MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A. 1. LABORATORY

Artificial Intelligence
Memo No. 256 April 1972

EFFICIENCY OF EQUIVALEWCE ALGORITHMS
Michael J. Fischer

This papér was first presented at the Symposium on Complexity of Computer
Computations, IBM Thomas J. Watson Research Center, Yorktown Heights,
Mew York, on March 22, 1972.

Work reported herein was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Technology research program sup-
ported in part by the Advanced Research Projects Agency of the Depart-
mant of Defense and monitored by the Office of Naval Research under
Contract Number NOOO14-70-A-0362-0003.

Reproduction of this document, in whole or in part, is permitted for
any purpose of the United States Government.

EFFICIERCY OF EJUIVALENCE ﬁLGGEITHHS+

Michael J. Fischer

Massachusetts Institute of Technology
Cambridge , Massachusetts

1. INTRODUCTION

The eguivalence problem ia to determine the finest parcitcion
on a set that is consistent with a sequence of assertions of the
form "x £ ¥". A strategy for deing this on & computer processes
the assertions serially, maintaining always in storage a represen-—
tation of the partition defined by the assertions so far encoun=
tered. To process the command "x = ¥, the equivalence classes of
% and v are determined. If they are the same, nothing further is

done; otherwlse the two classes are merged together.

Galler and Fiacher (1964A) give an algorithm for solving this
problem based on tree structures, and it alsoc appears in Enuth
[196BA) . The items in each equivalence class are arranged in a
tree, and each item except for the root contains a pointer to its
father. The root contains a flag indicating that it is a root,
and it may also contain other information relevant to the equiva-
lence class as a whole.

Twoe operations are involved in processing a command "x = y":
first we must find the classes containing % and v, and then these
classes are (possibly) merged together. The find is accomplished

+Wnrk reported herein was conducted at the Artificial
Intelligence Laboratory, a Massachusetts Institute of Technology
research program supported in part by the Advanced Research
Projects Agency of the Department of Defenge and monitored by the
Office of HMaval Hegesrch under Contract Number HODDLbé=70=A=03632
=0003.

by successively following the father links up the path from the
given node wntil the roet is encountered. To merge tWwo trees
together, the root of one is attached to the root of the other,
and the former node is marked to indicate that it is no longer a
root in the new data structure.

The time required to accomplish a find depends on the length
of the path from the given node to the root of its tree, while the
time to process a merge (given the roots of the two trees involved)
is a constant. For definiteness, we let the cost of a merge be
unity and the coat of a find be the number of nodes, including the
epdpoints, on the path from the given node to the root.

In this paper, we are interested in the way the cost of a
sequence of Instructions grows as a function of its length. Using
the above algorithm, & sequence of n merge instructioms can causge
& tree to be bullt with & node v of depth n, 50 subsequent finds
on that node will cost otl unlts each. The sequence consisting of
the n merge instructions followed by n copies of a find(v) instruc-
tion will then cost n{nt+l), and 1t is easy to see that 0(n®) iz an
upper bound as well.

The sbove example suggests adding to the algorithm a "collap-
ging rule" which Enuth (19724) attributes to Tricter. Every time
a find instruction is executed, & second pass is made up the path
from the given node to the root and each node on that path is
attached directly to the root (except for the root itself). At
worst this will only double the cost of the algorithm, and it may
cause subsequent finds to be greatly speeded up. Indeed this
turns out to be the case, for in Section 4 we show that the upper

bound drops to D{njfz} using this heuristic.

Another heuristic, the "weighting rule", was studied by
Hopcroft and Ullman (19714) and previcusly known to several others.
When performing & merge, an attempt is made to keep the Ctrees
balanced by always attaching the tree with the smaller number of
nodes to the root of the tree with the larger number. To do this
efficiently requires that extra storage be associated with each
root in which to record the number of nodes in its tree. Hopocroft
and Ullman show that with the weighting, a tree of n nodes can
have height at most log n, and it fellews that an instruction
pequence of length n*l can therefeore have cost no greater than
2(n log n). MHoreover, in the absence of the cellapsing rule, it
iz easy to construct instruction sequences whose cost does grow as
n leg n.

