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Abstract

This paper Is a critigue of a computer programming language, Carl
Hewitt's PLANNER, a formalism desigzgned especially to cope with the
problems that Artificial Intelligence encounters. |t is our contention
that the backtrack control structure that is the hackbone of Planner is
more of a hindrance In the solution of problems thanm a help. In
particular, automatic backtracking encourages inefficient algorithms,
conceals what is happening from the user, and misleads him with
primitives having powerful names whose power is only superficial. An
alternative, a programming language called CONMIVER which avoids these
problems, i1s presented from the point of view of this eritique.
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The Problem with PLANMER

A higher level Jlanguage derives its great power from the fact
that it tends to impose structure on the problem salving behavior of the
user, Oesides providing a library of useful subroutines with a uniform
calllng sequence, the author of a higher level language imposes his
theory of problem solving on the user. Oy choosing what primitive data
structures, control structures, and cperators he presents, he makes the
implementation of some algorithms more difficult thanm others, thus
discouraging some technigues and eancouraging others. So, to be "gpood", a
higher level languapge must not only simpliTy the job of programming, by
providing features which package uragramming structures commonly found in
cthe domain for which the language was desizned, it must also do Tts best

to discourage the use of structures which lead to "bad" algzorithms.

PLANNER|L1] is the language designed by Carl Hewitt of the MIT
Artificial Intelligence Laboratory. (A subset of PLANNER was rather
haphazardly implemented by G.J. Sussman, T. Hlnngrad and E. Charniak. We
call this operational system MICRO=-PLAHNNER|Z].)} PLANNER !ncnrngrates
three basic ideas; automatic backtrack control structure, pattern-
directed data=-base search, and pattern-directed invocation of procedures.
Basically, backtracking is a way of making tentative decisions which can
be taken back If they don't pan out. The pattern-directed data base
search allows the user to ask for the data items called assertions which

match a given pattern, and is intimately linked via the GOAL function to
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pattern=-directed proceduré invocation, which gives the user the ability
to say "Find and run a program whose declared purpose matches this
pattern," This type of program, called a theorem, is expected to
instantiate the pattern {(sugceed), and thus simulate an assertion. In
fact, it simulates a whole class of them, since failures back into any
such theorem cause It to make different choices and succeed with

diffearent instanceas,

How these mechaniswms are related can best be [Tlustrated by an
example. The statement (GUJAL (?A IN ?B)) is expected to assizgn the
guestion-marked variables that do not have values already, or fail if it

can't, causing a backup to the last decislion point In the program,

GUAL instantiates its pattern by matching Tt against successive
assertions, 1ike (BLJCKZ2 IH BOX1). |If it finds none, or enough fallures
propagate back to the GUAL to use up those it has found, It call theorems
with matching patterns, such as:

(CONSEQUERT (X ¥ Z) (?2X IN ?Y)

(GOAL (7?4 1IN 74))

(GOAL (?Z IN 7Y)) }
which expresses one facet of the notion that IN s transitive. A PLANNER
program executing (GOAL (BLOCK2 IN ?B)) first checks to see If 1t "knows"
the answer, and if so sets B to it. If pot, it binds ¥ to BLOCKZ, links
Y and B8, enters the theorem, and looks for a Z containing BLOCK2 and

contained in some ¥. I1ts net effect s to assign a value to B.
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If a failure propagates back Iinto the theorem, it finds another Y
containing £, and hence generates anather B; enough failures to use up
those Y's drive it to find another Z;and a few more will make It and the
original GOAL fail themselves, Dacktrack control structﬁra iz the heart

af this apparatus.

Automatic backtracking Is Implemented as follows: A PLAHNMER
program, as It runs, Zrows a ghronological stack of fallpoints each of
which corresponds to either a side effect or a decision point (& place
where a cholce s made between several alternative possibilities). A
failpoint carries with it all information necessary Lo reconstruct the
state of the running process at the time the failpoint was made, [t may
logically be considered to be a snapshot of that process (though it
really saves much less than a copy). At some time, the process may
decide te fall, perhaps because some decision made at a previous decision
poing led the program into a blocked state from which there are po viable
alternatives. The fallure then pops off the latest failpoint on the
chronological stack. |If this failpoint was a side effect, then it Is
undone, and the process continues failing, |f this failpoint was a
decision point, then if there are any remaining alternatives, execution
proceeds from that failpoint with the next cholce taken, or If there are
none the failure continues to propagate., In these terms, GOAL finds
exactly one assertion or theorem each time it is reached, but sets a

failpolint to regain contrel If a failure should occur later.



