MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A. T. LABORATORY

Artificial Intelligence
Mema No. 238 April 1972

ITS STATUS REPORT
Donald E. Eastlake

ABSTRALCT

ITS is a time-shared operating system designed for the Artificial Intelli-
gence Laboratory DEC POP-10/PDP-6 installation and tailored to its special
requirements. This status report described the desiqn philosophy behind
the ITS system, the hardware and software facilities of tne system imple-
mented with this philosophy, and some information on work currently in
progress or desirable in the near future.

Work reported herein was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Technology research program sup-
ported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense and monitored by the Office of Maval Research under
Contract Mumber NOOO14-70-A-0362-0003.

Reproduction of this document, in whole or in part, is permitted for
any purpose of the United States Government.

1. IT5 System Status Report

The ITS system is an operating and time-sharing system
tailored to the hardware of the Aritificial Intellipence
Iaboratory DEC PIF-10/PLF=& conpuler system and the special
hardwere snd software development requirements of this research
installation. The following sections describe the current
state of the system and include comments on its development to
its current maturity, possibilities for further enrichment, and
the considerations behind certain system design choices.

The following persons have been involved in recent ITS
development: Jeffrey E. Rubin, Thomas F. Knight, Richard I.
Greentlatt, and Donald E. Eastlake. The following persons were
involved in early ITS development: ITredrick H. G. Wiright,
Stewart F. Nelson, Thoras F. Znight, John T. Holloway, Richard
I. Greentlatt, Jerry S. Freiberg, and Dorald E. Fastlake.

(At this time & new ITS Reference Manual is being
prepared. Those interested in using a2 feature menticned herein
that is not explained in the current ITS Reference Manual

chould contact cne of the persons named above.)

FIRIRS BIRIRY BARSRI B RS
e e e L s e T e o T
EtsH-Om oo o m

T L A L)

[T T D R A I

g
L S

o

Ca b BT MO OD O

follad el ad a0 R R i

P ™
e

P P P P
B oAD' H
R

TN

Fitlicgraphy

1. ITS System Status heport

sifn Fhilosopy

The Level of Service

The Persomnel Teclmiquea-

Is Protection lecessary 7

Ipplemeniation in ﬁﬁsﬂﬁbligrlﬂﬁ

The Organization of U ures

Frocedures as & Representation of FProcedure Status
The Scheduling of Frocedures

The Debugping of Frograps

The Transaction of Input-Cutput

lnput—ﬂutfut Buffering
Is Compatibility Iuec:e.;sa:;r

e Harcuare

Hemo: Faging, and Swappl
The ?uél hﬂceéaﬂrs PEE0E
%e::c}ndar Etll
isplay Facjlities
Vision Facilities
Arzlog Input and Output
User Terminals
The Flotter and IFL Facilities
Clocks
kKiscelleneous Hardware Devices

4. Additional Software Details

IDaemon Procedures
Inter-Frocedure Communication
Disowned Frocedure Trees)
Direct Inpui—Output Instructions

coftware Interrupts
Hiscelleneous Soltware Devices

5. Mork in Profress

The ARPA Netwerk
The Mathlab System

6. Hecompendotions

Hardvare Develcpment
coftware Development

CHO R LR
=k 3 (00 O\ RORG

i
R

]
65
&7

Tebruary 1572 1TC Status Report Page 2

£. Desirn Fhilosory

Z(a). The Level of Service

The prime purpose of the ITS system is to improve the
efficiency of utilizeticon of both the human and Lardware
rescurces of the Artificial Intellipence Laboratory. The
nature of the advanced research use to which the sysiem is put
dictates the desirability of a high level of service to a
relatively limited number of users. Sometimes, in fact, an
extremely high level of service tc one user experimenting wiih
zn advanced real-tipe program is necessary and 2 sinul tansous
low level of service to other users is tolersble (which will
s5till =2llow then to perform e:iii‘.in.g or other lower level
functions).

The ITS system resides in the DEC (Digitsl Eguipment
Corperation) FDP-10, where normel user prograns ere executed.
It controls almost all input-output and it allocstes hardw=re
resources among users. One of these resources is the FIE-6, an
older nesrly copmpatitle computer. The aw.railabilitg,r_ of this
additional Eﬂmputﬂl; vith significant input-cutput capsbility,
free from interference by other users, cen solve the most
demanding real-time control requirements (see section 3(b)

below). Nevertheless, numercous festures are incorporated in

February 1572 115 Status Report Page 3

ITS tc enable unequsl resource allocatior to a certain
procedure or procedures running on the tire—shared computer.
Fapid response, especially to the more important users,
is ope goal of ITS. User prograr tire guanta are sufficiently
short to frequently sllow response within & teletype character
time. Flthough swapping has been added, the larre core memory
availetle (see section %(a) below) enables most zctive user
procedures to be kept in main memory as well &s allowing
researchers to efficiently work on large programs. Lost
swapped cut procedures are dorment or disowned (Lackrround).
The recent growth in the number of users accomodated
has resulted in some reducticn in services especially when cne
researcher is heavily leading the system resources,. In early
operation, & peak load on ITS was six or seven users but now
there are 39 ports (including 7 with at least character display

capability) and 16 users is not uncormon.

E{h]. The Persommel Technigues

The ITS system 1s not the result of a human wave or
crash effort. The syster has been incrementally developed
aelmost continuously since its inception. It is indeed true
that larre systems are never "finished." As the system has
catured there have always been new features to add to those

tnder consideration &s others were icplepmented or discarded.

February 1972 IIS Stetus Report Page 4

Kormelly there are two or three persons most actively
working cn the time-sharing system. In severzl respectis this
nunber seems optimal. The organizationsel problers of a larpe
group are avoided while the problems of & single person
"retiing stuck" or besing chenges on a limited single point of
view are lessened. Major chenges are normally widely but
inforpally discussed before implementation to form a wider Lese
of opinicn.

In genersal, the ITS system can be seid to have been
designer implemented and user designed. The problem of
unrealistic software design is grestly diminished when the
desigmer is the implementor. The ipplementor”s ease in
programming end pride in the result is increesed when he, in an
essentiz]l sense, is the designer. Features are less likely to
t.rn out to be of low utility if users are their designers and
they are less likely to be difficult to use if their designers

are their users.
2(c). Is Protecticn Necessary 7

Most time-shering systems have extensive sscondary
storgpe allocation and protection mechanisms. [Host time—

sharing systems po to great lengths to sssure that a user 1is
tauthorized® gnd thet no ordinary user procedure can damsre the

system or disrupt input-output. In ITS a2lmost any user

Tebruary 1972 IiL Status neport rafe 5

procedure can trivially read, write, or celete ary user’s disx
files =nd can store in any ebsolute pemory locsation (possivly
clobbering IT8) or perform direct hardware input-output
instructions (possibly disrupting ITE input-output). Uver ceny
years, with hundreds of cifferent persons using 1TS at the
Artificizl Intelligence Laboratory, no significant problens
have occurred due to this lack of protection.

The situstion might be different if sensitive files
were freguently stored on the Artificial Intellirence
laboratory system or its absolutely continuous operation were
vital. Fut cften the sensitivity of files is overrated. It
would appear that in a cohesive cpen research environment most
"protection" mechanisms are a counter-productive encumberance.
They divert the efforts of systems icplementors, inconvenience
rost users, and for some users act as a challenge which divertis
their efforts to warring with the protection inplementors.

Just the right number of safeguards have been installed
in ITS to reduce to an acceptable level the probebility of
accidentelly damaging the system or another user’s files. The
ability to execute direct input-cutput instructicns and to
podify the system while it is running are powerful tools that
heve been used with due respect for their dangers by the
advenced researchers that ITS is written to serve.

Lo “pmssword" mechenisz currently exists in ITS to stop

=nyone ircm using the system. Initislly there was noc

ITebruary 1972 ITE Stetus Report Page &

restfictiﬂn to any user storage of files on secondary storage.
tatchfulness and moral suasicn have controlled urauthorized
rachine usare while producing no urmneccessary barriers to short
demonstration uses, an authorized user logging-in under pore
then cne name, or other advantageous flexibilities. A recent
podification to ITS to provide control over the suthorizastion
of nev users to store files on the disk coupled with the long
standing morel suasicon and fact that anyone can delete any file
heve controlled disk usasge with no signifiﬂapt complaint.

2(d). Ircplementation in Assembly Language

The ITS system is entirely written in MIDAS, an
asserbly language with mecro facilities. Althouwsh some parts
could have been written in a compiler with little adverse
effect, most of ITS is input-output coding end much of the
repainder (such =s the scheduler) is time criticsl for the
level of service it is desired t¢ provide. The flexdibility,
efficiency, and ezse in interactive debugging of machine
langusge are not matched by any aveilable conpiler.

