MASSACHUSETTS INSTITUTE OF TECHHOLOGY
A. |. LABORATORY

Artificial Intellligence
December 1971
Hemo HMo. 250

PLANNER IMPLEMENTATION PROPOSAL TO ARPA
1972-1973

Carl Hewitt

This proposal was written at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research
program supported in part by the Advanced Research Projects
Agency of the Department of UDefense and monitored by the
Uffice of Naval Research under Contract Number NODOlk=70= A=
0362-0002.

Reproduction of this document, in whole or In part, is
permitted for any purpose of the United States Government,

PLANNER Proposal

Task Objectives

The task objective Is the generalization and
implementation of the full power of the problem solving
formalism PLAMNER in the next two years, We will show how
problem solving knowledge can be effectively Incorporated
into the formalism, Several domains will be explored to

demonstrate how PFLANNER enhances problem solving.

Current Status

Sublanguages of the FLANNER formallism have been
implemented at M.I1.T. We would now like to have the full
power of the formalism available to us. The restrictions of
the sublanguages we have now are cramping many of the
current applications and discouraging other new

applications. The work s currently being pursued on two

page 2

time-shared computers: a Honeywell G645 and a Digital
Equipment Corporation PDP=-10. Pursuling work on two systems
instead of one Is somewhat unusual an so we will give a
detailed justification. PLANNER should be independent of
any particular computer series or time-sharing monitor., By
implementing on two systems we insure that this is true In
practice as well as theory. MULTICS and I1TS are currently
the best systems available for PLANNER, Both svstems are
currently being upgraded so they will probably stil] be the
best systems In a few years, M.I1.T. has signed the contract
for the follow on processor for MULTICS, The Stanford A, |,
Laboratory Is constructing a proto-type for the follow on
processor for the PDP-10. Both follow on systems propose to
have large amounts of fast random access memory and even
larger virtual address spaces, |If elther one comes to
fruition, then PLANNER can be applied to problems with large
data bases. PLANKER uses hash coding so that the time that
it takes to retrieve a fact is essentially independent of
the size of the data base PROVIDING there is enough fast
random access memory, One danger to be avoided in this
approach is duplicating work on the two systems, So far the
Interaction between the twoe Implementations has been
extremely fruitful,

The followlng is a detailed comparison of MULTICS

and ITS for the purpose of implementing PLANMER:

page 3

Fast Handom Access Memory: MULTICS has LOOK and ITS
has 250K, For acceptable response it should be the
case that the working sets of all the users fit into
fast random access at once. In the day shift both
systems often respond slowly, They need elither
fewer uUSers or more memory.

Address Space: MULTICS has a 36 bit address space
which is adeguate for our medium term needs, The
mapping 1s implemented by dividing the address space
into segments in a way which 1s sometimes annoving
but usually not too harmful. 1TSS has an 18 bit
address space which is entirely inadegquate for our
needs, The follow on processor for the PDP=10 will
have a larger address space. PLANNER uses the
address space for dynamlc linking, garbage
collection, and breathing space between data spaces
(especially stacks).

File System: |ITS has an adeguate file svstem.
MULTICS has a good file system In which the files
can be put In the address space of a process which
makes it very easy to manipulate flles,

Speed: The processors for the two systems execute
instructions at approximately the same speed,
Because of an administrative declision to keep ITS
lightly loaded, it gives much faster response,

Consoles: IT5 has consoles that run at a maximum
rate of 2400 Baud which is somewhat slow, Multles
is currently experimenting with connecting an IMLAC
with a 200,000 Baud line., Fast consoles are
essential for the use of PLANMER. PLAMMNER 1s a
unified system In which editing, debugging,

- monitoring, metering, and executing all take place.
It is not necessary or desireable to use a separate

editor, compliler, or debugger. Slow consoles would
be a real bottleneck in the system.

page 4

Mext Year

In the next vear we would like to complete the
design and implementation of extended PLAMNER., The design
will support the complete formalism as described In Hewltt's
thesis, Specifically extensions will be incorporated to
encompass multiple states of the world and multiple
processes, Multiple states will enable PLANNER to easily
and directly compare the sltuations that would result If
alternative plans of action were followed, HMultiple
processes will enable PLANNER to have more than one locus of
problem solving activity In existence at one time. To prove
out our ideas we will develop several simple domains such
asi

A simple logistics and transportation system with

supply depots,

A robot lilke blocks world with more than one arm so

that it Is necessary for two processes to cooperate

to accomplish some of the tasks.

