MASSACHUSETTS INSTITUTE OF TECHMOLOGY
A. I. LABORATORY

Artificial Intelligence
Memo #257 May 1979.0.

A TWO COUNTER MACHINE CAMMOT CALCULATE EH
Rich Schroeppel

Work reported herin was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Techmology research program sup-
ported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense and monitored by the Office of Naval Research under
Contract Number NODO14-70-A-0003.

Reproduction of this document, in whole or in part, is permitted for
any purpose of the United States Government.

This note proves that a two counter machine canncot calculate 2 .

An I counter pachine has I counters, each of vhich contains a
ﬁﬂnQEfﬂflve intefer. 1There is also a progrem, vith four Hinds
g instructions:

Type 1: Add 1 to a specified counter. liritten C+.

Type 2: Examine a specified counter. If it contains o, don”t
changze it, but jump to an instruction cut of the normal
sequence. Otherwise, subtract 1 from the counter end
continve in the normal program secuence. Vritten C-,
with an arrow at the right indicating where to 7o in the
zero case. This arrow is called a zero branch arrow.

Type 3: (Unconditional) jump. Written with an arrow.

Iype 4: Halt.

Counter machines are also known as rEg%EtEr machines or program
machines. I use "counter" and "regisfer™ iInferchanfeably, but
nsuelly a counter is incremented or decremented, while = repister
is subject to more exotic transformations, such as doubling.

Example: A three counter machine (3CHM) computes 3X+2Y. At Start,
¥ is in counter A, Y is in counter B, and counter C is zero. At
ilalt, the answer is im C. (In the diagrams, the normal directicn
of program flow is down the page.)

Start —e A~ — - ——llalt

C+ C+
C+ C+
C+

This can be bummed fto:

{a,b) is the greatest common divisor of a and b.

dln means d is 2 divisor of n.

p usually denotes a prime number.

x<=v means ¥ is less than or equal to y.

[x] is the rreatest integer <=x.

sort(x) is the square root of x.

log? x is the logarithm of x to the base Z.

Fih%ﬂ] iz the Ilth Fibonacel number.

F(5), where F is a function and 5 a set, is {F(e) | e in 5}.

-

P

Example: Multiply (the contents of) counter A by (the contents
of) counter B; the answer is in C. C and I are zero at Start.

/_,xﬂalt

Start-——hg: 'ﬁ
C+ RD-
i CB+

Fard problem: Multiply two numbers using only three counters.
Fasier problem: Square a number using three counters.
The sclutions are at the end of the memc.

Thecrem: A three counter machine can simulate a Turing machine.

Proof (abridged): The counter pachine has counters A, I, and C.
The Turing machine alphabet is two characters, O and 1. There
are only & finite number of 1s on the tape.

The tape is split into three pieces: Tape to the left of the
read head, ta to the right of the read head, and the tape sguare
under the read head. The left half of the tape is interpreted as
a binary number, which goes into counter A. Counter B represents
the right half of the tape, interpreted as & binary number in
reverse. Thus, if the tape contained

« = 0C0CO0TT0T 1 CIOT0000000. ..

counter A would centain 13, and counter B
would contain 22. The 1 under the read hesd would be reflected
in what part of its propram the counter machine was executing.

Fach TH operaticn is simulated by an copen subroutine in the 3CM.
Suppose our TH is to print & 1 and move the read head one square
to the right:

To simulate writing a 1 on the left half of the tape, the 3CM
doubles the contents of A and adds 1. Counter C is used as a
temrorary in this operation.

- i!l. .c— ---Iu|-'+' "llll-ll
&
At

To simulste moving the read head right, reading one square of
tape, counter B is divided by two and the remainder tells what
character was on the tape. Again, € is used as a temporary.

o o oty e # (= —— ... tape square = 0
C,[H* E‘:—r... tape square = 1

Each (state, charascter under read head) pair of the Turing
nachine corresponds to about 10 counter machine instructions
(imoring jumps). The proof can be modified to allow a larger
alphabet by changsing the radix of the simulation. QED

3

If the Turing machine has an argument, the usual convention is
to use "unary" notation. The argument is written as a string of
12 on the tape immediately to the left of the read head. The
arrument convention for CHMs is to put the argument in one of the
courters. When a CM computes a function F(ii), it starts with N
in & specified counter, wi the other counters zero. If F(l) is
defined, the CM halts with F(N) in a particular counter. If F(Ii}
is not defined, the CM does not halt.

Theorem: A 3CM ecan compute any partial recursive Tunction of one
variable. It starts with the argument in a counter, and (if it
halts) leaves the answer in a counter.

Froof: There i= some Turing machine which computes the given
function. Construct a 3CH to simulate that TM. An argument of I
is given to the TH as a string of N 1s irmediately tc the left
of the read head. The simulating ZCH will expect counfter A to :

!
contain a binary number consisting of N consecutive 1s3 i.e., 2 =1.
But our theorem requires that the 3CHM start with N. So we attach
an input converter at the begimning of the simulator. The

N

converter changes N into 2 =1. If the TH halts, its answer will
be a string of F(N) consecutive 1s immediately to the left of the
read hesd. So we attach an outrut converter to the simulator,

FiH
vhich converts 2 -1 to F(N).
The finsl machine:

Start—tﬂ'_/—\\ o | 3CH szimulator E+d
Fit _) for TH that » Am g B~ —j—>lialt
A— B- computes F CE+ B-
B+ Em At

The machine starts with N in counter C, and A and B zeroc. If it
halts, F(N) is in counter C.

Theorem: Any counter machine can be simulated by a 2CH, provided
an cobscure coding is accepted for the input and ocutput.

Proocf: Suppose the 2CM has counters A and E, and that we want to
simulate a 4CM with counters named W, ¥, Y, and Z. T!Ir:tfezcuntenta
W X
of 211 four counters are coded into one numker, 2 3 5 7 . This
number is kept in counter A. Counter B is used as a temporary.
Each 4CH instruction is simulated by an open subroutine in the 2Cii.
To sipulate ¥+, the number in counter A is multiplied by 3.

To simulate ¥-, the number in A is divided by 3, the guotient
roing into B. If the division is exact, B is moved toc A. If the
division is not exact, the original number in A is restored, and
the simulated zero branch of the X- instruction is taken.

- (division i= exact)——wB=——— normal tranch
& & "'*"""'"'Ih"l.-' G+

A= A+
N~ At
Bt St

B —— zero branch
QED

Hote for future use: We need only three counters to simulate a
Turing machine. If we are simulating arﬁgﬁuthat cEmputes a
function F{1), thg{ﬁﬂﬁ input would ke 2 3 5 5 or 2 . The 2CH

outyut would be 2 «» A peculiarity of this simulation scheme
I

is that if t?E]ECH iz started with 2 K, where (K,30)=1, it will
FiI
halt with 2 K.

Corollary: The Halting Problem for 2CMs is unsclvable.

Corollary: A 2CM can compute any partial recursive function of
I
one armument, provided the input is coded as 2 and the output
answer
(if the machine halts) is coded as 2 .

This corollary provides the rationale for the Input Problem and
the Cutput Froblem.
I

The Input Problem: Find a 2CM that computes 2 when started with
Il in one counter.

The Cutput Froblem: Fﬁnd g 2CM that computes N when started with
¢ in one counter.

The pgoal of these two problems is to make a 2CH without the
coding restrictions in the corollary. This would be done by
putting a TH simulator in between an input converter and an
outrut converter. This memo proves that the Input Froblem is
impossible. The Cutput Problem seems to involve some difficult
nunber theory guestions.

L%]

Before proceeding with the impossibility preoof, we should
mention another way around the coding difficulties. Ancther
corvention sometimes used for arguments is to have a special
instruction which reads one character of the arrument, and
branches one of two ways. (This assumes a two character input
alrhabet.) If our 2CM gets its input this way, and writes its
answer with similar "write one character of cutput" instructions,
then the coding problems go away.

lext, we introduce the idea of an MP1EM. The best way to think
about 2CHs is to think about MP1RMs instead.