Eriting an extremely complex system full of cultilevel
interrupts and pege fault considerations to run cn a bare
cachine is not the same as writing & program of noderate
complexity te run within a syster kmown to be furctioning
correctly. When & system crashes, vhat do you do? II the

Tebruary 1972 IT: Stetus Report Pame 7

lasiec conscle liphts and manmeal controls don™t work then it
rust be & hardware problem, FBut if they work anc the system
internmittently fzils there must be something in btetween to aid
in debugring the sof'tware or peripherzl hardware. In ITS this
function is filled by 2 permanently resident interactive
eynbolic machine languere debugger which includes a symbol
table for the systemn.

In almost all cases where an internal errcor is
detected, as opposed to an external device error, ITS attenpis
to helt immediately and pinimize the amount of information

destroyed by laler consequences of the error.

Z(e). The Organization of User Procedures

The actual use of ITS is entirely procedure oriented.
Mmost no “command" is executed directly as 2 result of user
conscle input but rather there is always a procedure which
interprets conscle input into 2 seqgquence of system cells to
accomplish a desired task. Vhen a user first makes the systen
aware of his presence at a comscle, 1TSS loads a fixed procedure
for him with which he then converses.

Frocedures in ITS are organized into hiera:chiﬁal trees
with each nor-apex procedure having cne immediste superior.
Ezach user at a conscle commands one tree and usuelly executes

an arbitrary program by instructing his systen loaded apex

February 1572 178 Stztus Report Page 8

procedure to crezate an inferior procedure and lcad into it and
start the desired program, Facilities are proviced for the
transfer of control of the user’s console between procedures in
his tree. If faced with a recalcitrant procedure a user ray
directly command ITS to tramnsfer control of his conscle to the
procedure’s immediate superior and thus ultimately to the
systenm lcaded apex procedure.

This crganization of procedures means that ne rigid
"command interpreter” exists in the system itself. Indeed, it
is easy to change the system lcaded apex procedure, which is
the highest level conscle input processor, by writing & file on
the disk, with no interruption to system continuity. It is
2lso possible for a user to cause a different program to be

loaded &s his apex procedure so that the highest level conscle
input processor may vary fror user to user. This lest feature

is not used that frequently a2s the procedure tree mechanism
zllows users great generality in cresting lower commsnd levels
cf their own.

A poweriul highest level conscle input processcr and
experimentation with its enrichment eare encouraged by the fact
that new versions cean be run and debugged, e&s with any other
Frogram, lower in a user”s procedure tree. The consequences of
en infrequently encountered bug in the systen lozded apex
Frocedure are minor in ITS, normelly affecting only one user.
In mcst other systems with a rigid "commend interpreter® built

February 1972 1ITS Status keport Fage ©

in, & single false address caleulstion by such & profrag car
crash the system.

"This principle of separating o large cohesive body of
code intc a separate program hes alsc been folloved in the
implementaticn of the "ITL® device. This set ol interpretive
translation routines ellows & grephic display list to be output
cn an incremental plotter (see secticns 3(d) and 3(h) below).
Fowever, attenpting to stop fault propagation by splitting off
sections of the basic ITS system would lead to increased
complexity and lowered efficiency. The fundsmental scheduling,
system cell, and input—-output handling routines of ITS are
richly interwoven, carefully optimized, and, by this point in
the syster”s maturation, reletively debugged and static. The
only cther lerge, cohesive, prograr—-like piece of code within
ITS that could be split off is the interpreted displasy device
(vIDS*, see section 3(d) below) but, since it is now thoroughly
debugred and stetic, little would be gained.

Certain simplifications are possible in IIS due to the
hiersrchical restrictions plsced on control acticns on
procedures. HMany system variables associzated with a procedure
can te modified cnly by the procedure itself or its immediate
superior. Procedures may be crested or destroyed only by their
immediate superior, except for apex procedures, which have nc
superior. Apex procedures mey be created or desiroyed only

throush the systen recognizing a reguest for service from a2

February 1972 175 Status heport Yage 10

free console (see section 3(p) below) or recornizing a log—out
systen cell from an epex procedure. (However, procedures may
change from being nor-apex to apex and vice verssz as described
in section 4(¢) telow.) These restrictions reduce the need for
interlocking and the probtlems of authority between procedures

tut have not been onercus from a user”s point of view.

2(f). Procedures a2s a Representaticn of FProcedure Status

The fundamentel mechanism in ITS for detercining and
changing the status of & procedure that is blocked during the
execution of a system call deserves special comment. In many
other systems the state of a procedure that is blocked (can not
_ﬁrﬂneﬂd until some external event or condition occurs) is
represented by status bits in such a way that for a system to
determine if it is still blocked may be difficult and it may be
difficult or actuslly impossible to abort the procedure irom
its blocked state until it is unblocked. It may even be
necessary for every event that might unblock a procedure to
rerfore extensive manipulations on these status Tits and
determine if it has unblocked the procedure.

In ITS, when the system code for the execution of a
rarticular syster call gets to 2 point where it may be blocked,
the tloclking condition is normally summerized in a single

instruction that skips if the procedure may proceed. Ihis

Febru=ry 1972 1718 Status Report Fege 11

instruction may, witk fev constrainis, call an arbitrary
routine or may simply test a single varisble or, indeed, a
single btit. In the location after the blockding test
instruction, where ome might in a nor—time-shared environment
expect to find a transfer of control back to the test to forr a
vait leop, there is & call to a routine which causes the
blocking test instruction to become the criterion for allowing
that procedure tc be scheduled. The scheduler is then called
to determine what other procedure to run.

(ne result of this is that no special pains need be
taken at any event which may unblock one or more procedures.
fny change in the state of any varisble may csuse any number of
tlocking test instructions to sldp when executed. It is alsc
easy to determine at any time if a procedure is in fact
Hlocked. The only berrier to erbitrarily subtle hl&cking

cnditions is the time teken by the scheduler in executing
Eloclkdng test instructions that call complex routines.

The addition of a few system conventions znd another
simple mechanism make it easy in ITS to abort any procedure
from within execution of & system call in a reascnebly short
time. Procedures are not aboriable vhen "running in executive
mode” (executing a syster call and not bleclked). This is
cbviously necess=ry to protect certiain semi-criticsl aress of
code where interruption without return would leave variables

inconsistent. (This should not be corfused with truly criticel

February 1972 ITS Stetus Keport Fage 12

=reas of code where clock interrupts to ITS are romentarily
diszsbled to avoid the possiblility of the suspension of the
current process and the resumption by the scheduler of
another.)

Syster calls are normally writien so that whenever a
procedure is blocked in executing the system call it can be
aborted out and the user procedure reset so that, if resumed,
it will re—execute the system call. If the system call has
performed actions that should not be repeated, this must be
indicated by modification of a permerent system variable or of
the users core ipage, usually by changing one or more of the
ergunents to the system call. Note that the procedure being
aborted ray be indicated as unblocked simply be signaling that
it no longer has a blocking test instruction associated with
it. Ko change need be made in the actions at any possibly
niblocking event. In the case that some Y“cleen up® operations
need be performed to successfully abort, a list is associated
with each procedure of interlocks it has seized, which must ke
urilocked, and of specifications of arbitrary "clean up"
routines. These interlcclks prevent sioulianeous access to
certain déata tases or simultanecus execution of lengthy (where
turning off clocl interrupts is impracticel) critical areas cof
code by pore than one procedure.

This abort facility has manifold uses. It hes msde it

easy to ipplement & software interrupt facility bty which user

February 1972 IIS Status heport fage 1%

procedures may receive interrupts in much the sepe manner as
the FIF-10 provides hardware interrurts to the ponitor (see
section Z{e) below). This interrupt feature incurs less
cverhead than the techniques used in some other systems where =
separate procedure must e created for each condition or event
it is desired tc be sipgrneled by.

1f one procedure desires to temporarily or permanently
stop & second procedure, say to nodify system variables that
mey be in flux if the second procedure is executing a system
call, it need not wait until the cell is conplete (a condition
that might never cccur, for example cn output to & stuck
device). It can simply sbort the second procedure from any
system call it is in. If the second procedure is already
stopped or is running in user mode, there is no problem, of
course. If the second procedure is zctually rumning in
executive mode, a festure is provided to block the first
procedure and abort and stop the second procedure, unblocking

the first, as soon as the second procedure is next blocked or

returns to user mode.
Z2(g)- The Scheduling of Frocedures
WVhen the guantum time runs out for & procedure, or it

encounters a blocking condition, or it causes an interrupt by

sope profranm action (memory vieclation, stack overflow, etc.)

February 1972 118 Status heport Page 14

the scheduler is run. It exemines the variables in the systen
gosociated with each procedure and decides which to run next.
It sinultanecusly performs those modilications to the variatles
necessary Lo provide the software interrupt festure of ITS (see
section 4(e) below). In the case of a "fatal" error in a
procedure, an interrupt is given to its supericr procedure (see
section Z2(e) above).

The best rumable procedure is chosen on the basis of
two "usape" variasbles associated with each procedure. UOne of
these is the zmount of processor time used "recently" by the
process. That is a quantized exponentially weiglhted average
fraction of available processor time used with "current™ usage
weighted one and earlier usage weight decaying to 1/e for ussge
about seven seconds cold. The second variable associated with a
Frocedure is in fact the seme quentity but computed for the
usage of the entire procedure tree in which the particular
[rocedure resides. Then, of any two rumnable procedures, the
cne chosen Lo run is normally that with the lowest tree usage
or, if iree usages are equal, the one with the lowest procedure
USase.