A negotiator for the game of Diplomacy which would

have the knowledge needed to try to survive in a
cooperative=competitive world.

page 5

L Simple Example

We would Tike to give an example of how simple
requests can be handled in PLAMMER, Suppose manufacturer X
has Just gone bankrupt. Which of our products are affected?
In order to get PLAMMNER to do anything, & goal oriented
procedure must be written, Because of the powerful
procedure definition machinery in PLANNER arbitrary
Inferential searches can be carried out, FLANNER is not
limited to being able to answer the fixed number of kinds of
questions that the system bullder happened to think of., The
formalism Is designed to make It easy for PLANNER procedures
to construct other PLANNER procedures., Terry Winograd has
shown In his thesis how it |5 possible to translate English
requests like "Find all products which are affected" Into
the PLANNER procedure:

(find all ,product

{goal |affected-by :product X|>>
The above FLANNER statement says the problem is to find all
products which are affected by X. At this point the system
will comment: “i don't know how to find out whether a
product is affected by a manufacturer”™, The user might
reply: "A part Is affected by a manufacturer If the
manufacturer makes it or [f |t has some subpart which is

affected by the manufacturer"., Thus the following procedure

page b

would be generated by the natural language translator:

cconsequent ||
|affected=by Tpart Tmanufacturer|
Lor
tgoal |manufactures Tmanufacturer Tpart|»
Cand
{goal |part-of ?subpart Tpart|>
Lgoal
|affected=-by
Tsubpart
Tmanufacturer|>»x>

The above statements are in a form which can be directly
executed by PLANMER. Ey these means PLANMNER can solve
problems that were unanticipated by the original system
builders. PLANMER will execute the above request
efficiently even on a large data base because It Indexes its

data base using hash coding.

page 7

Biographical MNote

Carl Hewitt was born in Clinton, lowa, but considers
himself a natlive of El Paso, Texas to which he moved at the
age of two years, He attended E1 Pasc Public Schools and
graduated from E1 Paso High School In 1963, With a
McDermott Scholarship, he attended M,I1.7T, In 1967 he
graduated in mathematics, receiving a fellowship to do
graduate work in artificial intelligence and theories of
computation. His Soclal Security number is 453-70-1755.

His publications Include:

Automata on a Two Dimensional Tape (with Manuel
Blum), Annual Conference on Switching and Automata Theory,
October 1967. Austin, Texas.

Comparative Schematology (with Michael Paterson).
Proceedings of Project MAC Conference on Parallism, June
1970, Woods Hole, Mass,

PLANNER: A Language for Proving Theorems In Rohots,
Proceedings of |JCAl. May 7-9, 1969, Washington D, C,

Teaching Procedures In Humans and Robots,

Proceedings of Conference on Structural Learning. April 5,

page

1970, Philadelphia, Pa. Journal of Structural Learning.
Procedural Embedding of Knowledge in PLANNER,
Proceeding of Second International Joint Conference on
Artificial Intelligence, Sept, 1-&4, 1871, London,
Description and Theoretical Analysis (using
Schemata) of PLAMNER: A Language for Proving Theorems and

Manipulating Models in a Robot, Phd thesis at M.1.T. Jan.

