MASSACHUSETTS IMNSTITUTE OF TECHNOLOGY
A.T. LABORATORY

January 1970

Avtificial Intelligence

LOGOD
Memo Ha. 254

Memo Ho. 5

HIM: A Game=FPlaying Program

Seymour Papert
and

Cynthia Solomon

This work was supported by the National Science Foundation under grant
pusmber GJ=104% and conducted at the Artificial Intelligence Laboratory,

a4 Massachugsetts Institute of Technology research program supported in

part by the Advanced Research Projects Agency of the Department of Defense

and menitored by the 0ffice of Naval Research under Contract Fumbeer
ROOOTA-T0-A-0362-0002 .



NIM: A Game-Playlng Program

by
Seymour Papert and Cynthia Solomon

1.0 Imtroduction

This note illustrates some ideas about how to iniciate beginning
students into the art of planning and writing a pregram complex enough to
be considered a project rather than an exercise on using the language or
gimple programming ideas. The project is to write a program toe play a
simple game ("one-pile NIM" or "21") as invincibly as possible. We de-
veloped the project for a class of seventh grade children we taught in
1968-69 at the Muzzey Junior High School in Lexington, Mass.®* This was
the longest programming project these children had encountered, and our
intention was to give them a model of how to go about working under these
conditions. To achieve this purpose we ourselves worked very hard to
develop a clear organization of sub-goals which we explained to the class
at the beginning eof the 3 - week period devoted to this particular program.
One would mot expect beginners to find as clear a subgoal structure as this
one; but once they have seen a good example, they are more likely to do so
in the future for other problems. Thus our primary teaching purpose was
to develep the idea of splitting a task into sub-goals. We wanted the
children to have good models of various ways in which this can be done and
to experience the heuristic power of this kind of planning (as opposed to
jumping straight into writing programs).

Beaders will notice that the sub-goal structure divides the problem
in several ways. One way is by "chopping', that is to say, by recognizing
that the final program has distinct functions that can be performed by

separate sub=procedures. But this is not the only way. Many heuristic

*This work was supperted by NSF Contract No. NSF-C 558 to Bolt, Baranek
and Hew=an, Inc. .



programs can be "simplified" rather than "chopped". We illustrate this
by first writing a precedure to play the "whole game”, but in a "dumb
way". Once we have done so, we can study its performance, decide why
it plays badly and strengthen its play. Thus the successive partial
golutions to the problem appear as making a procedure progressively
"smarter".

Describing the evolution of the program in this way has the additien-
gl benefit of allowing one to make an amalogy with the way a child might
learn the game. We find thiz analogy wvaluable in two senses: by wsing
himeelf as a model the child acquires a fertile scurce of ideas about pro-
gramming; on the other hand, the experience of debugging programs can
have a therapeutic effect in leading him to see his own sz emotionally

newtral bugs rather than as emotionally charged errors.

1.1 The Sub—-Goal Plan

The key idea for subdiwvision of the problem is to write a serles of
programs, cach of which is "smarter" than the previous one. The first
program will kpnow nothing about the strategy of play. It will not generate
moves, but ask each of two human players im turn what move to make.  For

example, it might act as a score=keeper, just keeping track of the number

of sticks without bothering about whether the move is legal. From score=
keeper the machine could advance to referee. Thiz means that it checks
the moves for legality and eventually declares the game over and announces
the winner. After we have a working mechanical referee we will start mak-
ing a mechanical player. The first version of a player will choose legal,
but not necessarily good moves. Indeed, it will generate a move randomly,
use its ability as = referee to decide if it is legal, and then either

accept it or generate another random move.



NIM-2

When this works, the child msy meke his program smarter and smarter oy

adding festures or by writing s completely new version until finally ==

ir all goes well -- an infallible strategic plsyer is evolved.

A natursl form for progreas of intermediate "smartness" is the

following: the progrem has s list of simple situatlons in which it

knows how to play; in other situstions it plays randemly. In other

words, it pleys by the form of strategy wsed by most children in most

strategic games.

