MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A. 1. LABORATORY

Artificial Intelligence
Memo No. 245 October 1971

PROPOSAL TO ARPA FOR RESEARCH ON
ARTIFICIAL INTELLIGENCE AT M.I.T., 1971-1972

Marvin Minsky and Seymour Papert
(and staff)

Work reported herein was supported by the Artificial Intelligence Laboratory,
a Massachusetts Institute of Technology research program supported in part
by the Advanced Research Projects Agency of the Department of Defense and

monitored by the Office of Naval Research under Contract Number NOOO14-70-
A-0362-0002.

Reproduction of this document, in whole or in part, is permitted for any
purpose of the United States Government.

PROPOSAL TO ARPA FOR RESEARCH ON
ARTIFICIAL INTELLIGENCE AT M.I.T., 1971-1972
Marvin Minsky
Seymour Papert
(and staff)

Introduction
0.1 Scientific Structure of the Artificial Intelligence Laboratory

0.2 Organization of the Laboratory
1. Progress in the Hand-Eye Project
2. Knowledge and Common Sense
3. Some Features of the Mew Programming Style

Specific Directions for 1972

Appendix

INTRODUCT TON

0.1 Scientific Structure of the Artificial Intelligence Laboratory

The activities of the Artificial Intelligence Laboratory can be

viewed under three main aspects:

Artificial Intelligence: Understanding the principles of
making intelligent machines along the Tines discussed in
previous proposals, and elaborated below.

Natural Intelligence: As we understand intelligence better
we see fewer differences between the problems of under-
standing human and machine intelligence.

We have been increasingly able to translate our ideas about

programming machines into ideas about educating children, and are

currently developing systematic methods in elementary education. And

conversely, we attribute to our observations and experience in the

latter activities much of what we believe are important new conceptions

of how to organize knowledge for programs that really understand.

3.

Mathematical Theories: This aspect is relevant not only
because we often need to solve specific mathematical
problems but especially because we are firmly committed
to maintaining a mathematical style in the Taboratory.
In many centers we have seen decline and deterioration
following an apparently successful “"experiment® in
artificial intelligence because the principles behind
the performance were not understood, hence the limita-
tions unseen.

0.2 Organization of the Laboratory

Organizationally our laboratory is divided into a number of

groups with a certain degree of overlap (both in people and in interest).

VISION: programming machines to see

ROBOTICS: programming mechanical manipulations

LANGUAGE: programs that understand English

PLANMER: implementation of a new programming language

PROGRAM=UNDERSTANDING: programs that understand processes

MATHEMATICS: especially schemata, complexity, theory of
computation

MATHLAB: (in cooperation with the group in Project MAC)
“I.T.5.": The A.I. Lab's time-shared computer system

DEVELOPMENTAL PSYCHOLOGY: the educational research group (NSF)
HARDWARE: experimental shop facility
ADMINISTRATION.

For the past year, the Artificial Intelligence Laboratory has
been an independent M.I.T. Laboratory, separate from Project MAC,
(The group was started in 1958 as part of the Research Laboratory of
Electronics and the M.I1.T. Computation Center and later became a group
of Project MAC. It has grown to a size and complexity that now needs
its own administration.) The funding 15 mainly from ARPA; the studies
in Education and Child Development are supported by the N5F, and there

are some smaller support contributions from NASA, NIH, and from some

sources of fellowships and assistantships.

In the area of ROBOTICS, we have come to the conclusion that
the research directions that have been followed, while extremely
productive for Artificial Intelligence research, have not been effective
enough in stimulating practical developments in the area of advanced
automation. Accordingly, we have proposed to ARPA, in a separate
supplementary letter, to consolidate what we now know in the design
of a complete and easily copied mini-robotics laboratory system, as a
packaged system, so that other centers can get started on applied

research in that area.

1. Progress in the Hand-Eye Project

Progress in our laboratory can be seen on different levels.
Very specific projects, such as the hand-eye work supported by ARPA,
achieve very specific and increasingly ambitious geals. Several years
ago we were struggling with the problem of making a computer see any-
thing at all, and were proud of the first demonstration in which the
computer could see a visually isolated, clear, well-illuminated
shadow-free cube well enough to add it to a tower. Last year our
seeing machine was able to look at a complex of mutually obscuring
objects, analyze the scene visually, dismantle it and put it together

again in mirror image.

The first scene copied was as shown below. Note
that objects obscure one another by way of support
and in-front-of relationships. The objects are not
of any particular size; both size and position are
determined in the copying effort as required.

Since then we have increased its ability to tolerate less than perfect

lighting conditions, see shadows, deal with even more obscured objects

and so on.

But, our progress appears as quantitatively continucus only
when viewed very superficially. A deeper examination shows qualitative

changes in the methodology of the work, in the kind of question we ask

and answer, and above all in the kind of theoretical conclusions we

draw from it. To define the trend of our work and, particularly, to

place next year's work in its proper context, we need to review our
progress on these more fundamental levels.

S0, let us review briefly the progress in vision, this time
examining the style of operation of the programs rather than their
outer behavior,

Seeing and picking up an isolated object under good conditions
does not actually need any of the techniques of programming or
theoretical concepts we see as characteristic of "artificial intelligence”.
It can be handled as an interesting, difficult, but typical problem
in classical programming and engineering.

The main initial direction forward from the simple case in
our laboratory was the development of what we now call "mini-theories”
of important visual phenomena. Some of these concerned problems of an
optical character, such as the light distribution at the edge of an
object, the deduction of surface curvature from shading, the local
structure of shadow T1ines and so on. Others were of a geometric
character, such as the classification of vertices and edges into
regions, the dissection of scenes into separate objects, defiming
relations between objects in three dimensional space.

