MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A. I. LABORATORY

Artificial Intelligence
Memo Mo. 255 February 3, 1972

WHY CONNIVING IS BETTER THAN PLANNING

Gerald Jay Sussman

Work reported herein was conducted at the Artificial Intelligence Lab-
oratory, -a Massachusetts Institute of Technology research program sup-
ported in part by the Advanced Research Projects Agency of the Department

of Defense and monitored by the Office of Maval Research under Contract
Number NOOOT14-70-A-0362-0002.

Reproduction of this document, im whole or in part, is permitted for any
purpose of the United States Government.

PAGE £

Acknowledgement :

I must deeply acknowledge the profound influence of Joel Moses on

this paper. Some of the idess here are directly due to him; others were

independently arrived at by him. Most of my ideas were arrived at by
observation of real users of MICRO-FLANNEL as part of my duties in its

paintenance. Drew McDermott, Tom Knight, Terry VWinograd, Greenblatt,
Eastlake, and Gosper provided valuable sounding boards Tor these ideas.

PAGE 3

The Problem with FLANNER

A higher level language derives its great power from the fact
that it tends to impose structure on the problem solving behavior for the
user. Besides providing a library of useful subroutines with a uniform
calling sequence, the author of a higher level languspe imposes his
theory of problem solving on the user. By choosing what primitive data
structures, control structures, and coperators he presents to the user, he
rakes the implementation of some algorithms more difficult than others,
thus discouraging some techniques and encouraging others. Sc, to be
“"eood", & higher level language sust not only simplify the job of
programing, by providing features which package programning structures
comnenly found in the domain for which the lanpuspe was designed, it must

also do its best to discouragpe the use of structures which lead to "bad"
algorithms.

For example, consider the problem of calculating the nth element
in the Fibonacci seguence. In LISP, the most natural algorithm for this

computation is the exponentially exploding, doubly recursive:

PHGE 4

(DEFUN FIB (N)
(coND ((ZERCP N) 1)
((ONEF N) 1)
(T (+ (FIE (- N 1))
(FIE (- W 2))))))

A much better (linear in N rether than 2%%K) but less natural (in LISP)
algorithm is:

(DEFUN FIE (N)
(COKD((ZERQP N) 1)

(T (PROG (KM1 NM2 TEM)
(SETQ NM1 1)
(SETQ M2 1)

LP (COND ((ONEP N) (REIUKN NM1)))

(SETQ TEM (+ KM1 NM2))
(SETQ NM2 NM1)
(SETQ NM1 TEM)
(EETQ N (- N 1))
(GO LF)))))

Thus LISF hes led us down the wrong path. Is LISP a bad language
because recursion is easy and avtomatic? 1 think not. The mechanism of
recursive econtrol structure, though the wrong one to use in this

adpittedly scomewhat pathological ecase, is often both the most natural and

PAGE &

nost efficient control structure, especially in problems of symbolic
manipulation for which LISP was desipned.

With this in mind, let us now consider beckirack control
structure, which occupies a place in FLANNER analogous to that of
recursion in LISF. I contend that autometic backtracking is the wrong
structure for the domain for which FLANNER was intended, that is,
Artificiel Intelligence. I will argue that:

1« Those cases in which autcmatic backtrack control is ratural
and appropriate are glways the worst algorithms for solving a problem.

2. The most commonly used case of autometic backtracking can
almost always be replaced by a purely recursive structure which is not
only more efficient but 2lso clearer, both semantically and
syntactically.

Y« The availability of sutomatic backtracking encourages
superfieial snalysis of problems and poor programming prectice; much

worse, the pervasiveness of automatic backtracking in the PLANNER
lanpuage discoursges deep analysis of problems.