Combining the collapsing rule with the weighting rule yields
an algorithm superiecr to those using either heuristic alone, With
only the collapsing rule, we exhibit in Bection 3 sequences whose

cost grows proporticnally te n leg n, where n is the length of the
sequence, and as we remarked above, a similar lowetr bound holds
for just the weighting rule alene. Combining both heuristics, we
derive in Secticn & an 0{n leog leog n) upper bound. Hopocroft and
Ullman (1971A) claim that the upper bound is actuwally linear.
Howaever, we have a counterexample to cne of their earlier lemmas,
and although this difficulty can be owvercome, we are unable to
follow the final part of their argument.

2. THE ALGORITHMS

An equivalence program over the set E i any sequence of
instructions of the form find{a) where a i8 an element of E, or
merge(A,B,C) where A, B and C are names of equivalence classes.
{Cf. Hoperoft and Ullman (1971A4).) Find{a) returns the name of
the equivalence class of which a is a member, and merge(A,B,C)
combines classes A and B into a single new class C.

We now consider two algorithms which can be uwsed to implement
equivalence programs., We first need some notation.

A forest F is & set of oriented {umordered) trees over some
set V(F) of nodes. If v iz a node, then depth[F](v) iz the length
of the path in F from v to a root, and height[F](v) is the maximum
length of a path in F from v to a leaf. The depth and height will
be written simply depth(v) and height(v) when the forest F is

understood, The height of a tree A, height(A), is the height of
its root.

The algorithms are built from three kinds of instructions
which operate on a forest F. If v is a node, then find(v) does
the following:

1., If v is & root, or 1f father(v) is & root, then F is lefc
unchanged .

2. Otherwise, let VEV Ve eV be the (unique) path from v
to the root Vit Then F is modified by making Vi the

father of each of the nodes vu""’“k-z'

The cost of find(v) is 1 + depthiv).
The instruction U=merge(u,v) has unit cost and is defined
only when u and v are both roots. It causes the node u o becoms

a direct descendant of v (and hence u is no longer a root).

For any node v, let weightiv) be the number of nodes in the

subtree rooted by v {and including v itself). The instructiom
W=megrge (u,v) also has unit cost and is defined only when u and v
are both roots. If weight{u) < weight{v), it behaves exactly like
U-merge{u,v); otherwise, it causes the node v to become a direct
degcandant of u.

Wa define a Ueprogram to be any sequence of instructions con-—
sisting solely of finds and U-merges. Similarly, a W-program is
any sequence of finds and W-merges.

Let @« be a U= (W=)program. Then T{a) is the total cost of
executing the instructions of o in sequence, starting from an ini-

tial forest Ih in which ewvery node is a reot. T(a) is undefined

if any of the instructions inm o is undefined.

3. A LOWER BOUND FOR THE COST OF THE UMWEIGHTED ALGORITHM

In this section, we show how to find, for each n > 0, a
U-program 4 of length n such that T(a) > cn(log n) for some con=
stant ¢ independent of m.

We begin by defining inductively for each n a class 5 of
trees;

(1) Any tree consisting of just a single node is an Eﬂ tree.

(11i) Let & and B be En*1 trees, and assume that A and B have

no nodes in common. Then the tree chtained by
attaching the root of A to the root of B f5 an Sﬂ tres.

Figure 3.1 illustrates the building of an Sn tree, and Figure 3.2

shows an EIEI tree.

Lermng J.7. Let A be an En tree., Then & has 20 nodes ,
height(A) = n, and A contains a unigque node of depth mn.

Proof. Trivial induction on n. [J

72\
/\

Figure 3.1. Definicion of an Sn tras.

In light of the lemma, we define the handle of an 5 tree to
be the unigue node of depth n.

Two alternate characterilzations of Sn treses are illuscrated
in Figure 3.3 and stated in:

Lemmz 3.5, Let A be an En tree with handle w,

[a) There exist disjoint trees AD,...,ﬁ not contalining v

=1

with roots Agreread respectively such that (1) hi 1g an %

n—1 i
tree, 0 < 4 < n-1, and (2Z) A is the result of attaching v to 2
and a, toa, ., for each i, 0 < 1 < n-1.