We consider our programs as belonging to Artificial Intelligence
from the time they begin to use such mini-theories. But merely using
them is only a beginning: the truly deep guestions are connected
with how they are used. And the major focus of our work has turned
toward defining and understanding phenomena of interaction of diverse

kinds of knowledge.

An early example of such interaction in the vision
system occurred in the process of locating cbjects

in space. One straightforward method using focus

was used with a more complicated module that depends
on heuristically derived conjectures about how objects
in the scene supporf. each other. The focus method

is less accurate, but is immune to the gross blunders
occasionally made by the support-dependent module.
When used together one can get both great reliability
and great precision.

The simplest way to use mini-theories such as those 1isted above
is separately, for example in a pass-oriented or hierarchical program
structure where "optic" mini-theories might be used for 1ine detection,
geometric mini-theories for parsing scenes and so on. There 15 no
doubt that useful results can be obtained this way and we have demon-
strated some; but it is now clear that the real pay-off is in a different,
ultimately more powerful direction, illustrated by the idea of heter-
archical program structure.

A fair image of what we mean by this can be obtained by thinking
of ways in which human specialists might be integrated into a large
organization. The pass-oriented model uses the following pattern for
solving a problem: the problem is divided in advance into stages
or sub-problems, which are passed out to the specialists; each special-
ist sees his part of the problem, does what he can with it, passes
on the result and is through. Heterarchical organization implies the
possibility of communication between specialists' consultations,
sanding the problem back for further study and so on.

The advantages and disadvantages of each mode of organization
are plain enough: the first structure lends itself to orderly work
but suffers from rigidity and if there is any flaw in the original

plan it will fail at that point. The second structure is much more

powerful on condition that the process does not fall into chaotic

disorder. Experience of human organizations shows that a free inter-
action can work only if somewhere in the background is an infra-
structure of conventions and understandings. This is equally true
of program crganization: one of our central technical problems is
how to set up such organizational infra-structures.

During the past year it has become clear that our conceptual
and technical tools for this task have reached a critical mass. A
new style of programming and thinking about programs for Artificial
Intelligence has almost explosively spread tﬁrnugh our own laboratory
and has even already begun to affect the work at other centers of
research. The first major example of programming in the new style
was T. Winograd's program discussed in last year's proposal to ARPA.
5ince then, as we anticipated in that proposal, our Vision System
has been recast into the new form and several new projects have
adopted 1t from the outset. The following section contains a summary
statement of the main features of these new programs. A more detailed
account can be found in our forthcoming Progress Report (available
1971}, which has taken the form of a monograph on the funda-
mental problems of Artificial Intelligence (and is therefore a plece
of progress in 1ts own right as well as a report on this and other
progress). We do want to emphasize our belief that what we are doing
really is quite different from the approach of Artificial Intelligence
generally followed up to nﬁw in other centers and expressed in the
recent round of books on the subject. We see the difference as funda-

mentally this: faced with the apparent diversity of kinds of knowledge,

the common approach at other centers is to seek ways to render it

more uniform so that very general, "logically clear" methods can be
used; our approach 15 to accept the diversity of knowledge as real

and inevitable, and find ways to manage diversity rather than eliminate

it.

2, Krowledge and Common Sense

An exciting aspect of the new programming style is that it
promises at last to break up the stereotype of the computer's 3lavish
dullness, or "superspeed moron" character. A few years aqo, the remarks
of the previous section would have been appropriate to describing the
differences between men and computer programs; now they contrast the
new with the old programs! A good example of a degree of "common-sense"
is supplied by the interactions of the programs in the "Blocks World”
system that is responsible for the behavior in the attached dialog --
(Appendix). The syntactic and semantic systems generate constructionm
goals, Tike "Build a steeple." The definition of the goal ("a steeple
is a stack which contains two cubes and a pyramid") is converted into
a plan -- a step-by-step specification of subgoals -- that is interpreted
as a program for building a steeple: find a cube; put another cube
on it, put a pyramid on that. HNow when a first cube 15 found,
its top might be cluttered with other objects. We do not want the
robot -- like the assembly-machine in Chaplin's Modern Times =-- to
smash the second cube down willy-nilly. But we don't want, either,
to have to write inte our plan: "find a first cube and remove the
things on 1t" because (1) it is so obvious to say it and (2) it only
sweeps the problem under the rug: the program will have to find a
clear surface somewhere to put down the junk it takes off the first
cube.

Winograd's system faces the problem once and for all. An
almost autonomous network of statements and procedures "know" that

to put one thing on another there must be a place it will fit. If

-10-

there is no such place one must make one {or fail). To make a place
one must move something else, and (recursively) put it somewhers else
where it will fit, etc. But one cannot put something on itself, even
if there is room, because it won't be where it was at the future moment
of setting it down after moving it, etec. ete. MNow, instead of writing
this sort of thing into each particular application program, we create
once and for all a "micro-world" of knowledge about how things are
supported, how supports change when things are moved, and so forth.
This knowledge is invoked by the occurrence of patterns either 1n the
outer world, or in goal-statements, whenever they occur, and the
common-5ense processes intervene and take over the actions until their
invoking patterns disappear. For example: there is in the micro-world
a statement whose effect is

“If A is supported by B, and A is moved, then erase

from the current descriptionof the situation any

statement of the form 'B supports A'"
Notice the indirect character of this. It is a statement not about
the physics of support but about when to forget statements concerning
support! (When you paint an object, and then move it, analogous
statements should not disappear.) One could conceivably do without
this advice, at the cost of recomputing after each change in the world
all the relations between all subsets of objects. This is impractical
and is a common cause of examples in which a system works on “toy
problems” and collapses on real problems. Or one could do without this
advice, at the cost of recomputing after each change in the world all

the logical consequences of that change; this leads in a different way

to collapse. One can make heuristic compromises: motions change
geometrical relations but not (usually) other attributes of objects.
The art -- and science, eventually -- here is in finding what are
the points that are so immediate that one should know them directly,
and which can be left to more general but more laborious deductive
systems.