4. Attenpts to fix 3 by the introduction of the artifice of
failure messages are unnatural and cunbersome.

Thus I contend that the problem with FPLANNER is asutomatic
backtrack control structure. I must stress, however, that PLANNER has
introduced meny valuable constructs into our way of thinking, the most

FAGE 6

important of which are pattern—directed data base search and pattern—
directed procedural invocation which tend to promote easy interfacing
between programs, & great boon to our lab. Note that I am also not
contending that good programs carmot be implemented in PLANNER; that
would be absurd. I am only claiming that FLANNER does not encourage such
behavior.

We now consider the points in detail.

1. We will readily admit that the "best"™ programs do no
tacktracking; they kmow where they are going at each step and never need
to undeo a bad decision. Good programs that kmow the structure of the
problem domain (such as Moses” SIN) have no need for an ability to thrash
about, searching for a good approach (as in SAINT). FPure becktrocking
(without failure messapges) is essentially a mechanisu for easily undeing
a bad decision in the hope that a better alternative will be found. Thus
it is only appropriate to algorithms which make such bad decisions either
because of lack of sufficient guiding structure in the problem space or
of sufficient lnowledge of that structure in the program. At this point
you may complain that in most interesting spaces not enough may be known
sbout the space & priori to guide a program absolutely; that a good
program nay have td probe the space with experiments which then yield
information which guides the rest of the program. Indeed, this is true;
but it is Jjust these cases, in which we want to be able to return not

cnly informsation about why a particular method failed to achieve its

PAGE T

stated goal, but information about the structure of the space discovered

slong the way, in which we must resort to the highly unsatisfactory
mechanise of failure messages.

2. (Observation of Pat Winston“s group”s use of MICRC-PLANNER
tends to indicate that one of the more important uses of backiracking, in
programs which are not searching because they know exactly where they are

going, is in information retrieval. These programs maintain rather
massive data bases of information about & visual scene. OSuch programs

often must be able to search out relevant goodies from & mass of

irrelevancies. Tor example:

(GOAL (7X IS EIG))
(GOAL (?X IS5 GREEN))
(GOAL (%X ON $7Y))
(GOAL (?Y IS ELUE))
(stuff 7X 7Y)

This means “"do the stuff* on objects X and Y such that "the big green i
is on the blue Y." DNote that what is poing on here is sequential

filtering of the possible assignments of X and Y by pattern directed
search of the data bese and theorems. We see that backtracking is used
here because any chivice of a particular big X may be bad because that
particular X may not be green. The stack frame of each pgoal statement
thus maintains & list of the hithertc untried possibilities and if a
failure reaches it, it tries the next one and proceeds down. A much

PAGE E

simpler and more straightforward approach would te to use ordinary
recursive and iterative control structure to Tilter the possibilities
directly. Thus, for example, it is easy to write a LISP function FOR-
EACH with which one might write:

(FOR-EACH (%X IS EIG)
(FOR-EACH (%X IS GREEN)
(FOR=EACH (7X ON 7Y)
(FOR-EACH (7Y IS ELUE)
(stuff ?X ?Y)))))

(of course a macro could be provided which expanded, say the following
into the above)

(FILTERS ((%X IS EIG)
(7% IS GREEN)
(2% CN 2Y)
(?Y 1S ELUE)
(stuff X 7Y))

Here, FOR-EACH is just a standard LISP function which, upon entry, looks
up all of the asser<icns and theorems matching the pattern given as its
first argument (with valuves substituted for varisbles which are
assigned). It then assumes the first possibility, assigning variables
appropriately, and evals its second ergument. If the expression ever

PAGE 9

returns, rather than leaving the loop, the list of possibilities is CDRed
and the process repeats. Notice that by appropriately nesting our loops
no backtracking is required in the data retrieval. Here stuff is done on
each X and Y which satisfies the criteria unless stuff decides it has had
enough. This good nesting of loops has decided advantages. Besides
being more efficient than backtracking (a marginel advantage), good
nesting makes the scope of the action clear. There is no chance an
unexpected failure will propegate back into this mess and chug along
wvithout cur explicit programming of & failure catcher. I want to
emphasize that this is not a2 made up problem. I am not sitting on my
tutt contemplating my navel. This problem is observed in real users of
KICRO-PLANNER who complain that they just can®t control their programs
because they don”t kmow what the programs are doing. The problenm is
really quite insidiocus. Usually any choice made in the offending piece