(b} There exist disjoint trees hﬁ""‘h&-l with roots
aé,+...a;_l respectively and a node u not in any ﬁi guch that
(L) Hi is an &, tree, = 1 = n-1, and (2) A is the result of
actaching ai to u for each i, 0 < i < n-1. Moreover, v is the
handle of A' _.

n=1

Proof. Again the proof 1s a triwvial induction on n and is
omitted. [

Figure 3.2. An 54 tree.

AN

Figure 3.3. Decompositions of an Sn trea A.

Q

The remarkable property of an En tree is that it is self-
reproducing in the sense that if am En tree A is embedded in a

larger tree B so that the root of A has depth » 0 in B, then a
find en the handle of A (which collapses the path above the handle)
costs at least n+l and the resulting tree still has an §_ tree
embedded in it! f

We now make these noeticons more precise.

Dafinition. Let A and B be trees. A one-one function n:
V(A) ~ V(B) is an embedding of A in B if for all u,v & V(A),
uw = father(v) iff n(u) = father(n(v)). n is inittlal (proper) if n
maps (does not map) the root of & onto the root of B, We say that
A is tnitially (properily) embeddable in B if there exists an ini-
tial (proper) embedding of A in B,

Iemmng J.48. Let A be an Sn tree with handle v, and assume n

is a proper embedding of A in & tree P. Then A" is imitially
embeddable in the tree F', where A' is an En trea and F' results

from the instruction find{niv)) on F.

Proof. The trees described below are illustrated in Figure
3.4,

Let A be an En tree with handle v, and assusme n is a proper
embedding of A in F. By Lemma 3.2{a), we may assume that v,a.,
iz the path from v to the roor of A, and Baaesrad are

n=1
respectively, where

assgd
n=1
the roots of disjeint subtrees an,...,an_l

each Ai ig an 8§, tree, Q<i<n=-1,

i
For each 1, 0<i<n-1, let Pi be the subtree of P consisting of

the nodes in {nfu) | u e H(Ai}}.

Let A' be the tree formed 85 in Lemma 3.2(b) by linking each

of the nodes a; to a mew node a'. Then A" is an En trea.

Let P'" result from the execution of the instructiom find(n{v))
ori F, and let o be the teot of P'.

Finally, define a mapping n' frem the nodes of A' to the
nodes of B': '
n'{u) =€niu) 1f u € ?Eﬁi} for some i, O<iz<n-1;

p if a = a'.

AI

Figure 3.4. Trees in the proof of Lesma 3.3.

It remaing to show that n' is an initial embedding of A" in
El

Let 7 be the path from n{v) to the reot of P. From the defi-
nition of embedding, each of the nodes n{v), n{&uj.+.q. ﬁ{an—l]

appesrs on 7, and no node in Pi except for ntai] is in @, D<i=n-1.

As a consequence of the find, each of the nodes n{ai) is

linked directly to the root g of PY, and since the path v did not
run through any nodes of Pi except for the root, I-‘,_I is a subtres

of P' linked directly to p. It is easily verified that n' is an
initial embedding of A" in P'. [J

We now construct a costly U-program. First build an Ek tree.

Then alternately "push" it down by merging it to a new node, and
perform a find on the handle. This find costs k+2 units and it
leaves us with a new tree in which an 5, tree is initially embed=-
ded. Thus we can repeat the "merge, find" sequence as often as
we wish, yielding an average instruction time that approaches
(k+3) /2. Since we can do this for arbitrary k, the cost of
U-programs cannot be linear in their length. In fact, we show:

Theorem 1. For any n>0, there exists a U-program o of length
n such that T{a) > en{log n) for some constant ¢ independent of n.

Proof. Let 8,8,
let § be a program of k.1 U-merges which builds an 5, tree cut of
For each 1 > 1, let v, be the handle and r

yeas be a sequence of distinct nodes, and

the nodes 8, ,...,8

1 Ek i i

the root of the tree that results from the sequence E'Tl""'Ti 1

and define Y, = "U-mergeﬂri,a T find{vij”. Let & be the
2 +ik
BEqUEnce E,?l....,T-, where m = 2 =1, Then T{a) = {Ek—l} + mik+3),
and the length of @ is n = 3m, so
(o) = 5+ 2053 caiog n) (3.1)

for some constamt c.