Common sense is not magic. If we want our computer to act as
though it knows the elementary strategies about physics and geometry,
we must give it that knowledge somehow. But we need not do this anew
for each program! 5o our goal is to learn how to refine the ideas
in the Blocks World, and the ideas in pattern-matching fnvocations that
make this knowledge engage relevant situations, so that we can keep
this “data” permanently in the system. Then any program written therein
will automatically behave sensibly in that sphere of activity.

=12-

3. Some Features of the New Programming Style

(a)

(b)

Use of the language PLANNER
Programming languages such as ALGOL are designed to make
it easy to express the kind of statement certain classes
of users are 1ikely to require: for example, algebraic
expressions and repetitive Toop structures. In program-
ming for Artificial Intelligence we need to express very
easily such instructions:

To achieve Goal A, set up

sub-goal B and if this

fails, try C or D.
PLANNER is a language designed to be highly expressive
in talking about just this kind of advice.
Example: An example that illustrates PLANNER's expres-
s1ve power is that a graduate student, Ira Goldstein,
was able to write a PLANNER program rather Tike the
0ld Gelernter Geometrical-Theorem-Frover -- but not
only did Goldstein need only a few days of work; once
made, his program could easily be modified to handle
classes of proof involving constructions which Gelernter
was unable to do in a Tong period of work. This
ability to perform experiments in Artificial Intelligence

rapidly and flexibly is a most decisive change in the
style and fertility of work.

Automatic Mechanisms_for Fallible and Contingent Instructions

The image of a classical numerical program is as a sequence
of actions performed one after the other and expected to
succeed, In Artificial Intelligence, programming an action

might be an attempt that fails. In this case it 15 necessary

to ensure that when it gives up, the micro-world in
which it works is not Teft untidely cluttered. The
PLANNER system contains powerful mechanisms to take

care of such situations.

Example: The examples already cited of how the Winograd
program hangles its Blocks Words is a typical case. If
the proposed action includes a statement-erasure the
failure back-up can restore the description to its for-

$g:istate with, perhaps, some editing relevant to the
allure.

{¢) Procedural Description of Knowledge

It is slightly ironic that the most popular approaches
to Artificial Intelligence programming force knowledge
to be stated in a form of "logic" as assertive proposi-
tions such as:

The Box 1s Red.
Mow, there is no problem here, in simple statements
about attributes. But other kinds of knowledge are
much better stated as procedures (or "programs")
rather than as facts. Even such a simple statement
as:

"If there are no cars coming, cross the road."
is misleading if translated intc a logical implication:
such as:

For every %, [(x is car) & (x is not coming)]
= [crossing is permissiblel.

It is more naturally transcribed as:

-14-

Look left, ook right, if you haven't seen

& car cross.’
The distinction between these modes of expression is not
merely verbal. A deeper aspect is seen by picturing a
"logical theorem prover" trying to prove by resolution
or other logical principles that no car is coming!
Deeper yet are the consequences in more complex situations:
we believe that even in the size of programs we are now
using they make a difference between easy programming and
very difficult programming. With more complexity we
believe that the dif%ErEncﬂ can become one of possible

versus impossible.

(d) An Example of Procedural Mecessity

The concept of "nearness" is a good example showing

procedural definitions to represent knowledge. Everyone

knows what "near" means. If we are told that

The car is near the garage.
and

The garage 15 near the house
then we can be sure that the car is near the house. But
we cannot put this "transitivity” into a formal logical
system by a rule like
Rule 1: (A near B) and (B near C) =3 (A near C)

for unrestricted application of this rule would yield

absurdities 1ike "1 is near 100" because 1 is near

-18-

1.001 and 1.001 is near 1.002, etc., etc.!

It is clear what is needed. In any particular
context, "NEAR" is used to represent a certain size
range, and if one uses chains of longer than a very
few steps, one may get out of that range. The obvious
thing to do is to add

Rule 2: Don't use Rule 1 more than (say) four times,
unless there is some basis for believing that you

are still in the same size range,

This cannot be said in any ordinary "logical system"l

Ne system of "mathematical logic" allows statements
inside the Togic to talk about the deductive process

that uses the logic. This, we claim, is disastrous

for intelligent systems because in solving a hard problem
ong must devote much attention to monitoring and

planning the problem-solving activity! We can state

Rule 2, or the equivalent, in the PLANNER language.

(The only earlier system we know of in which one could

do this was Teitelman's PILOT.)

Meta-technical Remark

5 a ude 15 not shared by most other groups
working on artificial intelligence, and we feel that
the widespread committment to try to represent ordinary
reasoning in terms of a “"consistent" mathematical Togic
system is having almost as bad an effect as was the
earlier preoccupation with perceptrons and 1inear-
separation clustering algorithms -- another kind of
attempt to find a uniform way to represent all different
kinds of things.

An interesting sidelight on this is the phenomenon

in which many people interpret Godel's theorem as

-16-

showing a difference between men and machines.