of code eVentpelly fails for the sap€ reason that the first one did; then

the only symptom that the program is running amok is that it takes
forever to tell you it can”t win. Let’s consider the options available

to the user to prevent this problem. You might say that he should
finalize the program from just before the first filter to Jjust after the
code which he doesn“t want reentered upon failure, but this is
unsatisfectory because the code in question protably has side effects
which should be undone upoen failure from outside the intended code, but
we want that failure not te be reversed by this btlock of code. All in
21l I think that it is essentially clearer if any locps or nesting
structure is desired, that it should be made explicit rather than

FAGE 10

impliecit so that the user is forced to think about what he is doing when
he writes it down.

3. As FLANNER is currently orgenized, the easiest program to
write in PLANNER is an exponential depth-first search. Other program
organizations, though certainly possible in FLANNER, are cleerly more
complex. This is because FLANNER is trying to be both genersl and
automatic. ‘The defaults are chosen throushout the system so that
backtracking happens unless you explicitly prevent it from happening. It
is easy to say that people should write their programs to aveid
backtracking except when absolutely necessary, but it is much harder to
sgctually do it when the language gives you every copporturnity to write bad
[rogramns.

4. In order to give the user a modicum of control over the
dangercusly uncontrolled backtrack mechanism, failure nessages were
incorporated. The basic idea of failure messages is that the user should
be able to program in the ability to fail teo a specific point which he
sets up to catch the failure by matching its message. This does not give
the user the ability to perform even the simplest of control functions.
Suppose, for example, we have a goal which invokes a thecrem. This
thecrem, in probing the search space, discovers structure in the space.
It would like to get at the list of theorems which are pending in the
goal which called it (the alternatives which will be tried if the current
theorem fails) and edit it. It would perhaps like to filter it, deleting
some entries and inserting others. 1t might even wish to sort the list
of alternatives according to some general criterion. It has not yet,

FPAGE 17

however, failed, and thus cammot return a failure message. Furthermore,
it cannot get at the list of alternatives pending on its failure. This
is not & minor problem; it comes up in Greenblatt”s chess program very
often. TYor example, an analysis of a nove may discover that we are in
danger of being forked. This changes the whole set of criteria by which

we want to judge alternatives. We must try to mske & move which meets
the discovered threat, i possible.

FAGE 12

CONNIVER - A Different Approach

Yor some time I have been studying FLANNER and the uses to which

it has been put, hoping to learn just what modifications would be
desirable to the user community. As we have seen, these investigations
have led me to decide that the basic structure of PLANNER was wrong,
though its menifest success indicated that it contained many good and
powerful ideas. This observation, that we were faced with & structure of
good ideas glued topether haphazerdly with the poor glue of automatic
backtracking, led to the design of a new language, CONNIVER, which
incorporates those good ideas in a cleaner structure. CONNIVER is
designed to satisfy the following desiderata: It must be automatic
enouch to be easy to use without being sc automatic as to relieve the
user of the responsibility for the behavior of his program. Thus, it
rust provide the user with the equipment to use powerful tools like
backtracking and multiprocessing, relieving him of the low level
bookkeeping needed to ippl&ment such mechanisms, without automating the
invocation of these massive mechanisms. CONNIVEE must welk this
tightrope while mmintaining simplicity by keeping the number and
complexity of the primitives small. This path has been abandoned by
FLANNER which started out as a simple and elegant (but not necessarily
right) theory of problem solving, but which recently, in its effort to
btecomne an all inclusive panacea, gobbled up every idea ever proposed for
the implementation of algorithms, repardless of considerations of either
merit of the ides or consistency and parsimony of the theory. The last

PAGE 13

major consideration is that there must be noe invisible control structure,
such as the implicit loops with undefined scopes that were objected to in
the last section. In CORKIVER the user is forced, often to his
inconvenience, to explicitly cutline his control structure, keeping him
honest and his program clear. With this in mind I now proceed with a
description of CONNIVER.

