MASSACHUSETTS INSTITUTE OF TECHWOLOGY
A. 1. LABORATORY

Artificial Intelligence
Memo No. 259 May 1972

THE CONNIWER REFERENCE MARUAL
Drew ¥. McDermott and Gerald Jay Sussman

Work reported herein was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Techmnology research program sup-
ported in part by the Advanced Research Projects Agemcy of the Depart-
ment of Defense and monitored by the Office of Maval Research under
Contract Number NOOO14-70-A-0362-0003.

Reproduction of this document, in whole or in part, is permitted for
any purpose of the United atates Government.

2645

ifAGE 2

Introduction

This manual is intended to be & puice toc the philoscphy and
use of the programming languege Comniver, which is "ecomplete "
and running at the £I Leb now. It assunes food knowledge of
Lisp, tut no knmowledre of licro-Ilanner, in whose icplementztion
pany design decisicns were rade that are not to be expected to
have consequences in Conniver. Those not femiliar with Lisp
should consult Weissman®s (1967) Primer, the Lisp 1.5
Froprammer ‘s Manual (McCarthy et. &l., 1962), or Jon L. Vhite’s
(1570) end others” (FDP-6, 1C€7) excellent memos here at our own
_al. '

The first chepter of this menusl, Easic Conndver, 1s intended
to show the Lisp user whet Comniver progrems lock like, and what
date structure the systen provides for the user to interact with.

Ey the time he is through with it, any Lisp writer should be able
to write Conmiver prograps. Chapter the second, on Hairy Control

Struvcture, explsins the frape structure underlying the Comniver
prograns and encourgges you to use it. Here the mirscle cf
peneratcr functicns is revealed; here, too, is demuﬂstrgieﬁ the
rast with which Commiver programs can do what jour old-fashioned
Hierce=Flanner programs do. The third section of the Cverview, c¢n

Fai: vy Iets Structure, eXplsins the context-lsyered data pase in

somewhat more detail then in chepter one, &nd introduces scoe

new datza types znd cata sircture-penipuldating functicns. The

1AGE 3

section On Iatterr-Lirected Invocation expleins the opersiicn of

tre Conniver matcher, used in the inveldng of procedures
asscciated with the dats bese. The remsinings secticns sre on
inmplementation deteils, such as using the langusge, and using it
in conjurction with Lisp. Finslly, the Appendix and Index
provide a detailed yuide to the user whe has gresped the lasic
principles of the language. '

Cormiver embodies few criginal ideas, but is hopefuly en
original corbinstion of the good ideas of others. Ve must
acknowledge Carl Hewitti’s Flenner language (kewitt, 1971) for
giving vs mest of our ideas about dsta structure, zlthouch
Ccnmiver looks st its world differently from Flzmner. The
control structure, including the concepts “access" =nd “"control,“
wis enormously inflvenced by Dandel O. Lobrow. (Eobrow and
Vegtreit, 1€72). The varistle declaration syntzx is closely
related to the HUDDLE syntax develcped by Christopher Reeve. The
wry these idess have been used is in large reasure the way Joel
Moses hes thought they ocught to bejy if there is a "Comniver
phi.osophy," & lot of it is his.

 Several people read the first draft of this overview and
influenced this cone, especially Lavid Kelonsld, Terry Winograd,
Sidney liarkowitz, and Jeff Fubin. The current =sepsntics of date—
property functicns is pertly due to a2 suggestion by Hichsel
Genesreth. Lest in this category, but not lesst in one respect,

is lichzel levin; his confusion at the terseness of some of my

TAGL 4

explerations has rore one step in avenping the confusion of an
entire peneration of prograrmers at his Lisp 1.0 manual.
DVH

s AGL 5

Frsic Conniver

Cormiver is & programming lanpuspe cesirned to nake easy the
defirition of processes cooperating to solve problens in the
resdm of Artificial Intellifence. It looks & lct 1like Lisp, with
two additicns:

(1) A system—maintained data bese

(2) The ability to manipulate arbitrary control envircnnentz.

The date bese structure gives the user a gererzlized way of
storing most of the data in the world model he is creating. In
addition, the deta pocl is hierarchieczl, so the user can run
processes in independent, possibtly conflicting contexts.

An irportant type of daturm in the data tase is the item, an
arbitrary (but printable) list structure, such as

(GCCT1 (ITEM GCC1 IS FALSE))
or (JCER HATES (SEY GIRLS)).
tut not (OO0 s or (WIL NIL WIL WIL WIL WIL...
with the restrictions that 2t any given point it be present or
M from the date base. Itecs are slipped in and cut with the
functions AID and KEMOVE (which, like almost =11 Conniver
primii;ive*a, evaluate their erpuments). For exarple,

(ALD “(JACK LIKES LEAN))

(REHOVE “(JACK LIKES FAT))
rake the item (JACK LIVES LEAN) present and the iter (JACK LIFES
A) absent. The erguments to ADD snd REMOVE sxre sheletons

which, upon substitution of the values cof their variables,

TAGE ©

specify items. Comras indicate variable values, as in

(£DD “(,% CH ,Y))
whe: e the compes specify thet the item (“wvalue of X" O "wvelue of
¥#) is to be added to the current context. For example, if X =
LAVEENCE ané ¥ = CEATTERLY, then the skeletun specifies the itew
(L/ WVRENCE O CHATIERLY).

The existerce of contexis makes it easy to create and
panipulate hypothetical models. A context can Le regarded &5 &
seperate world model or data base of its own. ALD and REiOVE
glveys apply, ioplicitly or explicitly, to the data base
represented by & particular context. These models are not
entirely independent; contexts stand in certein logical relstions

to each other; namely, cne maf te a sub-context of enother. This

is reant in the sense thet & stack frame of & lenguage Frocessor
is & sul—freme of the frame beneath it on the stack. There is no
subset relation between & context and its super-context; rather,
iters may be present or absent in cne independent of their status
in the cther, much es sope varisbles are rebound in a stack frane
end others retain their old status. In the Conniver data Lase,
21l items have the same status (present or absent) in a context
vhen it is created =5 they did in its super—-context; each ltienm
reteins that status until it is overriden by the user. Ior now,
t'e reader pey assure that =ny such re-specification of status
within a2 context is not done in its super—ccntext; lhence,

resetting a context to its super-context (the aralogy with

sAGLE 7T

returning from = steck frane is overwhelmins) rakes everytiing
dcne a2t the lower level invisible. We shall scun see exanples of
chi: .

A typicel Comniver prosram generates a Lree of contexti—
frares, each branch of which constitutes a separate context. A

user is started withk a glolel context, & list of the cne global
context frare, with the glolal varieble CONTEXT pointing to it.

AID and REMCVE work on the data Lbase which is the value of
CLHTEXT (tut can be given an optionzl second argument to indicate
the'r context explicitly). The context can be "pushed down" with
the function FUSE-CCHIEXT, which sprouts a node from any context,
adding a2 new context—frame. The value retwrned is g fresh sub-
ccntext of FUSH-CONTEXT s argunent. (This structure is presented
vith more rigor end detail in the first paragraphs of Chapter 3.)

As & Tirst example, let us consider a function FORCENIN, of
two arguments, FLAYIR and SQUARE, which hes a non=FIL value only
if FLAYER capn force a win on the next move cf 2 peme of tic-tac—
toe by playing in sgusre nucber SEQUARE. (FORCEYIN is obvicusly
only a fragment of & copplete tic-tec-toe progrem.) To represent
situations in this gane, I choose the presence of an item of the
forrm (HAS x y) to mean player % (= naught (U) or cross {K}] has
put his park in squere y; ir the item (IREE x) is present, it
peans sguare nupber X hes no mark in it yet.