The Keplacement Lemma: Any two counter machine started with zero
in one counter can be simulated by a more powerful one register
machine (MPIRM). The register is dencled by N, and containe &
nonnefative inteper, also dencted by E. The MPIRM has a better
Instruction set than a CH. The instructions availabtle are:

Add B Adds a constant K to the register.

lul £ Multiplies the register by K.

Sub1 If k=0, Jump out of the normal instruction sequence.

If >0, subtract one from . (This is the same as the
counter machine instruction R=.)

Div ¥ Divide R by K>0, the quotient going into R. Jump to one
of K different places, depending con the remazinder. A
divide instruction has K arrows coming cut of it.

Jump Jump Lo someplace else in the program.

Halt Halt; the answer is in K.

K denctes a nomnegative integer; K may be different in different
instructions; the program may not alter any K.

We introduce the notation Jump* for the infinite loop J {pj.

Froof of the Replacement Lemma:

Gefore reading the proof, it is well to have the main point in
mind. Desides adding or subtracting constants from the counters,
a £CH can carry out only one useful kind of computation step:

Hultiply the contents of one counter by some rational number P/C,
putting the result in the other counter. (The first counter is
cleared.) Jump to ome of Q different places, depending on the
remoinder mod 8.

This computation ste¥ is accomplished by a strong loop. The
first pert of the proof chanses the 2CM into a form that makes
the proof ef this statement easy.

£

Tet s look at the 2CM we have to similate. Assume the counters
are A and B, ?gd that B is zero at Eﬁart. . ol

First we define the phrase stro « ouppose that we take
the diagram of the 2CHM program, an& Egﬁpﬂrariﬁg erase all zero
branch arrows. Any loops remaining are called strong loops. A
strong loop will be some sequence of A+, A—, DB+, B—-, and Jump
instructions. HNote that strong loops cannct have subloocps, for
the inside lcop would have to exit with a zero branch arrow,
which would be part of the strong loop.

(llow restore the erased arrovs.)

— E"' — s all

/Cfﬂ_

& & & = .A."_-'-'- II'D[:‘F'E'
.I!L—-.____ A+
Am — A+
B+ At

| S P)

Loop 1

Loop #

In the disgram, there are three strong loops.)

An instruction in a strong leoop is called an entry point if it
can be reached (in one instruction) from Start, or Ifrom some
instruction cutside the loop, or even from a zero branch of a "-"
instruction within the loop. In the diagram above, Loops 1 and 3
have one entry point, and Loop £ has two.

We want to alter the 2CM so that a1l strong loops have only one
entry point. For each strong loop with more than one entry
point, make as many coples of the loop as there are excess entry
points. Each copys ang the original, has a different entry point
desirmated as its single entry point. Improper entries into the
original loop are disconnected and routed to the appropriate
copy. Exits from the copies are routed together with the
corresponding exits in the original loop. This transformation
will cause a lot of exit arrows to be copied, but will not create
any new strong loops (except the copies), or any new entry points
to any strong loop. The modified program will somewhat larger
than the original, but will have the same computational behavior.

T

Am — A+ Loop 3
"‘"-....
B+ 'HEHH‘ At

B~
Loop 1 A+ HH“H
A+ Loop 2B hhh““m‘
At
E— P
Loop 2A

7

A repular loop is a single entry strong loop in which all ®-»
E' after the entry peint, and precede

instructions come immedia

all "4¥ jp=tructions.
mid

Falar by

can be made regular

iz called the

exchanzes of Types 1 and 2.

Type 1:
Type 23
Type 3:

Type 4:

Type &:

Type 6:

A+
}:-’_"'il.l

X+
I_"_'_—"l-li

I
Y+

x—-—--—i'-.-l.l
Y e L LW
x—""'—'—!'-.-
X+

:':-_l-iii
T+

int of the loop.

The point after the -s and before the +s
) A single entry strong loop
some finite sequence of instruction

delete

f—— e — ...

i+

I+

i+

Y- » K=

:{_'_" :I-'"' i -‘--‘-‘:l. & ==Ll
.

no replacement

T
Yo ——Yu —s(inpossible)

L

Types 3=6 are included for completeness. Note that types 2, 4,
and & are invalid if X and Y are the same counter. e exchanges
are also invalid if the second instruction of the pair is an
entry point. OSince we have made our loops have only one entry
point, the necessary exchanges can be carried out without
crossing the entry point.

= B by, o o Tl

Loop 3

+
At

A= -.__.________________
5\

E+ et fi+
“\\‘ A+
Loop 1
A+ Loop 2B
B= —at—a A+
A+ A+ - S—
A+
Loop 2A

ISuppase all strong loops are rﬁgylarized. The program may be a
little longer, but no new entry points are created, nor any new
strong loops.

d

The number of instructions in the expanded 2CK is dencoted by I.

Hext, we introduce an intermediate machine: The EMP1.5HM (Even
Fore Fowerful 1.5 Register Machine). We will prove that a 2CH
can be =imulated by an EMP1.5EM, and that an EMF1.5EM can be
simulated an MP1REM.

An EMP1.5EM is an MP1EM with a certain amount of additional
memcry. 1t has a flag F indicating whether R is representing
counter A or counter B at the moment. Tt slso has another
register celled OR (for Other Register) which is capable of
holding any integer from O to I+1. OR will represent whichever
counter is not repesented by K. We alse include the sdditional
instructions OR+, OR-, Add CR toc H, Set OR to =zero, Test F, and
Complement F.

O+ i= illegal if OR contains I+1. At various places in the
proof it is necessary to verify that OH<=I. To help accomplish
this, we will specify that whenever the EMP1.5RM simulates the
2CH taking a zero branch arrow, the conditicen CF=0 is satisfied.
Taking a zero branch arrow implies at least one counter is zero;
if CR is representing this counter; fine. If not, we exchange CH
and E (and complement F).

How the simulation: At Start, R represents A, OR represents B
(which contains zerc), and F reflects HR:A. EQM instructions
cutside of strong leops are translated to eguivalent EMFP1.5REM
routines:

Jump represents Jump, and Halt, Halt.

A+ ”F‘t':iﬁ,_,ﬁdd 1\
«ss—= Tegst F -
hi%??“""ljmf

b e LT R:A Subl
.ean " "™ Add OR to R
l-r-ll_bTE'Et F EEm GH
Comp F
GH-—h P

Similarly for B+ and B-. (This translation introduces a Test F
instruction for every 2CM instruction. We could remove most of
the Test F instructions by rearranging the flow of control

slightly.)

=

We have blithely translated A+ to a routine containing OR+. To
make this step valid, we must verify that OR<=I. In fact, we
assert that OR<=I at all times:

Firset, CR=0 in three cases:

1 At Start;

2) Whenever a zerc branch arrow is simulated;

3) VWhen simulating an exit from a strong loop. (When we specif
the simulation of a strong loop, this condition will be met.

At any place in the program cutside of a strong loop, no more
than T 2CH instructions have been executed since one of these
everts occurred. (For, if I+1 instructions had been executed,
some instruction would have been executed twice. But the path
taken between the two executions of the repeated instruction
could not contain & zero branch arrow; so the path would be a
strong loop. But we are outside of a strong loop.) Since at
most I 2CM instructions have been executed since OR was 0, it
could have increased to at most I.

To simulate a regular leop: Determine the six constants Aplus,
Bplus, Aminus, Pminus, dA, and dB. Aplus is the number of A+
instructions in the loop; Aminus is the number of A- instructions;
and dA is the net change in A in one cycle of the loop.
dA = Aplus = Aminus. OSimilarly for Bplus, Eminus, and dB.