1971.

page 0

Appendix I,

The Structural Foundations of Problem Solving

The following was extracted from chapter 2 of
Hewitt's thesis, It gives an overview of PLANMER, Detalled
information is avallable in the Ph. D. theses of Hewitt and
Winograd,

We would like to develop a foundation for problem
solving analogous In some ways to the currently exlisting
foundations for mathematics, Thus we need to analyze the
structure of foundations for mathematics. A foundation for
mathematics must provide a definitional formalism In which
mathematical objects can be defined and their existence
proved, For example set theory as a foundation provides
that objects must be built out of sets. Then there must be
a deductive formalism in which fundamental truths can be
stated and the means provided to deduce additional truths
from those already established. Current mathematical
foundations such as set theory seem quite natural and
adequate for the vast body of classical mathematics., The
objects and reasoning of most mathematical domalns such as

analysis and algebra can be easily founded on set theory.

page 10

The existence of certain astronomically large cardinals
poses some problems for set theoretic foundations. Howewver,
the problems posed seem to be of practical importance only
to certain category theorists., Foundations of mathematics
have devoted a great deal of attention to the problems of
consistency and completeness, The problem of consistency is
important since If the foundations are Inconsistent then any
formula whatsoever may be deduced, thus trivializing the
foundations. semantics for foundations of mathematies are
defined model theoretically in terms of the notlion of
satisfiability, The problem of completeness, is that for a
foundation of mathematics to be intuitively satisfactory all
the true formulas should be proveable since a foundation for
mathematics aims to be a theory of mathematical truth.
Similar fundamental gquestions must be faced by a
foundation for problem solving. However there are some
Important differences since a foundation for problem solving
aims more to be a theory of actions and purposes than a
theory of mathematical truth. A foundation for problem
solving must specify a goal-oriented formalism in which
problems can be stated., Furthermore there must be a
formalism for speclifying the allowable methods of solution.
As part of the deflnition of Lthe formalisms, the following
elenents must be defined: the data structure, the control

structure, and the primitive procedures, Being a theory of

page 11

actions, a foundation for problem solving must confront the
problem of change: How can account be taken of the changing
situation in the world? |In order for there to be problem
solving, there must be an active agent called a problem
saolver, A foundation for problem solving must consider how
much knowledge and what kind of knowledge problem solvers
can have about themselves, |In contrast to the foundation of
mathematics, the semantics for a foundation for problem
solving should be defined In terms of properties of
procedures, We would like to see mathematical
investigations on the adequacy of the foundations for
problem solving provided by PLAMNER. In chapter £ of the
dissertation, we have begun of one kind of such an
Investigation.

To be more specifie, a foundation for problem
solving must concern itself with the following complex of
topics:

PROCEDURAL EMBEDDING: How can "real world" knowledge be
effectively embedded in procedures. What are good ways
to express problem solution methods and how can plans
for the solution of problems be formulated?

GEMERALIZED COMPILATIOH: What are good methods for
transforming high level goal-oriented language Into

efficient algorithms.

VERIFICATION: How can It be verified that a procedure
does what is intended,

FROCEDURAL ABSTRACTIOM: What are good methods for
abstracting general procedures from special cases,

page 12

Une formulation of a foundation for problem solving
requires that there should be two distinct formalisms:
1: A METHODS formalism which specifies the allowable
methods of solution

23 A PRUEBLEM SPECIFICATION formalism in which to pose
problems,

The problem solver is expected to flgure out how to combine
Its available methods in order to produce a solution which
satisfies the problem specification. OUne of the alms of the
above formulation of problem solving Is to elearly separate
the methods of solution from the problems posed so that It
is impossible te "cheat" and give the problem solver the
methods for solving the problem along with the statement of
the problem. HE.DFGDDEE to hridge the chasm between the
methods formalism and the problem formalism. Consider more
carefully the two extremes in the specification of
processing:
A: Explicit processing (e.g. methods) is the ability to
specify and control actlons down to the finest details,
B: Implicit processing (e.g. problems) is the ability
to specify the end result desired and not to say much
about how It should be achieved,
PLANNER attempts to provide a formalism in which a problem
solver can bridge the continuum between explicit and
implicit processing. We alm for a maximum of flexiblility so
that whatever knowledge Is available can be incorporated,

even if it is fragmentary and heurlstie,

page 13

PLAMNER is a high level, pgoal-oriented formalism in
which one can specify to a large degree what one wants done
rather than how to do it, Many of the primitives in PLANMER
are concerned with manipulating a data base Iin a pattern
directed fashion. Most of the primitives have been
developed as extensions to the formalism when we have found
problems that could not otherwise be solved in a natural
way. Of course the trick Is to Incorporate the new
primitive as a genuine extension of wide applicability.
Uthers have suggested themselves as adjuncts In order to
obtaln useful closure properties in the formalism. We would
be grateful to any reader who could suggest problems that
would seem to regulire further extensions or modifications to
the formalism.