This scheduling algorithn has severzal good effects.
lechine tipe is basicelly divided equally between consoles and
then equally between all procedures running for a2 perticular
console. A compute bound job is guaranteed its "fair" share in

the long run yet an interactive program is guaranteed high

February 1972 113 Status Report Tage 15

priority if it hes npot run for a while. HNote th=t, in conirast
with rany other systems, & procedure that is frequently tlocked
tut only blocked for a very shori periocd of tipe is quite
likely to get its fair share of time and, in any case, is
Fusranteed to run agein in at most one quantum time if it hes
been petting & low fraction of machine time.

Cf course, there are numerous embellishments on the
scheduling algorithm that make things a little pore complicated
in practice. Special consideration is given various "daemon"
end discwned procedure trees (see sections 4(z) and 4(c)
below). One procedure may be pleced in & specizl state called
mester wode where it is given twice the normal priority (by
pretending its usage veriables are helf as large). Master mode
plso gives a procedure pricority to the DEC 340 displey (see
s ction 3(d) below). A feature called real time mode is
available. This allows one procedure to, within limits,
specify a high priority time interval and a larger frame tine
such that for the high priority time at the beginning of each
frare it is given absolute pricrity. If not blocked it is run
in preference to &ll other procedures. A resl time airplane
simulaticn has been successiully developed in ITE using this
feature.

The present ITS scheduler has great flexibility and
renerelity. However it examines every procedure every scheduls
time, though some are only glanced at. The current scheduling

Februzry 1572 ITS Status heport Fage 16

glporithe is not incompatible with scme classification of

rocedures into queuves and & resulting increasse in efficiency.

2(h). The Debtugring of Frogrens

Each user”s standard system loaded apex program in ITS
is & medified and extended version of the well known DDT
debugging system. This automatically makes the ususl symbolic
pencry examination, modification, amnd sesrch facilities
available. Additiorel powerful debuggzing facilities are
availatle through IIT in conjunction with hardwere and softwere
features of the ITS system.

liodifications to the DEC FIF-10 processcr and features
of the pemory paging hardware (see section 3(z) below) that
have been installed on it allow & procedure to be single
stepped by its superior procedure snd provide mesns to
gusrantee suspension of 2 procedure aznd the informing of its
superior con specified types of reference to a specified memocry
loeation. In most computer systems these facilities, if
zvajlable, require menual interventicon from = cooputer
cperetor“s conscle and are thus inconsistent with remote
conscle time-sharing or at the very least inconsistent with
froviding these facilities to more than one user at & time.
Softwere Teatures in ITS enable IDT (or any other procedure) to
install rany breskpeoints in its inferiors even &t locatlions

Febkruery 14972 ITE Etatus keport Fare 17

which are prograr modified within certain limits.

In scme cther systems, the debugring program actually
resides in the seme core image as the progran to be debugied.
Fot only does this unduly izpinge con the desiyn of progrens,
tut the program being debugped can clobber the debugger! In
some other systems, much of the system”s information concerning
a progran is stored in the progrer”s core image. No only does
this unduly impinge on the design of both the program and the
system, but by clobbering these locations a procedure may
destroy information of great utility in debuggmings the procedure
cr, indeed, debugging the time-sharing system. ITurthermore,
tarriers are placed in the way of a simple algorithm for
procedure swapping to secondary storzge by the necessity to
retain much infcrmation in main remory that normally resides in
the procedure’s core image.

A research envircnment, perhaps more than zny cther,
requires that a high pricrity be given to ease in debugging.
Tespite considerable success in efforts toward universal
debugging aides, it has been found that teyond a2 certain level
of corplexity and uniqueness there is no practical altermative
to designing tailor mpade debugping and auditing features
directly intc the progran being developed.

A pood exapple of this is the system call sbort test

feature tuilt into ITS. As should be clear from section 2(1)
zbove, preocedures can usually be interrupted out of & systen

Februery 1972 115 Status heport Fage 18

call at severzl places. For a complex system call, the
probebility of being aborted at any particuler point may be
very low, expecizlly if the point is a possible tlocking point
where the blocking condition has a low probability. The system
call asbort test Teature zllows a single procedure to be
selected so that all system calls it executes will be
successively aborted at each point where a conditionzl call to
the test feature has been inserted. Af'ter each test abort the
system call is restarted and allowed to pass the previous abort
t-st point and go on to the next. This provides a reascnably
thorough test of interrupt sensitivity and of any clean up

routines that azre used.

Z(i). The Transaction of Input-Output

The majority of the code in the ITS monitor is devoted
to input—output. A general and unifcrm scheme of system calls,
with synbolic device and file specifications, has been extended
to as pany devices as was reéssonsbly possible. liany additicral
system calls are available to provide the user with the full
cepability of certain devices that do not fit the stendard
system calls at 211 or vhose potentiality is not fully subsuced

bty them. - Those device-specific calls that are of sufficient
ipportance are described with the device in section ® below on

hardware.

February 1S72 115 Status fepert Fase 1C

The generzl copplex of inpul—output system calls
rrovides for the transfer of a character, word, or erbitrary
size block of words or cheracters &t one time. lrovision is
made for interrupting cut of a block transfer in a resumsble
manner with c¢lesr indication to the user of the extent of the
transfer”s completicon. A user procecure i= never reguired tu
Inow about the neture of the physical blecking of a device it
is using.

The input-oufput transfers are effected Ly system calls
that refer to the area of the procedure to be written from or
read inte and & logicel input—output charnel nurter. Indtially
a perticular device, file, ard direction of transfer are
essociated with 2 logical chennel by & system call in which
they are symbeolically specified. A very similar symbolic
specificetion is used in the calls to delete or rename files.
A festure is provided in ITS whereby these symbolic file and
device specifications are subject to a mapping which may be
specified for =& procedure by itselfl or its superior procedures.
Any procedure may make or delete these input—cutput mapping
entries.

There are meny syster caells to affect an esteblished
input—output transfer, referring to it by the logical channel
with which it is associated. Some of these sllow 2 procedure
to treset & file on certain devices as an aree of random ACCEss

storege. Others allcw 2 procedure to cause the 1IS system to

Februsry 1572 175 Status Report Tase L0

suspend & transaction, storing its status anc frceing the
associated lopicel channel, and later resume Lhe transacticn on
the same or & different logical chamrel. This is frequently
used for "insert" copmands in files which cause & progran
processing the file to logicelly insert another file by
suspending processing of the first, processing the inserted
file, and then resuming the processing of the initial file.
Another system call is available which resets system buffers
for the transaction in question. This is frequently used in
"quit" or "silence® commands which reset conscle input and/or

cutput buffers.
2(3). Input—Cutput Buffering

The necessity for input-cutput buffers in the systen
when character or word a2t a time input-output is provided
should be obvious. The meny adventeres from systiem resident
buffers, especially if dynamiczally allocated, may not be as
clear. A5 penticned above, end g5 opposed to scme other
systems, the user is never reguired to be awere cf ithe physical
file tlecking on & device he is using. The efficiency of
pepory utilization is greatly increased and in;ui-éutpui delays
ere greatly reduced by the dynarmic allocation of buffers lor

the rejor high speed multi—-user file-siructured cevices. Lven

for devices which are ioplemented with & fixed systen buffer,

Februery 1972 110 Status heport Fape 21

such as the paper tape reader, one larpe efficient system
tuffer is all that need exist regardless of how many prograps
there are with the potentiality cof using the device.

For single user slovw speed nor-file-structured devices,
= fixed size system bulffer has been used for simplicity. These
tuffers are set to a size proportional to the speed of the
daevice, so the buffer normally represents & certzin szoount of
device operation time. Since, for meny of these devices, user
intervention 2t the device is advantageous, or even necessary,
a fixed "time" buffer 1s useful in maintsining a humanly
reasonable lag or lesd between the device and the procedure
using it.

Input—ocutput to user terminals presents special
control, bi-directionzl synchronization, and buffering problens
(see section %(g) below). Using the above desiprn philesophy,
T xed buffers representing a rgasnnahle amount of time were
chosen. Furihermore, these buffers sre associated with the
terminals and not with individual procedures. Almost any
advanteges from different buffers for each procedure,
wastefully provided in some other systems, can be simulated
using system calls that allow procedures to "outjut" characiers
ntoe input buffers. This allows a superior procedure to fully
simulate a separate input buffer for its inferior.

Using buffers in the systen allows real input-output to

proceed slmost entirely without consideration for the state of

February 1972 ITS Status Report Page 22

the procedure requesting it as real transfers are into or out
of system memory. (In particular the procedure may have been
swapped out to secondary storage.) A user procedure may easily
be interrupted, swapped out, moved in core or otherwvise
affected by the system with no difficulty, even while executing
or blocked in a system call requesting an input—output
transfer. OSuch a system call normally just transfers data
between system memory and the procedure”s core image.

