uses the fact

that 1/2 + 1/2 = 1, M«1/M =1 for M« 0, etc.

4, The notation Eu denotes the result of applying the substitution
o to B.

5. The routine EXTRACT, described in Section 3.1 below, is used
to express B in terms of A.

The

As an example, in proving the theorem that the 1imit of - product
of two functions of real variables is the product of their limits, we find
ourselves trying to establish a conclusion of the type
(1) |f(x)+alx) - L1-L2]< E.

Among our hypotheses is
(2] IFlx') = Ly < E",
which can be used to help establish (1) (provided that we satisfy the
conditions for (2)). If we apply the limit hewristic to {2) and (1)
we find that for o = [/%']
(F(x)g(x) = Ly-L,)
can be expressed as a combination of
(Flx') - L,),,
viZ.,
g(x)-(Flx) - Ly) + Ly-(g(x) - L,),
and are able to establish the three subgoals:
A. glx)}| <M, for some M.
B. |f(x) - L1| <Ef2+M.
€. JLyelalx) - Ly)|<E/2.
Subgoal A follows from the hypothesis
(3) g(x'1) = Lyl <E""
{which also has conditions that must be satisfied). Subgoal B follows
from (2), and subgoal € follows from (3).

The complete proof of the 1imit product thecrem is given in

Section 5 in great detail. The 1imit heuristic is used there not

only to set up the three subgoals A, B, and C, but also to establish

A and C, by proposing further subgoals.

Because the Timit heuristic enables our program to prove mamy
theorems about Timits, we regard it as a rather interesting trick,
But more interesting and importamt than the fact that it works some

problems s the principle behind it. That principle might be stated:

To establish a conclusion C from several
hypotheses, among which is H, force H to
contribute all it can towards establishing
C and leave a remainder to be established
with the help of the other hypotheses.

The value of such a “forcing” technigue is twofold. First, if
one can truly make H contribute all it can towards C, then H is not
needed to establish the remainder. That is, a reduction in the number
of hypotheses is achieved while a significant step in the proof is made.

Second, it is implicit in the notion of "force™ that certain
facts are used to make an inference in a computational manner. For
example, the 1imit heuristic “uses" many facts about algebra, such as
the triangle inequality; but these facts are used to compute something,
not to make random inferences. This strongly inhibits the generation
of subgoals that occurs if one freely permits the application of axioms
to his goals. We comment further on this "computational” aspect of the
Timit heuristic in Section 7.

We feel that such a forcing technigue has applications in other
areas of theorem proving where two or more hypotheses H1, HE,i,,H“ are

needed to establish one conclusion C that cannot be logically divided.

In such applications the user must provide a heuristic which will enable
the computer to determine how to get a partial result from !-Il and leave
a remainder C' to be proved by the other hyputhESEﬁ.

The 1imit heuristic uses the routine EXTRACT described below,which

in turn uses the simplification routine described in Section 2.

3.1 EXTRACT
If there 15 a substitution o for which B, can be expressed as a
non=-trivial combination of AU,
(B = K«A + L}o
then (EXTRACT A B) returns (K L o), where o is the most general such
substitution. Otherwise NIL is returned.

A more precise definition follows the examples.

Examples
In the following, the symbols x, t, and h represent variables while all

other symbols represent constants.

1. (EXTRACT A (K-A+L)) = (K L T},E

2. (EXTRACT Alt) Altq)) = (1 0 [t /t]).

3. (EXTRACT (f(x)-L,) (f(x)+alx,) - (L +L.0)).
= (1 {alxg) - Ly} [xy/xd).

4. (EXTRACT (f(x}-L,) (f(xg)-alx,) - L,-L.)

= EEIE:,;.} I:I—'|_'gl-’=|:|} - LL'L;} [x.jﬂf?]]
- 1 .1 -
5. (EXTRACT (f(x)-L,) {) _GJ} ={ - %*Ejfllu T).

6. (EXTRACT { fiﬂ*n}' fla) - F') (flx) - Fla)})
= {(x-2) (w-a):F' [h/(x-2)]).
7. (EXTRACT {(xg-a) (xf -aZ)) = ((x +a) O T).
8. (EXTRACT (a-xptc) (bexg+d))
= (2 (¢-22y 7).
9. (EXTRACT (a'xq +c) (bey +d)) = HIL.

Examples 3, 4, 5 are useful in proving 1imit theorems about the

sum of two functions, the product of twe functions (see Section 5), and

6. Throughout this paper we use the letter "T" to denote both
“truth”, and the empty substitution. This reserves "NIL"
for denoting “false”.

7. In this example, the second argument is first converted to
(Lis =l = f(X) * olemmm): by use of a least common denominator.
HESE® fln)ely

the guotient of two functions. Example & is used in proving that a

differentiable function is continuous.

Suppose there 15 a substitution o and an expression x such
that, Aﬂ and B are polynomials in x, and B is Tinear in x . Then
there are expressions a, ¢, b and d such that x does not occur in ¢, b,

or d, and AD and B, can be reexpressed as

A{F

ax +c ,

Bﬁ

h'H“‘d;-

and {EXTRACT A B) returns the value [% (d = EEEJ). If no such =

and x exist then EXTRACT returns NIL.

4. The Implication Method

At the heart of the prograr is a subroutine called IMPLY whose
essential purpose is to handle logical deductions im the predicate cal-
culus. It is a replacement for Resolution in [1]. We offer here a
cursory description of its oeperation, sufficient to an ﬁnder5tand1ng
of the proofs in section 5.

The operation of IMPLY bears a closer resemblance to the proof
techniques of the mathematician than does F%Su1utinn. In general IMPLY
examines the connectives in the formulas given as arguments to it and
creates one or two subgoals. These subgoals are usually calls to IMPLY
with new arguments which are closely related to but simpler than the
original arguments. The resulting analysis of the formula to be proved
is easy to follow.

This rather natural operation bears some responsibility for
the development of the [imit Heuristic and the other techniques of this
paper. In comparing the subgoals called by IMPLY with the methods of
proof used in elementary calculus we established new subroutines and
subgoals, such as the gimit Hﬁuristic. sufficient to prove a number of
theorems.