FCRCEWIL, & Conriver CERFR enalogous to a Lisp IXFH, is
defined with the function CLEFULN es EXFE s are by LEFUN. CLEFUR

LAGE &

all.ws pore scphisticated variatle declerations than Lisp (uee
"Using Conniver,” below); in particular, every CEXPk hes & pody
in whick awilisry verizbles (celled FRCG verielles in Lisp) wmay
be tound, and staterentis laleled with atoms. Equivalent bodies
are piven tc every COLD clause snd FREUG. There are no tags in
the exarple which follows, but there are swilisries to be Lound,
as signalled by the keyvoerd atom "AULY.
(CDEFUR FORCEVIN (FLAYER SQLARE'J
HAUXY ((COLTEXIT (FUSH-CONTEXT COHTEXT)))

ADD “(HAS ,FLAYER ,SQUARE))

REHOVE *(FREE_,SQUARE)

FAIEMOVE (OTHEER PLAYER)) _

RETURL (TRY-IEXT (WInHOVES PLAYER) KIL)))
Here, "AUX" specifies that the veriable CORIEXT is to be rebouna

in the frape of IORCEVIN to & new sub-context of its old value

(Fir. 1).
r::del
Glnhtl &Ibhn ek
oM e J
h*ﬁg_fﬂuTEET

I:Hﬂ.J. i 4

CﬁﬁTEiT
Figure 1.

Tvery item in the old context retains its present or absent
status in the new binding, tut new ADDitions Ené RENOVals apply
ondy to the new contexi-frare. When this function is exitec,
CLNTIENT s old value will be restored, and the new sprout anc all

its items will eventually ve gartage—collected (if none of the

riGE %

functions called by FORCEVIL saved a pointer to one of tien, of
COUrse).

FORCEVIL: operates by "izagining® thet PLAYEL has square
SQUARE, and that the square is rno lcnger freec. It then icasines
the other player (OTHER (X) = 0; OTEER(C) =), making a wove.
It does it wvith the functior, (MAXKENUVE player), which finds and
rakes player”s best move in a situstior. (Iresumably FCRCEVIN is
itself a sutroutine of MAKEKOVE.) The last line of the program
then checks if FLAYIR has a winring move, in spite of the other
player, returning KIL if not; the syster function THY-HEXT is
expected to return 2 winning move from the list proposed by the
usel function WINMOVES; it returns its second argument if the
+ist is empty. FCORCEWIL REEIURNs its value, and rebinds CORIEXT,
frecing the sguere SEQUAKE. {The RETURN could heve been critted;
functions, like CCHD clauses and FPROG s, return whatever value
tle’r lest lines produce.) |

WILMOVES is a2 EenEra'tq-r—ﬁmc:tiﬂn,. which interacts with a

possibilities list, & very importent data type in Conniver.

Cormiver is designed to ease the burden of writing problen—
solving prograps, rpeny of which seerch through & probler—spacs
network defined bty a list of possibilities (solution plans, sub-
pozls, ete.) at each node. GCeme-playing proprars come to mind
irpediately, but the same type of seasrch occurs 1n prograps
desisned to sclve problems in langusge, vision, and theorer—
proving.

riGE 10

Since the Comniver philosophy is that progrem desifn is the
user”’s responsitility, it =llows anything to be a possibility in
such lists, and encourapes the user to play with them. hiowever,
there are syster possibility types (such as those generated by
date—lLese searches), and system fupctions for inserting and
extracting possibilities from possibilities lists. TRY-iKEX] is
the major functicn for extrzcting them; in the simple case of
vinning moves (here, just the numbers of the squares FLAYER can
ploy in to make three marks in & row), it pops off the first
possibility end returns it. (For = detziled zccount of the
forsat of system possibility types, and what TRI-NEXT does with
each, see the next chapter.)

The systen provides the function CDEFGEN for defining
fenerator-functicns, routines which add possibilities to a list

being considered by cther routines. A generator-functicn, cor

senergtor, is like an ordinery program, except that it is
expected to return a list of the possibilities it hes discovered,
vhich _TEY-IJECT uses as described; in this wey the generator
ciprunicetes the values it wishes to retwn. In the sinplest

. cas , the possibilities are actusl values; TRY-LEXT pops off and
returns the next one, removing it from the possibilities list.
thet theie are ro more velues, TRY=LEXT evaiustes its second
argument, and returns it. Fence the constructicn (TRY=KEXT
(VIIKCGVES FLAYER) IIL) means “the first wimning move, il any,

else KIL.H

FLGE 11

The penerator ETHMOVLES itselfl might be defirned with CULLEIGEL
as follows:

(C11TFSEN VILNOVES (FLAYIR)
SRUKM (SQUARE1 P1 SOQUAREZ T2 1)
(CSEIQ Pt (FLICH °(HAS ,FLAYER 78QUARET)))

- CSET é J(ﬂg_)s JELAYIR ?SQUAREZ)))

EiRl’—hE{T F2 “(co ‘GLITEE'ELGG*}}
CONT ((LESSF SQUARET SQUAREZ
(COKD {ECEEI'Q THIRI-IN-ROW SQUARE! SQUARIZ))
CCHD {E {1 “(IREE , I}J J

HOIE X))))
(GO “IHNERLOCE)

(liotice that VYAUX" varisbles not zssigned an initial value sre
left unsssigned, not made HIL as in Lisp; referencing such &
variatle befcre assigning it is an error.)

Since WILKOVES is = generator, specizl deta structures will
be set up when it is called. These include & binding of a
variatle celled FROFOSAIS that WINMCVES expends from its iniﬁiﬂl
ﬁIL value using the functicn NOTE. NOTE makes its srgument a
proposal by pushing it onto the FRCPOSALS list. When WINKOVES is
ihrcugh with the list, it uses the function ALILU to put it into
tie proper formet (see nmext chapter), and return it. A later
cal’ to TRY-KEXT which inspects it will use it as a possibilities
list. Since ADIEU reverses PROFCSALS before returning it, the
proposals will be in the order LOTEd.

To wderstand VIKKOVES, cther details nmust be explained:

(1) (FEICH pattern) returns a possikilities list whose

elerents are iten possitilities, derived from all the itens

FiGE 12

present that match pattern. (This is oversinplified; whet such
possibilities look like, how metching works and wheat other
possibilities can be ITICHed will be explained lzter.) LIunlVIS
cenerates a possibilities list I1 specifying all the squares
FLAYER owns, and rerenerates it as FZ2 esch time 2round CQUTLLLOOT.
(Ho prizes are offered for e more eifficient implementation of
this generstor.)

(2) When TRY-HEXT finds such an item possibility in a FETCH-
generated possibilities list, its sction is to zssign the
guestior—parked variables in the FEICHs pattern to the velues
that they mpztched in the item. Hence the staterents tegred
INERTLGCP and OUTERLOCE in WINMOVES set SQUARE?2 and SQUARET
respectively. lNotice that atoms used as labels must be {lapped
with ":" (which turns them into expressions of the form (CTALG
ator)).

(3) THIRD-II=ROV returns the third square in the row, column,
or diggcnal of its two arguments, or NIL if they are not
collinear. |

(4) For each distinct peir of collinear sgusres owned by
FLAYER, if the third squere is free, then it is a winning move,
and is KOTEC. (The function (PRESENT pattern) returns T if there
is an iten raiching pattern present in the current context.)