It does not. What it says is that any system which
is able to discuss 1ts own procedures, and apply
these to itself, has the potentiality of deducing
some falsehoods. It 15 perfectly possible to
program computers to be able to discuss thelr own
procedures -- Winograd's program comes close to
this -- and we believe that this is the best

path toward intelligent programs; "Rule 2" is a
simple instance. We do not beliewe that enough is
known, today, to make worthwhile the search for

an adequate and "consistent" Jogical intelligent
system (that is, ome that is inherently unable

to have any self-contradictions). This has never
been done even for ordinary mathematical arguments,
to say nothing of everyday common Sense.

What men do 1s much more PLANNER-1ike.
Suppose that you deduce a contradiction in some
argument or find that some plan you expected to
work out did not. One then looks backwards and
tries to "localize" the trouble. Then one makes
a pattern-invoked heuristic rule, to prevent that
kind of deduction being made again. "Rule 2" is
just such a device. A superb non-trivial example
is provided by the way real mathematicians deal
with "naive set theory". They do nmot reject it,
as did Bertrand Russell in his attempt to rebuild
mathematics without it. Instead, they now have
rules 1ike: 1if your statement resembles Russell's
Paradox (because it talks about itself) then be
careful; find another way to do it. It is astonish-
ing how few such caveats have been adequate to
keep contradictions out of ordinary mathematics.
fnd we believe that among the most important forms
of human knowledge are just such rules that indi-
cate which lines of thinking are unsound. Another
example: whenever one finds a theoretical outlook
which can explain things "too easily", as do
mystical concepts of "unity in everything" or the
dialectical elements in Freud's Theory (in which
many causes can produce opposite effects) one says
to himself (unless he is stil1l adolescent): 'This
method is too good. That means the inconsistency
is too close to the purposes I want it for."

Then one tries to build up protective knowledge
structures for preserving wnat one can (Freud
proposes many valuable new ideas about how know-
ledge 15 represented -- and misrepresented!) of
the new theory.

In taking this path (and we believe it is
the only promising approach, teday, to under-
standing intelligence), we must be very clear

(e)

-17=

about the risks. We must understand that as our pro-
grams get better at analyzing their own processes, and
incorporate better heuristics for preventing unsound
kinds of reasoning from emeraing, the possibilities
of contradictions become buried more deeply but are
not eliminated. We must not be entirely diverted by
good empirical results. We must not give up on trying
to get a complete theory. It is certainly not incon-
ceivable that we can construct a systematic theory of
comsistency in a logical area wide enough to cover

all important areas of intelligence; one must be on
guard against other unwarranted (but common-sense!)
pessimistic misinterpretations of Godel-l1ike theories.

Mini-theory Construction as a Technical Goal

We do not see the problem of Artificial Intelligence as
one of programming existing knowledge; it also involves
the acquisition and classification of new substantive
knowledoe about Such areas as: intentions; excuses;
goal structures and so on. A curious feature is that
such enquiry insofar as it has ﬂeen conducted at all

in the past, has been the domain of analytical philosophers
and literary critics. Their analyses were, however,
1imited by their lack of computational models, so we
are able to go further. Nevertheless, doing so depends
on the acquisition, by people working on Artificial
Intelligence, of sophistication in areas of thinking

far removed from the content of "computer science" courses.

Example: To illustrate the point we give an example from
E. EE&rn1ah*5 work on making programs understand narra-
tive. This work was mentioned in last year's proposal,
and has recently reached the level of an opearational
program capable of answering guestions such as in the
following example. In the left column 5 a narrative

taken from a children's reader.

{In 1ts present form

the program interacts in a special format; we have
translated this into English for simplicity of reacing.)

STORY

Jack and Janet are in the
house. Jack 15 holding a box
of pencils and a box of paints.

“Janet, see the paints and
pencils that Daddy got for us,"
Jack said.

Janet went to look at them.

“Are the paints for me?"
she asked.

"No, the paints are mine,”
said Jack. "The pencils are
for you, Janet."

Janet said to herself," I
want the paints.”

Jack began to paint a ple-
ture of a read airplane. Janet
went to Took at it.

"Those paints make your air-
?1Ine look funny," she said.
"You could make a good picture
of a red airplane with these
pencils.”

Question:

Answer:

Comments :

Why did Janet say that
the paints were bad?

She wants the paints.

The program must interpret
"funny" as "bad" in this
context (This 1s not done

for it in the input format).
Even then Janet really said
that the picture was bad,

and 1t 15 necessary to
transfer this to the paints,
and then it must know that

if you want something another
person has, you might make
nasty comments about it in
order to get 1t. [If we had
asked, 1s the picture funny,
the response would have been
(in essence) "Mo, she said

50 but she had an ulterior
motive." To do this the
program needs a lot of infor-
mation about wanting, trading,
giving, owning. Statements can
not be taken at face value =--
translated into simple logical
statements. They must be
treated as evidence for the
program to use to build a
mode] of what really might

be happening.

-19-

Specific Directions for 1972

(a) Vision

Inlast year's proposal the main goal for vision was creating
a new heterarchical system in PLANNER. This was done by a team con-
sisting of P. Winston, B. Horn and E. Freuder. The new system
quickly proved itself by performing a "copy demonstration™ in which
assemblies of blocks were analyzed, taken apart and re-assembled in
mirror image! This represents a very definite advance on the state

of this art.

This demonstration 15 significantly different from
any we have made before in its generality. The
earlier demonstrations illustrated techniques that
we could (and often later did) use in other contexts.
But the demonstration itself was usually rather
rigidly unchangeable. The new vision system can be
interfaced as it stands to almost any task . . .
building towers, putting blocks into boxes stc. ete.
Of course it has Timitations and needs improvement.
But 1t does not need to be reprogrammed to be used
for a very general class of other tasks.