The subroutine IMPLY has two arguments:

E (the current formula under examination)
R (a reserve).
Usually E 15 of the form
(H = C)
The answer to a call to IMPLY s either a substitution or NIL. The

latter indicates failure to establish the subgoal. IMPLY attempts to

find and return the most general substitution - such that (R - E}:l is true.
If o 95 the empty substitution them IMPLY returns T.

Table 1 gives rules describing some of the cperations of IMPLY.
These rules are applied in the order of their occurence in the table; if
ane fails, the next is tried; if all fail,IMPLY returns NIL. IMPLY re-

turns the value given by the first rule which does not give NIL. In

the following we use the shorter notation [E , R] for (IMPLY E R).

IKPUT QUTPUT

[H~+C, K]
If H=C , then T

If there is substitution
which unified H and C,

(i.e., H_ = Eﬂ] then iy
[A ~ B, R]
2.1 [A,R] yields a1
If and then (21 v o2)
2.2 [B’HJG1 yields o2
[Awv B, R]
If [A,R] yields <1, then al
If [B,R] yields a2, then 02

[{A +B) +C, R]

4,1 [B +C, R] yields =1
a If and then (ol u o2)
4.2 [R ~ A, HIL]ul yields o2

This rule is commonly known as backwards chaining.
[H+ (A~ B}, R] [Ha A + B, R]

[AvE = C,R]
6.1 I8 + ¢, R] yields ol
If

and then (o v o2)
[B4 + Cs R 4] yields o2

6.2 [B +C, R] yields gl
If d then (o1 w 22)

an
[Aal - L, REEJ yields 42

When we use an expression like "[A,R] yields =", it is to be understood
that we also mean that o is not NIL.

7. [AAB = C,R]
If [A = C, R] yields =1 then a1

If [B + C, R] yields =2 then aé

8. [H ~ A AR, R]

[H + A, R] yields ol
8.1 If and then (a1 y a2)
[H -+ B s ED]] yields o2

[H -+ B, R] yields ol
g.2 If and then {aly a2)
(H+A, s R, yields o2

9. [H + Av B, R]

If [H =+ A, R] yields ol then a1

If [H~+ B, R] yields o2 then o2
0. [H + ~Av B, R] [(Ha A + B, R]
M. [«AnBE + C,R] [B + AwC, R]
12, [+H =C, R] [R + CvH, NIL]
13, [H = ;c, Rl [HAaCT = HNIL, R]
14. [A=8B =+ C,R] [R'" = C', NIL]

where R" and C' are gotten by replacing B by A in R and C.
15. [H = A =B, R] (SOLVE= A B)

{(i.e., if there i5 a substitution o,

which unifies A ard B, then
return o)

Table 1 {concluded)

Gefore a formula E is sent to IMPLY it is first converted to
a quantifier froe form, but without converting it first to prenex normal
form. The guantifier free form is achievzd by us.ing skelem functions,
and is essentially the same as that used by Wang [EI:.]EI A call is then
made to (IMPLY E MNIL).

For example the formula
(1} (P{y) A ALL x (P(x) - Q{x)) = aly))
is first converted to the skolem form
(Plyg) A (P(x) = 0(x)) - 0fy,))
where Yq is a skolem constant and x is a variable, and proved as follows.

1. (LY (P(y) A (P(x) = 0Qlx)) - Qly,)) NIL)

L1 (LY (Ply,) + Qlyy)) (P(x) = Q(x))) Rule 7
This fails.

1.2 (IPLY {(P(x) = Q{x))~ Qly,)) Ply,)) 7
12,1 (IMPLY (Q(x) ~ Qly,)) Ply,)) 4.1

This yields o = Iynfx] by Rule 1.2

10, Specifically, if "positive" and "negative" are given the
meaning as in Wang [3] pp. 9-10, then the elimination of quantifiers
consists of deleting each quantifier and variable immediately after
it, and replacing each variable v bound by a positive quantifier with

a 1ist whose first member is v and whose other members are those
variables bound by negative guantifiers whose scope includes v. This
1ist which replaces v is simply the application of a skolem function to
certain arguments. With no ambiguity, but as an aid to memory, the
skolem function is named v.

1.2.2. (IMPLY (Py) = (P(x) v Qly,))) KIL), 1.2
(IMPLY (Ply,) = (Py,) v Qly,))) HIL)

(IMPLY (Ply) = Ply)} WIL) 2.1
This yields T by Rule 1.1

So the final answer to 1. is [ynfx], and the theorem 13
proved.
For the example
(SOME = (ALL y Plx,y)) + ALL s (SOME t P(t,s)))

the skolem form is
(Plxgs ¥) = Plt, 5).

A eall is made to IMPLY
(IMPLY EPE:Qp ¥} =+ P(t, su} NIL)

which yields [xuft, 5afy] by Rule 1.2. QED.
In trying to prove the non-thecrem

(ALL y (SOME x P(x, y}) - SOME t (ALL s P(t, s5))),

the skalem form is

(P{(x ¥}, ¥} = Plt, (s t})

where (x y) and {5 t) are skolem expressions., A call to IMPLY
(tMeLY (P{(x ¥}, ¥) = P(t, (s t))} NIL)

fails; Rule 1.2 cannot be applied because the formulas P{(x ¥}, y)

and P(t, (s t)) cannot be unified. A partial unification is given by

[{x y}/t], but the resulting pair

P{{x ¥)y ¥y P{lx y), (s (x ¥}))

cannot be unified by [{s{x y))/y] since the variable y occurs in (s{x y)).
When attempting to prove an expression E with the help of

axioms, A1, HE. cees ﬂ“. (where all free variables in the Ai have been

universally guantified), a call is made to [IMPLY E' NIL) where E' is

the skolemized form of

{A].n AE e A An + E} .

In the operations described in Table 3, a resemblance can be
seen between the method of Gentzen sequents (cf. Kleene's G3 [4]) and
the subgoals which IMPLY sets up. The technique of finding a most general
unifier is the Unification Algorithm of Robinsor{2]0n the whole, IMPLY

is closer to the system of Prawitz [6] than to resolution.

5. Examples of Computer Proofs,

Here we give excerpts from the proofs of five theorems, which
were made by the program FROVER using IMPLY as its principal subroutine.
PROVER 15 explained in [1] and IMPLY is described briefly in Section 4
above, but the reader familiar with Sections 2 and 2 should be able to
follow these descriptions with nn-reference to [1] and T1ittle to Section 4.