In working with & clasg, & good moment should be seized to prod
the children into noting and discussing the analogy between this
very simple heuriptlc program and themselves —- particulsrly,
how the program gets to be "smarter" through more or through
better knowledge. GSeeing the program as a cognitive model is

s valuable and exciting experience for the children. They can
eagily be drawn into discussicon &bout how meaningful such models
are., To keep the discussion alive the teacher should be eguipped
vith arguments and examples to counteract extremist, snd so
gterile, positions. For exsmple, if the children feel that the
program iz too simple o be & model of human thinking, one might
discuss whether a toy &irplane is a useful model of = jet-liner.
Does it work by the same principles? Can one lesrn gbout sir-
linere by etudying toy models? On the other hand, 1f & class
evinge over to the position that there really is no difference,
one could ssk guestions about whether the program could lesrn
by itself without =& programser. But if this is too epthusiasti-
eally accepted it is well to ask: how much do you learn without
being told? Etc., ete. Ideally, the teacher should merely
guide the discussion without having to say any of this. But
avareness of such arguments will permit more sensitive guiding.
dn interesting exercisze and base for discussion is to have the
children study wvaricus programs of intermediate smeriness,
clagsify their bad moves by degrees of stupidity, give the
progrems grades or I.Q.'s {or say vhy they think doing so is
eillyl).

The stratificaticn of the project has the good feature of allowing

children to find their own level. A slower child who gets only as far

ag the random player, nevertheless, has the taste of success ~i¥f his

program does what 1t dees well. Tendencies to feel infericr shouwld be

counteracted bty the teacher's attitude and by encouraging Ilndividual



variaticons so that po child's finel program is a mere subset of &8 more
advanced aone. The tescher's computer culture can be very relevant in
this delicate kind of situation. Although the richness of programming
permits children to generate many fertile ideas, sensitive Tiltering by
the teacher can enormeusly improve the achievement-to-frustration retio.
Exsmples of individual frills te a referee progrem: timing
moves, declaring the winper & move or two ahesd(!), sllowing
a player to take a move back, printing a score sheet, giving
advice (1), allowing the players to be at two teletypes (if

the system permits), establishing and imposing handicaps (1),
changing the rales, ete., ete.

2.0 The Rules

A move consists of taking one, two of three Batch-sticks from
a given pile. Two players move alternately. The player who takes the

last stick wins.

3.0, First Steps with the Children

The first step 1s to see that everyone Knows the rules and under-
stands what the first program will do; for example, by imitating its
functien or by writing imaginary scripts. In the course of discussing
this we would introduce some names (B0 ms to be sble to talk sbout what

we are doingl).



NIM-L

Example of a Seript

THE KUMEER OF STICKES IS 8
JON TO PLAY., WHAT'S YOUR MOVET
g

THE NUMBER OF STICKS IS &
BILL TO PLAY. WHAT'S YOUR MOVE?T
<3

THE NUMBER OF STICKS IS 3
JON TO PLAY. WHAT'S YOUR MOVE?
<3

JON IS THE WINNER.
Later in the project we ipsilst thet children consider vhat
happens when = player replies to "WHAT'S YOUR MOVET" by "5V
or "COW". In the beginning we would discoursge all but the
most competent children from worrying sbout "funny” answers
before getting the program to work with normal answers.
Examining the script we see thet there must be nemes for:

the current number of sticks -- let's say "STICKS"

the move == let'e say "MOVE"

the next pleyer —- let's ssy "PLAYER"
and, a little more subtle

the other player =-- let's say "OPPONENT"

To be sure that everyobe understands we have an assignment to fill in

these LOGOTHINGS for successive rounds following the previcus script.

ROUKD # :STICKES :FLAYER 1 OPPORENT tMOVE
1 8 "JoN" "BILL" 2
E lrJ[:lHII 3

3 3 _



NIM=- 5

4,0, A Simple Ecore-keeper

If $his 1s the firat game-playilng program, we might give
the class an almost resdy-mede procedure. We build up
to it by =asking some standard guestions:
What shall we call the procedure? (Let's ssy "NIMPLAY")
What must NIMPLAY do?

What mst HIMPLAY Enow?

Pasgible answers are:

1. Anneounce the remaining number of sticks
2, Announce the player to move
3. et his move and make sl]l the modifications

L, FRecur.

To do this NIMPLAY must remember !STICKS , :FLAYER , and :(FPONENT
frem the previous round and get :MOVE by asking for it. The firat
three THINGE must be told by one NIMPLAY-GUY* to ancther, so they should
b inpute. On the other hand, 'MOVE comes from the human player, so
it can be gotten by REQUEST and need not be an input. If cne locks ahead

cne might notice that later on, !MOVE will sometimes come from a pro¢edure

*The anthropomorphic metaphor is related to the little-men pictures ir an
¢arlier section. The use of the anthropomorphic langusge might be & little
rrecicus, but the concept of & separate agent for esch program-call is
Enm;nmﬁlﬁf velughle, The chiléren did not seem to resent terms 1ike "MEE™
cr GUYT.