The weakness of the new vision system is its failure to make
effectiwe use of all the heterarchical capabilities built into it.
Indeed at the moment it works as if it were a series of separate
heterarchical programs. But since the facilities for greater inter-

action are there, it will make continuous progress.

The most immediate weakness of this sort 15 a bottleneck
of communication between finding 1ines and interpreting
scenes. Work 1s currently focussed on removing this.

During the next year the system will be extended in the following

directions:

{a) A series of new "mini-theories” to enable the
system to use (rather than be bothered by!)
shadow 1ines as a source of information.

{b) Mare interactive line-finding.

(¢) Other representations of objects than as sets of
lines.

The possibility of multiple forms
of representation for the basic
elements of the system is5 the
consequence of heterarchy and one
of the more exciting sources of
theoretically interesting problems.

(d) Range-finding.

(e) The ability to confine its analysis to aspects of the
scene with a high degree of relevance to the immediate
question. At the moment the program sti11 collects and
analyzes much more information than it needs.

The following situation illustrates what we have in mind here.

3

If the machine wants to pick up object A, it soon realizes that its

position-locating module first requies some information about the
size and position of B. Consequently B is examined as a result of a

goal to move A, but C s properly ignored as irrelevant to the goal.

=21=

(b) Robotics
We shall concentrate on problems described in our separate
letter on mini-robotics.

{c) Language
There are a number of new areas that demand fnvestigation:

What are the problems in handling other
aspects of ordinary grammar?

What new primitives will be needed as
new words are added, etc.

These problems are inseparable from those that arise from adding a
wider range of "meanings" to the entire semantic system. What happens
when we try to extend the system beyond those problems that it now

can handle with respect to the blocks world? There are alternative
concepts of how to proceed, and let us consider two extremes:

One approach is to add to the blocks world incrementally. }t
is easy to add new kinds of objects, and properties for them, to
the syntactic-semantic-problem solving complex.

It is somewhat harder to add new predicates about spatial relations;
for example, "MEXT-TO' might be important in some problems. But such
an increment means that one must also add new procedures for taking
account of such néw elements, be they mentioned explicitly in a main
goal derived from a natural language command, or arise internally in a
description invoked by an already present theorem. The new procedures
represent ways to selve problems and understand situations, but they
cannot efficiently be used unless "recommendations" are added to the

theorems of the older knowledge base so that the new knowledge can be

=02

invoked when (and only when) relevant. Recommendations pointed the

other way are needed, too, and modifications must be made to the

Meanings" of appropriate words so that the syntactic and semantic systems
can handle the nuances associated with the wider spectrum of meanings that
the system is now requived to deal with.

Presumably, as this kind of incremental extension 13 made, some
changes will be easy -- whenever the system does something that "it
should know better than to do" the programmer can intervene and attempt
to adjoin new “advice" as a new theorem, recommendation, or entry in the
dictionary, or fragment of PROGRAMMAR or PLANNER program. But sometimes
this will be found very difficult, because instead of a small addition
or change the system will want a new kind of data-structure, or a new
heuristic strategy for achieving a new kind of goal.

For example, Winograd's Blocks World does not have a variety of
"uses" for the mechanical structures it builds. In particular, it does
not have any concept, at present, of multiple-support-upwards. It can
deal with situations in which one object supports many others, as several
stacks on a cube on a table, but it cannot handle such structures as
bridges and arches in which one object is supported by several. When
a child builds a high tower that turns out to be unstable, he has ideas
about "reinforcing” it by providing multiple support to lower elements.

How hard is i1t to add such concepts? We do not really know, yet.
But it seems clear that it would be hard to do "incrementally" because
the data-structure in the original blocks world assumed single support,

and all the "theorems” about construction and interference between goals

=23=

are written in terms of this single support.

Another approach opposed to the incremental would be based on a
concept of "microworlds" (referring to suborganizations of knowledge, not
to physically separable parts). The original "blocks World" is an elegant
mini-theory which, by itself, is a highly satisfactory model of certain
kinds of interactions between purposes and physical relations. Is there
no way to preserve its effectiveness, intact, in a larger system?

If the new area of meaning were very different it would be much
more clear what to do. If, for example, we wanted to talk about what the
objects of the blocks world were used for, (boxes are used to store things
away that one does not expect to need soon, towers are used to make high
structures, pyramids aren't used for anything, etc.) we would have little
trouble. We could build a different micro-world about block-structures
and their uses, and procedures for designing structures we needed for
different purposes, and then turn to the blocks world to find how to make
the structures. Presumably, it would not be excessively hard to add to
the system a collection of theorems and recommendations that would serve
to tie the two separate micro-worlds into a system that could solve
problems that need both kinds of knowledge.

Even this has not yet been dome, however, So one of our goals is
to accumulate experience in finding ways to interconnect two comparatively
separate micro-worlds, another is to get experience in the kinds of
problems involved in extending an existing micro-world. The first
experience is, we predict, somewhat more valuable, for if it can properly

be done, the interaction advice may be able to survive the extension of the

sub-microworlds involved,

In any case, 1t is our conviction that there is no plausible
alternative to this idea of structuring knowledge into reasonably coherent
packages.

(d)} PLANNER

Work is in progress on further and better implementation of
the language. The limited version known as "micro-planner”
is being used in several other centers. We 1ike this, of
course, but feel concerned lest a restricted form of the
language become too well established, and will take what
steps we can to make the best possible form generally
available. In particular, we are concerned to make the

language available over the ARPA net.