In order to use the Timit heuristic described in Section 3,

we need to add the following rule to Table 1.

6. [|A] <E' - |B] < E.R]

If

16.0 EXTRACT (A B) s (KL o) (i.e. (B=k-A+L1)),
and if

16.1 [R + [K| <M, NIL]_ yields o1,
for some uariahléEH, and if

16.2 [|A] <E' = [A] < E/2M, R]_, yields o2,
and if

16.3 [R ~ |L| < E/2, NIL] yields o3,

then return the value (o v ol v o v 03).

Also,we need two additional rules for solving inequalities!
one rule for types, and one for equations.
17. [H =+ a <b, R] (SOLVE= a b)
18. [a =b = a' =¢, R] [{(b <c}) v (b=c¢c), R],

If there is a substitution o for which (a = a') ,

11. In case K= 1, step 16.1 is nnﬂ?tted. gnd M is sat to 1 in 16.2.

12. M is given type <0 w+and also M is made an additicna) argrment of
all skolem functions which alrzady have at least one argument.

. i,
13. Incase L =0, step 16.3 is nqﬂptted.

19. [H =~ A< B, R]
If A has type B then T

20, [a=b =+ c=d, R] {SOLVE= (a-b) (c-d)})

These five rules are placed at the beginning of Table 1 (Sec-
tion 4), in the order 17, 18, 19, 20, 16.

Alsoya provision is made for assigning types to an expression
A when it appears in the form (A = B) or (A < B) in the hypothesis of the
theorem being proved. This 15 accomplished when IMPLY is proving a sub-
goal of the form [M - C, R] by replacing H by (SET-TYPE H). Such calls
to SET-TYPE need only be made im Rules 5, 10, 13, and before the first
call to IMPLY, when new material is added to H. (see Section 2.3).

In what follows, B denotes the real numbers , P denotes the
positives, and FRR denotes the functions on R to R. We use (Lim f a L)

to denote 1im f{x) = L . The standard definition of Timit is:
x+a

(Lim f a L) <-»
(aeB)l A (LeR) A (fecFRR) A
(ALL ¢ (0 = ¢ -+ (SOME & (0 < & A
(ALL x [{x ¢ R) A (x#a) an [|x=2] <6 + [flx) -L] <e])))

Example 1 (Limit of a product)

The program PROVER is given the formula
(Limfal, a Limfal, » Lim(f-g)a (Li-Ly))
The definition of 1imit is used to obtain
(fac R a Lye B an Te FRR A ALL {EInET
+ SOME ﬂ] (0 < D] A ALL %1 [115 R oA X4 Fa A

|xg-al < Oy = Iflxy) = Lyl = E{))D)

A {a-:ﬂn.LE.-_n:_ng-_FRT:ﬁ
ALL E, (O - E, - SOME D, (O - b, A
AL %o (55 c B onomp #a A xy -8 < Dy
+ lalxy) - Lyl < E))))
+~ {acR A {L1-L2] e R oa (feg)« FRR A
ALLE (0 < E + SOMED (0 <D A ALL x (x e B A
x#a a fx-al =D - [{f gllx) - LytLy| < E}NDD)
The first three parts of the conclusion {a e R) {L]+LE} ¢ R

(f+g) ¢ FRR are proved by the program using the hypotheses of the

theorem.
The remainder of the theorem is prepared for IMPLY by replacing

(f+q)(x) by (f(x)-g(x)) and by eliminating the quantifiers and introduc-

ing skolem expressions,

(1) ((a) = (R} o (Ly) ¢ (R) n () = (FRR) o
(0 <Ey = (0 (D Ey) A

¢y ¢ (R} A %y #Fa n jxg = {1J|d|ED] Ey)
- I{fJ[I]] = “--IH * E'|:|:I]I

(@) e (R) n (L) e (®) A (9) « (FRR) A
(0 = E, (0 = {DE EE} n
[:':E £ '-rﬂ]' A :"-E #ola) a |-:"'-E = {-EH < “]E EE}

+ 1g)(xy) = (Ly)] < E,))

+ (0<{E) = {(0<D &

((x0) e (R) A (xD)#{a) A [(xD) - (a)] <O
= R0 D))+ (@){(x D)) - (Ly)+(L,)] < E)))

For readability and brevity, the skolem expressions are ab-
breviated in the following. Thus x is used in place of (x D), Li in place

of (L), f(x) in place of (f)((x D}), and so on.

Thus we write the above expression as

(ii) Aa =R A LyeR A f cFRR A
(0 < E] + (0 = 0y A
{:-c.ltﬂ.-\ ki Fa A |y = al <D,
) + |flxy) - L]| < 51}}??

l.'fxl:af.ﬂh L, e B n geFRR A

J “] £ EE - I:I:I c DE’ h
B -
\ Uzﬂﬂ_h .:.E#ahixz-ﬂ-:ﬂz
o + lalx) = Lyl < Ep))))
7O 0<E 0D A
|
. < (x e R A %Fa A [x-a] <D
'|
_ s [F(x)eg(x) - LyeL,| < E)).

The computer continues to use the full skolem notation throughout its
proof.

Bafore we follow the proof procedure for this theorem in great
detail, we first sketch the proof that the computer will produce.

Given E =0 , choose M, M', E]. and EE sp that

M 24 (L,
M L
E1 « Ef2-M ,

EE < min (Mf2, Ef4-M") .

By hypothesis, there exist O, and D, such that O < I and 0 <Dy . and
for all =, ifx#a and |[x - 2| < min ED1, DE} , then

|F|::':.}_L'I|€E1 L]
and

] - ie
lg(x) L,i < E, .

Furthermore, for all x, if x# a , and |x - a| < min [D], DE} .

then since
lgix) - Lol < Ey < M/2,
it follows that

lalx)| < W2 + L,
< M2 + N2,

lg(x}] < M.

A

50 let D be a number such that
0 <D < min {ﬂ]. 0,) .
If x is any number such that x #a and |x - a| =0 , then

[£(x)-g(x) - Ly-Ly)|

|g{x}+{f{1} = L]} + L1'ngx} - ngl

| &

lglx) [+ [F(x) = Ly + [Ly]-|olx) - L,

M« E/2M + M'.min (M/2, E/4.M")

38

< Ef2 4+ M' - E/4:M'
< E, QED.
The key to this proof is the proper selection of M, M', E], EE’

and D. The computer makes precisely these same selections though its

handling of types.