2(k). Is Compatibility Necessary ?

ITS is an acronym for Incompatible Time-Sharing. This
naming was & reaction against certain attemnpts at Ycompatible"
time-sharing systems. These attempts seem to result in a
duplication of effort that produces an imperfect non—time—
sharing compatibility mode embedded in a time-sharing system
whose structure is such as to require considerable change in
the external characteristics of programs if such programs are
to efficiently mesh with and make use of their system.

To convert even a simple program to run under ITS
requires chﬁnge, but the structure and richness of ITS are
designed to provide equivalents for all frequently encountered
non—time-sharing features. As a result the difficulty of a
system program conversion effort will normally be found
linearly related to the amount of input-cutput programming to

February 1972 1TS Status Report Page 23

be converted and not much affected by its level of
sophistication. Also, the extermal characteristics of many
programs need be changed only trivially. This principle of
design philosophy has not inhibited the inclusion in the ITS
system of many pure time-sharing features not called on in any
straightforward conversion of non-time-sharing systems

Frograms.
A very simple feature has been included in ITS to allow

the simulation, within the procedural hierarchy structure, of
other time-sharing systems. This is done by allowing a
superior procedure to set the state of am inferior to one in
which 2]l system calls and interrupts are communicated to the
superior for it to interpret as it sees fit. This feature has
been used to successfully simulate the manufacturer supplied
time-sharing system. (This “DEC system" wisely does not
attenpt to provide non-time-sharing compatibility.)

In a research environment, the provision of a non-time—
sharing compatibility feature may be an unnecessary effort sink
doomed to lack of success in the sense of being able to run
unmodified programs with sophisticated non—time-sharing input—

cutput. .

February 1972 1T5 Status Report Fage 24

Je Hardware

Some information on the hardware facilities of the ITS
system appears in section 2 above.

%(a). Memory, Paging, and Swapping

Cne of the important influences on the I1S5 system and
research with it at the Artificisl Intelligence laboratory has
been the availability of over a guarter of a pillion words of
central core storage. This has encouraged large and
sophisticated research programs with much rapidly accessible
imbedded knowledge. It enabled early versions of I1S to keep
all user procedures in core memory for minimum response delays
on conversational input. Without this amount of memory, it is
unlikely that the powerful procedure hierarchy crganization of
1TS would have been adopted (see section 2(e) above).

Kecently, the crunch that would have resulted fram the
steady growth in the size of the programs being ceveloped ana
the number of persons simultaneously using the system has been
avoided by the use of paging and swapping. &Belcre paging
hardware, designed by the Artificial Intelligence Laboratory,
was installed on our DEC FDP-10 computer, only a relocation and

protection register was available. This restricted procedures

February 1972 ITS Status Report Fage 25

to contiguity both in real memory and their own address space.
Some additional workload was placed on ITS due to the necessity
to "shuffle* the contents of memory on occasion when contiguous
space needed could not be found. The workload would have
increased further if swapping of procedures to secondary
storage had been used before paging. It would have been
continually mecessary to find large contiguous spaces to swap
into.

Nevertheless, it is doubtful that the elimination of
this system overhead is adequate reason to install paging at
current hardware and software costs. It is the numerous
additional benefits of paging that tip the scales. With the
Artificial Intelligence Laboratory paging system, as usual, &
procedure’s logical address space is divided intc pages that
are mapped into pages of real mermory and possibly marked as
being restricted to certain types of access. Since user pages
need not be contiguous in real memory, the need to cccasicnally
wshuffle” memory is gone. In addition, the user®s address
space need not be contiguous so that the user procedure can,
for example, have several dymamically allocated tables without
the need to relocate them or reserve space for the sum of their
paxipum sizes. More important, if the invariant parts of a
system program are compacted in its address space s0 as 10
completely fill one or more pages, those pages can be made
read-only (or "pure®) and shared by all simultaneous users of

February 1972 ITS Status Report Fage 26

the program. A feature for automatically providing this
sharing on prepared programs has been incorporated into ITS so
that, for example, the constant part of the standard apex
procedure (see section 2(e) abowve) iz shared by almost all
users of the system.

It is also possible with paging to have a procedure
partially swapped out. Those peges not in memory can be marked
as not accessible and the system can swap in the page when
interrupted by the error resulting from trying tc reference it.
In the current ITS, procedures are swapped out as a whole but
peges are swapped back in only on demand. (Certain pages can
be locked in core by the "direct to memory® input—output
features of ITS (see sections 3(d), *(e), and 3(f) below).)
Thus rarely referenced pages tend to stay out of memory. The
same blocking test instruction mechanism mentioned in section
2(f) above is used to suspend a procedure waiting for a page to
be read in. As a result, & procedure can be easily interrupted
ocut of this “page wait" status, something nct usually possible
in other systems.

In sum, due to these flexibilities, paging hardware is
slmost necessary for a modern general purpose time—sharing
s,stem. However, the case for segmentation hardware in
addition to paging is not at all clear. The access between
procedure core images and between a procedure and either the
POFR-10°s or FDP-6&°s absolute memcry, which could be handled by

February 1972 ITS Status Report Page 27

segmentation hardware, is handled in ITS by paging with a one
time set-up system call overhead or, for programs that want to
treat memory as am input-output device, with system call
overhead per word or arbitrary size block transiered.
Segmentation hardware would mot significantly, if at all,
reduce overhead in the case of procedures that already access
other segments with paging yet it would add hardware rigidity
and expense. There also seems to be a tendency for persons
using a system with segmentation hardware toc operate on the
assumption that almost no non-access forms of overhead are
involved in using many segments instead of cne. This mistaken
impression leads to an unfortunate explosion in the number of
segments.

Flexible system calls in ITS emables procedures to
transform their paging maps in various ways. They can move
their own pages around in their logical memcry space or make
ther read-only. They can allocate additonal pages of memory in
any logical page slot. They can insert pages into their map
from any other procedure or the absclute memory spaces of the
FUP-10 or FDF-6. If requested, write permit will be given for
pages inserted from an immediate inferior if the inferior had
write permission. Procedures can declare any page for which
they have write permissicn tc be a "public page" which any
procedure may then insert in its own map with write permit.
Finally, procedures may request the insertion of a page

Febmary 1972 115 Status Heport Fage 28

associated with a particular system wide identifier such that
if no page exists associated with the specified identifier, a
public page will be created. If such a page is in existence
for the identifier it is made available to the user in the
virtaul address slot requested.

The bandwidth of the current memory system and
secondary storage swapping device seems adequate for the
current level of use only. A significantly higher level of
swapping would require a swapping device superior to the disk
currently used, which must alsc support user file storage (see
section %(c) below). A faster swapping device would impose
higher demand on main memory which is now mostly a single
uninterleaved 2.7% microsecond Febritek core memory. A
significantly faster successor to the PDF-10 processcor, which
could execute instructions faster than its averzge of 5
picroseconds, would be wasted instead of slightly slowed with
the current memory. On the other hand, the installation of
sufficient faster memory in additicn to the current memory
would not only allow for a much faster central processor but,

by increasing the capacity of main memory, might cbviate the
need for a higher bandwidth swapping device.

February 1972 ITS Status Report Fage 29

3(b). The Dual Processors

The Artificial Intelligence Laboratory ITS system
includes both a FDP-10 computer and & POPR-6, its slower
predecesor. These are configured to give the FDP-6 a small
private core memcry which is accessible by the PLE-10, where
the time-sharing monitor runs. Normally the FDP-& can not
access the memory being primarily used by the PDF-10. Each
processor has exclusive control over some basic input—output
devices attached to their input—output signal buss but beyond
these devices the busses are time pultiplexed into a single
buss with an extra signal which indicates which processor has
the shared buss for any particular cycle. Devices on the
shared buss pormally have simple assignment hardware which
2llows one processor at a2 time to seize each of them. Until
released by their controlling processor they ignore commands
from the other processor except that an attempt to read their
status will reveal their processcor assignment state.

A1l of the important robotics devieces on the Artificial
Intelligence Laboratory system are on the shared input—output
buss and may be assigned to the FDF-6 where programs of unusual
time criticality or input—output organization can be developed.
Through I1TS, the FIP-6 cen be made to appear as a procedure in

a user’s procedure tree. Thus programs can be easily loaded
into or dumped from the FDE-f and to some extent controlled and

February 1972 ITS Status Report Fage 30

debugged by a procedure running on the POP-10. To further
facilitate interprocessor communication, a device has been made
accessible to each computer by which it ean interrupt the
other. If the FIF-10 is thus interrupted by the PDR-6, ITS
will commmicate this to the procedure in the time-sharing
system that has attached the PDP-6. Finally, a system call is

available in ITS to similarly interrupt the PDP-6.

3%(c). Secondary Storage

Iisk storage, standard magnetic tape, and DECtape (DEC
microtape) are available on the ITS system for file storage.
The disks are also used for swapping. The standard magnetic
tape and DECtape provide off-line back-ups, archival storage,
and easy interchange of information with other systems.