(e) Program-Understanding Programs
This is an area in which rapid growth is very likely. It

is closely related to the Natural Language project and to
the structure of PLARNER. The explicit goal 15 to write
programs capable of understanding programs.
In addition to the central issues described before, we hope
over the next year to go further into systems that understand, in various
senses, more about processes. There are a number of different aspects
of this general goal that arise over and over again in work on artificial

intelligence and, indeed, in many branches of computer science. For

= H=

example:
Compilers do not have much idea of what

they are doing. Programs are compiled
without any sense of the intention of

the source program, and the resulting
code s produced without any awareness
of implications of the specified
process,

Operating systems do not know what they
are doing, either. They are dealing
directly with the execution of processes
but have no semantic model of what is
involved,

Learning programs l1ike that of Winston produce descriptions of
structures from a sequence of examples that have been presented. Much
of learning involves the acquisition of new processes. We do not be-
lieve that there is necessarily a large difference between acquiring
descriptions that represent the structures of objects and descriptions
that represent the specification of procedures. But if we are to be able
to do the latter, we experience with problem-solving systems that deal
directly with the semantics of programs, and this experience is generally
lacking.

More generally, in order for a learning program to be versatile,
it has to be able to analyze procedures that it learns, to adapt them
to new situations, to debug them, ete. We believe that human ghildren
who are not able to cope with complicated situations are that way because
their process-understanding capability is inadequate.

We are considering several approaches to developing competence in

this area of procedure understanding programs.

2=

1. Carl Hewitt has been developing a formalism, called INTENDER,
in which one can associate with definitions of procedures semantic state-
ments that make assertions about the effects that the procedural state-
ments are supposed to have. In a sense, this is a sort of formalization
of the semantic clues programmers frequently leave in the form of
mnemonics and comments. There are a variety of ways to use these statements,
ranging from proving that the procedures will have the intended effects
to making the procedures adaptable to use by larger systems that can
understand and change the code, or translate it into other source languages.

2. Hewitt has also developed a system for "Procedural Abstraction,”
described in his thesis which observes partial protocols of the behavior
of a program. The protocols provide evidence about the different directions
that program branches can take, with different data, and the system con-
structs proposed programs that are minimal models in the sense that they
contain just enmough structure to account for the behavior. In effect,
the system is an abstract Jlearning program that can duplicate behavior that
it observes, creating as small a program as it can find (in the sense of
doing as much as possible by means of loops). This is the kind of process
that would be appropriate, for example, in a system to learn the grammar
embodied in some program, by discovering that certain groups of words
a1l have the same effect on the program's branching and goes on to
discover what certain kinds of phrases all have similar roles in causing
that branching.

3, Irva Goldstein is developing a program capable of understanding

very simple programs such as might be written by a beginning student.

A typical kind of task that this program will perform in its elementary
stages 15 to recognize the partial equivalence of the two LOGOD programs
P1 and P2, the verbal descriptions P3 and P4 and a rough drawing of a
square:
F1 TO XX

1 FORWARD 100

2 RIGHT 80

3 FORWARD 100

4 RIGHT 30

5 FORWARD 100

& RIGHT 30

7 FORWARD 100

P2 T 77
1 FORWARD 100
2 RIGHT 90
3n

P3 Draw a 1ine, then a right angle, then another Tine
the same length, a right angle, another line,
another right angle, another 1ine.

P4 Draw a line, turn a right angle and keep repeating.

4.

-#8-

We have an extensive research program, funded by the NSF, to inves-

tigate how children describe, develop and think about their own

procCasses .

(f)

(g)

(h)

Mathematics and Mathlab

In cooperation with the groups in Project MAC, we plan to
continue developing relevant background theories in schemata,

complexity, and applied mathematics.

ITS and Programming

We are very interested in decentralizing our use of computers.
Some ideas for doing this even for control of robotics are
mentioned in the mini-robotics proposal. The situation 1s

more straightforward in decentralizing programs of a purely
symbolic kind and we will attempt to develop some of our new
projects through network access to other computers provided that

arranagements can be made to guarantee appropriate service.

Yisitors
Qur faculty will be reinforced by long visits from M. Elum
{Berkeley), Y. Shirai (Electrotechnical Laboratory, Japan)

and possibly M. Rabin (Israel).

APPENDI X
Sample Dialog with Winograd's Language Understanding System

The Blocks World was designed by Terry Wlinograd to serve as a
subject domaln for the development of a language understanding system,
This system is radically more ambltious than earlier attempts to deal
with natural language In several respects, It Is as much, or more,
concerned wlith the problem of representing the meanings In a discourse
than with the grammatical structure; Winograd's thesis asserts that the
interactions between meanings and sysntactle structures are so Intimate
that It is a bad ldea to try to draw a definlite boundary between the
procedures that "parse" a sentence and the procedures that are to be used
to draw loglcal Inferences about the meanings carrled In the discourse.

Winograd's system Is a large, Intricate system, It Is described in his
thesls at several levels of detall and 1t is Impossible to do justice to
It Im any short summary. Our strategy will be flrst to present an
example of 1ts performance In the blocks world context, and then to
discuss some of the mechanlsms that are Involved In attalning this
performance. In the following dialog the system carries out actions and
answers gquestions about a simple scene containing a table, hand, and box,
and several blocks and pyramids, as shown onapage 8, The 1ines in lower
case were typed In by a person, and the lines In upper case are the
computer's response. Indented 1ines are comments describling some of the
features belng exhiblted.