Jussman 7

For some time we have been studving PLANMNER and the uses to which
it has been put, hoping to learn just what modifications would be
desirable to the user community. These Investigations have led us to
decide that this basic control structure of PLANNER 1s wrong, though Tts
successes indicate that it contains many powerful (and seductive) ldeas,
This investigation has led to the design and implementation of & new, and
hopefully cleaner language, CONNIVER|3|, built partially on the good

ideas found in PLANNER,

Here 5 our thesis: automatie backtracking, which occupies a
place in PLAWNHEA analogous to to that of recursion in LISP, s the wrong
sftructure for the domain for which PLANNER was intended, that s,

Artificial Intelligence. We argue that:

1. Programs which use automatic backtracking are often the worsg
dlgorithms for solving a problem.

2. The most common use of backtracking can almost alwavs be
replaced by a purely recursive structure which is not only more gFf1:ient
but also clearer, both semantically and syntactically,

3. Superficial analysis of problems and poor programming
practice are encouraged by the ubiguity of automatic backtrackine and by
the illusion of power that a function 1lke GDAL =zives the user merely by
brute force use of fnvisible failure=driven loops.

h. The attempt to fix these defects by the Introduction of
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"Fajlure messages" (to be "explained) is unnatural and ineffective.

Thus we contend that the problem with PLANNER is automatic
backtrack control structure. We must stress, however, that PLAHNNER has
introduced many valuable constructs into our way of thinﬁinﬁ; the most
important of which is pattern-directed search of a hierarchical data

base.

Hote also that we are not contending that good programs cannot be
implemented in PLANHEH; that would be absurd. We are only claiming that
PLANHER xets in the user's way when he tries to embody certain
straightforward concepts in his programs, .Hﬁr are we making the weak
point that PLANNER occasionally lures foollsh programmers into
inefficlency. One could try to make this eriticism of LISP|& by
pointing out, for example, how it tempts one to write an exponentially
exploding, doubly recursive algorithm for computing the nth element in

the Fibonacel seqguenceas

(UEFUN FIG (H)

(COND ((= O N} 1)
((= 1 N) 1)
(T (+ (FID (= W 13}
(FIB (- H 2}))) 1)

The language has led us astray here, since it discourages writing the
iterative algorithm, but this is no condemnation of LISP; the mechanism
of recursive contral structure, although the wrone one to use in this

pathological case, is often both the most natural and the most efficient
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control structure for the problems of symbolic manipulation that are
typical of LISP applications, PLAHNEA; however, almost forces

inefficiency in exactly the applications it was designed for.
He now consider our points in detall.

1. A1l will readlly admit that a perfectly clever program would
do no backtracking; 1t would know where it was going at each step and
never need to undo a bad decision. Good programs that know the structure
of the problem domain (such as Hoses' S5IN|5]) have no need for an ability
to thrash about, searching for a good approach (as in SAINTIG]). Pure
backtracking {(without failure messages) iE_ essentially a mechanism for
easily undoing a bad decision In the hope that a better alternative will
be found. Thus it is most appropriate to algorithms which make such bad
decisions aither because of lack of sufficient guiding structure in the
problem space or of sufficlent knowledge of that structure in the

PrOEram,

It is, of course, impossible In practice or in uan:rulE_tu
achiove perfect or even adeguate knowledge In most Al application
programs. Inevitably, prograns will recognize that they have gone
serfously agley, and will have to undo part of what they have done.
Unfortunately, pure backtracking undoes evervthing since the Tast
decision, without enguiring as to whether if was the one at fault. Such

4 program will eventually stumble upon the risht path, but 1ts
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organization makes it hard for 1t to learn something from an attempt that
failed and erased all its side aeffects. The only attempt at correcting
this Intrinsic defect of fallure in the PLANHER sense [s the failure

message device, to be discussed under point four.

2. Observation of the MIT vision group's|7| use of MICRO-PLANNER
tends to indicate that one of the more important uses of backtracking, in
programs which are not searching because they know exactly where they are
gaing, 15 in information retrieval, Although important, it is curiously
guite trivial for such a powerful mechanism as the GJOAL primitive.