For n not of the form J{ZR-l}, we form the next shorter
sequence that is of that form and then extend it arbitrarily to
get a sequence of length exactly n. This will have the sffect
only of changing the constant in (3.1). O

4. UFPER BOUKDS

We get upper bounds on the two algorithms by considering a
slight generalization of a find instruction. Find(u,v} behaves
like a find(u) where we pretend that v is the root. More pre-
cisely, find(u,v) is defined only if v is an ancestor of u., If
that is the case, let e TR ERREE L be the path from u to v,

Then find(w,v) cauvses each of the nodes Ugrerealy o o beé attached

directly to v, Its cost is defined to be k+l. A& sequence of
generalized find and U- (W-)merge instructions is called a
generalized U- (W-Jlprogram.

Fotation. Let F be a forest and o a program. Then Fia is
the forest that results from F by executing the instructions in o,

Legmmg 4.1. Let u be any node in a forest F. Then there
exists a node v in F such that F:find{u) = F:find{u,v) and che
cogta of executing find{u) and find(u,v) are the gsame,

Fropf. Choose v to be the root of the tree containing u. [J

Applying Lemma 4.1 in turn to each of the find instructions
in a U- or W-program o gives the following:

Legmma 4.2, Let o be a U- (W-)program apd F a forest. Then
there exiats a generalized U= {Hh}prugram B such that F:a = F:8
and T{a) = T(E).

Generalized programs are convenient to deal with because there
is no loss of generality in restricting attentlon to programs im
which all the merges precede all the finds.

Lammg 4.8, Let F be & forest contalning the nodes p, g, u
and v and let M be the instruction U=-merge(p,q) (W=mergel(p,q)).
Let o, = "fipd(u,v), M" and o, = "M, find{u,v}". If a, 1s defined

1
on F, then Fia, = IE':-::2 and T{ull = T{uz}.

1

Proof. The only possible effects of M are to change the
father of p to be g, or to change the father of g to be p.
Similarly, the only possible effects of the instruction find{u,v)
are to change the fathers of the nodes on the path from u to v
(but not including the last two such nodes). Since ay is defined,

then v is an ancestor of u and both p and q are reots in F; hence
the sets of father links changed by the two instructions are dis-
joint. Moreover, the cholce of whether to link p to q or q to p
in case M is a W-merge instruction depends cnly on the weights of
p and g, &nd the weight of a root is not affected by a find

ingtruction. Hence, neither instruction affects the action of the
other, so Fia) = Fia, and T{zx,) = T{ﬂz}- (|

Lemma 4.3 enables one to convert a generalized program inmto
an equivalent ome in which all the merges precede all the finds,

Lemma 4.4. Let o be a generalized program, and let & result
from a by moving all the merge instructions left in the sequence
before all the finds, but preservimg the order of the merges amnd
the order of the finds, Then Fi:a = Fif and T(a) = T{&).

To bound the cost of a generalized U-program, we consider the
effects of a U-merge and a generalized find instructicen cn the
total path length of a forest F, defined to be

E depthiv).
veV(F)

Lemma 4.5. Let a be a sequence of n U-merge instructions and

let F = Fﬂ:u. Then the total path length of F < n.

Proof. Mo node in F can have depth > n, and at most n nodes
have non=-zero depth. Hence, the total path length < n’. O

Lomma 4.8, A generalized find instruction of cost & » 2
reduces the total path length by at least (2-2)%/2.

Proof. Let find(u,v) be an Instruction of cost L. Then there

is a path UG Uy eyl =V from u to v. For each 1, 0 < 1 < p-3,
the find causes the depth of node u, to become one plus the depth
gf v, so the reduction in total path length is at least

i=3 i=3

Y (dapth{u) - {l+depthiv))) = § (L-2-1) = E J "1"‘L' 0

i=0 i=0 i=1

Theorem 2. Let o« be a U-program of length n. Then
372

T{a) < cn for some constant ¢ independent of n.

Propof. By Lemma &.2, it suffices to bound a generalized
U=-program o instead, and by Lemma 4.4, we may assume that all the
U-merges in o precede all the finds.