ke first consider that part of CONNIVER which introduces no

contrel structure more exotic than recursion. This is done mainly to
show just how much of the "normal" programming people do in FLANNER via
backtracking (the "natural" method in FLANNER) can be done more clearly,

eagily, and efficiently via the more conventlional structures of recursion
and iteration. We assume that CONNIVER has svailable to it a PLANNER-
esque pattern matcher and is embedded, as is PLANNER, in a LISP-like
language (such as MUDDLE). This section will deal primarily with the
information retrieval aspect of the kind of programming people do in
FLANKER, including the construction and maintenance of a pattern—directed

data bese and the use of pattern-invcoked procedures. This, I have
chserved, comprises the largest proportion of legitimate MICRO-FLANNER

programming.

In order to avoid confusion with FLANNER, sinilar constructs in
CONNIVER will be given different names from those used in PLANNER. The

ocbjects in the data base which correspord to assertions in PLANNER will
be called items, pattern—invoked functions, which correspond to theorems,

PAGE 14

will be called methods and also appear in the data base. In CONNIVER the
data base is a tree structure of contexts and all additions, deletions,
and searches are done relative to some context, just as variable bindings
are searched and set relative to an environment in LISP. As we shall see
later, variable bindings and flow of control in CONNIVER are alsc context
dependent. For now, however, we need only lmow that the context is
tushed (bound) at some functional (or methoedological — ha!) invocations
and popped (unbound) at some returns. As in LISF, every time we do a
bind we obtain an environment which contains the previous environment, so
in CCNNIVER, each time we rebind the context, we obtain a new context
which contains the previous context as a subset. It is important that
the direction of containment be understood as it is critical and contrary
to the direction of lexical scoping.

The data base construction primitives are as follows: (Syntactic

variables are lower case, optional arpuments are delimited by dashes,
segment syntactic variables are delinited by stars, and procedural
invocations by angle brackets.)

1) <AID item skeleton or method —context->

2) <DELETE item skeleton or method —context—>

These add (or delete) the item or method indicated to the context
indicated. If no context is given, the current one is assumed. Objects

PAGE 15

in a context are accessible to all containing contexts. If the object to
be added (or deleted) is already asccessible (or inaccessible) in the
context given AID (DELETE) has neo effect. Often, rather than actually
deleting an cbject from & subcontext of a given context one really would
rather hide it from &ll contexts containing the given context so that it
will reappear when the given context is popped. Thus we have:

%) <HIDE item skeleton or method —context—>

4) <REVEAL item skeleton or method —context—>

FEVEAL undces & HIDE just as a DELETE undoes an ADD. Corresponding to
the antecedent and erasing theorems in FLANNER, CONNIVER has context
nonitoring methods which meniter all contexts which contain them (except

contexts from which they are hidden). The various monitor methods are:

£) <IF-ADDED declaration pattern *body*>

6) <IF-LELETED declaration pattern *body*>

If an item is added (or deleted) to & context the context is searched for
monitors whose pattern metches the item affected and all such monitors
are run in the order they are found. These monitors are not to be
confused with the daemons which watch subcontexts from supercontexts and

are described in the section on fancy control structures.

PAGE 16

Now that we have our data base built up, how do we use it?
CONNIVER has one basic primitive for accessing the data lbase:

7) <FETCH pattern —context—>

YETCE searches the context indicated (if none is given the current one is
sssumed) for items and IF=NEEDED methods (analogous to consequent
theorens) matching the pattern given. It returns a list of
possibilities, the format of which will be discussed, but which logieally
consists of the items found followed by the methods applicable in the
context. The user may, for example, examine the list, sort it according
to some criteria, or edit it as he chooses. The mein way he will use

this list, however, is as follows:

£) <IRY-NEXT list of possibilities no more return filter>

Executing this primitive causes the following: If there are any
possibilities, the first one is "tried" and removed from the list. If
there are none left, the expression passed in no more is evaluated. Now
what do 1 mean by tried? Now I must describe the format of the list.
Suppose the current context has items:

(SUSSMAN 1S-A CROCK), and (MOSES I5-A LOSER)

PAGE 17

and we execute: <FEICH (7X is=A 7Y)>

It will return as a value the list: (((X SUSSMAN) (¥ CROCK)) ((X MOSES)
(Y IOSER)))e

That is, each possibility is a possible set of assignments for the
variables in the pattern. Trying the first of these means setting X to
SUSSMAN and Y to CROCK. These are item possibilities. Suppose one has
exhausted the item possibilities and that the next possibility is a
nethodclogical possibility. The indicated method is executed. The value
it returns to the TRY-NEXT is then interpreted as a set of item
rossibilities with which it is to be replaced. These, after being
examined by the return filter, are then appended to the beginning of the

list and the first cone is tried. If none are returned, the first one is,
of course, the next method. A method may thus return as a suggested

possibility another method, not necessarily applicable in this context,

thus providing a powerful mechanism for recommendations. Let us now look
at an IF-NEEDED method:

9) <IF-NEEDED declaration pattern *body*>

As such a method runs, every so often it decides that the current
assignments to the variables in the pattern are valusble and should be

noted, to do this we execute:

PAGE 1E

10) <KOTE -variable->

If no variable is specified the note is mede by adding the current
substitution instance of the method attern to & list stored in the value
of the variable FROPOSAIS, which is automatically bound on entering an
IF-NEFDEL. If a variable is specified it is the receptor of the noted
proposal. The proposals are returned by:

11) <ADIEU =list of proposals->

ADIEU returns the list of proposals. If no such list is given, it

returns from the method with the valuve of PROPOSALS. Similarly, if a
method runs of f its end, it returns the value of PROPOSALS,

Fy now you are probably complaining "So what, it looks like
FLANNER to me, with the names changed and the data base slightly
hairier." Note, however, that I have made no mention of any fancy exctic
control structure; there is not yet any becktracking or failure (the same
thing) or multiprocessing. These structures have their place in
CONNIVER, as we shall see, but almost all of the programs currently
written in MICRO-FLANNER can be written in the given subset of CONNIVER
with only & net increase in clarity, efficiency, and without
backtracking. I will illustrate this scon with examples, but first let
e sumnarize that this recursive subset of CONNIVER is just the FLANNER
data base searcher, pattern matcher, and pattern directed procedure

FAGE 19

invoker lifted from the encumbrance of all-pervasive backtracking and
placed on its own to be used separately.

We shall now do the infamous (HUMAN TURIKG) example — often used
to demonstrate backtracking. For convenience, before we start I wish to
define a macro which packages a common lcop. I want to make it clear
that I do not condone the general use of FOR-EACH; it is just CONNIVER ‘=
way of simulating FLANNEE s GOAL for illustration. It will not be
rrovided as a primitive of the systen, as it is too easy to use
carelessly for searching without direction. In the following let <FOR-
EACH pattern *body*> expamd into:

<REPEAT ((POSSIEILITIES <FEICH mttern>))
<TRY=-NEXT. FOSSIEILITIES <RETURK ()>>
body>

We are using MUDLLE syntex. MNote that when we rum out of possibilities

we just have the loop terminate by recursive return; there is no FAIL.
We now compare CONKIVER with FLANNER. We first ask for & fallible

object:

<PROG (X) ~ <PROG (X)
<FOR-EACH (FALLIELE %X) <GOAL (FALLIELE 7X)>
<RETURN .X>3>> <RETURN .X>>

PAGE 20

So far, there is no difference; now we need the method (theorem) "humans

are fallible".