We now resume that description of the computer's procedure

in finding its proof. A call is made to
(IMPLY (= A B = v) HIL)

where a«, £, and v are given in (i) above.

SET-TYPE is applied to (x a B), assigning type R to a, Ly

LE‘ and type FRR to f and g, and the subformulas (a e R}, tLl EJE},
(Ly = R), (f = FRR), and (g ¢ FRR), are removed from o and 2.

Fule 5 is applied, converting the formula to

(cafa0<E = 0D A (xR Ao xFan |x-al <D

» [f(x)-glx) - Ly-Ly| < E)).

SET-TYPE is applied to the hypothesis; E is assigned type <0 => and
(0 = E) 15 removed.

Rule 8 calls imply on the two formulas
(e as - 0<D)
and

fanf + (xR o 2#Fa A |x-al <D
+ |flxa)eglx) = LyLy| < E)).
The first call is satisfied by Rule 17, which uses S0LVE< to
assign type <0 => to D. The second results in an application of Rule 5,
so the current subgoal s
{aon B a(xce BRoa xfa A |x = al = D)

« flu)glx) - L1'LE| < EJ)

SET-TYPE is applied to the hypothesis; x is assigned type R

and {x ¢ R) is removed,

By Rule 7, the reserve R 15 set to
g o xfa A |x-al D),

and
(a = [flx)eglx} - Lyely| < E)

becomes the current goal.

Rule 4 (backward chaining) is now applied. That is, the pro-
gram tries first to establish the conclusion [F(x) -g(x) - Ly L2| < E
from o This is subgoal (1). When this subgoal is established, the pro-

gram tries to satisfy the hypothesis of o, namely subgoal (2) below,
I:.l} {D{D]ﬁ {K'IEE,ﬁ. 1]Fﬂﬁ.|h-&|fﬂ

s lflxg) - L) < £y
* |fti}'g{i} = F]'Lzl = E}

By Rule 7 the program first tries to prove
[D < DII - |f|[H}'E||:H} = L.'!I"Lzl = E:I *
But this fails. Therefore by Rule 7 [2nd part),

{{K-IEH Ay Kllida A |x~|‘ﬂ.tfﬂ' =* |ffI]}-Li|{E1}

+ |flx)eglx) - Ly<Ly| < E)

becomes the current goal. [From now on we shall not mention those sub-

goals which are tried but not estapiished.]

Again the program “chains backwards" using Rule 4, The current

subgoal becomes (11} and the hypothesis
[:.‘I:E__,.i., :{]jf& A i:]-al < 0]
is satisfied later at (12).
(11) Uflxg) = Ll < By + [f{x)-alx) - LyoL,| < E)

The program now tries to apply Rule 16, the limit heuristic.

First
(EXTRACT l{fl{:r'.] - L]]l (f{x)-g{x) - Ly-Ly))

is computed to be (gix) {q{n}+L3 - Lj+L2} @), where o = [:f:]]. This

follows from the equation
(Flx)-glx) - LysLy) =({g(x)-(f{x) - L) + (g{x)-L, - ;L]-LEJ_] .

Because the rosult of the call to EXTRACT is not MNIL, Rule 16 is applicable.
The program tries to establish the three subgoals (111), (112), (113), in

accordance with Rules 16.1, 16.2, and 16.3. The current subgoal is
(111) (B an x#a A |[x-al<D - gz} <M

where M 15 a new variable which 15 assigned type <0 ==, [(Also M is

made an additional argument in the skolem expressions EDIEI}, (DEEE},

{x D), in accordance with footnote 6 above. Although these new skolem
expressions {D] E.I MJ, {ﬂz E2 M), {x D M), will not appear in our des-
nriﬁtiuns since we are abbreviatimg them to D1. DE‘ %, they nevertheless
play a crucial role. For example, in step (111 1) below the M in (x D M)

prevents Fule 17 and SOLVE< from assigning type <|g(x D M)| => as the ans-

wer to {111 1). See Sectign 2.1.)

By Rule 7, the reserve R is set to (« #a A x-a = D) and
{5+ lglx]| < M)

becomes the current subgoal.

(Rule 4 is applied. (111 1) becomes the current subgoal and

the hypothesis of @ is satisfied later at (111 2).

{111 1) [ﬂﬂ'ﬂ.ﬂ.[}{gi_ﬂlﬁ :;nga A |:|:E-a|-:|::|E
- |g|:12:| ‘]-El < EE:I
+ |g{x])| < M).
By Rule 7 the program tries
(e e B oA %, # 8 A %y =2l <Dy =+ alxy) = Ly| < Ey)
+ lglx)]| < M).

Another application of Rule 4 sets up the two subgoals (111 11)
and (111 12).

(111 11) (lglx5) = Ly| < E, = [glx}| < M)

Since (EXTRACT (glx,) - Ly) alx}) yields (1 L, [x/x,1) the
limit heuristic is applicable to (111 11). Because 1 is returned as the
value of K from EXTRACT, only subgoals (111 111) and (111 112) are tried,

in accordance with Rule 16. The current subgoal becomes

(111 111} (Jalx) - Ly| < E; = [alx) - Ly| < M2).

By Rule 18, the program tries to establish
(E, < M2) v (£, = t/2)

The first half of the disjunction is satisfied by a call to
[SOLVE- EE M/2), giving type <-= M/2» to EE' Thus subgoal {111 111)

is established and the program tries to prove
(111 112) (¢ fa A |[x-a] <D = |LE| < M/2).

Rule 17 iz applied; (SOLVE-« ILEI M/2) is called, resulting
in the type <2-[L,| == for M. Hence both subgoals of (111 11} are estab-
1ished.

The program now returns to the subgoal

{111 12) (x#a A |x-al=<D =+
Xp e ROA %y Fa A xy-al <D,)
where o = [xfxE]. That is

(x#a A |x-al <D =

xe R A xfFa A |x-al s DE}.

This subgoal is established by several subcalls. The conclusion {x ¢ R)
follows since x

has type B, (x # a) occurs in the hypothesis. And finally
(| -a] <D + |x-a| =« DE}

is established through Rules 18, 17, and a call to S0LVE«. As a result,

the type of D is changed to <0 Dzr.