NIM=&

-- that is, when the machine gets to be smart encugh to make ils own
meves. So to keep the door open for changes, we geparate the problems
of getting MOVE and using it. The standard way to do thiz is to plan

on & sub-procedure -- say, called "GETMOVE".

How we can write NIMPLAY:

To FIMPLAY :STICKS (PLAYER :OFPONENT -r;—~—~—'g

1 PRTKT SEGTENCE “THE WUMBER OF 3TICES IS" :BTICKS «

o PRINT SENTENCE :PLAYFE "T0 PLAY. WHAT'S YOUR MOVET"
I MAKE = — We pretend we have
KAME "NEWSTICHS" already written
THING +tATICKS = GETMOVE ETHOVE.

b HIMPLAY :NEWSTICKS :(OPPONENT :PLAYER <G Recursion line.
Hotice how :PLAYER
and I0OFPORENT are

reverged.

END
TO CGETMOVE e T input isz I'I.EE-EEIEH.I'_Q
1 MAKE e} GETMOVE's Job 18 to

HAME  "MOVE" e
THING HEQUEST

meke a new LOGOTHIHEG.
Bo its main action 1=
this MAKE copmend.
It uses OQUTEFUT to

. Pass on what it mekes.
e—

_\_\—FI—_

2 QUTFUT *MOVE

ERD

Kote the use of :STICKS -GRTMOVE. We use infix notation as an option

in LOGO {with parentheses when needed to awoid ambiguity).



NIM-7

A little-man picture of & round:

8 "Jon" “BILL" o & "BILL" "Jom" -
/ B B ' T,
e I.' HIHPLJ'I.T\r \! o ] REXT L
L ooy @“)l, | NIMPLAY |
khh,_;a | i
- ‘\\ /lx\_

Comments: Hotlece the two-way line. The NIMPLAY=GUY called the
GETMOVE-GUY expecting to get a LOGOTHING. So GETMOVE
mast be an gperation; in other words it has an QUTFUT.

On the other hand, vhen one NIMPLAY=GUY ecalls the next
one he does not expect an answer: NIMPLAY 1=z =2 command,
not an operation. Eo it hes & ope-way line. #,#’

—_—

-



HIM=2

7:+0 From Score-keéper to Referee

A5 referee the program has some new taszks:
1, Declide whether the game i3 over
2. Declare the winner if it is ower
3. Make sure that :FLAYER takes 1, 2, or 3 stieks each time.

The first tasks are achisved by adding a STOP-TEST line to HIMPLAY.
For example,

TEST IS :NEWSTICEE §
IFTRUE PRINT SENTENCE :PLAYER AND "IS THE WINNER"
IFTRUE STOP

The third tesk can be accomplished by glving GETMOVE a TRY-AGAIN faorm.

T GETMOVE
1 PRINT " YOU MAY TAKE 1, 2, OR 3 STICKS"
£ MAKE
NAME "HI'_'I'U'E"
THING REQUEST
3 TEST MEMEER :MOVE "1 2 3" —
4 IFFALEE OUTFUT GETMOVE ¢ . —JIf the TEST is "FALSE", try again.

& QUTFUT :MOVE e—
END i

S

With these changes NIMFLAY is certainly a referee —— but still has
same rough edges. For example, when :8TICKS is 2, GETMOVE gives permis-
gion to take 1, 2, or 3 sticks! And if :PLAYER takes 3, :5TICKS becomes
negative and the game will go on forever on account of a SLIP-BY bug.
Howewver, we shall leave it as an exercise to remedy these minor Failings.

In presenting this section to children we might work through one

off the two mejor modifications with the class and let the children
struggle with the other. The SLIP-EY btug we would lgave +o the clags
to discover and cure. Those who miss it at this stage will find

1te presence more obtrueive later —- and s profitable discussion
might develop ¢n the guestion of why the tug was not found —- per-
haps, because the human pleyer always makes reascnable moves so that
:STICKE never becomes negative even though the machine would allow
it. Later we shall see that when the machine makes its own moves

it will not be so cooperative unless we tell it to be.



HIM- 9

6.0, The Simplest Mechanical Player

How can the mechine choose a move? The simplest way is by using
RANDOM. For exsmple, we couwld allow GE'IHG"FE‘t.h& choige: if a perscn
is to pley use REQUEST, if the machine i to play use RANDOM. But it
has to be told whether the player iz human or the computer. So it =ust
have apn inmput.