Thus the possitilities list returned by this version of
HIHHGﬁEE includes gl1 winning moves. (The (LESEP SCUARLE]
SQUAREZ) insures thz=t esch is found only cnce.)

FLGE 13

cuch & way of Eﬂneratin£ objects is not alweys the best. It
nay be, for exerple, nuch mnore expensive to penerate each one
tha to try it oul. AMternstively, the peneration cf succecsive
possibilities may depend on what the calling Tweticn did with
tle previous ones. OUr it may sirply be that the gernerator has no
idera how meny possitilities its superior wanis. (Lkote that
FOECEVIN is interested only in the first.)

What is needed is a way of returning some of the
possibilities whkile mpaintaining the éeneratur in existence for
further duty if required. T1he way this is cone is with the
pripitive AL-REVUIR, which behaves something like ALTEU, but
fushes cne further datum onto FROPUSALS before turning it into &
possibilities list. The nev datum is & tag to the point Just
inside the AL=-REVOIRK in the generator. Ihe POCCIEILITIES
returned, therefore, includes & pointer to the generstor’s
activation. When TRY-IEXT encounters such & thing in a
pass.ihilities list, it GOes to the tag, reawskening, in effect,
the generator’s process, including its bindings and context. The
cenerator cen then note new values and repeat the AU=REVOIER, or
do an ADIEU, either of which this time returns its FROPCSALE to
TRY-KEXT after converting it to a2 possikilities list; ITRY-IEXT
then splices it inte the front of the possibilities list it
already has.

& version of WILHOVES more congenisl to use by IORCEVIR, and

cther functicns that do not necesserily want ali the wirning

ZHGE 14

moves at once, ciffers little froc the cld in appearance, but
puch in effect:
(CIIFGEL WILNOVEE (FLAYER)
"EUX" (SQUAREN P1 SCQUAREZ I2 L)
(CSEIQ F1 (FLICE “(HAS ,FLAYEHR 2SQUARE1)))
: QULERLCOF
THI-TEHJ F1 “(ALIEU))
CS Fe (FLICH “(HAS ,FLAYIE TEQUARLEZ)))

= THI. I:.ELE- F
TRY-I! (G0 "OUTERLCOL

$CGhD ffEEELE SCUARET 5CU 3
CCLD {{E@ﬁﬂﬁ A THIEL7§E-RGW SQUARET SQUAREZ))
CCHD ({PRESENT °(IREE ,X))
NCIE X
(60 “THERLGOR)) AU-REVCIE)))))})

The only difference is the introduction of (AU-EEVOIR)
follewing (KCIE X). (This could have been abireviated (AL-EEVOIR
¥).) However, now = call to WINMOVES returns a FROPOSALS with
Just twe elements: & winning move and & tzg Lo the end of the Al=
REVCIR.

If the tag is ever GCne to (by TRY-KENT the second time it
tries to puﬁ off 2 winning rove), AL-REVOIR will do a return in
WINMOVES and execution will proceed with (GO “ILKERLCOP). 'The
effect on ITEY-NEXT will be that it will pagically come up with
yet znother wiming move and tar. Only when 211 winning moves
have been generated can WINLOVES do an ADIEU, which leaves the
possibilities list empty and causes TRY-HEXT to return its second
rreueent. |

These tuwo exacmples o not exhaust the ways in which 2
renerator mey interact with a possibilities list. For

sorhisticated protlems, it will elpest certainly be necessary for

r4GL 15

renerators to inspect the FUSSILILITIES bound in the frare of
TRY=NEXT, filter sore of them out, sdd properties to them that
the prorran locking at then should lmow sbout, or even itake
centrol of their gereration by setting empty the POSSIEILITIES
bound in the frame of the upper TRY-NEXT ana itself calling THI-
JE. on each of the possibilities, in order to zccopplish scme
particularly c:clmplii::at.ed filtering. The functicns GEI-
FOSSIFILITIES and SET-PUSSIEILITIES enasble & gererator to access
this binding of the list. Clearly, in order for a user’s program
to edit a pessibilities list, he must know the formets of the
various types of possibilities; these are given in the next
cha; ter. Communication the other wey, from the user of the
:ererated pessibilities, is pade possible by an optionel nessage
argument to TRY-HEXT that it sends to the generator, which is
returned, in the gernerator’z sctivation, as the velue of AU~
REVCIR. A1l of these featwres are described in det=il in the

appendix.

cfGE 16

lriry Control Stricture

-

Fopefully, the example I have been rursuing hes made it clear
that Commiver is just Lisp with priritives for ¢ealing with its
own control structures in one wey or asncther. Conniver, lerient
as it is about tegs, function closures (FUNALGs in Lisp), and
envircnments, allows processes to interzct in peny ways.

Cormiver treats control envircnments as date types called
fromes. Fach carries with it variable bindings, & control
environpent stack, a saved state of the Conniver interpreter,
and, il CONTEXT is rebound in it, a data base ccntext. An
internal pointer to such a frame is an unprintatle ebject which
we refer to as & "Ir," or internal frame. A user-manipulated
frare is a structure of the form (*FRAIE fr). A tag is a frame
and a "program counter, of the form (*TAG body fr). Tsgs of a
sort are produced arnd used implicitly with AU-REVOIR and TRl-
iE ; the user can renerate them explicitly with the function
JAG of one stopic argument, that returns a tag to the piece of
FROG, COWD, CEXFR, or GENERATCR labelled with tiat at m. For
exanple, the following toy program prints out FOO EAR:

FLGE 17

(CD! FUH PEILTTFOCEAR () "AUX® SFIJI.EJ-.'}
(COLT. ((CESETC FLACE (ZOWIE))
- CO FLACE)))
(G FUN ZOMIE ()
E PHIIT *}'cﬁ&
RETURN (TAG “FRIGTEAR))
: FRINTEAR
(xRINT “LAR)
RIL)

(FI INTFOOEBAR)
and returns [[IL. (liote that GO alw=ys evaluates its argunernt,
and expects an s=tom or a tag.)

Tags and frames are useful for pany purposes. helative
eveluation, using the Conniver function (CEVAL expression
environwent) cen take a frape or tag as its seccnd argument.
Functionzl =rgurents can be generated with the fumction (CLOSURE
function) which generates the closure of functicn in the current
frare, an otject that behoves like function, but evelustes its
iree variaktles in the Iframe now asscciated with it. A closure is

of the form (*CLOSURE function fr).
This flexible contrel structure can be used to rrovide an

intimate association between a tree of probler—investigating

Cerniver processes znd & tree of contexts. In particulsr, =5 in
Planner, procedures can be inveked by the addition or removal of
an item to 2 context, by virtue of being linked to & pattern that

natches the item. Such dets bese—sensitive procedures zre called

nethods, of type if-sdded or if-repcoved (or if-reeded, discussed
belew). Lhen en item is added (removed), any il-addeds (if-

rencveds) whose ypatterns match the item are inveked. When a

1HGE 18

rmethod is invcoked, & new frape is created for it, its variables
are bound, end its pattern is matched gapminst the itexw. If the
mitch succeeds, exccuticon bepins at the front ol the if—sdacd”’s
(if-remcved s) lody. Ior example, the {annnymuua} rethod

(IF-ADDED NIL (EAS 9VEQ 25CUAR g__)
HAUKS (RO sghmj REMOVE “(FREE ,SQUARE))))

wvith nawe KIL, pettern (HAS ?WHO ?5CUAKE), znd body (YAUX"...),
autopaticaelly ereses (FREE square) when it is asserted thet (HAS
somecne square). Its use as & bookkeeper could save 2 line in
the functicn FORCEWIN.