(111 2) (x#a A lx-al <D = 0<E)

is established by Rule 17. SOLVE< types E, as <0 M/2>, Recall that

3=11 {cont'd)

E, was given type<-= Mf2 = at {111 111). Thus both subgoals of
(111) have been established and the program returns to the second subgoal

of the first use of the limit heuristic
(mz) (F0) = Lyle By = IF0x) = L) < E/2m).

This subgoal is quickly established usimg Rules 17,18 and
{S0LVE= El EfZM), which assigns type <-= EfZM = to E].
The third subgoal of the first use of the limit heuristic is

(113) (e A xban |x-al<D =+ |alx)l; - LjL,| < E/2).

By Rul= 7, the reserve ¥ is set 1o (x #a ~ x-al <D},

and the current subgoal becomes
{l‘ i Ig{ﬂ] LlI - L1 LE w IEJFE].
The program chains backwards twice.

(113 1) (0 <Dy n (xR A xta p lx- al <D,
~ lglx) - Ly| < Ep)

+ Jglx}ely - Lysby| < E/2)
(13 1) (lalx) = Ly| < £, = [alx)ely - Ly-by| < E/2)

Since (EXTRACT (gix) - sz {g{x}-L1 —LI-LE]] yields
{L1 0 T), the limit heuristic is again applicable, and subgoals
(113 111), (113 12} and (113 113) are tried.

(113 111) (xfa an [x-2a] <D + |L|<M)

becomes the current subgoal, where M' is a new variable of type <0 =»,

This goal is established by assigning type <|L}| w» to M', by Rule 17 .
(113 112) (lg{x) - Ly| < E5 = lalx} - Lyl < (E/2)/2-M")

This subgoal 15 established by use of Rules 17, 18, and a call
to (SOLVE: £, Efd-M'}. E, is retyped as (intersection <0 M/2Z:
<-= Ef4:M'>), Recall that E, had been given type <0 Mf2: to establish
(111 2). Since the program does not know which of W/2 and E/4.-W' 15 the
smaller, the intersecticn is given as the answer, after it has checked
that the intersection is non-empity.

The formula

{113 113) (x fa p |x=-2l <D = |0 «<EfS)

is the last subgoal of the last ute of the Timit heuristic., It ic
satisfied since § already has type 0 -

The program now returns to
{113 12) fx#a a |lx-al=D =

xeR A oxfanfx-al<0),
which is the same as (111 12). Also

(113 2) (v #a an |x-al <D = 0= EE}

iz the same as (111 2).
All of the subgoals of the first application of the limit
heuristic at (1 1) have been established, giving as an answer to (1 1)
the substitution o = [x/x; 5 x/x,].
The program now tries to satisfy
(12} (8 Ao x#a ax-a]l<D
+ Xefloa ox Fan |k o-al < D)

The substitution [x/x;] establishes the first two parts of the

conclusion. To prove the third part, the program tries
(Ix-al <D + [|x-a|<Dy),

which results in the retyping of D as (intersection <0 DE} £ =m D]h}.
Recall that D previously had type <0 BE}.
Finally the subgoal

(= A x#a an lx-2]l<D + 0<E)

is established by Rule 17 and & call to (SOLVE= D E1} which retypes E,

as 0 Ef2°HM}. E1 previously had type <-= Ef2 M-,
The proof is complete. ke Tist here the final types assigned
to the variables. MNote that the program has made just those "choices"

described in the sketch of tha proof which was given earlier.

1'] <0 Ef2-M-

Es (intersection <0 M/2> == E/8.M'5)
[[intersection <0 Dza L=t n1>j

M {E'!LE; P

M’ "'IrL'lf =,

This proof may seem long and drawn out but these are essentially

the steps a human prover would have to follow in finding and exhibiting

a proaf.

In the following examples we proceed directly to skolem form
and consider only the proof of the main conclusions. Many steps in each
proof are omitted.

| The notation H1 is used to denote the hypothesis of Step 1.
Rule reference numbers are sometimes given to the right of formulas along

with new type assignments.

Example 2. (composite continuous function theorem).

1. (g is continuous at a) 4 (f is continuous at gla))

- f:g is continuous at a.

2. Limgagfa) A Limf gla) flgla)) - Lim (f:g)a flgla)).

3. (0 g = (0Dp A (e BoA xp#a nolxg-a) oD
~ lolxy) - agla)] < E))
A (0B = (0D, A (x3cR A x,Fah |x,-a] <D,
- |f{x,) - flalal)| < Ep)))
—
(D<E - {0=D A {xcR an x#aa |x-af-<D
= |flalx)) - flalal)| < E)))

In 3 the variables are El’ Xy EE‘ Ko D, and the skolem expres-

sions are (D, E]}, IDE Ez}i (E}, (x D), (a), ete.

CURRENT SUBGOAL RULE MEW TYPE ASSIGHNMENTS
4, EHE - 0 < D) &, 8 E £f) =
5. [(SOLVE: 0 D) 17 1} < =»

6. (Ha A x#a a |x-2a| <D
-+ |flglx)) - flglal)| - E), % R

¥

7. (If(xy) - flgla))| < B, = [flg{x)) - flala)}] <E)
8. (E; =E v Ey= E) 18
3. (SOLVE< E, E) 9, 17 E, <==E»

10. (Hg + 0« EE} . a condition from Step 7.

11. (SOLVE< O EE] 17 EE <0 E»

12, (H

& ¢ X eR A X% Fa A IxE-aI {DEjn" a condition from

Step 7, wherg o = [g{xJJxE]

13.

14,

15.

6.

7.

18.

{HE' - 'g|::l:]- = &, <« [g

¢
(lglegd = gla)! - €, ~ Gix) - gfa), 0]
{SOLVE= E1 DEJ 8, 17, 4 = [xfx]] E.I
{HE + |x - al « 0,0, & condition from Step 14.
(|« -al <D = Ix—a_'*-JJ]] 7
(SOLVE< D D) 18, 17 D

<0 Dy,

0ED

5=17
Example 3. (Differentiable functions are continuous).