Disk storage is provided by three Memorex 23%14-
compatible drives which are attached to a Systems Concepts
Incorporated DC-10 controller with direct memory access. The
interchangeable disk pack festure of these drives is used
primarily for back-up when new ITS disk routines are being
debugged. Most users keep frequently used or currently active
files on the disk system. A system of directories is
paintained by ITS describing the location of all files on the
disk and the location of free tracks.

Two tracks on each disk pack are dedicated to that

February 1972 ITS Status Report Page 31

pack”s track usage table and master directory. The track usage
table has use counts for each track on the disk indicating how
many files include that track. Since facilities for including
a track in more than one file have not yet been included in
ITS, this count is presently equivalent to a one bit use flag.
In some other systems, information on free tracks is kept in
list form with each free track containing a pointer to the
next. This requires that a read be done before each write,
halving the efficiency of disk writing. In IT5, free tracks
are easily available from the track usage tables which reside
in core, although updated versions are frequently written on
the disk packs. Similarly, the tracks in a deleted file may be
freed in ITS by simply changing a track usage table without the
necessity to write each track to link it into a free list as in
some other systems. The track usage tables contain certain
additional information such as the pack mame and the size of
the btlock of tracks, if any, on that pack dedicated to use in
swapping (see section 3(a) above). Finally, the master
directories on the disk packs (only one common ccpy is kept in
core) contain the names of the users for which there are user
directories on the disk.

Fach user directory lists all files under that user’s
name and the lecation of each track in each file. Although
user directories are currently limited to one track, the file

location information stored in them is very compact and no

February 1972 ITS Status Report Fage 32

problem has been encountered due to this limitation. Various
pseudo-user directories are available for system programs,
large joint projects, and other uses. Also stored with each
file name in the user directory is information concerning the
time of the file“s creation. Provision is made for symbalic
links where a particular ®file" in a user directory is a
symbolic specification of user and file name which is actually
used if & read is being done., These links may be cheined up to
100 levels. A write or delete will write over or delete the
link and not the file linked to.

It turns out that the most frequent cperation performed
on & user’s file directory in ITS is probably to list it. This
is because most system programs, when run from a terminal with
character or graphic display capability, display the most
recently referenced directory af'ter file commands. Also, users
frequently examine several directories explicitly before
actually deciding to read, write, or delete a file. File
diretory design for an interactive system, especially one with
high speed (e. g. display) output at many user terminals should
take this into account.

Une Digital Fquipment Corporation (DEC) TU-20B magmetic
tape drive is available interfaced by a DEC TM-10A controller.
This is a seven track IBM-compatible unit used primarily for
disk tack-up and exchanges of large amounts of data with other
computer systems. The I1S magnetic tape routines provide

February 1972 IIS Status Report Fage 33

system calls for the usual special operations such as backspace
and rewind but currently records are limited to a maximum of
1024 words and there is no provision for a system-recognized
directory on a tape.

Several DECtape drives are available. These utilize
small magnetic tapes with a pre-recorded fixed format. They
are the principle type of off-line storage for almost all users
of ITS. Due to the importance of this level of user controlled
back-up and archival storage, system calls are available to
temporarily assign and deassign particular DECtape drives to
particular users. Normally DECtapes are used in a file
structured manner very similar to the disks under ITS. GSystem
calls are available to initialize a DECtape”s directory and to
set its tape name. A mode is also available in which all the
data on a tape can be read in its physical order, without
regard for its usual directory structuring.

3(d). Display Facilities

Real time graphic displays provide the highest
tandwidth communication from computer to user now available.
They provide for natural input of graphic data or control
information. In developing advenced programs to grapple with
the resl world, especially in conjunction with the Artificial
Intelligence Laboratory vision facilities, described in section

February 1972 ITS Status Report Fage 34

3(e) below, graphic representations are indispensable and
graphic displays are of inestimable value. As described below
in this section, there are serious deficiencies in the the
current 175 display hardware.

The prime display facility on the ITS system is a DEC
%40 display with extended character generator character set.
This display is placed near & hardwired system teletype
terminal and also drives two slave monitor displays, a DEC 343
and a Hewlett—FPackard 1300A. The DEC 340 has character,
vector, and incremental modes as well as X-Y point plotting but
it is not fast enough to maintain more than one complex display
image.

There are three different ways of using the DEC 340
under ITS. With all three methods system calls are available
to make use of its light pen and to control the refreshing of
the display so that it may be synchronized with a camera
shutter. Since actunl display monitors are near particular
system terminals, a pecking order has been established whereby
users at certain consoles can take the display away from a user
at a lower precedence terminal.

The most common method for graphic displays involves
system calls that cause varicus areas of the user procedure”s
core image to be used as display lists to refresh the display.
This gives the user the maximum power to dyneamically change
what is being displayed. He can simply modify his own core

February 1972 ITS5 Status Keport Fage 35

image. With this method; the user also has the advantage that
he can get an incremental plotter version of his display output
by using the interpreted plotter device as described in section
3(h) below.

The remaining two methods of using the DEC 340 buffer
display lists in system memory. In the first method, the
symbolic device "DIS" is used and cheracters can be output in
character mode to appear on the display. ITS also simulates a
blink feature whereby characters output between a blink-begin
and blink-end character are intensified or de-intensified every
half Eeu&ﬁd. In word mode, output to DIS is buffered by ITS as
absolute DEC 340 commands to be used to continually refresh the
display.

The last method of using the display is the symbolic
device "ID5SY or interpreted display. This activates an
extensive piece of sophisticated code in ITS that simulates a
fictitious display processor by interpreting instructions for
this display processor in the user”s core image. This
simulation code pakes use of the DEC 340 hardware to perform
many calculations and stores in a system buffer =z 340 display
list to produce the same display as the fictitious display
processor would. The user simply sets up his display in the
form of instructions for the 105, sets up a display push—down
list pointer for the use of the IDS, and outputs an initial
display processor program counter. Other than the slowness of

February 1972 115 Status Report Page 36

the initial interpretations and the denial of dynamic display
modification due to system buffering, the user appears to have
a sophisticated display processor at his disposal.

Certain hardware drawbacks of the DEC 340, which have
been ameliorated by ITS software, make it inherently unsuitable
for full utilization in & paged time-sharing system. Before
1TS was paged, there were only two problems. First, that
certain display lists will cause the 340 to hang—up with no
indication to the computer. This reguires various timing
routines in ITS to detect this condition and reset the display.
Second, certain display lists (for example the "aisplay list"
of all zeros, which does not cause anything to be displayed)
are processed 50 rapidly by the 340 that it takes up all
available pemory cycles. This problem is aggravated by the
fact that the 340 is not designed for use via a data chamnel
but uses the FIF-10 computer”s “ELKO" facility which uses three
memory cycles for each word of data cutput. HNon-trivial
accounting routines are required in ITS to detect this
condition and take appropriate actions.

With the addition of peging, the worst problem is
gdded. Since data must be "ELKO"ed to the 340 from executive
address s;ac‘e, IT5 must laboriously simulate paging for each
display list pointer and for each contiguous display list.
This problem in addition to those above has peant that an
attempt to make sophisticated use of the display with dymamic

February 1972 ITS Status Report Fage 37

multiple display lists produces an enormous load (sometimes
over 50%) on the system due to the exorbitant bookkeeping
mandated by the DEC 340 bardware.

Tue replacement of the DEC 340 by a modern high speed
display processor could provide the sophistication simulated by
the IDS device (see above, this section) without its drawbacks
and provide this to many users simultaneculy. Yet, there would
be less load on ITS than that caused by the current limited
facilities provided one user by the DEC 340.

A color display with ¥-Y point-plotting capatility only
is slso zttached to the Artificial Intelligence Laboratory
system. The slowness of this display and various problem
related to focusing and convergence presumably led to its
manufacturer’s generosity in giving it to the Artificial
Intelligence Laboratory. There are currently no routines in
ITS for the use of this device but it has been used to a
limited extent from the FIF-¢ (see section 3(b) zbove).

%(e). Vision Facilities

Available in the ITS system is a television—camera-like
device enabling the light intensity &t points in its field of
view to be read in by a user. Foints may be accessed in random
crder and the device, known as a vidissector, operates by,
within limits, integrating the light at a point until it

February 1972 IIS Status Report Fage 38

reaches a specified value and returning the time taken. The

vidissector focus and iris are computer controlled (see section
3(f) below). Fetures for using it in the ITS system are
described below.

There are three different methods of using the

vidissector in ITS which provide increasing levels of overlap
to the user. The simplest mode is as symbolic device YHVDY.

This device is opened on a logical channel (see section 2(i)
above) and then input-output system calls are done specifying
this charnnel and pointing to words containing the coordimates
of points to be examined. The contents of these words are
replaced at the time of the system call with the light
intensity at the specified points.