Vision programs maintain large data bases of information about a visual
scene, and often must be able to search out relevant data ltems from a

mass of irrelevancies. For example:

(GOAL (?X 15 BIG))
(GUAL (74 IS5 GHREEN))
(GOAL (Fa OH 2Y))
(GUAL (?Y 15 BLUE))

(stuff ?X 7Y)
means "do the stuff" on the first objects ¥ and ¥ such that "the big
green £ s on the bBlue ¥," If s5tuff doesn't 1ike the first ones found,
it can easily fall to get more, if there are any. Hote that what is
goling on here is sequentlial filtering of the possible assignments of X
and ¥ by pattern-directed search of the data base and theorems, Ve see
that backtracking must be used here because any particular bis & chosen
an 1ineg one may not be green, or may not be on something blue. The stack

frame of each goal statement thus maintains a 1ist of the hitherto
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untried possibilities and 1f a fallure reaches lt, it tries the next one
and proceeds,

A much more straightforward and revealing approach would be to
use ordinary recursive and iterative control structure to filter the
possibilities directly., Thus, for example, a LISP function FOR-ALL might
be written, such that:

(FOR=ALL (77X 15 BIG)
(FOR=ALL (77X 15 GREEN)
(FOR=-ALL {7X ON 7?Y)
(FOR=-ALL (7Y 15 BLUE)
LstufF?X ?¥)3)))

would have the desired effect. Here, FOR=ALL is just a standard LISP
Function which, upon entry, looks up all af the assertions and theorems
matching the pattern given as fts flrst argument (with values substituted
for variables which are already assigned). It then assumes the first
possibility, assigning variables appropriately, and evaluates its second
argument. If the evaluation ever returns, rather than exiting the loop,
the first element is removed from the list of possibilities and the
process repedats. Hotice that by appropriately nqstrnﬂ our loops no
backtracking is regulred in the data retrieval. Here stuff s done on
each X and ¥ which satisfles the criteria until stuff decides it has had
encugh, and leaves the nest of FOR=-ALL's (with a RETURN, GO, or something
similar).

This good nesting of loops has decided advantares. Besides belng
more @fficient than backtracking {(a marginal advantage), good nesting

makes the scope of the action clear, There 15 no chance an unexpected
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failure will propagate back Into this @de and compute without our
explicit programming of this activity.

WWe want to emphasize that this Insidious problem is not made up.
It is observed by real users of MICR0-PLANNER who complain that they just
can't control their programs because what they do dﬂpandé on events
before and after they are called., Usually any choice made in a pliece of
code doing such filtering eventually fails for the same reason that the
first choice did, but backtracking tends to treat all decision polnts as
gqually Ilmportant and tries all possibilities:; the only subsequent
symptom that the program is running amak is that it takes forever to tell
you it failed. The consequent theorem given suffers from exactly this
problem; if called by, e.g., (GOAL (BLOCKZ IH BOX1)), its only possible
actions are either to find a Z between BLOCKI and BOX1l, or to fail,
Althougih which £ is found cannot possibly affect subsequent events, a
failure back to the theorem will cause it to look up another Z, succeed,

and allow its caller to fail again in exactly the same way!

One wavy out of this problem is to FIHALI;E the program from just
before the first filter to just after the code which the user doesn't
want reencered upon Fallure, thus freezing all its side effects once and
for all. This is unsatisfactory because often some of them should be

undone upon some later failure,

In some cases this is a problem, In some cases not; what is

dlways a problem s that the structure of a PLANNER program does not
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reveal what the programmer's intentions are. He must always keep in mind
that in effect there is only one gigantic nest of failure=driven loops in
any PLAHNER program, and every subprogram that might fail is only a tiny
piece of It, We think that It is essentially clearer for any looping or
nesting structure to be made explicit.

3. As PLANNER 1s currently organized, it provides a very compact
notation In which to encode exhaustive searches for solutions to problems
the programmer understands poorly. Other program organizations, though
cartdinly possible, are clearly more complex and less transparentiy
described. To overcome this difficulty, a multiprocessing capability
has bween patched into PLANNER in later ver;iuns, but several backtracking
processes do not seem any better than one. HMultiprocessing allows
"breadth=-wise search™ of a sort, but it is only an abortive step to
freedom by the poor programmer, Each of his processes is still crippled
by the exhaustive searches built into system primitives; he must stll]
spend time calculating the possible directions from and circumstances
under which control could enter each line of his code. With all the
machinery hung on his programs to circurmvent the control structure, they
lovk much less understandable; most programmers just can't be troubled.
There is really no reason why they should be. e have already made the
point, which we can carry much further, that a more revealing control
structure would allow programmers to express a broader range of concepts