If lim f{ﬂ+h]h‘ fla) = F! then Tim fi{x) = fla).
h=0 R |

1. (Derivative f @ F' -+ Continuous f a)

2. (LimqO0F' = Limf a f(a)),

where g{h) is the difference quotient

flath) - fla)
F .

3. {(0<E + (0<Dp n (heRA h#D A [b] <D

- | f[a*h}h' f{a}l! - F' ¢ E]H}

%
(0+E = (0<D A (xR A x#Fa a [x=-2a|<D

-3 If(x) - fla)] < E)))

In 3 the variables are E1, h, D, and the skolem expressions

are (D, E;), (E), (x D), (a), (F'), etc.

g, My A xFa A -af<D + [f{x) - fla)| <E) x R

5. {1f{ﬂ-+h;|| - 'f{-ﬂ.] - F! | - :E'|
+ |f(x) - fla}] < E) Rule 4

The 1imit heuristic Rule 16 is applied,

(EXTRACT {fta*“ﬁ - fla) L py (f(x) - fla))). yields
ﬁ{x -a) (x-a)F' &), where o= [{x - a)l/hl.
5. {Hy = [x-a| <H) 16.1
6. [|x-a] <D = |x-al| <M

7. (SO0LVE= D M) 18, 17 D <D M=

0.

11.

12.

13.

4.

15.

16.

17.

18.

19.

21.

{f}i‘fa.:l_Flg.‘_E]

X =4

. =fjxi : ;[33 - F'| < E/2-M) Fule 16.7
{SOLVE=< E] Ef2:M) 18, 17 E] c=x EfZH=
(Hy = [lx - a)F'| < Ef2) 16.3

(x -al <D = [{x - a)-F'| < E/2)

The 1imit heuristic is again used, EXTRACT yields (F' 0 T).

(Hy =+ [F'] < M) 16.1

(SOLVE< |F'| < M) 17 Mo <|F'| =
(|x -al <D + |x-a|=< Efg:m) 16.2

etc.

(x#a n |x-al =D
s heR A WO A [0 <D 5.2
a condition for Step 5. o = [{x - a)/h].

True by Rule 19 since both x and a have typej_;

(x#a + x-a ¢ 0) 8,7

(x -2 = 0 + x=a) 12, 13 (from Stap 15)
(SOLVE= (x-a-0) (x-a)) 20 TRUE
(| =al «D = |x=a« 01} 12, 13 (from Step 15)
(SOLVE< D D,) 17, 18 D

{intersection <0 E/4+M's <-=]J.|:~]

QED,

Example 4. (1im xg = ugi,
K=xd

1. [f=4x ;E + Lim f a {(a-a))

7. (D<E = (0=D a (x Eli hoxFa o lx=-al 2D = |xex - a.al 2 E)))

In 2, D is a variable and (E), (x D), and (a) are skolem expres-

510n5.

SET-TYPE assigns type <0 »= to E.

3. (0 < D)
4. (SOLVE< O D)

5., (x#a p |n-2a] <D

+ |%+% - a-a| < E)

6. (|x=-al <D =+ |x-x-a-al «<E)

Rule 2
17 0 =0 =»
2 i R
8

The 1imit heuristic is used, (EXTRACT (x - a) (x-x - a-a))

yields ((x+a) 0 T).

7. {HE + |x+a| « M)

16.1

The Timit heuristic is used again, [EXTRACT (x-a) (x#a)) yields

(1 2-a T).

8. (|x-a|<D = [x-a]<m2)
9. (SOLVE< D M/2)

10. (H, = [2:a] <M2)

11. (S0LVE< |2-a| M/2)

12, (|x-al <D =+ |x-al < Ef2-M)

13. (SOLVE< D E/2-M)

16.1 (from Step 7)
18, 17 D <D M2
16.2 (from Step 7)

17 M «2e|2ea| =>

16.2 (from Step 5)

17]
(intersection <0 M/2> <-= Ef2:-M:)

QED

Example 5. (Limit of a quotient]). The proof of this example is not
complete.

1. (Limfal s L#FOD =2 Lim (1/f) a (1/L)).

2. chEl‘tﬂﬂD]ﬂtx'lilﬁ -ﬂ-I#Dﬂl.:{-I'ﬂl"'ﬂl
£(x,) - L] < £)))

*

A LAD =
(G<E + (0<D A (xeR A x£0 A [x-a] <D
1 1

- eyt B

3. (If(xg) - L] < g = 3

&

1]
|fixj N f|

The Timit heuristic Rule 16 is applied,

(SOLVES (flxg) - L) (grgy - 1)) vields (g O o)y where o = [x/x;].

We are required by Rule 16 to establish the subgoals
=1

(1) (Hy = |L_|[IF < M), 16,1
and
(2) (|fF(x) = L] < £, + |f(x) - L] < E/2:¥) 16.2

Subgoal (2} is easily established by assigning type <-e= Ef2 M
to By, but (1) presents difficulty. In fact the program is unable to
give a proof without some axioms or a change in the program. 5See Section 7

for further comments on this example.

6. Fesolution

In this section we show how the Timit heuristic and the theaory
of types explained above can be used in ﬁesntutinn based programs.
This is done by giving some additional rules for resolution. These

ara;

6.1 SET-TYPE Rule

Far each unit clause of the form

{x = A)
where x is a skolem expression which does not occur in A, assign the
type A to x. Also for each unit clause of the form

(x < a)
where x is a skolem function which does not ocour in a, assign the type
<-=g> to x. Similarly for unit ::1E|ﬁfes of the form (b< x) assign type
<b=> to x. In each of these cases, remove the unit clause. If x
already has a type B and we are trying to assign a new type A, then
assign the type (ANB) if it is non-empty; if (ANB) is empty, add the
empty clause (i.e., the proof is finished); if 1t cannot be determined
whether {Afﬂﬁ} is empty, leave the original type as is and do not remove
the unit clause. This S5ET-TYPE rule need only be applied at the

beginning and after each new unit ¢lause is generated.

6.2 S0LVE< Rule

For a clause of the form

how L% g A)

{1) if x has type A then add D to the Tist of clauses, (2} if x is a
variahle and x does not occur in A, then assign the type A to x and add

D to the 1ist of clauses.

6.4 TRANSITIVE Fule

When attempting to resolve two clauses of the form ({2 < b) A)
and ((a' < c]v B}, where a_ = a, for some substitution o, if (SOLVE b c)

is true, then add the resolvent (A v B}G to the list of clauses.