At the entry point of the loop:
1; 0OR<=1 by the argument above.
2) The program will exit instead of completing the next cycle if

and only if A<Aminus or B<Bminus.

For the first section of the loop, from the entry point to the
midpoint, we use the substitution given above for "-0
instructions. If the E;ﬂgram exits from the loop in this
section, it will satisfy the OR=0 condition, since the n-w
routine does. F will not be changed unless the loop exits, so we
can remcve all but one of the Test F instructions if we desire.

Suppose that the program reaches the midpeoint of the loop. We
do a Test F; each branch from the test transfers to a Eﬂﬁ of the
agpru riate routine listed below. We will describe the K:A and
CH:E branch.

Since F hes not changed since the loop was entered, OR:B at the
entry point. Therefore, when the lcop was entered, B<=I.

There are three cases:

Case 1t dA »>= 0 and dB »>= 0. Then the 2CM program will loop
indefinitely. HKeplace code here with Jump*.

Case 2: db < 0. We may just copy the rest of the loop,
translating A+ to Add 1 and B+ to OF+. When the prn?ram gets
back to the loop’s entry point, B will be less than it was when
the loop was entered. Specifically, B at return to entry point
= B at coriginal entry point + dB.) But B has been increasing
since the midpoint, so it is <=1 everywhere in the loop. Thus,
CUh<=I everywhere in the simulated lcop. When the loop finally
exits, it will talke a zero branch arrow, and satis the QOR=0
concition. Hote that we cannot say without more calculation
whether the exit will be vie an A= or a F—.

Case %: dA < O and dB »>= 0. If the program reaches the midpoint
the first time around the loop, it will never exit via a bB-,
since B will not decrease on successive cycles of the loop.

Suppose A=Amid and B=Bmid at the midpoint. Ome cycle of the
loor adds dA to A and dB to B. After K cycles, counting from
midpoint to midpoint,

A= Amid + K dA = Amid — ¥ (—dA), and B = Emid + K dBE.

(Since dA<0, —dA will be positive.) The 2CM program will return
to the midpoint exactly Isghmidji-dﬁjj times— as long as A>=0
at the midpoint. The routine below simulates L cycles of the
loop, from midpoint to midpoint. We close off the loop by
simulating the 2CM going through the +s for the last iime, and
then jurp to the entry point.

Div (—=dA) (now R contains L)

Remainders 9/// eee \\-ﬂﬁ-}ﬂ

(A copy of this lul 4B

routine appears Add OR to R (R contains Bmid+LdE)
at the end of Conp F
every divide - Set OR to dero
arrowv.) Set OR to Rem OR+s)
OR=RHem=Amid-L({-dA)=Amid+ILdA)
Add Bplus (to R) These instructions simulate

the 2CH going through the +s
for the last time.)

fdd Aplus to OR {more OR+s)

Jump to the top of the loop

The loop will exit before returning to the midpoint again. We
rust verify that OR<=I when we jump to the top of the lcop:

OF = Aplus+Rem < Aplus+(—dA) = Aplus=(Aplus-Aminus) = Aminus <=1

This also confirms that the loop will exit before reaching the
nmidpoint again. The exit will via an A—, and the OR=0
condition will be satisfied.

We have taken care of both regular 13325, and instructions
cutside of regular loops. EMP1.5RM simulates the regularized 2CH.

Put we can convert the EMP1.5EM to an MP1RM. For each state of
the EMP1.5RM, we create 2(I+2) MPIRN states; one state for each
conbination of values of I' and OR. The instructions Oh+, OR-
Zerc OR, Test T, and Comp F become Jumps between different MPIRH
states. Add OR to R becomes an Add K. QED

Addendun to the Replacement Lemma: The Es in the MPIRM need
never be greater than the number of instructions in the original

ZCH program.

Proof: Add K can always be broken up into & group of Add 1s.
For Mul K and Div K, we note that the construction given above
for regularizing strong loops never makes a strong leoop longer
than it was in the original 2CHM. The Es in the Mul and Div
instructions are never greater than the length of the resular
loop they simulate, which is in turn bounded by the size of the
2CH beings simalated. QED

Thecrem: An HP1EM can be simulated by =& ZCH.

Corollary: F(N) is compuatable by a 2CH if and only if it is
computable by an MP1HM.

Hotice that if the prﬂﬁram of an MP1RM ever tekes the zerc branch
of 7 Subl instruction, the total state of the machine i=s known.

Ve know that R is O, and we know which instruction the MPIEM is
about to execute. We could replace the code following the

zero branch with code setting E to the final answer and halting.
(Or sgoing into an infinite loop, if that is what the code in the
original machine would do.) e code would be "Add K, Halt"™ or
"Jump#*". A similar argument shows that we ecan replace code
following a Mul O instruction.

A Subl zero branch or a Mul O instruction is called evaluated
if it i=s immedia$51% followed by either "Add K, Halt"™ or TTump*" .,
(We may change Mul O, Jump* to Jump*.) Evaluation of a Subl zero
branch often allows us to ignore the branching cof a Subl
instruction, and to consider only the main line of code.

1]
Theorem: There i= no tyo counter machine that calculates 2 .

N
Proof sketch: Assume that we have s 2CM which computes 2 from Il.
We convert it to an equivalent HP1RM, and evaluate Subl zero
branches. (Most of these branches will probably have powers of
two as their answers.)

Since there are infinitely many powers of two, and only
finitely many Subl instructions, we can find EﬂEEHH such that
when the MP1RM is started with i, it halts with 2 , but the Halt
instruction is not at the end of a Subl zero branch.

Examine the path taken throush the program. This path will
alyays take the nonzero branch of any Subl instruction that it

ez through.

EEWE mﬂkeughnﬂte of all the divide instructions the path goes
through. Hultigly together all the divisors, counting & divisor
several times if the path gees through the instruction several
times. Call the product D. D is not zero, since no divisor is
zerc. How look at the multiply instructions in the path;

mul tiply topether the multipliers, counting repeated multipliers
as with divides; eall the product H.

How we claim: Start the MPFIRM with N + jiD, j>=0. Then the
MP1EM will follow the same path as it did when started with I,

I

and will get as answer 2 + JM. (The proof of this claim is
spelled cut in the next theoren. x

Byt this is imnpossible, for the function 2 grows more rapidly
thar anv arithmetic progression. Hence the proposed 2CHM cannct
exist. QkD

12

Arithmetic Progression Theorem: Suppose a 2CM computes some
function F(N). (F may be partial.) Then the of F contains
a finite subset S, such that for any N for which F(N) is defined
and outside of 5, there exist >0 and M>0 such that

F(Ii+3iD) = F(N) + 3M for all j»=0.

Horeover, D and M have no prime factors greater than I, the
number of instructions in the 2CHM.

The thecrem is vacuous unless F has infinite range.

Frocf: Replace the 2CM by an equivalent MPIEM. Evaluate Subl
zero branches and Mul O instructions. Take 5 to be the set of
values at the end of Subl zero branches or Mul O instructions.

Consider an N for which F(N) is defined and not in 5. Start
the MPIEM with N. It will halt after some time t with R=F(I).
We must au¥gly an M and D such that F(W+jJD) = F(N)+JM.

Look at the path taken by the computation. Suppose the nth
instruction in the path is denoted I(n) or by In; 1<=n<=t;
I(t) is Halt.

Define Mn, the nth multiplier, by:

If In = Mul K, then Mn=K. COCtherwise, Mn=1.
Similarly, the nth divisor, Im, is defined bLy:

If In = Div K, then Dn=K. Otherwise, DIn=1.

Fn is the contents of R after executing In. RO is the starting
value of H.