mare naturally,
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There is a deeper issue here than what is needed in PLANMNER to
make it more powerful; we ask instead what it is about PLANNER that makes
it 50 unusable., Its defaults are chosen throughout so that backtracking
must be tediously reckoned with in every case unless the user explicitly
prevents it. It is easy to say (as some PLANNER aduncuté5 do} that
people should write their programs to avold the temptation to backtrack
except when necessary, but It 1s much harder actually to do it when the

language gives them every opportunity to fall,

4. In order to give the user a modicum of control over the
backtrack mechanism, failure messages were incorporated into PLANMER
early in its history. The intent was to give a program the ability to
fail with any message to a specific polnt which it has set up beforehand
to catch the fFailure by matching that message. This does not give the
user the ability to perform even the simplest of control functions.
Suppose, for example, we have a goal whieh Invokes a theorem. This
theorem, in probing the search space, discovers something relevant to Its
further exploration. It would like to edit the list of theorems which
are pending in the goal which called it (the alternatives which will be
tried If the current theorem fails), deleting some entries and inserting
others. It might even wish to sort the list of alternatives according to
some general criterion. |t has not yet, however, failed, and thus cannot
return a failure message. Furthermore, it cannot get at the list of

dlternatives pending on its fallure.
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This is not a fine point of control structure theory; it would be
axtremely relevant to a PLANNER encoding of a chess program like that of
Greenblattlé|. For example, this program, In an analysis of a move, may
discover that It Is in danger of being forked. This discovery must
change the whole set of criteria by which It judges further alternatives.
It must try to make a move which meets the discovered threat, if

possible.

We have been concentrating here on the sloppy interface between
fFallure messages and GJIAL, but there is a fundamental difficulty with
them that would be encountered even if the user abandoned GJAL
altogether, That s, they can't carry enough information. There is no
way to fall back with the message: "Process P ran Into difficulty T,"
because process P and its context have been destroved by the failure, 3o
all the relevant information must be contained in the T part of the
message: "0ifficuley T." It is elear that including all and only the
relevant information is as impossible a job for a subroutine as
anticipating the form of every possible failure Is for its caller. In
fact, the THUESSAGE primitive of HMICRO=-PLANMER has never been
successfully used; it seems to be one of those superficially good ideas

that prove to be unworkable.

It seems that a failing program has no choice but Lo make too
much information frozen in too global a context, orF to flush evervthing

it has discovered and bet all its chips on one message it hopes somebody,
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somewhere, can figure out, These alternatives do not really alter the
Blind nature of a failure=driven process, or of several of them, This is

probably why they go unused,

At this polnt It Is desirable to abstract our entire discussion
away from the particular primitives of PLANNER, and enquire what is
g¢ained and what is lost by the use of automatic backtracking. What Is
galned Is clear, and very appealing. In the first place, It provides a
mechanism for generating alternatives, one at a time, to be used In an
effort to accomplish some task. GSecondly, It provides a mechanism for

eradicating the consequences of accepting an alternative later found to

e unsuitable,

e have criticized the consequences of this scheme In several
ways already, llow we shall argue that its basic defect Is that it forces
the dangerous assumption that the alternatives at each declsion polnt are
independent; that (as within all PLAHNNER primitives) the trial of one of
them may produce little or no Information which can Influence the
selection of further alternatives, or the way in which they are run.

This Is enforced by the Eradi;atiun.uf the cunsequences of a hypothesis

when that hypothesis 15 discarded,

For example, a robot wants to pick up an abject, and he has
several ways of doing so. In trying the first method, with his right

hand, he discovers that the object Is hot by seriously burning himself.
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It is clear that though this method failed he should not go back and try
his left hand. HNor should it be necessary for him to have foreseen the
difflculty and thus set up a message catcher for burnt hand failure (or
For lightning striking); such caution, applied to all possible
contingencies, is Impossible. The reasonably designed robot will
drastically modify his behavior at this point, say by retting a pair of

tongs, after screaming.