There are many ways Iin which one can approach a
description of PLANNER, In this section we will describe
FLAHNNER from an Information Processing Viewpoint, To do
this we will describe the data structure and the control

structure of the formallism,

DATA STRUCTURE:

GRAPH MEMURY forms the baslis for PLANNER's data
space which consists of directed graphs with labeled
arcs. The operation of PUTTING and GETTING tha
components of data objects have been generallzed to
apply to any data type whatsoever. For example to
PUT the value CANONICAL on the expression (+ X ¥ (=
¥ Z)) under the indicator SIMPLIFIED is one way to
record that (+ X ¥ (+ ¥ 7)) has been canonically

pare 1k

simplified, Then the degree to which an expression
is simplified can be determined by GETTING the wvalue
under the Indicator SIMPLIFIED of the expression.
The operations of PUT and GET can be implemented
efficiently using hash coding. Lists and vectors
have been [Introduced to gain more efficiency for
common special purponse structures, The praph memory
is useful to PLANNER In many ways, Monitoring glves
PLANHER the capability of trapping all read, write,
and execute references to a particular data object.
The monitor (which is found under the indicator
MUNITOR) of the data object can then take any action
that it sees fit in order to handle the situation.
The graph memory can he used to retrieve the value
of an identifier i of @ process p by GETTING the |
component of p. Code can be commented by simply
PUTTING the actual comment under the indicator
CUMMERNT .

DATA BASE: What is most distinctive about the way
in which PLANHER uses data I1s that it has a data
base in which data can be Inserted and removed. For
gxample inserting (AT Bl P2) imto the data hase
might signify that hlock Bl is at the place P2. A
coordinate of an expression is defined to be an atom
in some position, An expression Is determined by
its coordinates. Assertions are stored in buckets
by their coordinates using the graph memory in order
to provide efficient retrieval, In addition a total
ordering is imposed on the assertions so that the
buckets can be sorted, Imperatives as wel] as
declaratives can be stored in the data base. e
might assert that whenever an expression of the form
(At objectl placel) is removed from the data base,
then any expression In the data base of the form (0N
objectl object?) should zlso be removed from the
data base. The data base can be tree structured so
that it is possible to simultaneocusly have several
local data bases which are Incompatible.

Furtbermﬂr& assertlons In the data base can have
varying scopes so0 that some will Tast the duration
of a process while others are temporary to a
subroutine,

CONTROL STRUCTURE: PLAMNER uses a pattern directad
multiprocess backtrack control structure te tie the
operation of its primitives together,

page 1h

BACKTRACKING: PLANMNER processes have the capability
of backtracking to previous states, A process can
backtrack into a procedure activation {(i.e. a
specific instance of an Invocatlion of a procedure)
which has already returned with a result, Using the
theory of comparative schematology, we have proved
in chapter 8 of the dissertation that the use of
backtrack control enables us to achieve effects that
a language (such as LISP) which is limited to
recursive control cannot achleve., [Backtracking cuts
across the subroutine structure of PLANNER,
backtrack control allows the consequences of
elaborate tentative hypotheses to be explored
without losing the capability of rejecting the
hypotheses and all of their conseguences, A cholce
can be made on the basis of the available knowledge
and if it doesn't work, & hetter cholce can he made
using the new information discovered while
investigating the first cholce. Also hacktracek
control makes PLANNER procedures easier to debug
since they can be run backwards as well as forwards
enabling a problem solver to "zero In" on bugs.