A method is itself a date—type stored in the context-—
structured data base, so it may be present only in the contexts
tie user specifies. MNethods are Alled and RENOVED Just like
iters, and like items, indexed in the data base by their
patterns. 7The function IF-ADDED (IF-RENWOVEL) creates an if-added
(if-removed) method with the pattern given by its first argument
znd the body given bty the rest of them. The above nrethod can be
put in the current context by
(AT (IF-AILED (HAS ?WHO ?SQUARE)

(REfovE “(LRRE o5 %um:;)N
and removed by RENOVing =n object E{ to the one added.

This EG-restriction means that an attenpt by a user io re-
read and AID a file full of such anonymous methods (say, after
editing a2 bug cut of one) will Pﬁt equivalent ccpies of =211 of
then in the data tase twice, all to be called twice wher neesded.

Tc svoid this protlem, an if-sdded (cr if-rercved) can te

rAGE 1Y

associnted vith an stomic name; thus
(ALD (IF-ADLEL LAS-IREE (HAS PWEC PSQUARE)
[:er‘rr_}%ﬁE{ L"Effﬁufﬁsjiﬂmm b))
causes the aton HAS-IREL to be associated with the rethod (under
the indicator “HITHCD), and to be passed arcund by the indexing
routines. Ixecuting the above expression & second tipe will now
cause the pethod to be re-constructed (in case it had bugs in its
previous incernation), and zssocisted with EAS-IREE, but not to
be re-indeXed, because the atom is eguivelent toc the method in
the eyes of the system, and therefore alresdy present. In iact,
if (IF-ADLEL EAS-FREE...) hes been executed,
. (AID “HAS-FREE)

is equivalent to the ALD above.

The third pethod of data bese-control structure interaction is

by use of if-needed methods, which cooperate as intimetely with

- TTLH as if-addeds and if-removeds with ALD and REMOVE. Often
ithe e is & cless of date iters vhich ere to e regerded as

"rresent® in a context, but on the basis of some procedursl
criterion rather than by virtue of actuslly being there znd
-ETCHable. An if-needed can be used to associzate such =
procedure with the pattern of a typical iten of the class. Any
if—néedads rresent in & context will be fourd by FEICE, if their
potierns metch its pattern srgurent, 2nd stuck =t the encd of its
possibilities list. They are invoked by IRY-LELT when it comes

to ther; their suxiliary variables (signelled ss usuel Ly "AUXY)

rhiGE =0

osre bound, and their pettern verislles assirnec by 2 pateh. Ii
it succeeds, execution btepins in the method, which tehaves like a
renerater function with respect to the possibilities list ILX-
1B is woridng on.

Vithin an if-necded method, the Tunction ILETANCE of no
argumenfs returns an instentistion of the method’s pattern, with
all varisbles given their current velues. Then (FUTE (IuSL/ICE))
(or simply (WOTE)) causes such an instence proposel to be sdded
to FROFCSALS and ultimately (as an itenm pﬂsaibility} to
=0C. JEILITTES, thus Eimuiating very nicely the rresence of that
instance &s &n itern in the current context. ADIEU end AU-REVOIR
work in the same way as beflcre.

For exarple, to express the ides thet 211 dwarves are
vicicus, in such 2 way 25 to insure that FETCH finds =11 dwerves
when it locks for vicious perscns, cne right execute
(ADD (IF-NEFDED VD (VICIOUS 7X

wEUEE (X EP TETCE "EIZI'I.;'AP.I 9300,
:LCOP (TEY-NEXT F “{ADIEU)
}AL'—F:EFDIR (IHSTALCE))
GC "LCOE)))
This method noltes one vicious dwari each time ITLY-FEXT is czlled.

The discussion has brought us round to proposzls and
possibilities epein, and it is worth stopping here to explain the
forrat and contents of their lists.

Fhile in a generator (including an if-needed method),
1:0.08A1LS is a sipple list, sterted at FIL the first tipe it is

townd and every tice the gererstor is re-enterec vis an A-LLVOIR

FLGL &1

tag. The pereraior pushes proposals onto this list with WULE,
(L. E x) being eguivalert ir effect to (CSEL(PHOPOSALS (CULS X
1.0.08K1E)).

The syster suppcrts only one specizsl type ol proposzl, that
produced by ILSTAKCE, which is an object of the form (*I1E.
(instantizted-pethod-patterr) resuli-of-patch), where resuli-of-
natch is an zsscociation list (as described in "Un Pattern—
Directed Invocation," below), which specifies the values of the
variables in the calling patternm thet will make it EQUAL to ihe
present instance. Instance propossls are added to FROPOSALE as
tre nor—specizl kinds (simply celled velues) are (but note will
not adoit them to the list if result—of-match is HORATCL). For
exarple, if the method VD finds 2 dward named R1LEOUS, the
insiance propossl

(#ITEH ((VICIOUS MILHOUS)) ((X WILECUS)))
©ill be crested.

A penerator usuelly quits using ADIEU or AL-REVUIR, either of
which reverses the proposals list and adds the ztom
*POSSIBILITIES to the front of the result before returning it.

A possikilities 1ist is ;jﬁst. like a proposals list with the
1legr *POSSITILITIES at its front. Iéﬂﬂever, since TREY-NEXT r=ay
~rt possibilities ﬁ‘mﬁ severel sources, there are more types of
standard possibilities than proposals. The varicus types heve
the fellowing forrats:

(1) (#ITEE it.EIfe—l:-I'—EEi_Elﬂ:EtEd—itEm resulit=ci=patch) These are

proc¢uced by FEICH (from the current context) and by if-needed
retheds (frop thin g2ir, uwusing ILSTALCE). The wey to tell if the
jter is simulated or not is to use the predicste REAL. (See
e’ ry Data Struicture,Y below. 11 should be noted that in Lotih
cas: 5, the item is the item datum associated with the list
structure menticned at the begimning of “Easic Comniver," not
that list structure itself; ((VICIOUS MILHOUS)), not (VICIULS
MILEOUS). - In terms of the data structure, 2 simulated iten is
just =n absent one; the next nhapier pust be resd to understand
this fully.) When TRY-NIEXT sees an item possibility, it returns
tle item—ocr-simulated-item, besides assigning the veriables as
directed by result—of-match.

(2) (*WETHOD pattern method) These are procuced by FEICH
(pattern is the FETCH-pattern), but there is no reason a
generator cculd not CONS one up as & value proposal.

(3) (*GEWERATOR form) TRY~NEXT evaluates form when it comes
across cne of these; it expects the value to be a possibilities
list, which it splices into the cne it hes in place of this
possibility, just with *HETHOD"s and *AU-REVCIR®s. Form is
usier 11y (seneralor...).

(4) (#AU~REVOIR body fr) (Don“t try to print one of these.)
Such = Iﬂssitilit;r ciffers from a teg to its body and frase only
in heving #AU-REVOIE =s its fleg instead of *TAG, but don’™t try
GOing to one, either; only TRY=-KEXT is ellowed to do that. It
shouvld bte clear how these gel into proposals lists.

FIGE £3

(5) Anything else is a value, which TRY=iLXL returns wien it
pope it off a possitilities list, &s in FORCEWIL..