<IP-NEEDED (X) (FALLIELE 7X) <CONSEQUENT (X) (FALLIBLE %¥)
<FOR-EACH (HUMAN ?X) <NOTE>>> <GOAL (HUMAN 2X)>>

Again, no real difference. 1t comes, however, when we "need"
lacktracking to further restrict the answer to CGreeks:

<PROG (X) <FROG (X)
<FOR-EACH (FALLIELE ¥X) <GOAL (FALLIELE %X)>
<FOR-EACH (GREEK %X) <GOAL (GREEK ?X)>
<RETURN .X>>>> <RETURN .X>>

(ur first observation should be that we didn’t really need backtracking
since CONNIVER came up with the answer without beckiracking or other
control structure kludgery! I furthermore wish to argue that the
CONKIVER answer is clearer than the FLANNER answer. My reascning is that
in the FLANNER case one must think about the implieit loop (find a
fallible X, is he Greek? if not get the next one, if so0 return) in
order to really understand the program. That loop, however, is not
rroperly nested; its scope is not clear since you can fall back into it
from the return below it. This form of badly nested loop, which is the
hallmark of FLANNER ‘s form of backtracking, is a very powerful but
dangerous feature. Any such feature which disrupts the local control

PAGE 21

structure of a program (such as jumping into the scope of a IO loop)
should be aveoided like the plague, because of the resulting lack of
clarity and modularity of code, unless its absence poses a serious
hardship. As will be discussed in the next section, CONNIVER supplies,
for the cases where it is needed, a very different form of becktracking
whoze presence is much less disruptive, and which easily replaces PLANNER
type backtracking in those cases where it is justified.

PAGE 22

HAIRY CONTROL STHUCTURES
the Truth about CONNIVER

Ey now you should be raising the sericus question "What was that
magic in the last section? How is Sussman cheating? Where hes he paid
for his heresy?" Umne possible objection to what I did is that I consed
up & glant list of possibilities (or proposals) which I had to carry
eround with me. That objection, however, is invelid. If you have a
rrogram which has huge mumbers of possibilities at each turn, your
chances of getting a FLANNER program or = CONNIVER progranm to terminate
before the sun blows up are equally infinitesmal. In either case, you
had better come up with 2 better thecry of the problem which narrows the

search space to a more manageable proporticn. Furthermore, what CONNIVER
conses up as a list, FLANNER pushes on the stack since all untried

rossibilities must be eventually tackled. Then what is backiracking
really about? Is there a case where backtracking is really relevant?
1he answer is yes. Consider the fact that whenever TRY-NEXT invckes a
nethod, the poor method must come up with & proposal and then say “does
this satisfy yout" expecting to work very hard to get the next one if
the answer is no. Thus if there are only a few propesals but coming up
with one is much harder than trying it cut, we have & resl need for
lacktracking. CONMIVER does, in fact, give you this feature if you
really need it, but you must carefully think about it before you use it.
The great disadvantage ol backtracking is that the possibilities come

cnly one at a time, thus we have no list to sort and filter and thus we

PAGE 23

find it harder to bring knowledge of the problem space to bear on the
solution. COBNIVER provides the following backtracking primitive:

12) <AU-REVUIR -variable->

AU=REVOIR, like ADIEU, causes a method to return to the TRY-NEXT which
invoked it with a list of proposals, either the value of the variable
specified, or the value of FROPOSALS if none is specified. ‘7he
difference is that AU-REVOIR specifies that if the proposals returned are
exhausted and you still need more, the method which called AU=REVQIR will
be resumed in the context it returned from as if AU-REVOIR had returned
to its The value of AU-EEVOIR is & failure messspe which can be set by
the user as the valve of an optional fourth argument to '].'Ef—HEElIIT. The
user can then try to figure ocut how to use the message in the method
failed back to. The exanple method of the last section can be written
using backtiracking as follows; no modifications are necessary to the
caller:

<IFP-NEEDED (X) (FALLIELE %X)
<FOR-EACH (HUMAN 7X)

<NOTE>
. <AU-REVOIR>>>

lote that backtracking in CONNIVER hardly interferes with the proper
nesting of the (propose & goodie — try it out) loop structure of either

PAGE 24

the method or of the caller (unmcdified). In contrast with PLANNERs
chronological backiracking, the recursive backtracking of COBKIVER dces

net disrupt a progranm’s recursive structure. Not only does this lead to
benefits of clarity, legibility, and esse of debugging, (ms well as ease
of implementation), it also means that failure messsages are mich more
useable in CONNIVER than in PLANNER because the guy who is rejecting a
goodie sent to him complains directly to the guy who sent it, not one of
his henchmen who hangs later down the backirack stack.