MULT I PROCESSING gives PLANNER the capability of
having more than one locus of control In problem
salving. gy using multiple processes, arbitrary
patterns of search through a conceptual problemn
space can be carried out, Processes can have the
power to create, read, write, Interrupt, resume,
single step, and fork other processes,

PATTERN DIRECTION combines aspects of control and data
structure, The fundamental principle of pattern
directed computation Is that a procedure should be a
pattern of what the procedure Is Intended to accomplish,
In other words a procedure should not only do the right
thing but it should appear to do the right thing as

welll PLANHER uses pattern direction for the following
operations:

CONSTRUCTION of structured data objects is

accompl ished by templates. We can construct a list
whose first element is the value of x and whose
second element Is the value of v by the procedure (x
¥}. If x has the value 3 and v has the value (A B)
then {x y) will evaluate te (3 (A B)).

DECOMPOSITION 1s accomplished by matching the data
object against a structured pattern. If the pattern

parge 16

(x1l x2) is matched against the data ohject ((3 &4} A)
then x1 will be given the value (3 L) and x2 will be
given the value A,

RETRIEVAL: An assertion Is retrieved from the data
base by specifyving a pattern which the assertion
must match and thereby bind the identifiers In the
pattern. For example we can determine If there Is
anything in the data base of the form (ON x A}, |IFf
(OM B A) is the only item In the data base, then x
is bound to B. If there is more than one ftem In the
data base which matches a retrieval pattern, then an
arbitrary choice is made. The fact that a cholice
was made 1s remembered so that if a simple failure
backtracks to the decision, another choice can be
made ,

INVOCATION: Procedures can be invoked by patterns
of what they are supposed to accomplish, Fer
example a procedure might be defined which attempts
to satisfy patterns of the form (ON x y) by causing
x to be ON v. Such a procedure could be invoked by
making (ON A B) a goal, The procedure might or
might not succeed Iin achieving its goal depending on
the environment In which 1t was called., Since many
theorems might match a goal, a recommendation Is
allowed as to which of the candidate theorems might
be useful., The recommendation is a pattern which a
candidate theorem must mateh.

One basic idea behind PLAMMER 15 to exploit the
duality that we find between certain imperative and
declarative sentences, Conslider the statement (Implles A
B). The statement is a perfectly good declarative. In
addition, it can also have certain Iimperative uses for
FLANNER . It can say that we might set up a procedure which
will note whether A 15 ever asserted and if so to consider
the wisdom of asserting B in turn. |Mote: It is not always
wisel Suppose we assert (integer 0) and (implies (integer

n} {integer (+ n 1})|. Furthermore it permits us to set up

page 17

a procedure that will watch to see If it is ever our goal to
try to deduce B and if so whether A should be made a
subgoal . Exactly the same cbservations can be made about
the contrapositive of the statement (implies A B) which Is
(Impllies (not B) (not A)). Statements with universal
quantifiers, conjunctions, disjunctions, etc. can also have
both declarative and Imperative uses. PLAMMER theorems are
used as Imperatives when executed and as declaratives when
used as data. The Imperative analogues have the advantage
that they can more easily express any procedural knowledge
that we might have such as "Don't use this theorem twice".
Our work on PLANNER has been an Investigation In
PROCEDURAL EPISTEMOLUGY, the study of how knowledge can be
embedded In procedures. The THESIS OF PROCEDURAL EMBEDDI NG
is that intellectual structures should be analyzed through
their PROCEDURAL ANALOGUES. We will try to show what we
mean through examples:
DESCRIPTIONS are procedures which recognize how well
some candidate fits the description,
PATTERNS are descriptions which mateh configurations
of data, For example <either L <{atomic>» Is a
procedure which will recognize something which is
either 4 or Is atomic.
OATA TYPES are patterns used In declaratlons of the
allowable range and domain of procedures and
identifiers. More generally, data types have

analogues in the form of procedures which create,
‘destroy, recognize, and transform data,

page 18

GRAMMARS: The PROGRAMMAR language of Terry \linograd
repreésents an Important step step towards one kind
of procedural analogue for natural language gprammar.