TO GETMOVE :PLAYER
TEST IS :FLAYER "COMFUTER"
IFMRUE MAKE
NAME  "MOVE"
THING  RANDOM
IFFALBE FPRINT "YOU MAY TAKE 1, 2, OR 3 STICKS"
TFFALBE MAKE
NAME: "MOVE"
THING: REQUEST

E

. (as before)

At this stage the SLIP-BY bug might become serious. One way to
to Bill it is to tell GETMOVE sbout STICES and have it try-sgain if
MOVE ecomes up greater than (8TICKS . To do this we change the title
line to:

TC GETMOVE fPLAYER STICES
and add a pair of lines (in the TRY-AGAIN form) after the two MAKESs.

TEST GREATERFP :MOVE S5TICES
IFTREUE CUTFUT GETMOVE :FLAYER :STICES

*
Hotice this anthropomorphism. We find it wseful to talk of procedures
s agents, of their "state of knowledge,” of "telling them" of having
them "talk to" one another. But we present thiz to children as a
deliberate metaphor which they might find useful.



NIM-10

T.0. Btrategic Play
Our plan for writing the NIM plsying program in many strata now

calls for it to recognize = few special numbers and know what to do in
those cases, but continue to play stupidly in other cases. However,
bty this time it is likely that the elass has alresdy discovered the
full strategy. It mey still be worthwhile to encourage at least some
menbers to follow the orlginel plan as an instructive foke. In this
gection we shall illustrate s general gquestion-answer technique for

plagsroom digcussicn and to encourage habits of heuristic neatness in
the children's own thinklng.

T.1. A Semi-Smart NIM Player

A good exereise is to observe NIMPLAY in its present conditiom, and
collect and classify its mistakes. An example of a classlification made
bty a child is:

RETARD MISTAKES: There were 2 or 3 sticks and the mechine 4id

not take alll

DUME MISTAKES: There were 5 sticks and the machine tock 2. (If

the machine had amy sense it would leave the opponent
with 4. )
If there are & or T it's dumb not to shoot for L.
We ghall write a procedure to aveid Tirst "retard mistakes" and then
"dumb mistakes".
Guestion: What program form?

Answar: TEST-TEST



KIM-11

Guesticn: What do we test for?
English Answer: Whether there are 1, Z, or 3 sticks.
L0GO Answer: TEST MEMBER :STICEE "1 2 3"
¥We recall the procedure MEMBER shown by the examples:
MEMBER & "1 2 3" = "FALSE"

MEMBER 2 "1 2 3" "TRUE"

Question: What iz the action if the test is passed?
English Answer: Teke all the sticks .
~ LOGO Answer: OUTFUT :5TICES
guestion: What if it is not passedl?
English Answer: Move Just llke before.
LOGD Answer: MAKE
MAME  "MOVE"
THING  RANDOM
Putting this together to make a procedure to meke the move:
Question: What must the procedure know?
Answer: tSTICKE -- &0 it needs an input.

auestion: Operation or command?

Anewer: COperation, because 1t will give us :MOVE as its ocutpub.

O MAEKEMOVE :STICKEES MAKEMOVE i= an easy name to
remember.

TEST MEMBER :8TICKS "1 2 3"

IFTRUE OUTFUT :STICKS The procedure iz used in

IFFALEE [QUTPUT RANDOM place of RANDOM in GETMOVE.

ENTI Bo don't forget to change
CETMOWE!L

How extra lines can be added., For example:
TEST IS «STICKS "5"

IFTRUE OUTEUT “1"



HIM=12

T.2. The Smart Flayer

By this time everyone should be very close to understanding the
strategy, for example, in the following form:
Question: How does the game end?
Answer: When a player leaves Zero sticks.
S0 let's try meking the main actor be the number of sticks we leave,
If we can leave Zerc that's great. But if ve have more than 3 we can't.
o we must think ahead.
Question: What can we leave &o a5 to help us leave zero pext time?
Answer: 4. Because the opponent will lesve 1, 2, or 3.
Question: What can we leave so as to be gble to leave L fext time?
Answer: 8.
8o 0, bk, 8 are good numbers to shoot at for lesving.
Guestion: What othera?
Answer: 12, 16, ...
Questicn: Describe these.
Anewer: REMATNDER :NUMBER: & = 0
BEMATHDER :NIMEER :DIVIDER i= an operation whose

cutput is the remainder when :NUMEER

iz diwided by : DIVIDER .
$6L Question: If I give you a number called ; NUMBER , how can
you uae 1t to find the next nunber down divisible by
Ly

Answer: Subtract REMAINDER :MUMBER &.



NIM-33

So there we arel The smart invineible NIMplsyer iz made by replacing

MAEEMOVE by SMARTMOVE.