The second method of using the vidissector is as
symbolic device “IVC". In this method, TVC is opened on two
logical channels, one for output and one for input. Coordinate
pair words may then be output on one channel where they will be
buffered by ITS, replaced asynchronously by the light intensity
at the points they specify, and be made available for input in
the same order on the other chammel. Thus a user procedure can

output some points, proceed with other computations, and later
retrieve the vidissected values. _

The final method of using the vidissector provides the
paximum amount of overlap. A special system call allows the

user to specify a rectangular array cf points to scan, an

Febtruary 1972 IT5 Status Report Fage 39

arbitrary homogenecus transformation on their coordinates into
vidissector field-of-view space, and an array of words in the
users core image for the resulting light intensity measurements
to be stored in. The vidissection caused by this system call
is compleiely overlapped with user computation, if requested.
Mnother system call is available to test the progress of a
scan, hang up until its completicn, or abort it.

Thus ITS provides vidissector routines of various
levels of sophistication to match that desired by the user. At
the expense of slightly increased complexity and organization
on the part of a using procedure, greater speed, overlap, and
patterning are available from the system.

3(f). Analog Input and Output

The Artificial Intelligence Laboratory system has
varicus analop sensors and effectors attached to it. These
include mechanical arms and hands frequently used to manipulate

objects in the field of view of the system”s vision facilities
(see section 3(e) above). Analop channels to and from these

devices are interfaced for digital control as described below.
The digital to amalog multiplexor, or output

pultiplexor, can be used from within ITS in two ways. The

first is as the OMX device which may be used by more than one

procedure at once. The user simply outputs a word specifying

February 1972 115 Status Report Fage 40

in different fields which of the sixty four cutput lines he is
setting and which of 4096 values he is setting it to. Since
the output multiplexor requires refreshment every half second
t0 maintain its output values (it has only amalog memory) ITS
maintains a table of values for each chamnel which it outputs
periocdicly as long as a procedure has the OMX device open or is
using the special system call describted below. When the user
associates the OMX device with one of his logical channels he
can specify that cutput is to be effective immediately or, for
slightly less overhead, is to be only stored in ITS s table to
take effect within a half second.

The output multiplexor may also be used vie a special
system call that is available to only one procedure at a time.
With it, for a limited number of output channels, the desired
destination value and & velocity (rate of change) limit ecan be
specified and the current position and velocity tested. These
cperations are performed for the user by interrupt routines in
ITS. Since this system call can specify changes for a list of
output channels which may represent Joints of an arm, the call
is uninterruptable while information is being transferred to
ITS. ﬂthmii,se uncoordinated arm motion with disasterous
conseguences might occur. This uninterruptable period is
limited by limiting the maximum length argument btlock that may
be given to this system call.

The analog to digital multiplexor, or input

February 1972 11IS Status Report Fage 41

multiplexor, can alsoe be used from ITS in two ways. The first
is as the IMX device which may be accessed by more than one
preedure at once. This device is used by opening it on a
logical channel and then doing system calls on that channel
pointing to a word (or words) containing input channel mumbers.
Each nunber is replaced by the digitalization of the analog
signal present on the corresponding multiplexcr line.

The second way of using the input multiplexor involves
a special system call by which the user can cause program
parameters to appear to be directly controlled by analog
inputs. For a limited number of channels a procedure can cause
a fleating point word or a fixed point byte (possibly a word)
to be pseudo-continucusly set by a particular input multiplexor
chamnel. The user also gives limits which tell what digital

amount the maximum and minioum amalop values are to represent.
Linear interpolation is done inbetween. In addition a

procedure specifies whether a particular parameter is to be set
amulutelrftu the value represented by the input signal or is
to be incrementally adjusted by it. In the incremental case no
change will cccur at the initial “"connection" but change in the
input signal will cause changes proportioned by the ®"limits®
set. Since the normal use of incremental mode is to cantrol a
progran by manipulating a potentiometer attached to the
multiplexor it is desirable to keep the potentiometer centered
and avoid ssaturating its range. This is accomplished by

February 1972 1TS Status Report Fage 42

exaggerating the incremental effects of upward changes in the
signal in the upper third of its range and of downward changes
in the lower third of its range.

The input and output multiplexors are a good example of
ITS input—output philosophy . As much as possible is made
available through standard input-output system calls. If there
are desirable capabilities or extremely useful effects that are
not available through standard calls, appropriate special
facilities are added.

%(g). User Terminals

(ne of the most important aspects of a time-sharing
system from the user”s point of view is the conscle interface.
I1TS is internally oriented to the use of T-bit ASCII character

codes. Only two characters have been reserved by the system on
input so that they are slightly harder to type at a user

program. In this section, a """ before a characler means the
code produced by striking that character with the control key
held down on a teletype. Sinece, for generality, all possible

“character® inputs must be representable in any internal
character streams, the "break signal, from conscles that can
supply it, is deliberately unrecognized by ITS.

0f the two characters recognized by the teletype
routines on input, one, “Z, provides the only direct user

February 1972 ITS Status Report Page 43

control over his procedure tree. When ITS sees a “Z from an
idle console, it loads the standard apex procedure (see section
2(e) above). If ITS sees a “Z from a console controlling a
procedure tree it does nothing if the console is attached to
the apex procedure. When a conscle is attached to a lower
level procedure, “Z provides a way of alerting higher lewvel
procedures so that they can talke the console away from an
inferior and then accept commands from the user.

The other recognized character, * , primarily provides
a means of direct communications with the teletype routines
themselves. A user can type in a “Z or “_ or an arbitrary
character specified by its mumeric code without control effect
by preceeding them with & *_. Using a *_ followed by wvarious
other character string argumentis, the user can inform the
system of various properties of his terminal (including that it
is one of several types of character display terminals) and can

enter "communicate" mode with another teletype if not
prohibited by the other teletype’s user. More than two

teletypes can be in communicate mode which causes characters
typed on any teletype to be printed on all.

Thus we see that on type-in the user has been given
great flexibility within the procedural organization of ITS.
Only two characters have been taken from him and in return he
gets a minimal but sufficient monitor signaling facility and a
convenient way to "talk" to other teletypes and tell the systiem

Februery 1972 ITIS Status Report Fage 44

about special properties of his console. (Actuslly, in the
case of conscles with obviously inadegquate character sets like
the IBM 2741, additional characters have special effects on
input to simulate control-shift, alt-mode, etc.) Messages can
still be sent between system loaded apex procedures using the
core-link device (see section 4(b) below). This feature of the
standard apex procedure, which sends entire messsges at once
and bhas no effect on the recipient console other than typing
out the message, is sufficiently different from the teletype
communicate feature to have been retained.

Iirectly related to teletype input are the guestions of
echoing, procedure activation, and teletype interrupts. In
ITE, the ASCII characters are divided into twelve natural
groups. oOystem calls are available to read and set for a
particular procedure, the effects of characters in each group.
They may be echoed immediately on type-in, or when read by the
procedure, or not at all (by ITS). They may be declared to be
activiation characters or not (a procedure hung cn type-in is
not started until an activation character is received or the
input buffer contains a large number of characters). They may
be declared to be interrupt characters or not. Iinally,
varicus special submodes are available such as whether lower
case letters should be converted to upper case on input or
whether alt-mode, escape, and prefix should be standardized
into prefix.,

February 1972 115 Status Keport Fage 45

The ITS console input-gutput routines are designed to
allow full utilization of full-duplex communications. Half-
duplex is a micro-scale remrnent of batch processing where one
inputs a clump and waits for & clump of output with pushing a
panic button as about the only action possible in between.
Even if a program uses line at a time input (carriage return
the cnly activation character) and has no interrupt characters,
it is often convenient to start typing in before previous
conversational output is through.

Frogram type-out is given higher priority than echo of
type-=in so that intermixing of streaps on a printing terminal,
even 1f immediate echo is selected, in unlikely tor typical
high speed ocutput. On character display terminals, aifferent
screen areas are normally used for program outpul and echo as
explained below.

When certain characters have been declared to be
interrupt characters, their type-in causes an interrupt
specifying the logical channel the teletype is cpen on (see
sections 4(e) and 2(i)). A procedure thus interrupted can read
the interrupting character in its interrupt routine with no
effect on it.:a main program”s ability to later reread the
character for normal input.

Turning from teletype input to teletype cutput, the
complicating factor becomes the availability of various
character display terminals. To enable procedures to simply

February 1972 ITS Status Report Fage 46

and efficiently use the full capabilities of such terminals,
system calls are available to read the screen size and current
cursor position. YNormal" mode cutput tries to simulate a
teletype (except that some non—printing characters are
optionally rendered into two graphics) but a display mode of
cutput is available where ITS interprets “P followed by varicus
special character sequences as a comand to set the cursor
postion, clear the screen, etc. These commands are uniform
despite the variety of character terminals on ITS. It is also
possible for a procedure to specify whether it wants input and
output interspersed or a separate command echo region at the
bottom of the screen.

The harduare consoles on 115 are primarily interfacead
through two 16~line controllers. Ome, built at the Artificial
Intelligence Laboratory, interrupts the processor on every
character in or cut. The other, a Systems Concepts, Inc. DE-10
controller is much more suited to time-sharing use and handles
direct from memory output of character strings without
additional effort by the FDPR-10 processor.