Hotice also that any fallure-driven generator (a function that
returns a value but sets a failpoint) is constrained to generate
alternatives one at a time, |If the alternatives are interdependent,
surely thae best one should be chosen whi]q all or most are In view. In
fact, the only reason for generabing objects rather than just making a
list of them is that sometimes the number of possibilities {(as, say, the
prime numbers) may be Infinite, or the cost of generation of the next
possibility is much greater or grows much faster than the cost of testing
its usefulness. In many cases, however, an explicit 1ist of all or some
of the alternatives is what is desired. Of course, even in PLANNER, such
a list must exist, snuggled inside some GIAL's fallpoints, bhut there [z

no natural way to gpet at itC.

The PLANNER Implementation of pattern=-directed procedure
invocation reinforces these problems of boacktracking., The anonymity of
the procedures that may be fetched by pattern=directed call makes it even

gasier to pretend to have many "independent”™ methods of solving the same
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problem, hoping that one of the methods, to be found by failure, will
come up with an acceptable solution. Not only does this organization
force each method to have to be able to run In complete lgnorance of what
has been tried so far, or even that other methods exist, but in many
cases the "independent” methods will come up with the same unacceptable
answer more than once, causing the system to thrash ridiculously, The
solution, of course, is to abandon the myth that there could be several
independent methods of attacking any interesting problem, and concentrate

on techniques for making methods interact reasonably,

This is not to say that the pattern=directed function call does
not have 1ts place in the arsenal of problem solving. It is valuable
whenever, either due to the Infiniteness of the set or the economics of
storage vs. computation, a procedure can be used to represent a set of

assertcions,

There are several such reasonably zood ideas scattered throughout
PLANWER. They include the notions of "generator" and "possibilitlies
list." DQur they have been pushed far beneath the surface, so that that

the user may think in terms of "goals." Uhile the concept of goal=-
directedness is certainly as well established as any in our fileld, it
seems clear that naming a primitive function "GOAL" 15 not enough to
capture the essence of the idea. In the next section, we shall

concentrate on the decent ldeas In PLANHER, and discard those that have

gotten so0 many MICRJU-PLAHNER users in trouble, starting with automatic
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backtracking.
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Building COHNIVER

We have shown In the first section that backtracking Is a device
of questionaple usefulness at the very tasks for which it was designed,
It encourages a linkage of the mechanism for generating alternatives with
the mechanism that restores the environment after the investigation of
pach one. Each time, the generation of the next must proceed on the
basis of very little information besides the fact that the last failed.
e have, In the end, a control structure that almost forces the user to

regard all his problem=solving methods as independent.

It seems to be the linkage of these two mechanisms In the GOAL
statement that is at fault. As an alternative, imagine that we are not
allowed to use fallure to clean things up, and that everything each goal-
directed subroutine does stavs done. Then, If the speculation it has
indulged in is not to have effects in the environment of Its caller (the
program considering the alternatives), it must have a Jocal environment
of its own to make changes to. These changes may make [ts model of the
problem conflict with its superior's model, or may simply be hypothetical
additions to lt. The Important point is that a simple return to the

caller will be sufficient to make the changes invisible,

This concept can be made clear by analogy with the familiar
notions of "contrel eavironment" {(a stack, for example), and "access

anvironment” (where variables are bound; the term [Is Dobrow and
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Wegbreit's]9]): in EDHHIUEE, we generalize the lacter to "data base
environment," or gontext, Just as LISP 1.5 supports a tree of access
environments (Massociation 1ists"), so CONNIVER supports a tree of
contexts, in which each daughter-context represents a data base

incrementally different from her parent.

This tree, it will be made clear, must be grown and maintained in
conjunction with a control environment of equal complexity. But the
control structure exists only to exploit the data base, 50 we return to

it later,

Conniver contexts contain jtems, which are simple list structures
like PLAHHEA"s assertions (without the theorem-proving connotations that
surround the latter term}), An jtem such as (SQUARERSE PAWH3) may be added
to the current context with

(AJD "(SOQUAREGE PAWN3))
and taken out with

(REMOVE '(SQUARELS PAWN3)).

The argurments to ADD and REMOVE are gskeletons, 11st structures that
define items after substitution of the values of their variables,
Variables are indicated by ",", Thus, if X = PAwN2, (ADD '"(SQUARCLY ,X))

adds the Ttem (SQUAMCLT PAMNZ) to the current context.