‘mving described the "internal syntax® of the generzlor-
possibilities intersction, I now return to consideration of

control structure, in particular, consideration of the
fundamental operaticns on freames. 1 start with the cobservation

that methods may have closures just like functicns and generators
do, and fheae, too, can be added to the date—base. If such &
rethod is invoked by & deta-base change, control will be in a
procedure with an sccess link that differs from that of its
czller (like functional erguments in Lisp). This raises the
possitility of & process in an cld environment being swokened by
the addition of en item to its context, or the removal of cre
from it. In fact, the function HAKNG can bring exactly this state
of affsirs zbout. (HANG is not = Conniver primitive.) (HALG
reiease expression) evaluates expression (typically a transier cr
return), but only after ADDing a method closure that implements a
test for the release condition. This condition is of the fcrm
(IF-ADDED pattern) or (IF-RENOVED pattern). If an item patching
prtiern is ever added (or remcved, s the case Ley be), HANG
returns as its velue the freme of the process which was
interrupted while acding (or remﬂviﬁﬁ} the item, with the side
effect of assiming the variables of the patiern.

For exarple,

(FAlG *(IF-ADDED (VIN FELAYER)) “(GC “k00))

fGE 24

goes to :FOC, but execution will resume with 2 return from LAJG
if enyone aads (L1l someone) to the date bese, end FLAYEG will
have gotten value scnecne.

EAKG can be defined as

{CDEFULE HAWNCG (RIIEACE EXPRESSICH)
wAUNY (VALEET (C (COKTECL)))
(ADD (CLOSURE
(CEVAL (COLs Ecﬁh RELEASE.)
COLS (CAIR RH..IASE%
(walme ((F (ERALE)))
CSETQ VALRLT I
_ % GO "HAKGRETL) }}JJJJ
(CEVAL EXFRESSICL C)

i GRET

(RETURN VALEET)) |
ly rdding the CLOSUEE of the methcd, the HAKG is assured of the

continued existence of its activation. When the pattern is seen,

-
-

the method sets VALEET (in the environment it was closed in,
naturally) to point to its (the method’s) own frame, which bhas a
control pointer to the freme (of an activation of & subroutine of
ATD or EEHOVE) that invoked it. Thﬁn_it GOes to EALGRET. The
ator EALGEET is searched for in the access freme of the closure
(i.e., the frame it wes closed in), the correct label is found,
end control is suddenly beck inm HANC, which returns the given
frape, Lotice that, having addcd to the current context the
closure that does these marvelous things, HAKG evaluates
(CEVALuates) EXFRESEION in its (HANG“s) control frare, the frame
of its caller, which is vhat the user presumably intended.

EALG thus exploits the fact that every ifrare has twe supericr

frares it pcints tc, an access frane used for free varisble

PAEGE 25

rveluetion end ator tag searchins, and a Eﬂntrﬁl-SUFEIhiramE thet
control is expected to retwn to. ULsually (as in Lisp), they are
identiecsl, or the access pointer points a few iframes sbove the
beginning of the contrel chein, to the last Iraue where variables
were bound. Eut there is ne reeson for things Lo be 50 prosaic.

Severel functions have been provided for wse in renipuleting
these objects. The function (FRAME) returns the cwrrent irzpe,
one level up from the frame of the invocation of FRAME. (OUn the
top level of a CEXFE, this will elweys be the frare in which its
locel veriatles ere bound). (COKTROL frame) end (ACCESS frame)
return the control and access pointers of frame. The CCONTRCL and
ACCI S5 of a tag or closure are legal also. (SETACCESS framei
frare?) end (SETCOKTECL framel freme?) reset the appropriate
super-frepe of framel to be frame.

Closure and relative evaluation are ways of treating fremes
g5 access environments. Ey EHITIEG a freme (with (E{IT value
frere)), the user utilizes the control functions of frawes. The
following fragrent of code is illustrative:

{E.c(;{'. " ALY %:-: KAYOUT)
CSETQ WAYOUT _
(EANG "(IF-ADCED (%X EERG)) “(GO "USEFULWCRK)))
EIEIHT. (SOHE OF HY EEST FRIEIDS ARE EERGS))
EOT T LAYOUT))
vhich GGes to :USEFULWORE when executed, but prints its message
if .anything EERC) is ever AlDed to its context. WAYOUT, for
conirol purroses a subframe of ALL, is then returned frcm to

all.w the AID to proceed noroslly.

+hGE 26

When no frawe velue is given, [LIT exits from the most
immediztely enclosing CLID, FRUG, or CEXFR. LELURN byposses
Ci.I, so is often more convenient.

In these terms it cen be explzined how TRY-LECT interacis
with various prenerstors; a jenerztor is an (ctherwise oruinery)
function with FLOUFOLALS bound inm it by the systen, end & way to
tell, from the ceepest AU-FEEVOIE tagz into it, wlere its top framne
is. ADIEU snd AL-EEVUIK help it to panipulste and return the
proposels list, but (RETURN (CONE “#POSSIEILITILS “FO0)) would
work just as well a&s (ADIEU “FCO). The trick is in TRY-NEXL;
wier it fincés an AU-REVOIR teg in a possibilities list, it
replaces the control link in the top frame of the generator
structure to point to the new IE.‘.'E—EEJ{T,. aend just goes to the tag.
Finding the top frece is very simple; within any generator
zetivation, *GEIERATIOR is zlways bound to it.

Flease note that there is only cne type of Iframe, suitalble
for both access and control functions. Any frape can be used for
relstive evelu=tion, or cen be exited; The user can do relative
~valuation with respect to the seme tag he later Gles to. Uther
exerples of the duzl functicn of frepes are in GEI-FOSSIEILITIES-
a:'d SET-POSSIEILITILS, whick operate by using the contreol link
of z generator es an access enviromwent for the variable
FOSSIEILITIES. This vorlks peczuse of the fmet that after iis
first cail 2 gererator’s contrel lirk peints to 2 sub-Irace of

TRY-IEXT, where rOSEIEILITIES is bounc.

F.2

L f.GL

This control structure is intenued to be manipuleble by the
vees o« BARG, for exemple, is writien in Conriver, not Lisp. The
cortrol structure primitives of Flanner can be writien fairly
sipply in Conniver &s follows:

(CSETQ FAILURE-STACK HIL)
(CDEFUL FAIL () "AUx" (11) ,

CONL ((FULL FAILURE=-STACK) (FRINT “FAILED) (GO EAR=1)}))

CSETQ T1 (CAR TFAILURE-STACK))

CSEIQ FAILUKL-STACK (CLOE FAILURE-SIACK)})

GO T1)

(EAF-1 is explained under "Using Conniver," belcw; (GO EAR-1)
gets a progran to the top level.) This version of Flanmner
meintains 2 list FAILURE=STACE of envircnments to feil teck to.
Tre list is talken apart by IAIL, which pops off the next element

and Cles to it. The list is built by FAILSET:

(CLEFUK FAILSET (T)
(CSETQ FAILURE-STACK (COLS (TAG T) FATLURE-STACK)))

Hote that since FAILURE-STACK is an ::ur:i_inar;r Comniver verislble,
there may be locsl tindings of it, hence a complex structure of
failure stacks bound at different levels.