Pl-]t H == H1 HE "H R Ht -H.Hd D - D1 DE DE - Dt-q.-

M>0, =ince all the Mi must be >0. If some Mi were O, the MP1RM
would halt immediately, with H containing an element of 5. But
F(I) is not in S. D0, since all Di>0. Each Mi and Di is <=I,
s0 i and D have no prime factors »>I. Now we claim:

If the MPMEM is started with N+3D, it folleows the
same path as with N, and it Halts with R = F(N)+3iM.

let Nn be the value of En when the machine is started with N.

Then NC=N and Ht=F(N). The proof of the claim is by induction,

?%n thEIEGEMGH path of the computations of F(N) and F(N+iD), of
e formula

er = I'Iﬂ + j H1 HEI TR H.n D[]H":l -aw Dt. [m’IJ

First, RO = NU + D, by hypothesis. Now suppose that we have
verified that EQ1 is true for n-1, and that both computations
have followed the same path so far. We consider all possible
cases of what the next instruction, In, might bes:

13
If In is Add K: lin=N(n-1) +K, and Mn=In= 1.
Fn = R({n-1) + E
= N(n=1) + J M1 oo M(n=1) In D(n+1) ... Dt + K
=MNn+ 3 M ..o M(n=1) Mn D{n+1) ... Dt
If In is Subl: H(n=1) > 0, since the computation of F(Ii) alway
takes the nonzerc branch of Subl instructions. lin = ii(n-1) -

All Mi and Di are >0; j>=0; so R({n=1) >= l({n=1) > 0O; hence the E
computation will take the nenzerc branch alsc. Rn = Rin-1) -

=%] s [

If In is Mul K: Hn = N{n=1) * K Mn =K, Dn =1
Fn = R(n=-1) * ¥
= {N(n=1) + j M1 .o. M(n=1) In ... Dt} =» ¥
=ln+ jMH ... M(n—=1) K 1 D(n+1) ... Dt
=Hn+ jHl ... M{n—1) Mn D({n+1) ... Dt

If In is Div E: Dn =K, Mn =1
Im = [N(n-1)/K] and the remainder is N(n-1) - K ln.
Fn = [R(n-1)/K] and the remainder is R(n-1) - K En.
Fn=[{N(n-1) + j M1 .o M{n=1) Dn ... Dt} / K]
= [W(n=1)/K] + j M1 ... M({n=1) D({n+1) ... Dt
=MNn+ JH ... M{n=1) Mn D{n+1) ... Dt

F({n=1) = K En

- ' ans 1 .u
N(n=1) + % ?ﬁn + jﬂh?_.z.nﬁn D{nfg} ess Dt)

= N({n=1) = E HNn

The remainders are the same in both naufﬁ;atinns, so they will
take the same branch out of the divide truction.

If In is Jump or Halt, Mn=Dn=1, so EQ1 remains true.

We have proved that all types of instruction preserve EQ1, and
that when instructions whi branch are executed, both
computations will take the same branch. So at time t, both
computations will halt. Rt = Nt + j M1 ... Mt = F(N)+jM, as
required. OQFD

14

Arithmetic Series Condition: Iet F(N) be a (perhaps partial)
function. Iet Sp, where p is prime, be the set of all I
satisfying the following two conditions:

513 N is a nommegative integer, and F(N) is defined.
2) For all D»0 with no prime factors >p, if F{li+JD)
is defined for all_g?:ﬂ, then it is a nonlinear

function of the Jjr=l.

Iet Sp° be the set of all N satisfying (1) and (27):

(27) PFor all D>0 with no prime factor >p, F(I+jD),
for those values of j»=0 at which it is defined,
is & nonlinear function of J.

(Sc Sp” is a subset of Sp. Also, if g is a prime >p, then Sp
contains Sq, and Sp” contains Sq°.) ppose that for =11 p,
F(Sp) is an infinite set. Then F _is not computable by a 2CH.
Furthermore, if, for all p, F(Sp®) is an infinite set, then no
extension of F is 2CM computable.

This theorem is essentially a contrapositive of the Arithmetic
Prorression Theorem.

Proof: Suppose that F(Sp) is infinite for all p, and that some
2CH computes F. Then by the AP Theorem, there 1s a finite set B
such that if F(N) is not in S, there are D>0 and M>0 such that
F{N+3D)=F(N)+j¥. Choose a prime p which is greater than the
number of instructicns in tﬁg 2CM. Choose an N in Sp such that
F(N) is not in S. Find D and M. Then I‘SH+;‘|D}=_E'[H]+ M, and D has
no prime facter >p. This contradicts (2).

Suppose now that F(Sp”) is infinite for all E, and that some
2CM computes G, an extension of F. Find 5 such that G(N) defined
and cutside S img&ies the existence of D and M. Choose an K in
5p° such that F(N) is not in S. Since G is an extension of F,
G%H]:F{H]. S0 G(N) is not in 5. So there exist M>0 and D>O,

D having no prime factor >p, such that G(N+jD)=G(N)+jM, for all
j»=0. Hence any restriction of G, in particular, F, will satisfy
the equation if it is defined for N+jD. But this contradicts (2°).
QED

We define the arithmetic series with zeroth element A>=0 and
common difference DU to be the set {A+jD, where j>=0}.
Arithmetic series with A<O or IM=0 are disqualified; the series
starting with A does not include any elements preceding A, such
as A-D. The series starting with A is distinct from the series
starting with A+D; the former has an extra element.

We now give several "working™ corollaries to the ASC.

15

Corcllary: Suppose a 2CM computes F(N). There is some
thresheld T, such that the set {N | F(N)>T} is the disjcint
union of a Epﬂssihly enpty or infinite) ceollection of srithretic
series. The common differences of these series have bounded
rrime factors. F maps each of the series into ancother arithmetic
series. The coEmon differences of the image series alsc have
bounded prime factors. The range of F is the union of a finite
set and a (possibly empty or infinite) collection of arithmetic
..rE-'I‘lEE.

In particular, if F(N) is unbounded as I arproaches infinity,
both the domain and the range of F must contain an arithmetic
SET1E5.

llote: The corollary appears to distinguish between the domain
and the range in saying that the domain is z disjeint union, and
the range merely a union. This distinction is not real, however,
since if a set is the union of & collection of arithmetic series,
it is the disjeint union of some other collection of arithmetic
series.

Thecrem: The functions Exactsqrt and Exactlog? defined below are
not 2CH computable:

Exactsqrt(ll) = sqrt(l) if N is a perfect square;
undefined otherwise.

log2 I if I is a power of 2;
undefined octherwise.

Exactlog2(l)

Froof: Both functions are unbounded, but their domains do not
contain arithmetic sequences. QED

In the following theorems, the phrase F(ll] has nonlinear growth
rate nmeans that F n%ﬁ is defined infinitely offen, and that T7n
approaches either O or infinity as Il a rnachas infinity. If
{) has nonlinear growth Iﬂte, and F(A+ is defined for
infinitely many j»=0, them F(A+jD), whEre it is defined, is a

nonlinear fuuc{iﬂn of j.

Thecrem: If F(I) is total, monotonie, and unbounded, and has
nonlinear gsrowth rate, F is not 2CH computable.

2 H
Coroll Ho 2CM can compute the functions 0 , 2 , [log2 H],
[sqrt(H) i Fib{¥), etc.

The corollary deoesn“t solve the Cutput Problem, because the function
[log2 N] is stronger than we need. The Output Froblem only requires
I

that a 2CH map 2 into N; i-.e., that exact powers of 2 come out
correctly. UNothing is said about the 2CM°s behavior when started on
non-powers of 2. In fact, we know that any 2CH that solves the
Outrut Freblem will compute a function whose domain contains an
arithmetic series.

16

Thecrem: If F(N) is unbounded and monotonic, but perhgfs

rtial, with 2 nonlinear growth rate; and for infinit Eﬁmany N,
?%{H] iz defined, and for all D0, there is a j»0 such that
F(ll+3D) is defined)}, then F and its extensions are not 2CM
computable.