6.5 SOLVE= Rule
For a clause of the form
Dv (A#B),
if [SOLVE= A B) is true, with the value o, then add ﬂu te the list of

clauses.

B.6 When attempting to resolve two clauses of the form

{{a=b)v A) and ((c # d} v B},
if (S0LVE= {a=-c){b=-d)) is true, with value o, then add (A v E]III to the
list of clauses.

Before going to our limit heuristic rule, we give some examples

using the above three rules.

Example 1
(0 <a=5SME x (0 =x A x<a))

Clauses Clause References Rule MNew Type Assiarments
1. 0 < ap
From Theorem NONE
2. 0 Fx . %1 ag
3. 1 SET-TYPE ap <O
a, Xt ag Z SOLVE=: x <=
5. = 4 SOLVE- x <0 ap=

We could have removed x § a, first,

4. 0¢x 2 SOLVE: x «=waps
5. 0 4 SOLVE= x <0 ag>

Example g

D <Dyn D= D ~ SOMED {0 =<0 A D~ Dyn D= D,)
Clauses Clause References [Rule New Type Assignments
1.0 <D
2.0« UE From
Theorem
3.0 40w Dy Dyw D ¥ 0,
4, 1 SET-TYPE 0, <0 ==
5. 2 SET-TYPE I:l2 < =
6. D D, D DE 3 SOLVE= b <0 e
7. D 4 DE B SOLVE= o <0 b, >
B. o 7 SOLYE« D {intersection

<[] D]}{ﬂ DE?]

At steps 7 and 8, SOLVE.required the knowledge that I:].I and DE both had

type <Dws,
Example 3
(xe B A xeN—s xtx)
1. xeP From Theorem
2. xeN
3. x=x
4. 1 SET-TYPE % Qe

5. O 2 SET-TYPE

Example 4

8.

10.
11.
12.
13.
14.
15.

(0« aaleb—(50MEz (D<2z A (&< z—wc ~a)

mld < z—d< b))

Clauses Clause References Rule

- DFoay

. 0 < b,

D fzy cpezy dy = 2
O fzvegs 2w dp f by
0tz cpprag v dpez

] # Iwv Cgf dp v dpd by

1 SET-TYPE
2 SET=-TYPE
s Cp 2z v dyg <2 3 S0LVE=
tp <2 v dy 4 b 1 SOLVE«
g = 2 9,10 Rule 6.4
Cg fapgv dp =z 5 SOLVE=
g fagvdy £b B SOLVE=
tag {1 ag 12,13 Fule 6.4
o 11,14 Rule 6.4

New Type
Assignments

o] ws
<) ==

0w

=0 hu:

<l by

{intersection
1’.':] bnlll-l:ﬂ' an}}

By ordinary resolution we would require at least two axioms,
Al, (D<aan O0<b » SMEz (D=2 A Z<a A z=h))

B2, (2 <¥ A YW+ x=<w,

and & Tong and difficult sequence of resolution steps. This very example
opccurs as a disguised part of the proofs of most of the limit theorems,
and therefore it is important to have an easy proof for it requiring no

axioms.,

Example 5.
(x<-1 v 1<x = 1<|x|).
This produces clauses

1. X 2 =1 ¢y 1= %y

2. 11¢ Ixul

Since there are no unit clauses, we cannot apply SET-TYPE, and
SOLVE< cannot handle 2 because there is no type assigned to xn . Thus
the procedure seems to fail here unless we have more axioms. However,
if we are employing the SPLITTING technique (see [1], end of Section 4],

we know that resolving 1 and 2 iz eguivalent to resolving both

1°. Ay =1 ', 1« %

2'. 14 | 2''. 14 |x

ol ol

(Note that we split Clause 1 since the two literals of 1 have no variable

in comman,) These are both easy.

3. 1 SET-TYPE X E

Q
4'. O 2! SOLVE=
3. 1! SET-TYPE o 2] =
Ill. D ’ Ell SﬂLlllrE'-'

If we do not SPLIT,then two axioms, {1 < x + 0 < x) and
(0 <x + |x| = x) are required.
Ordinary resolution would require six axioms and a 19ngtf§}

deduction.

6.7 LIMIT-HEURISTIC Rule. When attempting to resolve two clauses of

the form

(1Al <E)v €

(1Bl < E) v),

try to find 2 substitution ¢ which will allow B to be expressed as a

non-trivial combination of A ,
(B=FKA + L)o

and, if this is possible, add the following new “resolvent” clause to

the clause Tist

(w(IK] < M) v ~(A] < E/2:M) v ([L] < E/2) v C v Gl
: 14
where M 15 a new varfable with type <0 w>,
The first part of 6.7 can be done by (EXTRACT A B). See Section 3.7,
EXTRACT produces the desired K, L, and o, wheére ¢ is the most general such

substitution.

14, Also the variable M iz made an additional argumznt of all skolem functions
appearing in [1) which already have at Teast one argument.

Example 6. Given the clauses

3. Ef{-:{_:l + Q{HJ =]-'l - L2| « L,

where E1. E21 X1s ¥, ATE variables, and E, E], EE each has type <0 ==,

Using Rule 6.7 on clauses 1 aand 2 we get

4. (EXTRACT (f(x;) - L){(f{x) + glx) = Ly = L,)})

(1 {g(x) - L) [x/x,1)} (See Section 3.1).
5. (1] < M) v offlx) - Ll < E/2M v ~alx) - Ly < E/2)
6. (|f(x) - L1| < E/2-M v lgix) - LE! < E/2)

From 5, using the SOLVE< Rule, type M is <] ==,

Using Rule 6.4 on clauses 1 and 6 we first call

7. (SOLVE< E, E/f2-M)

1

This results in assigning type <0 E/2+«M> to EI‘

B. (~|gix) - LE' < Ef2) 6,7 Rule 6.4

Using Rule 6.4 on clauses 2 and 8 we call
9. (SOLVE= E2 Ef2)

This results in assigning type <0 E/2> to EE’
0. O 2,8 Rule 6.4

Example 6. (From the theorem that a function having a derivative at

a point is continuous there).