(CLLFUN GOAL (PATTERN) wAUX® ((DATA (FETCE PATTERN)))
" FAILSET ‘GOALF)
(TRY-ILXT DATA *(PROG (CSETQ FATLURE-STACK
CLh FAILURE~STACK))
(FAIL))

This version of GOAL obeys Comniver conventions for date tase
segrch, pettern forcet, etc., but beheves lilke the Ilenner
version in that it responds to a2 failure by TRYing—the-LEXT
retching datum unless there zren”t any, in which case it

siGL =B

cantinues the fﬂilu.l"_&. Since this COAL worls with if-needec
pethods instead of consequent theorems, a Flanner verzicn of LUTIE
cust be inventec. 1t lcools lilke this:

(Ci . FUL TERCIL I[J
FAILEET “THIWUTIEE)

RETURI (NOTE)) e
:TH OTEE

(CSETQ PROPOSALS [EDE PHOPOSALS)

(FAIL))

TH:.. TE behaves exactly like NOTE of no argunents, except that it
excises its propossl from the proposals list and continues
failing if a failure hits it. A progran executing (THHCIE)
(ATIEU) can use the abbreviation (SUCCEED):
{CI1FUIl SUCCEED
FAILSET i J
ADIEU (ILSTALCE))
:SUCCEELF
}EEE'.L'Q PEOPOSALS (CDR PRCPOSALS))
FATL))

The two remeining functions sipulate ASEER] and IERASE in that

the r effects are undone on feilure:

(Ci: FUN ASSIRT (& 1)
(FATLSET ’A.Sé}_ﬁf[l'

(RETUEH (ADD SKELETCH))
" s ASEERTEF

EIELL S i)

FAIL)

{{‘;DEFUH ER.#._,.E Eﬁkm TG)
%HETURH (REMCVE SKELETOH))

:ERASEF
((Ii.’EEET CKELETCIH)
FAIL))
%111 and INEERT ere versions of RENOVE &nd AID which de not

seerch for znd invcoke if-rewcved or if-sdded methods; here they

¥+GL £9

are used to wnde the effect of ASSINT end ERASE before failure is

gllowed to proparate.

PéaGL 20

Hairy Date Structure

Hopefully, the user has understcod the relerences Lo daia
iasc manipulaticn so far. 1In fact, the range i operations open
to him is much larrger than rpight be supposed.

In this chapter, I sm going to tuila up again the notiun of
context, starting this time with meaninpless "fragments" of world
modcls called context-Iremes. Contexts are igplemented as
ordered branches of & tree of such frapes. A context—frame (c=
frame) is used te define chenges to & world mpodel as cne tales as
his context lonrer end longer hunks of 2 branch of the tree,
starting from the root; this semantics is exactly reflected in
the definition of FUSH-COLTEXT, which gives & progres ore oore
frere in which to indicate such changes.

To bte precise, & c-frame’s scle function is that every catun
in the cata base may be thought of 25 realized, unreslired, or
unspecified bty every c—freme; for now, these fremes have no
relevant internsl structure; they might as well be buckets full
of pentions of cata es "realized" or "unreslizec.™

The user, of course, is building comtexts out of them, lists
flagred with *CCRTEXNT as their first elements, followed by o
frares. In a-perticular context, a datum is always either
present or ghsent, its stetus depending on search rules through
the c=frames of a2 context, wvhich are ordéered frnm'"must loesl or

. "ouet recently rushed," to "most global.®

G LobAL
SEARC H
DIRECTION 43
:*2.
CONTEXT
«f1 {;“‘u.f"x_ff

S(*conTeyT ft 42

Seened, Bules F3 JerosALl)
Figure Z.

To determine the stetus of 2 datum in 2 context, fing the
first (post locel) o—frame of the context where the datum hes
specified status, and use that status, either realized or
unrealized, to specify its status in the context as present or
absent, respectively. If none of the o~frapes éefine a status,
it is absent. Fror example, in Fig. 35, if the merks "4+% and "-"
irdicate reslity or unrezlity of a certain datuc in the c-irapes
neﬁt to then, tke exapples of contexts built from these frarces
show uncer vhat circumst=nces a datum is present:

¥ ? - ? o + T

P

g -]
-0 +c_I> i °
ASSENT PEESENT ABSENT ABSENT PRETENT
Contexts
Figure 3.

I'otice that 2 detum may Lave unspecified stztus in post c=Irames.

24 GE e

I 1llustrate these sesrch rules yith exanples of perhaps the
nost rrinitive etz in this schene, those 01 tyje object, created
with the furcticrn CLJECT. (bjecis are viewed by the dete-lise
cengrers es arbitrery list structures whose only systen—
reintaired propertics are presence and aosence. The progrermer
cen use these properties to model any semantic Jfeatures he likes.

Tor exarrple, a vision program, os it reconstirucis a visuel
scene from & vidissector imege, must consider more than one set
of possitle resl-world objects, and decide what is really tlere
on the basis of which is most consistent with the evidence. This
world might be modeled es g list of Conniver objects, ordy some
of which are present in any context. Thus, an cbject proposer
pight surmerize iis conclusions by adding 2 new data object to
tie list FOSSIEIE-OEJECIS:

(CSITQ FOSSTELE-CEJICTS

{cclle (CEET(WEW=-CEJECT (OBJECT “(R4 RS Ro)))

FUSSIELE~OEJECIS)).

ihis form creates a possible object, IILW-CEJECL, cconsidered to
ccnsist of regicms 4, 5, and 9. (A realistic csta structure
would undouttedly have tc contain more inforpation.) This cbject
loocks like (*0QEJECY (R4 RS E9)), and hes structure (R4 E5 Rt),
which the syster ignores. Lew objects aré, of course, absernt in
211 contexts.

To rake this datum present in the current cocntext by virtue
of realization in its top o-iTEDe, cne eﬁecutEE (REALIZE HLl-
CEJECT): to make it sbsent (by virtue of unrealizgtiun there), Le

FEGi =%

xewutes (ULRBALIZE LEW-CLJECT). The predicate REAL returns its
argupent if it is present, cor NIl ii it is absent; ULLREAL, ithe
oppesite. (These predicates test for presence and absence in
t!e current context, and thus consider 21l c=-frones according to
the search rules given; they do not perely lcok at the top o—
frame.)

To illustrate the use of these primitives, imagine a data
structure for tic—tac—tce as follows. let X5 be a Lisp arrsy of
¢ dste objects like that sbove, such thet (XS n) is the X in the
square n; let CS be a sirciler array of O objects. With this dala
structure, the predicate (FREE square) can te defined thus:

(CDEFUH FREE (SGUARE)
NOT (OR (REAL (%8 SQUARE)) (REAL (OS SQUARE)))))

To put an X in square 5 (the center), for example, execute
(REALIZE (Xs 5))

If this is done in a particuler context, the boerd will "have an
¥ in the center® in that context and all contexts sprouted from
it. FEy resetting cr rebinding CONIEXT to & higher point in ihe
iranch, the "X" modeled a2s (XS 5) cen be made to "vanish," &s (X5
5} reverts to absence. |

. To surmarize, & context is a branch of & structure of
centext-frares. The structure can be grown a1.:. its tips (using
PLEE=COLTENT as described in “EBesic Conndver"), and manipulated
in cther ways to be menticned. The search rules through a
context ere such thet the presence of a datur is not disturted by

pushing new c—frares onto & context urdess it iz specifically

rian b4

L. EALIZEC.

S50 far Lhis section has concerned itsell wilh data cbjects
whose only properties are presence =nd absencse. The reason for
this focus is to isclate the seorch rules that cefine "present in
a context," as predicated of any datum, ana the functiors RLALIZE
z1d UNREALIZE, and the predicates REAL and ULRE/L, that male the
conecept useful.

In fect data can have meny more useful stiributes than
rresence. Iirst, as ﬁainted out, an object may be created with
en erbitrary structure. For example, still another
representation of a tic-tac-toe situation would be & Lisp array
SQUARES of © objects, each heving as structure its number in the
“megic sguere" representation of tic-tac—toe (in which the
runbers in every row, column, end disgorel s4d to 15; this would
te of use in THIRD-II=RCW). The upper left—hand square would be
created by (STORE (SQUARES C) (OEJECT 2)), for instance; the
object (SQUARES 0)”s structure is then "2%; this object locks
Sike (*®0EJECT 2), and, at creation time, is present in no

context.