You must realize, of course, that what is meant by backtracking
in CONNIVER is not the same is what is meant by backtracking in PLANKER.
liote that in backtracking to an AU=-REVOIR no decision has been unmade.

In general, CONNIVER backtracking does not mean undoing something which
has been done. No items are ever removed from the data base except by an
explicit call to DELETE or by popping the context in which the item
resided by returning from it in the standard recursive way. The
distinction becomes clearer if we consider the wey cne would handle =
choice point in each language. In FLANNER you choose one of the possible
choices and proceed, dedl;:nirug the consequences of the choice made until
either the program termirates, indicating that the choice was a correct
one, or a failure occurs, undoing the deduced consequences until the
choice point is reathed, where a different decision is made. In
CONNIVER, on the other hand, cheices are made by calling one of several
possible subroutines. A new context is then set up in which the

consequences of the choice are stored. In any case, success or failure

PACE 25

of the choice is indicated by the return of the function call which made
the choice, unbinding the context of the choice. It is then up to the

calling program to decide how to proceed. This decision may be made on
the basis of exapining the value returned by the subroutine and whatever

changes it made to the more global date base and variable bindings. In
this scheme & choice does not Jjust succeed or fail. It very naturally

has the power to probe the structure of the problem domain, adding

wvhatever it learns to the contexts of its calling procedures, thus

modifying their behavior.

In CONWIVER, therefore, what 1 called backtracking is really just
a method of saving the current context (of the AU-REVOIE as the last

proposal returned) so thet it is not lost when popped (it is saved in
FOSSIEILITIES) and can be re—entered and continued where it left off (by

TRY-NEXT, when it hits this new third kind of possibility, & context).
This is really a very general form of mulitprocessing control. Yor such
a control structure to be possible, the wnderlying applicative language
must have (logically) a list structured control stack.

Besides giving us this different form of backtracking, CONNIVER
also provides us with daemons. But what is a daemon? Dmemon is one of
those nice words that everybody "knows" the meaning of, until they try to
formalize it. Perhaps first an example is in order. Many times, when
attacking & problem in mathematics the first approach taken fails because

cf a specific unsolved subproblem. #Ancther approach is then tried which,

PACE 26

in itself, does not sclve the problem, but which discovers information
which untlocks the first approach (an impossible situation if it really
failed in the PLANNEE sense) which then proceeds to solve the problemn.
Ira Goldstein has given me a specific instance of this in geometry. In
his case, the first approach to a proof, (and also the eventual winner)
vhich was chosen first because of its extreme plausibility, becomes hung
up on a subproblem that depends upon a very implausible construction.

The second approach then finds the construction required extremely
plausible and does it. The consequences of this construction should then

wake up the first approach. CONNIVER provides the felloving primitives
to implement these ideas:

13) <HANG release condition context>

If HANG is executed, the program ceases execution in the current context.
Control is passed to the context given. If the relesse condition is ever

satisfied by any computation, the running context is stopped and control
reverts to the HANG which then returns as its value the interrupted

context. Some possible release conditions are:

a) <AID pattern —context->

b) <DELETE pattern —context->

c) <EXTERNAL-CONDITION type> where type might be CLOCK-TICK,
1TY, etc.

d) <INTERNAI~-CONDITION type> where type might be: FLOATING-

PAGE 27

OVERFLOW, ete.
e€) MNEVER - means only if explicitly resumed.

The current context can always be gotten as the value of:

14) <CONTEXT>