Certain non-hardware teletypes, or pseudc—teletypes,
also are implemented in ITS. These appear to be normal
teletype devices on one "side" but, in fact read from and
output to whatever procedure has opened the other “side“,
rather than a physical terminal. These provide added
flexibility in the simulation of certain situations for

Februery 1972 ITS Status Report Page 47

debugging purposes and will be used in the initial
implementation of the ARPA network interface (see sectiom 5(a)
below).

In summpary, the ITS teletype routines are one of the
prime reasons that users can provide their own subsystems with
such generality. The system provides great flexibility with a
pinimum of protrudence into the resulting teletype input—output
behavior.

%(h). The Plotter and IFL Facilities

At the Artificial Intelligence laboratory, 115 provides
hard copy graphic cutput on a CalComp 565 plotter. This device
can be used in two ways. As the FLT device it appears to be a
character output device where various bits in each character
have effects such as step right, pen down, etc. Of course
blocks of "characters" can be output with one system call.

The IFL, or interpreted plotter, device allows a
particular procedure to be automaticly loaded and interposed
between the using procedure and the plotter. The user”s

plotter cutput is in fact interpreted by this procedure which
also has the capability of examining the using procedures core
imege. The IFL device allows the user to output drawings in a
plotter oriented command system that provides vectors,

characters, scaling, and sipilar features. The user may alsoc

February 1972 ITS Status Report Page 48

output information to the IFL device specifying the position
and length of a DEC 340 (see section 3(d) above) display list
in the user’s core image. This will then be interpreted and
output on the plotter.

%(i). Clocks

Time is, of course, important in a time-sharing system.
ITS has several clocks that are used for different purposes.
The most important is & sixty cycle clock that provides

interrupts to the processor. This is used to drive the
scheduler, to update internal times and dates, ard to drive a

peneral clock gueue facility. ITS uses this clock queue
internally to remember things to do at the clock level in order
of immediacy. The clock queue is used to run various periodic
bookkeeping routines and to provide simple timing to various
ITS functions. There is also a potential clock queue node
associated with each procedure whereby the procedure can get
pericdic software interupts (see section 4(e) below). This
block is also used and these interrupts provided when a
procedure uses the real time facility (see section 2(g) above).
A date clock is also attached to ITS. It is powered by
a special power supply that is not normally turned off and is
used by ITS to initislize its internal times and dates. This
time and date information can be read by procedures through

February 1972 ITS Status Report Page 49

various system calls and is also used to set the creation time
of files written on the disk and for similar purposes.

There is also & quantum timer included in the
Artificial Intelligence Laboratory peging box which is not used
to initiate the scheduler but is used to measure the processor
time used by a procedure. Finally, there is a scophisticated
high frequency real time clock not used by the system and
available for user robotics or other uses.

*(j). Miscellaneous Hardware Devices

There are numerious input-output devices on the
Artificial Intelligence Laboratory system that have not yet
been mentioned. Character at a time devices include a paper
tape reader, paper tape punch, and Ieta Products Corporation
line printer. These three devices are available through the
standard symbolicly specified input-output systen calls.
Several special devices are also available, mostly for robotics
work, that provide simple bimary input-output. These can be
used for remote control of lights or input from touch sensors
cr switches, etc.

Finally, graphic input is available via & Sylvania [T-1
tablet. This device can accurately measure the :-Y coordinates
of & special pen on its surface and can also produce a few bits
of pen height information. A procedure can read samples of

February 1972 IIS Status Report Page 50

these coordinates, buffered by ITS5, at a rate it selecis. To
compress this information, ITS can supply one coordinate sample
with a count if successive identical samples are read from the

tablet.

February 1972 115 Status Report Fage 51

4. Additional Software Details

4(a). Daemon Procedures

In ITS various actions are performed by daesmon
procedures, which are activated in various ways, rather than
directly by a procedure requesting the action through a system
call and then running in executive mode. In some cases, the
prime advantage cf these daemon procedures is that they can
treat a particular system aspect in a central manner
independent of the priorities of other procedures reguesting
action, if any. In other cases, daepon procedures are used
which appear to be part of the system, to their user, but which
in fact are general user written programs,

The most important two dsemons are the permanently
existant “system job" and “core Jjob". These procedures are
part of ITS and run in the executive environment. The core job
handles memory requests. It can base its actions on the glotbal
memory situation and more easily handle the problens involved
in updating the structures linking shared pages. It also
reclaims certain types of input—cutput buffers and is, on
gccassion, required to do a small amount of memory shuffling if
the system job area for procedure variables expands, since this

area is currently contiguous.

February 1972 115 Status Report Fage 52

As important as the core Jjob, and with many more
different tasks, is the system job. The most obvious thing
done by the system Jjob is to type out various messages on a
dedicated teletype. These messages include information that
the following actions have been performed: logins and logouts,
writes and deletes of system [iles, deposits in absolute
locations, etc. Also messages are printed when various errors
occur such as core parity errors or & checksum faeilure in a
constant block of ITS. The latter is detected by the system
job periodically computing checksums for each constant area and
comparing it with a precomputed checksum. If they do not
patch, additional precomputed checksum informaticn is consulted
that is adequate to uniquely identify the address and old value
for any single word being clobbered. (Locations in ITS
nodified by the set absolute location system call do not cause
alarms as the checksums are updated.) The system job types out
its conclusions on its teletype. The system job alsc performs
the spooling functiom of ITS by lime printing and then deleting
files in a particular disk directory when the line printer is
not in direct use. The system job also performs certain
periodic tasks that are not sensitive to Jitter in the time
they are done. Finally, the system job does most of the things
related to thé‘system going down feature whereby users are
informed & miminum of five minutes before the system goes down
in a planned manner and all users are finally automatically

February 1972 ITS Status Report Page 53

logeged out.
A third standard daemon normelly present in ITS is an

accounting and monitoring procedure called the dragon. It
writes usage information, and such things as numter of page
swap in requests, for each user on the disk in its own file
directory. A separate program is available that prints out
this infermation in tabular form.

The only other daemon procedures in ITS are used to
implement certain pseuwdo—devices. The IFL, or interpreted
plotter device is explained in section 3(h) above. More
recently, the JOE device has been added where the file name
given specifies a procedure to be lomded by the system. This
procedure has various information available toc it concerning
the system call, associating it with a leogical channel of its
user, that leaded it. It can then open a symbolic device and
run as a co-routine with its input or output connected to the
output or input of the other procedure.

The core Jjob, system job, and dragon, though not
inferiors or superiors of each other, all point to the same
procedure tree usage variable (see section 2(g) above) and are
given twvice the priority of a2 console procedure tree.
Frocedures created by the IFL and JOE devices run for the same

procedure trees as their creator.

February 1972 115 Status Heport Page 54

4(b). Inter-Procedure Communication

It is frequently desirable for various procedures in a
system to cooperate with each other. They may wish to
communicate directly with each other through input—output
streams or to share a data bese., bBesides the cbvicus method of
commmicating by files and the method of a procedure using
another as a direct unbuffered co-routine menticned in section
4(a) above, there are two other means of interprocedure
communciation in ITS.

The first is the core-link input-ocutput cevice. Using
this device any two procedures cam symbolically specify and
form a buffered link over which charscters, words, or blocks of
information can be transmitted. In addition, by using a
special device name, a procedure can specify by file name
another procedure that is to be given a "core-link" interrupt.
This alsc opens the input side of a core-link channel (output
from the orginating procedure) and inserts the name of the
calling procedure as the initial data. The interrupted
procedure may use a different special device name in an open
which will gutomatically commect to and allow input from the
core-link associated with the interrupt.

The other method of interprocedure comsunication is by
means of shared core. A procedure can attach pages of other
procedures or attach an “intercommunication" page specified by

Fetruary 1972 ITS Status Report Page 55

a system wide identifier in a very flexible manner as described
in section 3(a) sbove. Frograms have been developed that run
under ITE and on the FIF-6 by attaching FDP-6 core (see section
Z(b) above). This results in two processes cohabiting a
possibly identical memory, one running directly on the PLE-6
processor with full access to its peripherals and the other
running as a regualr time—shared procedure with normal access
to ITS facilities.

To make interlocks and semaphores between time—shared
procedures in shared core easier to implement, there is a
system call which can be placed after a limited class of test
and skip instructions. This system call essentially replaces a
transfer to the previous location, which would form an
inefficient wait loop. It causes the skip instruction to
become the procedure”s blocking condition (see section 2(f1)
above).

Unce again we see the preat utility of the 115 method
of procedure blocking and, for the core-link interupt feature,
the general software interrupt scheme it allows!

4(c). Disowned Procedure Irees

Not all procedure trees in 115 are run from a user
console or are part of the system (see sections 2(e) and 4(a)
above). It is sometimes desirable to rum prograss in a lower

February 1972 ITS Status Report Fage Hé

priority "background" mode when their initiator is no longer
logged on the system. Also the user may wish to escape from
unalterable adherance to the hierarchical organization of
procedures and be able to pass around inferiors in his
procedure tree or pass an infericor procedure to another user.
To this effect, any procedure with an inferior in a
console controlled tree may "disown" the inferior. This

results in the branch of the original procedure tree below and
attached to the disowned inferior becoming a disowned procedure

tree. No console is associated with these procedures and for

scheduling purposes (see section 2(g) above) a single half
priority tree usage variable is used for all disowned trees.