Seccnd, eny datum may have properties in any co-frame. lhis
feature is deslt with belov. '
* Third, some types of date are indexsble and can be searched
for (internsl operations of AID, REMOVE, and FEICH), by virtue
of association with & pattern. These are, of course, items,

rethods, ané closures of methods, which are like nor—indexslble

ctbjects in every other respect. UThe diifererce between on iter
and an otject is thet an item mey be specified 1y a skeletor or
pattern (elthourh it doesn”t have to¢ be), but an object cust Le
mentioned directly. The user should perceive Lhe sinilaerity
between AlTing (LAS X ,SQUALE) in YCRCEVIEH end LEALLZing (&8
SCUARE) in the sippler (EJECT array representation of a staie of
a gene of tic-tac—tce. AID Eimply REAJJIZEs the item its skeleton
represents. Eoth routines, given indexsible dats arguments, make
sure the data referred to zre indexed and 211 relevent if-addeds
zre called. A sipilar relation holds between HEHOVE and
D EALTZE. The choice between the item or object representaticn
should be besed, among other things, on how the user wishes his
data to interact with his progrems.

llotice that, since ALD and REHOVE are merely ways of
referring to items Ly skeletons, l;nsing ther to handle methods,
referred to directly or by raere, is synonvmcus with use of
REALIZE and URFREALIZE. In fact, even en item, once in the cata
bese, looks something like

((HAZ 0 4) (52 =) (0 +))

(see description of c-markers nesr the end of this sectdiaon),
+he. e the item AIDed (a new list structure derived from, =ay,
{(ia X ,Y)) is only the first element of the actuel jitem detum.
Therefcre, item dates, as data returned by ALD, EEMOVE, FAESENT,
AESEIT, (TRY-KEXT (IETCE...)), etc., indexed or unindexed in the
date bose, can bte REALIZED end URREALIZID Just like the others.

PAGE LG

Althourt items znd cojects can be arbitrary list structures,
it is very often cesiralle Lo separste 2 datun’s "esselice" (€.g.,

FRLD ILOGS FUOLS }) frow its “accidents," or its properties by

virtue of being presenlt in & context, such as

(AEASCE (FRED 15=A SALIST)).
Association of indicators like HEASUN and properties like (IRED
I15-4 SADIST) must be relative to a context—frame. Lvery datum is

mentioned by & set of context-frames, as reslized, unreslized, or
25 having properties, and associated with each such mention is a
property list which contains pairs as shown.
To associate Incicatoer with property in context, on datum,

Lee

(CPUT datum property indicatcr context),
where context is optional with default value COLTEXT. This
causes the first c—Iraze of context to mention catum if it Coes
not elready (it leaves datun’s present or absent status
unaltered), and asscciates indicator with property with respect
to thet mention.

(DGET datum indicator context)
returns the first indicator-property pair found by searching
through all pentions of datum by c~irames in the current context;
or I'IL if there is no pair with indicator in any mention of datum
iy context’s o—frames. Finall#,

(CREY datum indicator context)

dees & DGET, but reroves the pair if it finés it.

Py IR

Ususlly cne does not wish to reier to the rentionm of o catun
by £11 the c-frames of the current context, but only to the
rentions thet specify realization, those createc by ALD or
FEATTZE. These functions mention the datum &5 telns reslized in
g perticular o-frare; such & frape will be the lirst status—
defining frare in the context in the case of any present datum.
To 2dd to the detum”s properties in this c-frame, use the
function DPUT+. (If the datum is in fact aktsent, an error will
coeur.) To retrieve and remove properties only from the set of
all "+"-parlked frages up to the first "-Y-morked one, use the
functions DGET+ &nd IREM+. (If they are given sbsent argucents,
they zlweys returns KIL.)

For example, if CORTEXT is used by 2 prograc to mean "ihe
world as it stands now," and YESTERYEAR points to a higher iranch
(2 super—context) of COLTENT, 2 program nay find cut thst
comething was true that ne longer is, and indicate its current
status, in the followling way:

[IE:}ITD ((CSETQ ITEM (FRESENT “(EXIST S5-CENT CIGALS)

(COND ({UNEEAL ITEM)

(LFUT+ ITEH
*EY=-GULE
‘CURRELT=-STATUS
which construction saves it from having to discover which o-frame
of YESTERYEAR it was reslized in. lotice how REAL and UNRELL
work with iters and methods as well 25 objects.

As zmnotler exapple, I return to the represertation of the

¥IGL =B

tic—tac—toe board 2o an arrey SQUAKES of © cbjec LE..: Let ezch
such object specify the cccupant ol the correspunding square in a
rarticular context 2s its property under the ircicator UCCU: All;
if it is empty, let the object Le alsent in that context. Lhen
+:EE can pe written

(CTIFUN YREE (SGUARL) (UGRELL (SQUARES SQUARE)))

znd the occupant of 2 sguare in the current context might e
found by

(ARD (REAL (SQUARES SQUARE)) (CADR (DGET+ (SQUARES SQUARL)
“OCCURALT)))

which returnﬁ_n Xy U, or IIL, Then FORCEVIN could be written

(C. EFUH TORCEVIL (FLAYER SCUARE)

(meuLs (REALIZE (SQUSES SCURRE)) PLAYER ~OallpaiT)

VAIEROVE (OTHER PLAYER))

(TEY-FEXT (WIKWOVES FLAYER) LIL))

If the sepantics of property-list menipulators does not quite
fit your needs, there azre omcre pripitive functions, described in
the Appendix, which ensble you to tailor-rake your own versions
of then.

If the user is to understand this data structure corcpletely,
he should lmow the formets end properties of contexXi-irames; each
cne is sinply a2 list of the fore (*CFRALE crnum *date*), where
cnur is & nucber unigue to the frape, and data ere the cata it
mEntiﬂﬁs; GLOEAL, hcwever, for interrel reascns, always locks
“ilte (*CTRAIE 0). A context is a list (*COLTLXI #c—frames*),

where c-irzres zre context-Irames in order cf decressing chubs,

relL 259

the last ﬂf which is always GLOLAL.

It is & vseiul ieature cf coniext irapes thet they vanich
wien no cne points to then, i.e., they zre garic re—collectelle.
VYhen one so vanishes, it tales every menticr ¢i' a datur in it
with it, zlong with 2ll properties end, of courie, any statis
definition. EHowever, although the penticn of the detum in that
c-{rarpe is pone, &ll other c—frames” references are intect. Thus
cne may FPUSI-COLTENL, assign sowe properties to a2 datum in the
new context (using DPUT, DGET, and IREM), while doing a little
corputing. If be then flushes the frape, all the properties will
venish, while the datun’s status remeins the ssre,

The rest of Lhis section is concerned with the details of
system interaction with the index, garbage-collecticn of
ind xable dstz, the semantics of asbsence vs. presence, formets of
the markers on aatz that define their context-sensitive
properties, and escteric prgpefty manipulatcrs. Rather then
attempt it on a first pess, you mey wish merely to skip to the
last page and heéd the warnings printed there.

For those with confidence in themselves, I tegin with the
problens raised by escieric property-hendlers. Hotice th=t
functions like UFREAL and REMOVE return date whose first status—

defining mention in the current context specifies unreslization.

To ranipulate properties in the c—frawes pentioning a datun this
way, use DFUT-, DCET-, and LREM-, which are almost completely

-nzlogous to their "+% counterperts. (hence, LFUT= will cause an

LG 40

errcr il the datur it is given is present.] However, the sralopry
is somewhat flawed.