The dlaleg was carried out In real time with the response of the
"robot" displayed on a CRT screen, Flgures are Included to show the
state of the scene at varlous polnts.

1, plck up a blg red block.
emnwunms K,
The system answers "OK" when It carrles out a command,
In order to pleck up the red block, It had to clear It
off by finding a space for the green cone and moving
the green one away.
Insert Flgure on prge 5 adout here.

2, grasp the pyramid.

sma==== | DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.
There are three pyramlds In the scene, so the program
does nothing.

3. find a bloek whleh Is taller than the one you are holding and put It
Into the box.
The system has to flgure out what I[s meant by "one"
and "1t", as well as usling deductlion to declde which
block It Is holding.

s=s=== BY "|T", | ASSUME ¥YOU MEAN THE BLOCK WHICH 15 TALLER THAN THE ONE
I AM HOLDING,

Printed out to keep us Informed.
=smmen= (K,
The hand has to set down the red block to plek up the
taller blue one. Figure &4 shows the result of the
system's manipulations so far.
Insert Flgure & about here.

b, what does the bhox contaln?
=smmass THE BLUE PYRAMID AND THE BLUE BLOCK.

5. what Is the pyramid supported hy?
Earlier the system responded to "“the pyramid" by
saying "l don't understand which pyramid you mean."
now, It assumes that we mean the one just mentlioned.
======= THE BOX,

6. how many blocks are not In the box?
Negatlves such as "not" and "no'" are handled whether
they appear in clauses or noun groups ({such as "no
boxas"),

sew==== FOUR OF THEM.

7. Is at least one of them narrower than the one which | told you to

plek up?
The phrase "at least one of them" must be analyzed to
refer back to the previous aquestion, and "the one
which,. ." must also refer to blocks. MNoun groups can
have complicated numbers such as "at least one", "more
than three", "exactly seven'", etc. The memory of past
events |s used to deduce which block Is "the one which
I told wyou to plek up". Motlce the compllicated
grammatical structure in which "the one" Is actually
the object of a clause embedded two levels deeper,

ssssxa= YES, THE RED CUBE.

B. Is It supportad?
Passlves can be used wlthout a "by ..." phrase.
=s===== YES5, BY THE TABLE.

9. can the table pick up blocks?

exsssss NI,

The semantic rules make this a nonsensical questlon
which therefore must be false.

10, can a pyramld be supported by a block?

mms===== TE5,

The deductive system finds an actual example, so it
knows this Is possible,

11. e¢an a pyramld support a pyramld?
swamsss | DON'T KNOW.

PAGE 3

The question makes sense, but there Is no example in

the scene, so there Is no easy way
being able to examine the robot's programs,

12, stack up two pyramlds,
==ma==m | CAN'T.
The robot tries and falls,

13, the blue pyramid Is mine.
======= | UNDERSTAND.
This data 1s added to the data base,

to tel]l without

14, | own blocks whlich are not red, but | don't own anything which

supports a pyramid,
======= | LUNDERSTAND.

Two new theorems are created for proving things about

"ownlng".

15. do | own the box?

sssssss N,

The box supports whatever It contalns,

pyramlid,
16. do | own anything In the box?

==s=ms= YE5, TWO THINGS: THE BLUE BLOCK AND THE BLUE PYRAMID,

Including a

17. will you please stack up both of the red blocks and elther a green

cube or a pyramid?

ensmess K,

Loglcal connectives such as "and" Yor" "elther"
and semantlcs. A
questlon.

are handled 1In both the grammar

command s executed even If It looks 1lke a

etc.

The command ls carrlied out by the following serles of
steps: It puts a green cube on the large red block
{(note that It chooses the green cube with nothlng on

It), then removes the small pyramld from the

11ttle

red cube, so that It can use that cube to complete the

stack as specifled, resulting In
Flgure 5,

Insert Flgure 5 about here,

18. which cube 1s sltting on the table?
smz=ss=s THE LARGE GREEW ONE WHICH SUPPORTS
THE RED PYRAMID,

Ordinarily the system would be satisfied with

sl tuatlon of

calllng

this "a blg green cube'", but since we asked "which

cube" 1t has to he more specific In naming

The

use of substitute nouns (such as "one") and pronouns

PAGE &4

In answers makes the discourse more natural,

1. is there a large block behind a pyramid?
===z==== YE5, THREE OF THEM: A LARGE RED QNE,
A LARGE GREEN CUBE AND THE BLUE OME.

20, put a small one onto the green cube whlch supports a pyramid. .
"A small one" must contrast with the earlier phrase "a
large block", so this means "a small block".

sm=z=s= K,

21, put the 1ittlest pyramid on top of It.
Words 1ike "11ttl1est" are not Iin the dictionary but
are Interpreted from the root forms 1lke "11tt1e",

smessss K,

22, how many things are on top of green cubes?
ssss=s= |'M NOT SURE WHAT YOU MEAN BY "OM TOP OF"™ IN THE PHRASE "ON TOP
OF GREEMW CUBES ",
DO YOU MEAM:
=] = DIRECTLY ON THE SURFACE
2 = ANWHERE ON TOP OF 7
When there are several Interpretations and none s
clearly better, the system has to ask the user for
more Information. The paraphrases were Included with
the dletlonary definition of "on", and the request for
more Informatieon pccurs automatically when the
heurlistics for resalving amblgulitles aren't
sufficlent. A request llke this can also occur when
the meaning of a pronoun such as "It" or "they" Is
unclear.
2 mm=m=w THREE OF THEM.