TO SMARTMOVE ;STICKS L ——

MAKE = / This LOGOTHING is the@
NAME: "REM" E_ actor, So name it. —
THING  REMATINDER :STICKES & e "

TEST IS :REM o — —

IPTRUE OUTEUT 1 = % T peally doeen't mattea

e ""-.,in this cose.
IFFALSE OUTEUT REM —_

EXD



HIM=1L

8.0 Frills
Write superprocedures or meke additions to the present procedures so

that transcripts like the following will be produced:

KIM

DO YOU ENOW HOW TO PLAY NIM?T

“HD

HERE ARE THE RULES: Y¥OU WILL BE SHOWKN A CLOOLECTION OF X'B. YOU MAY
REMOVE 1, 2 CR 3. THE FLAYER WHO TAKES THE LAST WINS. THIS IS
FROBABLY TOO VAGUE FOR ¥OU TO UNDERSTAND, BUT TRY PLAYING AND I'LL
CORRECT YOUR MISTAKES.

ARE YOU READY?

<1 AM

FLEASE saYy "vES" OR "wo"

«YES

oK. NHOW TELL ME THE WAME OF THE FIEST PLAYER.
< JON

NOW THE NAME OF THE OTHER FLAYER

< COMPUTER

HOW MANY STICKS DO YOU WANT TO START WITH?
<THIRTY

I'M & DUME COMPUTER. TYPE A PROPER NUMERAL.

¢3L

JON TO FLAY.

THERE ARE 31 STICKS.
OO R0
JON, TAKE 1, 2 OR 3

<3

COMPUTER TO PLAY.

THERE ARE 28 STICKS.
OGO K
I TAKE 3

JOH TO FLAY.

THERE ARE 2% STICES.

LERE R L L
TAEE 1, 2 OR 3

<2



NIM-15

B.1 Modifications

There are unlimited possibilities of "playing with" the ideas in
the procedure after it has been made to work. The following three are
merely examples to illustrate the idea that the project has mot neces-
sarily run out when the precedure is debugged.

An interesting simple modification to the rule of the game is to
change the 1-2-3 rule to a 1-2 rule or a 1=-2=-3=-4-5 rule. UWrite a pro=-
cedure which will ask what rule is to be used.

Qur step rule was: the plaver who takes the last stick wins. Change
this to: he who takes the last stick loses. (The latter is the tradicional
form; meeting & temporary change could be considered as part of planning for
the project; students should be able to see and formulate the idea that our
rule leads to a simpler algoarithm without changing its principle.)

The game can be embedded in a more complex one, such as moving coun=
terg along marked paths con a beoard, If there is just one linear path, the
problem is idenmtical, but 1f branches are allowed, interesting complexities

arise.



NIM=16

APFENDIX

A Liatiqg_nf the NIMPLAY Procedures

T WIMPLAY :8TICES :PLAYER :0FPOMENT
10 FRINT SENTEKCE "THE NUMBEE OF STICKS IsS"™ AND :STICKS
20 FPRINT SENTENCE :FLAYER AND

30 MAKE
NAME "NEWSTICES"
THING STICKS - GEIMOVE :PLAYER :STICKS

Lo TEST I8 :NEWSTICES @

80 IFTRUE PRINT SENTENCE :PLAYER AND "IS THE WINNEER"
60 IFTRUE STOP

TO0 NWIMPLAY :MEWSTICKS :OFPONENT :FLAYER

END

TO GETMOVE :PLAYER :STICKS
10 TEST IS :PLAYER "COMPUTER"
20 IFTRUE MAKE
HAME "MOVE"
THING EMARTHMOVE
30 IFFALSE FRINT "YOU MAY TAKE 1, 2, OR 3 STICKS"
LD IFFALSE MAKE
HAME MMOVE"
THING REQUEST
50 TEST MEMBER :MOVE "1 2 3"
&0 IFFALSE OUTPUT GETMOVE :PLAYER :STICKS
70 TEST GREATERF :MOVE :STICKS
B0 IFTRUE OUTPUT GETMOVE :PLAYER :STICKS
90 OUTPUT :MOVE
END

TO SMARTMOVE
10 MAKE
FAME "REM"
THING: REMAINDER :STICKES &
TESET I5 :REM @
20 IFTRUE OUTPUT 1
30 IFFALSE OUTPUT :REM
END



NIM=-17

We include a listing of MEMBER, but assume that it was written before

the NIM unit.

TO MEMBER :IT :LIST

10 TEST IS :LIST :EMPTY

20 IFTRUE OUTPUT “FALSE"

30 TEST IS :IT FIRST :LIST

40 TIFTRUE OUTPUT "TRUE"

50 OUTPUT MEMBER :IT BUTFIRST :LIST
EHD