A program of length n clearly has at most n merge instructions

and at most n find instructions. Let Ei be the cost of the ith

find instruction 1f there is one and 0 if not. Clearly,

n
T(a) <mn+ } &
i=1

T {(4.1)

By Lemma 4.5, the forest after executing the merge instruc-
tions in a can have a total path length of at most n®. Only the
find instructions of cost greater than two affect the tree, so let
I={i] L,*2k. If icl, Lemma 4.6 asserts that the ith find

instruction decreases the total path length by at least {Li—zjzfz.
The total path length at the end cannot be negative, =so

1}
2.1 2.1 2
nt 25 L= >3 T (2,-2)" - 2n (4.2)
. iel 1 ¢ i=1 i
2. ¥ 2
or 6n” > J (2.-2)°, (4.3)
i=1

|
The maximum value for E ai is achieved when all the
i=1
Ll'a are equal, for if they are net all the same, replacing each

by the mean E can only cause E {Eiuijz to decrease, Hence, from
i=1
(4.1) and (4.3) we ger
T{u) < n + ni (&, 4)

where £ is subject to the constraint that

6n” > n(e-2). (4.5)
From (4.53),
L<2+ 6 (4.6)

and substituting inte (4.4), we get

T(a) < n +n(2 + Vin) < 5n3f2+ | (4.7)

For the case of the weighted algerithm, we prove an upper
bound of O(n log log n) using a methed similar to our proof of
Theorem 2. -

We say that a forest F is buildable if it can be obtained
from Fﬂ by a sequence of W-merge instructions. Buildable forests

have the important property that most nodes have low height.

Lammg 4.7 (Hoperoft and Ullman (19714)). Let F be a build- h
able forest. 1If v is a nede in F of height h, then weight(y) = 2.

Proof. The result follows readily by induction on h. We
leave the details to the reader. []

Corgllary. Let o be a sequence of W-merge instructlions of
length n and let F = Fntu. For any h > 0, F contains at most
nfEh non=roots of height h.

EFroof., F has exactly n non=roots, for esach Wemerge changes
one root to a non=-root. Suppose Upseesyly are non=roots of height
h. By the lemma, Height(ui) > Eh, and all the nodes counted in
the weight of uy are non-rocts, l<i<k. Hence,

k h
n* welght(u.) > k-27, {4.8)
i=1
so k < nf!h.

Instead of looking at total path length, we consider a quan-
ity QUF;G) which depends on twe forests F and 6. Qur interest is
in the case where F is a buildable forest and & results from F by

a gequence of generalized finds, although our definition applies
whenever V(F) = V{(G):

QF,6) = | depth[g](v)-2PeiBRElFI(™M = (4.9)
weV(E)

Lemma 4.8, Let 4 be a sequence of W-merge instructions of
length n 2 1 and let F = Foia. Then Q(F,F) < nflog(n+1))?.

Proof. MNo tree in F can have more than n+l nodes. By Lesma
4,75 & rect can have height at mest legin+l), s¢ ne node has
height or depth greater than log(n+l).

Let § = { veV(F) | depth[F]{¥) > 0 } be the set of non-roots
of Fo From (4.9), we get

E zhiigh:[?]{vl_ (4.10)
weN

Q(F,F) < log(n+l)*

h F
We now wish to bound R(F) = | 2MeiSht[FI(¥Y) o0 0 & root
wel
has height at most log(m+l), any node veH has height at most
H = log(n+l) = 1, so summing over the heights of nodes,

1]
R(F) = | (# nodes in N of height h}-Eh {4.11)
h=0
By the corollary to Lemms &,.7, the number of nodes in N of height

h iz at most nflh. 50

)
R(F) <] (—)+2 £ (B+l)n = n-log{n+l). (4.12)
T he0 2)

Subgtituting (4.12) inte (4.10) gives the desired result, []

Lemmg 4.8, Let F be & bulldsble forest, ¢ & sequence of
generalized finda, and let G = Fi¢. If u iz a descendant of v in
G and u#v, then height[F]{u) < height[F]{v).