Froof: The condition (for =11 I>0, there is a j»0 such that

F(li+3iD) is defined) iﬁpliEE (for all D>O, there are infinitely

many j>0 such that F(W+jD) is defined). If, for particular I

and D', J were the last j, we could consider a ney D: 2JD7.

F(I+42J0°) is defined for some j»0; but then 23jJ is a new j for D”.
Hence, for the N in the theorem, for all >0, F(I+jD) i= =2

nonlinear functiocn of 3. But now the ASC applies. éED

Mnother way to state this thecrem: Eu;mmse F(K) is unbounded,
monatonic, perhaps partial, and has nonlinear growth rate. N is
disqualified by D if the domain of F contains only finitely many
num%érs =N mod T). If F(H) is dﬁ{ig&d,sand N izhngt
disqualified by any D, N is quali a uppose that some
(necessarily infinite suhﬁe%'ET'IEETEﬂmain of F is qualified.
Then F is not 2CH computable.

Thecrem: No 2CM can compute sqrt(l) even if Il is guaranteed to
be a square. o

Proof: Chocse I to be & square, say =z . Then for %Ei L>0, there
are inginitely rany J such that N+JD is a square. e j=

2zh+lh , where h is any nommegative integer. (ED

This theorem asserts more than the theorem about Exactsgrt. It
asserts that no extension of Exactsqrt is ZCM computable. We
would like to prove a corresponding theorem about Exactloge; this
would sclve the OQutput Problem.

Theorem: Ne 2CM can compute the inverse function of Fib(N), even
if the input is guaranteed to be a Fibomacel nmumber.

Proof: We show that for any N and any D>0, there is a j»0 such
that Fib({N) + jD is a Fibonacci number. We prove that there is a
2

() such that 0 < Q <= D and Fihgﬂg = Fibgﬂ)} (mod D).
Cﬂnséder ordered pairs (Fib(I),Fib(I+1)) (meod D). ThEEE are at

most I such pairs; so for some J and K, 0 <=J < K <= D ,
Fib{J)=Fib(K) (mod D% and Fib(J+1)=Fib(E+1)} (mod D). But this
implies Fib(J4X)=Fib(K+X) (mod D) for all positive and negative
X3 we mey taoke ¥=lN=Jj; then O=K-J. QED

The technique of the last two theorems fails on the Output
Problem: IF is Ent true that for all N and D, Fh?re is an EGN
L - |+
such that 2 =2 (med D). Trouble arises if 2 |D.

17

Theorem: If F(ll) is monotonic, unbounded, and 2CM computable,
then F(Il)/ll, where it is defined, approaches a positive rational
numbeg F/Q as a2 1limit. Moreover, QF(N)-FN is bounded whenever it
iz defined.

Conjecture: If F(N) is monotonic, unbounded, and 2CH computable,
then there exist P and Q20 such that (for large N) QF(I)=FH
dapﬂgds enly on § (mod Q)3 F may be undefined at some residues
mod .

o
Disproof: TF(HI) = H-1 if 340 and 0 = (ZE+1)4 , T and K interers;
H otherwvise.

Conjecture: If P(H) is 2CH computable and there exist real
nurbers X and ¥ such that for large N, X > F(N)/N > Y > U,

whenever F(Ii) iz defined, then I is computable by an HPI1EM

without loops (except for Jump*), and with only one divide

instruction.

Dispreef: TF(N) =N if 3|W or SIN;
[d/1log2 3] J
3 (2x+1) if I = 2 (2K+1).
This function says, "Suppcse that powers of 3 gnﬂ % happen to
be free for doing a computation. OSuppose that £ 1is the largest
o
power of § that divides N. Then convert 2 t¢ the largest power
of % €<= 2 " 3Since powers of 3 and 5 are available to simulate

counters, we can carry out the computation necessary to determine
the correct pover of 3.

Below is an example of a 2CM computable total function F for
which F(N)/ll has arbitrarily large and small values:

F(l) = ﬁ if =03

if 5H,é]=1:
FEﬁH 2} if 2|N;
F(N/3)

if 3N
This function converts each 2 in the factorization of N to 8 5,
2
and removes all %s. PF(H)>N infinitely often, and F(N)=1
infinitely often.) .
Mere generally, suppose G is any partial recursive function.
We can define a 2CHM computable Tunction H:
H(Il) = undefined if 3N or S5|N;
G(A) A)
2 if N =2FKand K 15 odd.

Such an I can rrow as rapidly as any partial recursive function.

18

The following theorem is the reason for carrying along the
condition about prime factors in the AP Theorem and subsequent
thecrems.

Thecrem: The function SPF(N), the smallest prime factor of N, is
not 2CH computable.

Froof: One proof is to note that the range of SPF does not
contain an arithmetic sequence.

Here is an alternate proof: Refer to the ASC for the
definition of Sp. Ve show that Sp contains all primes >p.
Suppose g is a prime »p. Then EPF{q+jD] i1s a nonlinear function
of j. Fer (q,D)=1, since D has no prime divisors }E. So the
sequence q+1D contains infinitely many primes; at these points,
SFF(q+3iD)=a+jD. On the other hand, whenever qlj, SFF(q+iD)<=q.
S0 EPth+jD} iz not a monotonic function of j, and consequently
not linear. ED

For a proof of Dirichlet’s Theorem (if (A,D)=1, the arithmetic
series starting with A and having common difference D contains an
infinity of primes) see Davenport, Multiplicative Number Theory.

L
Consider the sets Sinf = () Sp and Sinf* = () Sp°. In all

of our examples except SPT,FEEnf or Sinf” has begﬁgan infinite
set. In the case of 3FF, 3inf is empty, but each S5p is infinite.
Fortunately this weaker condition 1s enough to show that SFF is
not 2CH computable.

SHEPEEE F iz & (perhaps partial) function. FI(N) is called a
uasi-inverse of F if, for all N in the range of F, FI(N) is
efine (FI(N))=N.

It seems curiocus that the following statement has only the
status of a conjecture, but I do not lknow of a proof.

Conjecture: There is some ZCM computable function F with no 2CH
computable quasi-inverse.

lle digress a moment to mention a candidate for the simplest
unsoclvable problem: the 3N+1 Problem. Suppose we define a
Tfunction F on the integers:

F(N) = N/2 if K is even;
30+1 if N is odd.

Consider the sequence N, F(N), F(F(H}), F(F(F(N)))y «eoe -
Humerical evidence, and a probability argument, suggest that for
all I, the sequence is eventually bounded.

19
There are five known loops:

B: 0, O

C: =1, =2, =1

p: =5, =14, =7, =20, =10, =5

E: =17, =50, =-2%, =74, =57, =110, =55, =164, =82, 41,

—1.&". —511 —182; _91, -2.?2! ‘“.‘lﬁﬁr “EEEF —E"-II-!. _'1T

All I>0 seem to lead to loop A; and all H<O seem to lead to C,
Dy or E. Although extensive numerical data has been gathered,
virtually nothing has been proved about the Erablem. Open

uestions include: Are there any more loops? Do all nunbers gfet

into a loop? Do any numbers go to infinity? What percentage of
integers fall into each leoop? Do the percentages existY It has
not even been shown that some set of positive density falls into
one of the lnown loops.

Hoger Banks wrote a computer program that verified that all
nunters between 100,000, and 60,000,000 decay into cne of
these loops.

The 3141 Froblem is an interesting example of what a simple
MP1EM can compute. The basic program is simple:

atart

Div 2
Hem=0 Eem=1
Mul 6
Add 4

We can put in a check for 1 if we want to know whether N has
converged to the 1 loop.

There is an isomorphism between the 3N+41 Problem and the ZN-1
Problem; the 3H+1 Problem for positive numbers is identiecal to
the 3H~i Froblem for negative numbers, and vice versa.