How, if the presence or absence of an item 15 to be reflected

only in a local data base, that is, be "hypothetical," the data
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environment must be "pushed down" before doing ADD's and REMOVE's of this
sort. Since, in CONNIVER, a context is a data type, and the current
context is assigned to the variable CONTEXT, all we need to write js:

(PROG "AUX"™ ((CONTEXT (PUSH=CUNTEXT)))
(AJD "{SOUARESE PAWN3))

. ]
COHNIVER syntax is roughly that of LISP, but a declaration of local
variables must be explicitly Indlicated with the atom "AUX", and each such
local must be given an explicit initial value, if it Is not to he
unassigned, by being declared as "(variable value)" Instead of just
"wariable." This PRUG thus rebinds CONTEXT to the value returned by the
system function PUSH-COMTEXT., The current context has had ane more
context-frame pushed onto it. Hew changes apply to this frame anly.
After the body of the PROG has been executed in this "hypothetiea]"
context, the PROG's control frame will be exited. COMTEXT will be
unbound, restoring its old value, In which the actien of the ADD Is
invisible; in effect, a data frame has been exited as well,

since contexts are data structures just like lists, they can be
returned as values of functions, assigned to global variables, etc., so
that in fact the user has available a tree of contexts his program has
left behind, In the same way that using funcrtional arguments (closures of

functions) in LI3P creates a tree of variable-value associations,
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Items can be retrieved from the current context by means of the
COHNNIVER primitive FETCH, which finds all items present in the context
that match a pattern. For example, If we let the presence of the item
(HAS plaver square) means "playver (X or 0) has put his mark In square In
the tic-tac-toe position represented by the current context," we can find
all of X's squares with

(FETCH "(HAS X 75QUARE)).,
Roughly as in PLANNERY, the "?" indicates that the variable SQUARE is to
be assigned a value by matching the pattern (HAS X ?SOUARE) against some
icem. However, FETCH does not makes the assignment, Since backtracking
has been exorcised From CONNIVER, Tt simply returns a possibilities 1ist
which contains all the matching ltems, rather than hiding them In a

failpoint in GJAL, to be handed to us coyly, one per fallure,

Such a possibilicies 1ist might lTook lTike
(=PUSSIBILITIES
(*ITEHM ((HAS X 5) (9 +)) ((SQUARE 5)})})
(*lTEA ((HAS X 2) (93 +)) ((SQUARE 2))) ).
The wexact wmeaning of every parenthesis in this list is unimporcant, but
the overall content is this: FETCH has found two jtem possibiligies, both

gresent Iin this context {(which includes context=frame 3). The first

matches the pattern with 30UARE = 5: the second, with SOQUARE = =,

The user can manipulate this 11st in any way he chooses:; one way
is Wwith the system function THRY=HEAT, which pops off and returns the

first item in the 1isc (here, ({HAS X 5) (9 +))), and assigns the pattern
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variables as the pussihllfty directs (and so, in this case, sets SOUARE

ta 51,

How can we explolit this data structure? Although PLANMER, in its
latest incarnations|10]|, contains a data base structure as powerful as
what we have sketched, it should be clear that its backtraclk mechanism Is
worthless for the purpose; it often gdestrovs exactly the contexts we wish

O presaryve,

For the present, we want to stick to the simple problem of
penerating alternatives, which PLANNER Is constrained to do one at a
time, one per fallure, erasing part of the generator's context each time.
If the generator wishes to comiunicate the fact that It has falled so
far, it must destroy its context entirely to do it, even though It may
have just succeeded in bullding a useful world model. The best that can
be said for failure is that it has become irrelevant, since if a process
does want to throw in the towel completely, all it has to do Is return,
unbinding BDHTEKT,P To use CONNIVER data structures effectively, we need
a compromise between keeping a fallpolnt and returning for good; let us
allow a generator to return, but Keep [ts control environment In
gxistenge, Since that control environment may include a binding of
CUNTEXT, it includes some data environment as well; it can be used to
embody a point of view towards the program's problem and a place to go to

attack it further.
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This mechanism becomes Important when a program wishes to include
a set of items in the current context on the basis of a procedural
criterion instead of their actual presence. This is essentially the role
of consequent theorems in PLANNER, but the analogous CJINNIVER structure,
the jf-needed method, cannot work the way conseguents dﬂ.bEEEUEE there Is
no backtracking. An if-needed which matches a FETCH's pattern will be
found after all the matching items, and included in the possibilities
list as & mechod possibility, of the form (#UMETHOD pattern method). When
TAY=HEXLT encounters such a thing, It must Invoke it., An [f=needed, once
invoked, acts as much like a generator as its consequent-theorem cousing

but in a different way.