Proof. It is easy to show by induction on the length of §
that if u is a descendant of v in ¢, then uw is also a descendant
of v in F. By the definition of height, it follows that
height[F](u) < height[Fl{v). O

Iammg 4,10, Let F be a bulldable forest, ¢ a sequence of
generalized finds, snd let G = F:f. Asgume find{u,v) is defined
on &, hag cogt £ » 2, and results in & forest G". Then

o(F,6) - q(F,e") > 2V,
EBrpof. Let U -1

Lemma 4.9, the heights in F of the nodes in the path are monoctone
increasing, and since heights are integral, hEight[F]{ua_al = B-3.

L

.yl =y be the path from w to v in G. By

The instruction find{u,v) does not incresse the depth of any node
and 1t decreases the depth of “1-3 by oma, =0

UF,G) - Q(F,G") > 2MeIEREIFIl), i3 g

Theorem 3. Let o be a W-program of length n*&4. Then
T{x)} < en{log log n)} for some constant c independent of n.

Ergof, By Lesmas 4.2 and 4.4, it suffices to prove the
theorem for a generalized W-program o = p$ of length n, where p ig
a sequence of W-merge instructions and $ is a sequence of general-
ized find instructions.

The lengths of p and $ are clearly both at mest n. Let E, be

i
the cost of the ith find imstruction if there is ome and O if not.

Then n
T(a) <n+ | &
i=1

- {4.13)

How, let F = F.ip. By Lemma 4.8,
Q(F,F) < n{log(n+l))?. (4.14)
Only find instructicons of cost greater than two affect the
forest, so let I = (i | EIJE} and let G = F:4, By repeated use of
Lemma 4.10,

]
aE.® - qF,6) > 2% 5 (T 2%y . was
iel i=1

Since Q(F,G) > 0, we conclude from (4.14) and (4.13) that

0n
n(logm#1)? > T 27 _ g, (4.16)
i=1
2. % (-3
s0 2n(log(n+l))” > J 2V71777, (4.17)
i=1

T
The maximum value for E i
i=1 i
equal, for if they are not all the same, replacing each by the

is achieved when all the £i'1 are

mean £ can only cause % 2“1-3} to decrease, Hence, from (4,13)
and (&.17), we get o

T{a) < n + nt (4.18)
where £ is subject to cthe constraint that

En(lﬂg(n+l}}z 2 ﬁ*!fi_j}.

(&.19)
Taking logarithms (to the base 2}, we get

£ <3+ log 2+ 2(log log(n+l)) < 6(log log(n¥l)).(4.20)
Substituting back inte (4.18) yields

T(a) < n + én(log log(n+l)) < 1in(log log n). (4.21)

5. CONCLUSION

We have considered two heuristics, the collapsing rule apnd
the weighting rule, which purportedly improve the basic tree=-based
equivalence algorithm. Our results, together with the remarks in

the introduction, show that each heuristic does indeed improve the
worst case behavior of the algorithm, and together they are better
than either alone.

There is still a considerable gap between the lower and upper
bounds we have been able to prove for the two algorithms emploving
the cellapsing rule, and we are unable to show even that the
weighted algorithm requires more than linear time. We leave as an
open preblem to construct any equivalence algerithm at all which
can be proved to operate in linear time,

ACFROWLEDGEMENT

The auther wishes teo express his appreciation to Albert Mever
for several enlightening discussions and to Patrick 0'Neil for
some ideas leading to a procf of Theorem 3. He is alse grateful
to John Heperoft for pointing out an error in the original wversion
of that proof.

References for "Efficiency of Equivalence Algorithms"
by Michael J. Fischer.

B.A. Galler and M.J. Fischer
(196540 "An Improved Eguivalence Algorithm,"
Comm. ACM 7,5 (May 1964), 301-303.

J.E. Hoperoft and J.D. Ullman
(1971A) "A Linear List Merging Algorithm,"
Technical Reporr TR 71 - 111, Computer Scilence
Department, Cornell University (November 1971).

D.E. Fnuth
(19684) The Art of Computer Programming, Volume 1,
Addison=-Wesley, Reading, Mass., 1968, 353=1355.

[19724) "Some Combinatorial Research Problems with a
Computer-Science Flavor," notes by L. Guibas and
D. Plaisted from an informal seminar, Januwary 17, 1972,