SCHEMATIC DRAWINGS have as thelr procedural analogue
methods for receognizing when particular Tigures flt
within the schemata.

FPROOFS correspond to plans for recognizing and
expanding valid chains of deductions, Indeed many
proofs can fruitfully be considered to define
procedures which are proved to have certain
properties.

MODELS are collections of procedures for simulating
the behavior of the system being modeled. MODELS of
PROGRAMS are procedures for defining properties of
procedures and attempting to verify the propertles
so defined, Models of programs can be defined by
procedures which state the relations that must hold
as control passes through the program,

PLAMNE are general, goal oriented procedures for
attempting to carry out some task,

THEOREMS of the QUANTIFICATIONAL CALCULUS have as
thelr analogues procedures for carrving out the
deductions which are jJustified by the theorems. For
example, consider a theorem of the form (IMPLIES x
V). One procedural analogue of the theorem (s to
consider whether x should be made a subgoal in order
to try to prove something of the form .

DRAWINGS: The procedural analogue of a drawing is a
procedure for making the drawing. FRather
sophisticated display processors have been
constructed for making drawings on cathode ray
tubes.

RECOMMENDATIONS: PLAMNMER has primitives which allow
recommendations as to how disparate sections of goal
oriented language should be linked together in order
to accomplish some particular task,

GOAL TREES are represented by a snapshot of the
instantaneous configuration of problem solving
processes,

page 19

Une corollary of the thesis of procedural embedding
is that learning entails the learning of the procedures in
which the knowledge to be learned is embedded, Another
aspect of the thesis of procedural embedding is that the
process of going from general goal oriented language which
is capable of accomplishing some task to a special purpose,
efficient, algorithm especially designed for the task should
itself be mechanized. By expressing the properties of the
special purpose algorithm Iin terms of their procedural
analogues, we can use the analogues to establish that the
special purpose routine does In fact do what it is intended,

From the above cbservations, we have constructed a
formalism that permits both the imperative and declarat]ve
aspects of statements to be easily manipulated., PLANNER
uses a pattern-directed Information retrieval system. The
data base is interrogated by specifying a pattern of what is
to be retrieved. |Instead of having to explicitly name
procedures which are to be called, they can be [nvoked
implicitly by a pattern (this important concept is called
PATTERN-DIRECTED INVOCATION). When a statement Is asserted,
recommendations determine what conclusions will be drawn
from the assertion., Procedures can make recommendations as
to which theorems should be used in trying to draw
conclusions from an assertion, and they can recommend the

order in which the theorems should be applied. Goals can be

page 20

created and automatically dismissed when they are satisfied,
Objects can be found from schematic or partial descriptions.
Provision is made for the fact that statements that were
once true in a model may no longer he true at some later
time and that conseguences must be drawn from the fact that
the state of the model has changed. Assertions and goals
created within a procedure can be dynamically protected
against interference from other procedures. Unlike some
other formallisms such as GP35, PLANNER has no explicit goal
tree, Instead the computation itself can be thought to be
investigating some conceptual problem space. Primitives for
a multiprocess backtrack control structure glive flexibility
to the ways in which the conceptual problem space can be
investigated. Procedures written in the formalism are
extendable In that they can make use of new knowledge
whether It be primarily declarative or Imperative In nature.
Hypotheses can be established and later discharged, PLANNER
has been used to write a block control language in which we
specify how blocks can be moved around by a robot, We would
like to write a structure bullding formalism in which we
could provide descriptions of structures (such as houses
and bridges) and let PLANNER figure out how to build them,
The logical deductive system used by PLANNER is subordinate
to the hierarchical control structure of the language.