Pursuing our tic-tac-toe example, let the presence of the Ttem
(dlHMIVE plaver square move) mean "plaver (X or 0) will have three marks
in a row If he makes move, after occupying sguare.'" Such items might come
in handy, for example, in a search for Lwg winning moves after the
occupation of sguare; since the opponent cdannot block both, occupving

sguare will force a win.

For example, a CONNIVER program may search for moves M which win
the game for X after his occupation of sguare 3 with (FETCH "(UWINMOVYE X 8
PH)). If the resulting possibilitles 1ist includes (=METHOD (WINJHOVE X 8

2id} WIHMOVES), the method WINMOVES will be invoked by TRY-NEXT:



Sussman 26

{IF-HEEDED WINMUVES
Ll AMOYE 7PLAYER ?750QUARE ?MOVE)
"AUA" (PLAYER SQUARE MOVE (CONTEXT (PUSH-CONTEXT)) Pl Sl P2 502)
(ADD '"(HAS ,PLAYER ,3QUARE))
{(REMOVE '"(FREE ,3QUARE)})
{(CSETQ P1 (FETCH "(HAS ,PLAYER ?5Q1)))
sUUTERLOOP
(TRY=HEXT P1 '(GO 'END))
(CSETQ P2 (FETCH '"(HAS ,PLAYER ?5Q21))
s IHNERLOQOP
(TRY=NEXT P2 "(GO "DUTERLODIP))
(COND ({AND (LESSP 50Q1 502)
(CSETO MOVE (THIRD=IN-RDW 501 50Q2))
(PRESENT '(FREE ,MOVE)}))
(HOTE (INSTANCE))) ]
{(GJ "IHNEXLJORP)
:Eilu
{TADTEW) ).

When WIRAOVES is Invoked, it pushes CONTEXT down, and supposes
that PLAYER owns SUUARE, and that 1t is ng longer free., The two nested,
TAY-NEAT-driven loops then consider each pair of squares owned by PLAYER,
setting 501 and 302 at statements :QUTERLQOP and s IHNHERLOOP,
respectively., (Atoms used as labels must be preflixzed with the character
":".) The second argument to each TAY=HEXT is evaluated when |ts
possibilities are exhausted., THIRD=-IN-ROW is a function that returns the
third square in th; row, column, or diagonal of jits argunents, or HIL If
they dre not collinear; (PAESENT pattern) is non=HIL only 1f an item

matching pattern Is present In the current context.

Here i3 how WJINMOVES works: for each distinct palr of colllinear
squdres owned by PLAYEWL, Tf the third square is free, the INSTAHNCE formed
by substicuting the current value of MUVE into the pattern used to eall

WIHHUVES is NOTEd. (l.e., it is saved on a list, accessible to the user,
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whose structure need not ;nncﬂrn us here,) When all the instances
{which Took just like item possibilities) have been found, they are
packaged by (AUIEU) into a possibilities list, which is returned. It
might Took like

(*PIOSSIGILITIES

{«ITEM ((WINMOVE X

i 5)) ((
(*ITEH ((WINHOVE X 3 3)) ((

M
M
The 1ist which AUIEY creates is returned to the TRY-NEXT that
invoked WINMOVES., This TRY=NEAT has been manipulating our original
possibilities list, generated by (FETCH "(WINMOVE X 3 M)); It found

WINAOVES i the list and invoked it, and it now has its value, a new list

of possivilities. |t does the obvious: It splices the list the method
returned into {gs 1ist in plage of HLHHUEEE. Thus, the orizinal

generator possibility in the list has been made to stand for the
possibilities it can produce when invoked, WIHMOVES stands for a set of

winning moves not mentioned explicitly in the data base.

Qur concept of generator appears simplear than PLANNER's;
WINMOVES dumps all the instances into the upper possibilities 1ist and
returns, leaving 1ts control environment and binding of CONTEXT to be
collected as garbage. Even if 1ts caller wants only one new iterm

possibility, zenerators 11ke WINMOVES give him all of them.