Clauses

If[a+hg - flal _ F.I <,

2. |f{x) - fla)] £ E
3. [x-a] <D

whare h, D and E.I are variables, and the other terms have type R,

In attempting to resolve 1 and 2, the 1imit heuristic Rule 6.7,
employs EXTRACT to obtain

(£(x) - £{a)) = [h - {f{&+h]h' fla) _py heF']

where o is the substitution [(x-a)/h]. It therefore produces the new

clause
b fx-afpny [e By ey £ £

where M is a new variable of type <0 =», Rule 6.4 applied to clause 4,

gives
" - i E i
ol =fle) el x-a P d

and D is assigned type <0 M». Rule 6.4 applied to 5 gives
6. |(x - a)F"| #-%

and E] is assigned type «<-= E/Z2.M-.
Again the Timit heuristic Rule 6.7 i5 used on clauses 3 and 6.
EXTRACT yields

(x - a)-F' =F'+(x-a)+0

and the new clause

7. P g M v |x-alf I%T

is produced, where M' is a new variable of type <0 ==,

Rule 6.4 is applied to 7 to obtain

E
B. |x-al < g3

and M' ic assigned type «<|F'| ==,
Finally, Rule 6.4 is applied to & to yield
9. [QED,

This final step alsoc assigned to D the type (intersection <-=

Ef4+M'= < Ms)

Ordinary resolution would require several axioms for this proof

and a very long deduction. Tﬂis example constitutes a part of the proof

th
that the Timit of = sum of two functions is the sum of their limits.

7. Comments

One remark of note is that, except for the example on guotients,
(mentioned below) these limit theorems were proved without the inclusion
of axioms (reference theorems). This is desirable because for most
automatic theorem proving programs, the axioms hawve to be selected by
humans for each theorem being proved. Of course,we had to include the
limit heuristic itself which acts like some axioms, but it does not
hinder the proof of other theorems not requiring it,

because it does

not release its action unless its need is detected. This is in the
spirit of the "Big Switch" mentioned by MNewall, Feigenbaum, and others.

It was surprising to us that so many theorems would follow from
one heuristic. Will this happen in other areas of mathematics? Can
we provide a series of big switches which will handle many areas of
mathematics without excessive irrelevant computing? We doubt that it
can be so simple, but nevertheless feel that such heuristics should be
sought for other areas of mathematics. The success of such a collec-
tion of heuristics will depend in great part on the cleverness of the
overseer program which directs the use of these heuristics. Hewitt's
programming language PLANNER [5] might be well suited for writing such

overseer programs, or for improving existing ones.

CALCULATE VERSUS PROVE

One thing that contributed to the success of this effort was

the use of the routines SOLVE<, SOLVE=, and SIMPLIFY. The point is

that they were used to calculate something rather than prove something.
Since proving is inherently harder than calculation, we feel that such
routines should be employed as much as possible. Think how difficult it
would be in our proofs to employ a set of algekiraic simplification axioms
instead of wsing 5IMPLIFY. Or suppose that instead of using EXTRACT

to give us a linear decomposition, we tried to prove that such a linear
decomposition exists. This suggests that more use ought to be made of
caleulation procedures within the proving mechanisms of automatic theorem

provers. For example,

in proving theorems we might calculate

about
derivatives limits
limits solutions to equations
differential equations derivatives
real functions solutions to eqguations
measure theory that two sets are equal
algebraic topology group theoretic results
any field a most general unifier

The unification algorithm is such an example, and it revolutionized
automatic theorem proving when J. A. Robinson defined its role in reso-
lution. A source of power to a mathematician is his ability to leave
to calculation those things that can be calculated and thereby free

his mind far the harder task of finding inferences.

The use of membership types also helped considerably in proving

these 1imit theorems, [t is as if in proving,

(1) SOME = (Px)A Q(x))

we first find A, the set of all x for which P(x), and assign A as the
type of %, and then find B the set of all x for which Q(x), and if
(AnB) is not empty, assign it as the type of x, and declare (1) to be
true. This allows a maximum amount of freedom in the proving of Q(x)
after F(x) has been proved; indeed x remains a variable, even though
restricted, in the proof of Q(x).

This procedure worked well in our examples because linear
inequalities are so easy to solve. We do not recommend that such a
procedure should be used in all other situations, when theorems of
type (1) are being proved, because it may be too difficult {or un-
necessary) to solve for A the set of all x for which P(x) is true,
before proving Q(x). We do suggest however that a procedure be
followed that leaves x as 2 variable, though restricted, after P(x)
has been proved and while Q{x) is being proved. Type theory might
help attain such an objective.

Our present program will not prove limit theorems invelving
quotients, such as

(1) lim f(x) = L L30 Tim 1= 1
X+ x+a Tlx) L s

without the help of some axioms (see Example 5, Section 5). However,
no axioms are needed for the proof of (1) if we add another heuristic

to the program which is similar to the 1imit heuristic, but which is

based upon the ineguality

%l = lyls [x-y]
instead of the triangle ineguality

Ity = x| + |y,
ypon which the Timit heuristic is based. In fact, it might be desirable
to develop a more general heuristic, which not only encompasses both
ideas, but also tries to attain such objectives as bounding an expression,
e.qg.

lg{x)| <M, for some M,
and making an expression small, e.qg.

|f(x) = L| <E, for a given E.

Finally, it should be mentioned that the routines described in
Section 2 are meant for general use in analysis and not just for limit
theorems. [t is hoped that routines of this kind can be used to make
up an analysis prover in which relatively simple heuristics can be added

for great effect.

Fefarences

1. W. W. Bledsoe, "Splitting and Reduction Heuristics in Automatic
Theorem Proving,” to appear in International Journal of Arti-
ficial Intelligence,

2.). A, Rnhiqﬁnn, "A& Machine-Oriented Logic Based on the Resolution
Principle,” Jour. ACM. (12) (January, 1965), pp. 23-41.

3. Hao Wang, "Toward Mechanical Mathematics,” IBM Jour. Res. Dey.,
4, pp. 2-22.

4, 5. C. Kleene, "Introduction to Metamathematics," Princeton
Toranto New York, 1952.

5. Carl Hewitt, "Planner,” M.I.T. A.I. Memo No. 168, August 1970.

&. Dag Prawitz, "An Improved Proof Procedure," Theoria, 26,
pp. 102-39,