FLANNER theorems operate within a context consisting of

page 11

return addresses, goals, assertions, bindings, and local
changes of state that have been made to the global data
base., Through the use of this context we can guide the
computation and avoid doing basically the same work over and
over again. For example, once we determine that we are
working within a group (in the mathematical sense) we can
restrict our attention to theorems for working on groups
since we have direct control over what theorems will be
used. FLANNER has a sophisticated deductive system in
order to give us greater power over the direction of the
computation, Of course procedures written In PFLANNER are
not Intrinsically efficient. A great deal of thought and
effort must be put Into writing efficient procedures.
PLANNER does provide some basic mechanisms and primitives In
which to express problem solving procedures, The control
structure can still be used when we limit ourselves to using
resolution as the sole rule of inference. A uniform proof
procedure gives very little control over how or when a
theorem is used, The problem is one of the level of the
Interpreter that is used, A digital computer by [tself will
only Interpret the hardware instructions of the machine. A&
higher level interpeter such as LISP will interpret
asslignments and recursive function calls. At a still higher
level an interpreter such as MATCHLESS will interpret

patterns for constructing and decomposing strucured data,

page 22

PLAHNER can interpret assertlons, find statements, and
goals. It goes without saying that code can be compiled
for any of the higher level Interpeters s0 that it actually
runs under a lower level interpreter. In general higher
level Interpreters have greater cholce In the actlions that
they can take since instructions are phrased more In terms
of goals to be achieved rather than in terms of explicit
elementary actions. The problem that we face is to ralse
the level of the interpreter while at the same time keeping
the actions taken by it under control, Due to its extreme
hierarchical control and its ability to make use of new
imperative as well as declarative knowledge, it i1s feasible
to carry out very long chalns of inference in PLANMER
without extreme inefficliency,

We are concerned as to how a theorem prover can
unify structural problem solving methods with domain
dependent algorithms and data Into a coherent problem
solving process. By structural methods we mean those that
are concerned with the formal structure of the argument
rather than with the semantics of Its domain dependent
content,

An example of a structural method is the
"consequences of the conseguent'" heuristic., By the
CUNSEQUENCES OF THE CONSEQUENT heuristic, we mean that a

problem salver should lTook at the consequences of the goal

page 23

that 1s being attempted In order to get an idea of some of
the statements that could be useful in establishing or
rejecting the goal.

We need to discover more powerful structural
methods ., PLAHNHER is intended to provide a computational
basis for expressing structural methods. One of the most
important ideas In PLAMMNER Is that It brings some of the
structural methods of problem selving out into the open
where they can be analvzed and generalized. There are a few
basic patterns of looping and recursion that are in constant
use among programmers. Examples are recursion on binary
trees as in LISP and the FIND statement of PLAMMNER, The
primitive FIND will construct a list of the objects with
certaln properties. For example we can find five things
which are on something which Is green by evaluating

<FIND 5 x

<GOAL (ON = y)>
¢GOAL (GREEN y)}>>

which reads "find 5 x's such that x is ON y and y Is GREEN,.

The patterns of looping and recursion represent
common structural methods used In programs. They specify
how commands can be repeated lteratively and recursively,
One of the main problems In getting computers to write
programs 15 how to use these structural patterns with the
particular domain dependent commands that are avallable, It

is difficult to declde which If any of the basic patterns is

page 24

appropriate in any given problem. The problem of
synthesizing programs out of canned loops Is formally
identical to the problem of finding proofs using
mathemat1cal induction. We have approached the problem of
constructing procedures out of goal orfented Tanguage from
two directlons, The first Is5 to use canned leops (such as
the FIND statement) where we assume a-priorl the kind of
control structure that is needed. The second approach is to
try to abstract the procedure from protocols of Its action
in particular cases,