The following function is interesting: Given a negative number,
which loop does it fall into? This can e coded for an MP1RM by
translating to the 3N=1 Problem for positive numbers.

The next few theorems show that many MP1EMs are equivalent to
FF1EMs that resemble the one above.

20

We give names tc a few common substructures of MFIEM programs.

A Subl chein is a (possibly null) sequence of Subl
instructions, the main btranch of each %EEding to the next.
An evaluated Subl chain is & Sub1 chain in which the zero branch
arrows are evalvated; l.e., each zero branch arrow is either
Junp* or Add ¥, Halt. A threshold routine is an evaluated Subl
chain followed by Jump#*.

An MF1RM routine is called linear if it consists of one
(optionsl) Mul instruction, followed h¥ an (optional)} Add

instruction. An eventually linear routine is a linear routine
preceded by an eveluated Subl chain.

A routine is called medular if it is a Div instruction, every
branch of which is an evaluafed Mul 03 i.e., either Jumr#* or

Myl O, Add E, Halt. An evantuallg modular routine iz a modular
routine preceded by an evaluate ubl chaln.

Thegrem: An MPIEM subroutine with one entry point, containing no
Div instructions,; but peossibly including lﬂﬁfﬁi can be converted
to either an eventually modular, an eventually linear, or a
threshold routine.

Frocf: The routine must consist of Adds, Subls, Muls, Jumps, and
Halts. Suppose that all Subl zero branches and Mul ©
instructions are evaluated. (Tc do this, we suppose that the
subroutine is part of a larger prngram.% Delete Mul 1s.

low consider what possible loops remain: A loop can only exit
with 8 Subl. Therefore, at most one loop is possible; there are
no subleoops of loops.

Suppose that the loop exists; then we want to replace it with
equivalent loop-free code.

If the loop does not contain a Hul, it must consist only of
Subls, Adds, and Jumps. Either one irip around the loop
diminishes H, or it does not. If it does, 2ll K will go to zero;
which Subl zerc branch becomes the exit will depend on a
remainder condition. The lngﬁ can te replaced by a modular
routine. If R is not diminished in a c¢ircuit of the leoop, then
all R that are large encugh to make one circuit will loo
forever. Go we can disconnect the last instruction in tﬁe loop
from the entry point, and route it to a d .

How suppose that the loop deoes contain Muls: If K is greater
than some threshold T, one ecircuit of the loop will change it to
Af+E, where A>1 and B may be negative. If F>max(T,-B), one
circuit of the loop will increase R, and hence will loop forever.
So we replace the loop with a chain of 14max(T,=B) Subls followed
by a Jumf*.

This eliminates all loops.

low we use simplifications from the 1list on the next page to
put the resulting loop-free code into the desired form:

21

Add K, Add L Add E+L

Add O delete

Add K, Subil Add KE-1 if KE>O

Adéd K, Kul L Mul L, Add KL

Add K, Div L Liv L; branch Rem is Add [(K+I~1-Rem}/L], followed
by old branch -K (med L)

Add K, Jum Jump*
Hul O, Sub Mul O, then Jump to zerc branch of the Subl
tul K, Subl Subl, Mul K, Add E=1 if E>C

Hul K, Div L Div L; branch Rem is Hul K, Add [ERem/L], followed
by old branch KRem (mod L)
lHul ¥, Jump®* Jump*

Assume that we have applied as many simplifications as
possible. Then any Subls will precede any lHul, which will
precede any Add. 1T the main line of code ends in Jump*, any Add
or Mul can be simplified away, giving a threshold ruutfne.

IT" a Div was introduced to remove a loop, every branch of the
Div starts with either Jump® or Mul O. Any Mul or Add preceding
the Div will be converted to Muls or Adds on the branches of the
Iiv. These will be absorbed by the Jump* or Mul 0. This gives
an eventually modular routine.

If the main line does not end in Jump* or Div, we have an
eventually linear routine. This is the only case in which the
routine will return to the calling program. QED

Theorem: Any MFIEM can be simulated by an MP1RM of a very
special type. The special MPIRM has only one divide instruction;
each branch of the divide is either & threshold routine, or an
event linear routine that either halts u;hgumﬁgntmmk to the
divide. e path from Start contains a Mul t 5%5 to the
divide. This makes the MPIRM inteo a generaiized AN+ blem.

Start—= Mul D—=Div LD =

AN

Each branch is Subl Jump* or Add Ki, Halt
Sukbl Junp* or Add Ej, Halt
Subl Jump* or Add Kk, Halt

Jump* or Ml Y Eﬂptiﬂnal}
add 2 optional
Halt or Jump

22

FrooT:
We do seversl modifications to the MPIRM to get our simulator.

IT the first instruction after Start is not a Div, we put in a
Liv 1.

lext, we convert every branch out of a Div instruction te
gither a threshold routine, an eventually medular routine, or an
eventually linear routine. The modular routines will introduce
new Div instructions into the program; the branches out of these
divides are either Jump* (a threshold rcutine), or Mul O, Add K,
Helt (a linear routine).

We make all the divisors of the Div instructions the same, Iet
T be the least common multiple of all the divisors. Every arrow
or instruction going into a Div K has a Mul L/K appended; and the
Div K is changed to a Div L. DEranch Rem from the Div K becomes
btranch (L/K)Rer of the new Div L. If LK, there will be other
branches of the Div L which are unassigned; these are
inaccessible by the gram, and may be filled in with Jump*.

How that =211 the divisors are the same, we combine all
divide instructions. Assign a state number to each divide,
#iving state 0 to the dummy Div 1 at Start. Iet D be the total
number of Div instructicns. Every arrow or instruction going
into the divide with state number S has a Kul D, Add 5 agpended.
and is routed to the su¥erdivide. a Div LD. Hemainders from the
superdivide will range from O to LD-1. Express each remainder as
L¥+5, with O<=K<L and 0<=3<D. To branch Di+5, we attach branch X
from divide number S.

The various Muls and Adds we have introduced are then
simplified as in the preceding theorem, bringing the MPIEM to the
correct form. QED

Addendum to theorem: The divisor of the single divide
instruction may be chosen to be a number without sguare factors.

Frocf: An MP1RM divide instruction with a composite divisor may
be replaced by a tree of divide instructions with prime divisors.
If we make this modification to an MPIRM, and then ap%%y the
preceding theorem, then the least common multiple of the
divisors, L, will be a number without s%uare factors. We

chocse D to be any lar ime greater than the number of Div
instructions, so LD will square-free. QED

Thecrem: Suppose that the function computed by an MFI1RK
approaches infinity, and is undefined for only a finite number cf
arFpuments. Suppose that the definition of the Add instruction is
extended to allow a negstive addend. (It is an error if an Add
instruction produces a negative number.) Then the Subls may be
eliminated from the divide branches, and replaced with an
evaluated Subl chain immediately after Start, followed by an Add.

Start ———— Subl —»
Subl —
Subl —

-

Jurp* or Add F(1}, Halt
Jurp* or Add F(2), Halt

Jump* or Add Pgﬂi, I-Ialt§

Add T+1
Hul D
Div I =

Ench branch 1is / ! 1 &\

Jump* or MHul ¥ snptiunal%
Add £ optional
Halt or Jump

Procf: Construct the single divide MP1RH of the preceding
thecrem. Let 5 be the set of values at the end of Subl zero
branches. Iet T be the largest Il such that F(}) is undefined or
() is in S. Tut a length T+1 Subl chain after Start in the
HFP1EM, followed by an Add T+1. The Subl choin will evaluate F(H)
correctly for N<=T. If H>T,; the extra instructions will go
unnoticed. In this new machine, once execution has gotten past
the initial Subl chain, the computation will never take a Subl
zero branch. We may combine all of the Subls in a length C chain
into an Add -C. A divide branch will be either

Add =C or Add =C
Jump* Mul J
Add E

ialt or Jump to the divide

Since no Subl zero branches are used by the computation, the
Add -C will not produce negative numbers. The first type of
branch above may be changed te Jump*. The second ty@& may Le
chanmed to Ful J, Add E-JC, and then Halt or Junp. e quantity
[—JC will be of indeterminant sign.