Any console controlled procedure may attach any
dosowned procedure tree by attaching the apex procedure as an
inferior. This associates all of the procedures in the
previcusly disowned tree with the attaching procedures console
and modifies the user-name of the attached procedures to that
of the attaching user. (Procedures in ITS are identified by a
normally unique user-pname job-name peir which is, in some
vespects, like a file nsme, The user-name of all procedures in
a console coptrolled tree is the name the apex procedure was
commended to log—-in with.) For scheduling purposes the tree
usage pointer of the attached procedures are switched to the
attacher”s usage variable.

Procedures in a disowned tree suffer some very mild

February 1972 ITS Status RKeport Fage 57

restrictions on the system resources available tc them but no
resource beld by a procedure is ever removed by disowning it.
As explained above, disowned procedures have lower priority for
processor time. The apex procedure of a disowned tree has the
power to "log-out"™ and excise the entire tree. A fatal error
in a disowned apex procedure results in its being halted and
the next procedure that attaches it and becomes its superior is
Fiven an interrupt.

Few other systems allow this level of flexibility in
the creation of free standing procedure trees or allow the
freedom to pass around entire structures of running jobs.

4(d). Direct Input-Output Instructions

ITS provides two ways for users to execute hardware
input—putput instructions. First procedures may request that
they be run in "I0T-user* mode. This is a hardware pode that
makes all instructions legal but provides the sace memory
mapping and protection as user mode. In keeping with ITS"s
protection philosophy, this mode will be granted any procedure
not in a disowned tree, although a message is typed out by the
system job giving the user”’s and procedure’s name (see secticns
4(a) and 4(c) above).

If a procedure not in ®*ICT-user® mode executes hardware

input—output instructions, these trap to routines which

February 14972 ITS Status Report Fage 58

interpret the instruction and either treat it as an illegal
instruction or execute it for the procedure depending on
cartain permit bits 1n a system table with entries for each
device. These interpretive routines allow, for example, any
procedure to read the state of the PIP-10"s conscle switches
but prohibit procedures from normally affecting the disk
controller.

1TS also has routines for handling spuricus interrupts.
These routines attempt to find suspicious devices ITS does not
know about and devices it does know about that appear to be set
to interrupt on the wrong hardware level. The spuricus
interrupt routines protect the system from unknown devices
causing interrupts and are integrated with the input—output
instruction interpreting routines so as to prohibit
interpretive access to devices suspected of causing spurious
interrupls.

With either direct or interpreted hardware input—output
instructions & procedure can meke a8 device status test
conditional skip instruction its blocking condition by
following it with a special system call (see sections 4(b) and
2(f) above). Thus a user may code efficient non-interrupt
routines for devices ITS does not know about.

February 1972 ITS Status Report Fage 59

4(e). Software Interrupts

(ne of the more powerful features of IIS is the system
of peneral interrupts it provides to user procedures. This
interrupt system is implemented through the use of several
variables, a set of which is associated with each procedure.
These variables include an interrupt mssk with bits on for
interrupts a procedure wishes Lo enable and an interrupt
request variable with bits on for pending interrupts. To allow
certain timing errors to be avoided, means are provided for =
procedure and its superior to not only read and write these
variables but alsc to set and clear selected bits without
affecting other bits.

There is also an interrupt enable flag associated with
each procedure that inhibits all interrupts if off. This flag
is cleared when an interrupt is sipulated to & procedure. [he
interrupt request bits at the time the interrupt was simulated
and the user location interrupted from are stored into the
procedure and control transferred to the user”’s interrupt
routine. There is a system call aveilable that may be used to
return to th main program and re-enable interrupts. The
interrupt enable flag may also be explicitly set or cleared,
however.

Interrupts are in fact divided into three categories of

severity. Ihe most severe or fatal errors cannot be masked on

February 1972 115 Status Report Page 60

to interrupt to a procedure. HRather, they have the effect of
stopping it and interrupting its superior (if this happens to
be the apex procedure of a console controlled tree it is
reloaded). Interrupts of intermediate severity may be masked
on so as to interrupt to a procedure. But, if they occcur when
either not masked on or the procedure”s interrupt enable flag
is off, they are treated as fatal. The least severe interrupt
conditions are simply ignored if masked off or buffered in the
interrupt request variable if a procedure’s interrupt enable
flag is off.

4(f). Miscellaneous Software Devices

Several devices in ITS do not correspond to & physical
peripheral device. Among those not mentioned in other parts of
this paper is the YNUL" device. This device is a high speed
source of zero words or characters on input and high speed
infinite sink on output.

There are also certain software devices in I15 that are
available for character input of various messages by procedures
that frequently output them to the user. These character
string producing devices include the "ERR® device which
translates various system error codes, as specified in the file
name used to open the ERR device, into readable messages. The
reading of file directories is implemented in a similar way.

February 1972 ITS Status Report Fage 61

These devices are written as co-routines whose "iype out®
interfaces to the input transfer of their using procedure.

There are several special file directories on the disk
(see section 3(c) above) that it has been found convenient to
reference as though they were separate devices. Amnong these
are the directory of system programs and a common directory in
which is stored such things as interuser mail. There is alsc a
special device that not only accesses a special file directory
but also modifies the file names used to encode various
information ocn files written in this directory that are to be
line printed by ITS later (see section 4(a) above).

February 1972 ITS Status Report Fage &2

5. Work in Progress
5{a). The ARFA Network

The ITS system is being fully adapted for use an the
Advanced Research Frojects Agency computer network by Jefirey
E. Rubin. The desire to provide Telnet service to remote users
on the network was the prime impetus for the inclusion of
pseudo-teletypes in ITS (see section 3(g) above).

The network code includes the basic IMF (Interface Message
Prcessor) device routines and the NCF (Network Control Program)
imbedded in ITS and separate programs that provide the Telnet
and other protocols. This system network code and the
necessary IMP interface hardware have been developed and
debugged with almost no interference with normal ITS operaticn.
A skeletal pseudo-ITS was written to run on the FDP-6. It has
all the necessary hocks to attach the network code and an even
greater propensity than regular ITS to halt at the Iirst sign
of trouble. As & result of this means of development, the ARFA
network will be usable, in a limited manrer, from the
Artificial Intellipgence Laboratory even when ITS or the FDFE=10
are unavailable.

It remains tc be seen what the full impact of ARPA
network connection will be on ITS. It is possible that a need

February 1972 IT5 Status Report Page b3

to control usage from the network or problems due to users pre-
frustrated by other systems will require changes in ITS"s
protection philosophy (see section 2(c) above).

5(b). The Mathlab System

The 1TSS system is to be used by the Project MAC Mathlab
group on their own FDP-10 computer. This should increase the
incentive for real modularity which has been lacking with a one
installation system. (Actually the Project MAC Lynamic
Modelling group uses a non—paged early offshoot of ITS on their
FLP-10.)

Much of the work in setting up the initial Mathlab

system is being done by Hichard D. Creenblatt.

February 1972 115 Status heport Fage 64

6. Recommendations

This section does not concentrate on the Artficial
Intelligence viewpoint. Rather recommendations are givem for

the elimination of bottlenecks and general improvement of ITS
as a general purpose system.

6(a). Hardware Development

ITS"s strongest hardware need is for a reascnable
graphic display controller (see section 3(d) above). If this

controller has a character generator with upper and lower case
capability, as it should, it would also meet the current need

for better upper lower case editing facilities.
Less ipmediate but forseeable is the need for

additional high speed memory (see section 3(a) above). This
need becomes critical if the acquisition of a higher speed

processor is contemplated.

6(b). Software Development

Software development is more of a continuwous allocation
decision rather than a purchase or not hardware decision. 1135
is being continuocusly improved (“"maintained®) at its lower

February 1972 IIS Status Report Fage 65

levels but major improvements are not as frequent as they once
were when the system was less mature. In software development,
there is always a trade off between changes that provide
immediate improvement and changes that provide the groundwork
for later improvement.

Among major changes being contemplated are the
following: 1) the continued development of the nascent “new
call® feature which will provide a pew uniform system of more
symbolic calls to ITS; 2) improvements in the scheduling
algorithm to increase its efficiency and decrease system
thrashing; and 3) decontiguizing the user varizble area of
the systen.

February 1972 115 Status Report Fage 66

Eibliography

This memo was t d in edited with TECO:
ALl memo E1 PLF-6 TECO, Peter Samson

The 1TS system is written in MIDAS:
Al memo 90 MIDAS, Peter Samson

The latest memo on the system loaded apex procedure is
Al memo 1474 DDT Reference ual, Eric Osman

The latest reference manual on I8 is
Al memo 161A ITS 1.5 Reference bManual, D. Eastalke, et al

This memo was output with TJé:
Al memo 164A The TEIEEJﬂEtifiEr TJ6, R. Greenblatt, et al

For more memos try
Al memo 191 A. 1. Eibliography