Another structural method is PROGRESSIVE REFIMEMENT.
The way problems are solved by progressive refinement Is by
repeated evaluation, Instead of trving to do a complete
investigation of the problem space all at once, repeated
refinements are made, For example In a game like chess the
same part of the game tree might be looked at several times.
Each time certain paths are more deeply explored In the
light of what other investigations have revealed to be the
key features of the position., Problems in design seem to be
particularly sultable for the use of progressive reflnement
since proposed designs are often amenable to successive
refinement. The way In which progressive reflinement
typically is done in PLANNER is by repeated evaluation.
Thus the expression which 15 evaluated to solve the problem

will itself produce as its value an expression to he

page 25

evaluated,

The task of artificlal intelligence Is to program
Inanimate machines to perform tasks that require
Intelligence. Over the past decade several different
approaches toward A. |. have developed. Although very pure
forms of these approaches will seldom be met in practice, we
find that 1t is useful for purposes of discussion to
consider these conceptual extremes. One approach (called
results mode by 5. Papert) has been to choose some specifie
intellectual task that humans can perform with facillty and
write a program to perform It, Several very fline programs
have been written following this approach., One of the first
was the Logic TheﬁrTst which attempted to prove theorems in
the propositional calculus using the deductive system
developed In Princlpia Mathematica. The Importance of the
Logic Theorist Is that It developed & body of technlques
which when cleaned up and generalized have proved to be
fundamental te furthering our understanding of A, |. The
results mode approach offers the potentiality of maximum
efficiency In solving particular classes of problems., On
the other hand, there have been a number of programs wrltten
from the results mode approach which have not advanced our
understanding although the programs achleved slightly better
results than had been achieved before. These programs have

been large, clumsy, brute force plieces of machinery. There

pape 26

is a clear danger that the results mode approach can
degenerate into trying to achieve A, 1, via the "hairy
kludge a month plan", The problems with "hairy kludees" are
well known., [t is Impossible to get such programs to
communicate with each other in a natural and intimate way.
They are difficult to understand, extend, and modify because
of the ad hoc way In which they are constructed.

Another approach to A, |, that has been prominent in
the last decade is that of the uniform proof procedure.
Proponents of the approach write programs which accept
declarative descriptions of combinatoerial problems and then
attempt to solve them. In its most pure form the approach
does not permit the machine to be given any information as
to how it might solve its problems. The character table
approach to A, |. is a modification of the uniform procedure
approach in which the program is also given a finite state
table of connections between goals and methods., The uniform
procedure approach offers & great deal of elegance and a
maximum of a certain kind of generality. Current programs
that implement the uniform procedure approach suffer from
extreme inefficiency. We belleve that the inefficiency is
intrinsic In the approach,

FLANNER is not necessarily general in the same sense
that a uniform proof procedure is general. PLAMMNER is

intended to be a natural computational basis for methods of

page 27

solving problems In a domain., A complete proof procedure
for a quantificational calculus is general in the sense that
if ovne can force the problem Into the form of the input
language and is prepared to wait eons If necessary then the
computer Is guaranteed to find a solution If there Is one,
The approach taken in PLAMNER is to subordinate the
deductive system to an elaborate hierarchical control
structure. Although PLANNER itself is domain independent,
procedures written in it have differing overlapping degrees
of domain independence. Proponents of the uniform procedure
approach are apt to say that PLANNER "cheats" because
through the use of its hierarchical control structure, it is
possible to tell the program how to try to solve its
problems. In order to prevent this kind of "cheating",
they would restrict the input to consist entirely of
declaratives, But surely, it Is to the credit of a program
that It is able to accept new Imperative Information and
make use of it. A problem solver needs a high level
language for expressing problem solving methods even 1T the
language 15 only used by the problem solver to express Its
problem solving methods to ITtself, PLANHER serves both as
the lTanguage in which problems are posed to the problem
solver and the language in which methods of solution are
formulated. PLAHNER i5s nut intended to be a solution to

the problem of finding general methods for reducing the

paga 238

combinatorial search involved to test whether a given
proposition is valid or not, It is intended to be a reneral
farmalism in which knowledge in a domain can be combined and
integrated, Realistic problem solving pregrams will need
vast amounts of knowledge. We consider all methods of
solving problems to be legitimate. If a program should
happen to already know the answer to the problem that Tt Is
asked to solve, then it is perfectly reasonabkle for the
problem to be solved by table look-up. We should use the
criterion that the problem solving power of a program should
increase much faster than in direct proportion to the number
of things that it s told, The important factors in judging
a program are Its power, elegance, generality, and

efficiency.