In the cases 1 have examined, it is always possible to aveid
nerntive addends in the final KP1RM. Can this always be done?

Theorem: Suppose that some MP1EM solves the Cutput Problem.
Then we may convert that MPIRM into the form below, where the
addend cf an Add instruction may be negative. The new MPIEH may
be inequivalent to the starting MP1EM, but will still solve the
Output Problem. We specify that if an Add produces a negative
number, the function 1s undefined.

Start ——————pe Myl Z2TD
Div LD -

o vnn e AN

Jump®* or Hul J %nptiﬁnalg
Add F optional
Halt or Jump

24

Yrocf: Assume that we have an MP1EM that solves the Output
frotlem. We apply the transformations given in the precedins two
thecrems, while saying that we don’t care what haprens to any
input that is not & power of two. The number T in the precedin-
thecrem is twe te the largest number at the end of 2 Subl zere
branch. We put a Mul 2T after Start and an Add -log? 27 before
all Halt instructions. Powers of two larrser then T will skip
over the initial Subl chain, so we may delete it and coobine the
ful 2T and the Mal L. The Adds introduced before Helt
i?ﬁtructiﬂns are corbined with any rreceding Add instructions.
Qk

We have assumed that our CMs always begin with most of their
rezisters zero. The possibility remains that we could corpute

{]
2 if EErhaps the 2CM were started with Il in one counter, and
suitable "help™ in the other counter—— perhaps another copy of
iy or somesuch. The following discussion should eliminate that
possibility.

Suppose we have an N CM with an I instruction program. The
nunters in the counters of the CM can be considered to be the
coordinates of a point in N-space. One CH instructicn has the
effect of noving 1 step in l-spoce. We can think of the CH as &
finite state bug that crawls arcund in the region of N-space with
pesitive coordinates, and has the capability of detecting when it
is on a wall. (This corresponds to some counter being O.) The
point of the Replacement Lemma is that when a CH is far from a
wall, it is in & loop which repeatedly moves it a constant
vector.

If V is a vector in N-space, the norm of V, denoted by |V], is
the sum of the absolute values of the coordinates of V.

For reasons explained below, the set of points yhose
coordinates are all >=I is ecalled the inaccessible on. It is
not true that a CM is excluded from th€ Inaccessible region.

A CM is a constant adder if, whenever it is started in the
inaccessible repion, 1t moves a constant vector V, and halts.
(The CH may compute an interesting function when started outside
the inaccessible rﬂgiﬂn.? In a constant adding CH, |V|]<=I.

If, for scme input, a CM halts in the inaccessible rerion, then
the CM is a constant adder.

IT & Cl is not a constant adder, then there is a vector V, with
U<lvl<=I, such that any two points in the inaccessitble regicn
which differ by V are equivalent: Either the CH does not halt
with either input, or it halts with both, at the same point in
li=srace.

we note briefly the computing power of a 1CH:

Thecrem: A 1CH that is not a constant adder has a threshold T
and a period F such that 2T implies F{l)=F{§+F}. A 1CK is
either a constant adder or is eventually modular.

25

If H>2, an I CH can compute agi computable functicn of H-1
variables. The CM starts with the arpuments in H-1 counters, and
the remaining counter zero. The trick is for the Cl to code two
of the variables into cne number; this provides the necessary two
free counters to carry out & Turing macgine simulation. The
details of the coding aretgéven in the first t of the solution
to the multiplication problem, at the end of the memo. A sinilar
trick permits an N CH to compute up to I=1 outputs; only one
counter need be <I when the SE halts.

1he definitions beloy refer to a set 5 of positive interers.
Fho(3,l) = (number of elements of S<=H)/l
Fho(S,N) is called the density of S at N.

Fho(S) = lim Rho(S,H)
Hem

Eho(3) is the density of 3. The limit may not exist.

LRho(3)} = 1lim inf Fho(S,dJ)
Hem J3H

URho(3) = lim suﬁ Fho(S,d)
Iisen J3

Liho(S) is the lower density of S. URho(S) is the upper densit
of &. The lower and upzar ensities always exist; TEE%‘E:E éﬁﬁﬁ]

if and only if the density exists.

Thecrem: If the range of a 2CH computable function is infinite,
both the domain and range have positive lower densities.

It i= not true that a union of arithmetic series must have a
density.

Conjecture: If the ranpe of a 2CM computable function is
infinite, both the domain and the range have densities.

I the range is finite, the domain need not have a density.

For example,
F(n) = 0 if [leg2 1] is odd;
undefined otherwise.

In this example, LRho=1,/3 and UFho=2/3. Seversl similar examples
rroopt the following conjecture:

Conjecture: If the range of a 2CH computable function is finite,
and the domain does not have a density, then LEho and Ubkho are
rational.

26

We will discuss briefly finite-range functions computed by 2Cs.
We emll these functions partitions. A partition P(N) divides the
nonnegative integers into a Iinite number of classes; two
interers A and B are in the same class if P(A)=P(B), or if both
P(A) and P(BE) are undefined. A total tition is defined on all
nomnegative intesers. The values teken by a partition are
usually unimportant. A predicate is a partitlion that takes only
the values O and 1.

Some predicates that a 2CHM can decide are:
Is I a power of 2%
Iz Il either a power of two or a power of three?
I= I the sum of three distinct powers of 27
Does the decimal representicn DFEH contain a2 3 and a 17
Iz [log2 W] even or odd?
Are there an odd number of 1s in the binary expansion of [7
(This iz the parity function.)
In general, Finite State Machine fumction of the digits of I
is ZCH computable. EE
o
I=s Il a MHersenne (2 -1) or a Fermat (2 +1) prime?

A B

I= Il a prime of the form 2 3 +17% GSince there are {rﬂhably
infinitely many primes of this form, it seems likely that a 2CH
can recognize some infinite class of primes.
Does counter 1 countain a larger number than counter 27

Some questions:

Can a 2CH decide if its argument is a prime number?

Can a 2CH decide if its argument is a sguare?

Can & 2CH calculate the Nth digit of pi?

liy conjecture is that all three questions get o answers.

Can a ZCH do the Or or And of two predicates?

What about the amalgametion or corefinement of two partitions?
liy puess here is also No, since many predicates seem to reguire
the destruction of the input dats.

Presumably 2CMs cannot compute all possible partitions, so it
iz natural to look for theorems that distinguish 2CM computable
partitions.

A natural conjecture is: One of the classes of the partition
must contain an infinite arithmetic series. This is false:

P(N) = 0 if H=0 or if [log2 N] is even;
1 if [log2 W] is odd.

lieither eclass of this partition contains an infinite arithmetic
series. lNeither class has a density; the density of
oecillates between Liho=1,/3 and URho=2/3

27
Definition: Suppuseﬂthat A+B>=0; B>=0, C>1, D>0, D|A+B, and

DlA+BC. Then {(A+BC)/D | E>=0} is called an offset recmetric
progression (OGP). AI{ elements of an OGP sre 1ntegsers: LlA+D

K K
and A+BEC, so DJE(C=1); hence DIB(C =1); and DIA+EC .

Thegremn: An OCF contRins an infinity of composite nunbers.

'|:..':'
Froof: Suppose that p!{A+BCHJ£% fgr some K. Suppose that
+

p—
(pyCl=(p,D}=1. Then pl{A+BC)/D for any h>=0. By
Ferrat’s Theorem, (see Hardy and Wright, Introduction to Humber
=1 K+h(p=1) K
gggﬂry, Theorem T1), ¢ =1 (mod p)}, s0 C =C (med p).