We have returned to our arliginal probliem: how can we maintain In
existence the control and context structure of WIHMOVES while returning

From it with only a few of the possibilities 1t can find? The answer
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lies in the structure and function of the possibilities list; to Invoke a
method found in such a 1ist is to replace the method by its value, itself
a list of possibilities. If this value list contains a generalized tag
back to the generator's activation, 1ts environment will be preserved,
Hot only that, but if TRY=-HEXT comes upon such a thing in a possibilities
list, it is bound to GO to it. Now the method can generate ltems In
finite groups, asking to be reawakened if none of the items satlsfies Its
caller. A new version of JINA0OVES that works this way (and has been
streaml ined in other respects) looks 1lke:
{IF=HEEDED WIHNAUVES

(WIHMOVE TPLAYER ?SQUARE TMOVE)

"AUR" (PLAYER SOQUARE MOVE (CONTEXT (PUSH-CONTEXT)) 501 502)

(ADD "(HAS L,PLAYER ,SUUARE))

(HEMUVE "(FREE ,S5QUARE))

(FUR=EACH C(FETCH '(HAS ,PLAYER ?3QL))

(FOR=EACH (FETCH '(HA3 ,PLAYER ?502))
(COND (CAnND (LESSP 301 302)
{CSETQ MOVE (THIRD=IH=-R04 501 5021}
{PRESENT "(FREE ,MOVE))})
(HOTE (IHNSTANCE))

(AU=REVOIR)) ) 1
(ADIEUD Y.

Aside from the use of FOR-EACH as a shoerthand for a TRY=-NEXT-driven loop,
the only addition }5 (AU=-REVOIR) following (MNOTE (INSTANCE)). AU-REVOIR
is just 1lke ADIEY, but adds a tag to its own activatlon at the end of
the possibilities list it returns., MNow JINMOVES NOTEs and returns Jjusg
one instance each time, but if the instance 5 unsatisfactorv, is
reawakened at the end of the Inper FOR-EACH, to generate one more the
same way. (Mote that on such returns to an activation, Tt is the tagz AlU=-
AEVOIR left in the upper possibilities 1ist that stands for a list of new

items; GUIng replaces it with a possibilities 1ist fFrom the cenerator
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just as Invoking does with method possibilities.)

The reguirement that there be generalized fags, tags that mention

whole control environments, makes it necessary that CONNIVER maintain a
control tree similar in structure to the context tree Tt serves. All
such still-viable environments form a set of processes cooperating to
solve a problem, Some of these are generators, using possibilities lists

as communication channels with their callers, but this by Pno means

exhausts the alternative ways of interacting. In particular, CONNIVER's
ganeralized gontrol structure makes it easy to put all of fallure and

backtracking back In if the user wants them, but he has the duty {(or

privilege) of designing and maintainine countrol over what he huilds,

A couple of points remain to be made. HNotice that, althourh the
loops in WINMUVES are exhaustive and blind, they are gxpllicit. The only
natural way to write this generator in PLAHNER is by use of successive
GJAL statements that filter out the bad choices. Although the user may
intend a loop iikela FOR-EACH, and, locally, the GOAL conglomeration
behaves like one, it suffers uncontrollably from the effects of global

failures.

Generators do not hawve to be methods; we have only heen pursulng
this example because of the PLANHNER amalogy; it seems much more rational
that WINMOVES in particular be a functinn of two arguments, PLAYER and

SQUARE, with values corresponding to MOVE. (See [3].)
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Communication between processes, it 15 our feeling, is essential
to their success. We have tried to build as many communication devices
into TRY=HNEXT and generators as possible in hopes that they will be used,
It would be very dangerous to try extending the exhaustive searches used
in WIHMOVES to something as much more compllicated as a plausible chess
move generator., A clever gengérator must be able to talk to Tts caller.
WINMOVES is supposed to 1l1lustrate what Is legal in CONNIVER, not what is

pood ,

We have constructed CONNIVER partly by raising to prominence
ideas casual ly embedded ITn PLANHER, partly by giving hidden FLANNER
constructs back to the people, and partly by concentrating on what is
negded in a programming language as opposed to a theorem=prover. Our
major contribution, we think, 15 the elimination of backtracking upon
fallure as a wechanism for the blind generation of alternative approaches
to a problem, We have shown how PLAHMNER makes 1t difficult to write
controllabla urugrémsg how, like most theorem=provers, it 1s committed to
loosely gulded exhaustive search as a problem=-solving methad; and how the
user must either succumb to the will of the control structure or spend
much of his time using primitives (1ike FIHALIZE, STRAIGUTEN, TEMPROG,
afe, ad joufinitum) that save him from it. It I8 our hope that we have
shown that contrel and understanding of his proprams should be wital

concerns of the Artificial Intelligence programmer,
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