23. had you touched any pyramid before you put the green one on the

11ttle cube?

emmmmms YES, THE GREEN ONE.
The system deduces from [ts memory what event s belng
raferred to, and can relate other events to It In
time, The analysis Includes complex tenses of wverh
groups, and there are speclal facllities for keepling
track of the varlous forms of Irregular verbs 1lke
"have",

24, when did you pleck 1t up?
==mmmms WHILE | WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND A
LARGE GREEMN CUBE.
A time [s described by naming the main goal whiech was
being worked on.

PAGE 5

25, why?
The system remambers Immedlatealy previous sentences to
understand questlons 1lke this and the followlng ones.
s====== T0 GET RID OF IT,
By keeping track of selected parts of the original
subgoal tree, the system has some understanding of Its
own motlves,

26, why did you do that?
ses=ss== T0 CLEAN OFF THE RED CUBE.
"That" refers to the actlon mentioned In the answer.

27. why did you elear off that cube?
Hare, "that" means the one just referred to.
sssss=s T PUT IT ON A LARGE GREEN CUBE.

28, why did you do that?
=ssms=s TO STACK UP THE RED CUBE , A LARGE RED BLOCK AND A LARGE GREEN
CUBE.

29, why did you do that?
=swewwsm BECAUSE YOU ASKED ME TO.
It remembers what It dld, not how the reguest was

Hﬂrd.‘d W

30. how did you do 1t?
"It" refers to the actlon mentlonad In the Jlast
question, rather than the answer,
mswwsm=s BY PUTTING A LARGE RED BLOCK ON THE TABLE ; THEN LETTING GO OF
IT @ THEN PUTTING A LARGE GREEN CUBE ON IT ; THEN LETTING GO OF THAT
EH:E 3 THEN PUTTING THE RED CUBE ON THAT CUBE ; THEN LETTING GO OF THAT
This Is a description of the top-leve)l subgoals used
to achleve the goal.

31. how many objects dld you touch while you were dolng It?
Time references can refer to a time span, using words
11ke "while",

semmwms FOQUR OF THEM.

32. what dlid the red cube support before you started to clean It off?
sswswasw THE GREEN PYRAMI|D,
By remembering what has been moved, It Is possible to
deduce things about earlier states of the scene, We
can use complex nestings of clauses 1lke "before you
started to clean 1t off".

13, there were flve blocks to the left of the box then,
"Then" must refer to the time mentloned In the last
senteance,

PAGE A

=s=m=ss= NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE GREEN CUBES AND A
LARGE RED BLOCK.
Earlier In the dlalog, Informatlon about "owning" was

accepted at face value. But the system knows that It
has complete Information about about the baslc
properties of objects, Includlng loecatlion, It checks

any statements about location or other such properties
to see whether it agrees or disagrees.

5. put the blue pyramid on the block In the box.
This Is syntactlecally amblguous, but Is understood
without amblgulty since the parsing corresponding to
"put the blue pyramid which Is on the block In the
box." does not make sense In the current scene, while
“"put the blue pyramid on the block which Is In the
box" does,

mssssss (K,

35, Is there anything which Is bligger than every pyramid but Is not as

wide as the thing that supports 1t?
The system undarstands quantifiers such as "every",
"any", "some", ete., and structures such as "bligger
than", "as wide as", ete. Here "It" refers to a noun
group within the same sentence but two levels up In
the parsing tree,

=ums=ws YES, THE BLUE BLOCK,

36, does a steeple

SORRY, | DON'T KMOW THE WORD "STEEPLE".
The system Interrupts Immedlately when It sees a word

It can't flgure out.

37. a "steeple" Is a stack which contains two green cubes and a pyramld.
The quote marks Indicate that we are defining a new
word.

EEEEEEE | UHQERST#HD.

38. are there any steeples now?

sssmmas NI,

The new definitlion Is used as a deserliption to
recognlze steeples,

39, bulld one,

SE=EsSs=s== D“'
The description glven In the definlition (s epnough to
deduce a plan for bullding new objects as well as
recognlzing them, The word "one" means "a steeple",
and the plan Is carried out. First, one of the large
green cubes s cleared off by removing the red cube

PAGE 7

and two pyramlids. Then the two green cubes and the

tall red pyramfid are stacked wup
description,

L. eall the blggest block "superblock",

semssss K,

We can also glve objects names,

1. have you plcked up superblock since we began?
= TEE‘

42. why did you drop 1t?

======= BY "|T", | ASSUME YOU MEAN THE SUPERBLOCK,.

======= | CAN'T EXPLAIN A NON-EXISTENT EVENT.
There Is no record In memory of any
dropped.

43, Is there anything to the right of the red pyramid?

toy

fit the

block belng

sssse=x YES, FOUR THINGS: THE BOX , THE RED CUBE, THE BLUE PYRAMID AND

THE BLOCK MNAMED SUPERBLOCK

Once an object has a name, the name |[Is used to help

Identify It In responses.

Ak, thank you.
=nmuns YOU'RE WELCOME!

ldioms can be deflined wlithout modifylng the grammar,

-gfnsﬂﬂdyrﬁ&tué

oK

T

e

Figure 3

Toud a Hock which is Zaller Buar fie ome
Wﬂ%mﬁﬂif#ﬁ: Fre Ao

T, S assime o smean Yie
Mgf%ﬁmﬁﬁme @gﬁf

Figure 4

=10-

S qou please stk wp Bobi of Zie red
Mmmﬁsﬁt@m&ﬂrmw

"

o

Figure &

Mm.

=]12-

24

4L7. thank you,
YOU'RE WELCOMEL
The speclal ldiom-definling capabllltles

us to Include such pleasantrles wlthout
modlfylng the grammar.’

allow