Tt would be nice if each infinite class of & partition had to
contain an offset peometric progression: This would prove that o
2CH could not decide if its argument is prire. We note that each
of classes of the 3l-1 problem contains an OCP. Unfortunately,
this conjeecture is false:

Theorem: The predicate Q defined below is 2CH computable.
K

2
QU) =1if H =2 ;
0 otherwise.

Proof: First the Eﬂg verifies that 3. Then it loops, deing
o o o

the transformation 2 V (with V odd) to 3 V to 2 V, until J is

odd. low, Q(H)=1 only if J=V=1. QED

A real number X is effectively computable if there is an
algorithm A, which, for any Fﬂsﬂ;ive integer I, caleculates an
interer A(N) such that O <= HX - A(N) <= 2.

Theorem: Suppose that X is effectively computable and 0<=K<=1.
Then there is a recursive function B, defined on the integers
sreater than 1, and taking only the values G, 1, and 2, such that

L]
-Ii
¥ o= E 2 B(H}
H=2

20

Troof': Let A be an algoritm for X. Suppose that we have
determined B{N)} for N<dJ.

K
>

Iet ¥(K) = 2 B(N), and X(1)=0.
Ti=2

K K
Let E(X) = A(2) = 2 X(K=1). FE(E) can be calculated without
knowins B(E).

Iet B(J) = 0 if E
1 if E
2 if B

J)=13

J)e=2.

J§{=ﬂ;

We must show that lim X(K) = ¥X. We prove by induction that

Hewm
1=
2 >= X = X{J) »>= Q.

For J=1, we have 1 = X - X(1) >= C.

|
Suppose 2 »= ¥ = X(J=1) >= U3 we want to derive

Tl
2 = H = X(J) »= 0.

We abbreviate B(J) to B, E(J) to E, and A(2 } to Al
e lknow that s

X(J-1) + 2 3= X >= %(J=1)
J
A+2d= 2% > A
=J
X(J) = ¥(J=1) + 2 B

o
A=F+ 2 XJ-1)
irst we show that X»=X(J). If E<=0, =0, and X(J)=X(J-1)<=X.
>=1, then E»=[.
o o e
2 X e=A=2Kd1)+ Ee=02 I+ BE=2 X(d).

1=J
lext we show that X{J) + 2 »= ¥, If E<2, then E<=B.

o o] oJ o
P H = A+ 2 =2XJ1)+E+2¢=2X(I-1)+EB+2=2X(I)+ 2.

If F>=2, then B=2.

1=J -J 1=J P |
IV + 2 =H{d-1) +2 B+2 =XJI-1) +2 3=

OED

Thecrem: Surpose that X is effectively computable snd O<=X<=1.
%hen there is a 20M computable total partition with a class of
density X.

o5
—e
Proofs Put X = ZE B(J).
J=F

Define C(J) = 1 if B(J)=1 or Z2;
J otherwvise.

1 if B{J)=2;
0 othervise.

Then B{J) = C(J) + D(J).
llow define the partition

and ()

M)
P(l) = C{J+2) if Il = 2 (4KE+1);
o

D(J+2) if 1 = 2 (4K+3);
0 if =0,

The partition is 2CH computable: The CM first removes any
factors of 5, 13 or 17 from H. This provides the room to
simulate a 4CH using powers of 2, 5, , and 17. The 4CH starts
with J in its first counter and celculstes B(J+2), Then it zeros
all four of its counters, and takes one of three exits, depending
on the value of B, If B=0, P=0. If B=2, P=1. If B=1, we
axamine whether the number remaining in the 2CM after the
simulation is congruent to 1 or 3 (med 4); P=1 or 0,
respectively.

llow we show that the set S = {N | P(N)=1} has density X. The
number of numbers <=l and =1 (med 4) is [(i+3)/4]; and the number
=% (mod 4) is [(N+1)/47. We can write

I Fho(2,1) = {ﬂii] c(2) + Eﬂila n{2) + {Hﬁé] c(3) + [Eﬁlﬂ o) + ...

IT we remeve the brackets and fractions, we introduce an error of
at rost 2 per term. The number of terms is about Zlog2 N, so the
errcr is less than about 41log2 .

HEhe(sS,0) = He{2) + 0 o(2) +Hel3) +10 {3 +# ... +error
m(f}ailq B }F(J

0 Eégl + Eézl + ﬁ#%l + ..s } + error

fho(3,0) = X + error/l

SJince error/ll approaches O as N approaches infinity, Rho{S)=X. CQ¥C

%0
Some thoughts on the output protlem:

Let Zp be the set of numheﬂsﬁw%th ne prime factor greater
than p; for exanple, Z5 = {2 3 § }.

. Q
Iemna: Suppose p is fixed. There is a 2CHM which maps 2 into ©
for all Q in Zp.

Froof: Suprose o is 7. There is & 6CH with counters U, V, W, ¥,
ABCD

Y, and Z, which starts with Q =2 35 7 in counter U, and halts

with A in Uy, Bin V, € in W, D in X, and Y=F=0. If this 6CkH is

Q
simulated by a 2CH, the 2CH will map 2 i1nte Q. QED

Theorem: se p is fixed. Any partial recursive function
fror Zp 1ntn p i=s 2CH computable.

Proof's Along the lines used above.

Theorem: Suppose that for some Zp, there is a 2CM computable
functicon F which mm%E ip nnta the nonnegative integers. Then the
Cutput Froblem can solved.

Frocf: We can construct & Turing machine which takes an input N
and searches for an element of Zp for which F({Q)=li. We can
simulate the Turing mﬂnhlﬂﬂ H%th a ZCH which takes as input

IT
%}ﬁnnd has output 2 . From 2 we can get to Q, and thence to K.

Unfortunately, the reasonable candidates for such a function do
not seem to work. Consider the function G:

£ 7
HE) = {[K,.-"?]] :cl:-the:miue.

G is clearly 2CH computable. A number is G-representable if it
ig in C{(Z5). There is & probability arpument which indicates
that G(Z25) should have density zero.

I did a small numerical experiment. I examined numbers up to
100 to see which were GﬂIESTEEEﬂhEhlE. The search was terminated

if ne representation < 10 was found. The following numbers
appear to be unrepresentable: 36, 45, 49, 56, €0, TO, T2, T5, &0
l_rl"ll, _.'D, 96 gﬂ'f E.ﬂd 1':"01-

51

Below are the solutions to the multiply and sguare problems
~iven as exercises on page 2.

liy solution to the multiply problem is usly; I would be hoppyr
to hear of any improvements.

Suppose X is in A, and Y is in B. € is used as a tenmporary for
£
the multiplications and divisions. First, we calculate 2 3 .
cet B to 2Y41. Double B, X times, mEEﬂWhllF counting A down to
X

zero. liow B contains 2 (2Y+1). 5et A to 1. Loop, Halving B,
and doubling A each time arcund. Exit when B gives remainder 1.
X
How A contains 2 and B contains Y. Triple A, Y tipes, counting
XYy

down B to zerc. How A contalns £ 3 . E and C are zero. llow the
following prosram will create XY in B.

- A2

v/ N

3”‘/ \R
A*E Esture A
EJA \"f.lm

Festore A

Is there scme way that takes less time?

The szclution te the squaring problem is much easier:

Halt
Start-——+—A—#*’ir
C+ \\"
A- —-E—
G

The program uses the fact that H = (2H=1) + (21=3) + wuu + 3 + 1.

An 1ntrnductiﬂn to Counter Machines is given in Chapters 11 and
14 of Minsky®s Computation - Finite and Infinite Hachines,
Prentice—Hell, 19 5?“ [t}

ky proof of the nﬂn—cnmgutahility of 2 wans discovered in
September 1970. Frances Yao independently proved the
nern—computability wusing a similar method in April 1971.