The description of preseénce vs. absence of & datunm that I
have given hes nol cifferentiated the properties they shore and
do not share. In & sense, they ere eguivalent; a dztum, once
realized in & context-frame, cannolt be bade absent therc by
operations &t 2 hirher level, and unrealization is equally
tenscious. Fut "absent" can also mean "heving uvnspecified status
in £11 c=frames of & context." Vhat are primitives like DPUI- to
do in such cases? Conniver’s sclution is to treat c-frame GLOBAL
as special, in that having no mention but "unreslized in GILCEAL,"
is eguivelent te having no mention at all.

This reguires = detailed explenetiorn. (Eut, since in mcst
ces s the intuitively desireble thing happens, it is not very
important that this explanation be understood.) Every datum

keeps track of its mentions with context markers (c-markers),

each of the form

(crum status *property-pairs*)
where crum identifies & c—frame =znd status is +, -, or klL.
Forrally, = mention of & datum by & c—frame i=s its assignnernt of
ron—HIL status or properties or both, but with (0 =) excluded (O
teing the crum of context frame GLOEAL). This neans that o-
me.rl:ei‘s of the forrm (52 KIL (FOO EAR)), (O +), or (3 =) are
mentions, tut (52 1IL), (0 KIL), and (O -} are not; when a c-

rarker like one of the latter arises by the acticn cf a systen

rikb 41

Tunction, it is celeted Iron 1ts catum. The ssre herpperns
(eventually) when nobody roints to the c~frare with a marker’s
cnun (25 it is flushed by the garbare collector). Indexable aata
are indexed only when there is at lcast cne pention of ther by &
living c=irome, Lo allow lor garbepe—collection of totally
worthless deta which would cthervise be protected by the inaex,
This state of affairs clears the way for CGLOEAL to te the
deleult l::-—f'rﬂmE used by DFUT-, DGET-, and DRE- if the data they
work on zZre absent Tty virtue of being unspecified in all c-fraces
of the current context.
If zn exapple will help, consider this. Sterting with a

fresh data base, you type

(CSETC D1 (REMCVE “(LYIDON PULLS FIG-EARS))),
vhich returns, as it should, the item datum referred to, with c-
parkers as its tail:

((LYFDON PULLE FIG-EARS)).
Its CAR is the instentizted skeleton (BQUAL to it), its CLDE (and
1list of c-merkers), NIL. It is not mentiomed or indexed; no one
can tell it ié there. You KEMOVEd it, right? lhe (0 =) you mey
have intended is invisible. Low you iry
(DPUT- I “ILSTEAD “LOG-EARS)
a-d out copes
(DOG-EARS INSTELAD),

tie new property peir IFUT- created. .E;ui; lock =t the value of
In:

P R

((LYLECK FULLS PIG=-ERS) (0 LIL (LOG-Lidl TLETLAL))).
ot only thet, btut (ALSLUT “(LYLLOK PULLS FIG=LAKS)) will Iind
Il; it’s incexed. low, typing

(DRE = 1A “DOG=LEARS)
r:ii ks out

(DOG=EALS ILSTLAD),

the deleted pair. ILeleting it hes made the c-marker (0 KIL) a
ner—mention, so it is deleted from the item, leaving no meniions
of T1, which is therefore unindexed. I locks like:

((LYNDOR FULLS FPIG-EARS))
ggain.

In this wey CLOEAL is treated uniformly a&s the o—frame where
things sren’t when they aren”t anywhere else. (Ontologists take
notice.)

This trestment means thet RENOV=l at the top level allows
Fertere—collection of items, which, beczuse of the tenacity of
sbsence in genersal, carmot take plece at lower levels whose o—
frares ere still alive. Since &1l contexts need such & o-irame
=t the bottom, GLOEAL must te the last c-irame in every context.

If the user has noticed the delicacy of this structure, he
1ill be more than glad to heed the following warnings:

(1) Con“t build contexts by any method tut with the system
functions provided ihf this purpose.

{Z2) Don"t play wvith a detun”s c-parkers on jour OWn; you oay

crezte en illes=l rention, scremble their order, or be cauzht by

chGE £3

a contexi-{rame rartage collection. Once you heve a property
pair; however, vyou nay salely do anything ;.,rt.:u wish to it.

Vith these coveats in nind, the user way turn to the
cesoriptions of the following contexit=building iunctions:

(1) (LEF=-COLTEX1 o-Ireme-list) rpakes sure tle c={rares in its
arguzent are in the proper order, then adds a #*CORTLXT at the
frent, returning the result. If necessery, it splices in a
jcirter to CLOE/L et the end, to make sure it“s there.

(2) (CFRAKME) creates & o-frame with a unique cnum, higher
tlen any in use, suitable rostly for use in expressions like
(EV=-COLTEXT (LIST (CFRAIE) GLOEAL)).

(3) (PUSE=COLTEAT context) behaves just like

(LAMEDA (COLTEXT)
(COHS “*CCHNTEXT (CONs (CFRAME) (CDR COLIEXT))) Ja

but its argument is optional with default velue CONTEXT.
(4} (POF-COLTEXT context) behaves like

(LAIEDA (CCLTEXT)
(COMS “#CONTEXT (CLDE CCLTEXT))),

but it, toc, will take COWTEXT as its default srpument if it is
applied to KIL. _
(5) (SFLICE context) adds a brend-new c—freme just gfter the

first of context, and returns its argument, with its structure

chinred.

e ——

£ hGhL 44

[n Iatierrn—lirected Invocation

lethods can e invoked in associaticn with uﬁdinﬂ itecs to,
Tetching items from, amnd recoving items frow the date wese. The
invecation cepends cn a paichk between the methoc’s pattern end
tle iterm.

The matcher usec in Conriver is very sinple, and is vilased in
favor of taking a constent list on one side. (LATCH varpat
datepat cateenv), vkere catzenv is opticnal, assumes varpat is a
pattern of & FEICE c¢r methoa. A pattern is a non-circular list
structure with certzin sub-structures that ere expansions of
expressions starting with the mpacro cherscters wow, wiv, " 0. and
wgw, woyapt (yhich expends into (GIVEN var)) irdicates a
variable that is to receive & velue during the ratch; "!var”
((AsSIGL var)), a veriatle that pust patch s verieble-free
expression ior the tatch to succeed; Y,var" ((CVALUE var)), a
variavle whose value is to be substituted in the pattern kelore
the petch berins. (Varpet varisbles sre locked up in (Fhiel), as
are datapat verisiles if no dateenv is given.) “oexpr" expends
int. (/€ . expr) and meens "the Lisp velue of expr," which is
substituted into the pattern, again, prior to the match. (See
"Lisp end Ccnniver," below, for further informstion about "G4.)
MATUH does not sctuzlly assign the pattern veriables; it returns
an asssociation list pairing each pattern variabie that watched &
ccn: tant Ex;reséiﬂn witk thet expression. If the match failed,

however, the atom LBULATCH is returned instead. T1he wmatcher is

viuk 45

rulti-level (thot is, verisiles cen occur below the top level off
list structure), and dots are sllowed in patterts, & (L1iU DESI
. 7%}« lLience, the pattern ((FRELS %X) . ¥RLS1) matches
((FREDLS FATLER) WHISTLES)
((TREEDE FAMHER) GEISTLES DIXIER)
((FEEDS GOLE) HE SAID),
generating association lists
((x FATHER) (IEEET_ (WHISTLES)))
((X FATHER) (FEST (WHISTLES DIXIE)))
((X GOFE) (REST (EE SAID))),
respectively.

TRY-FEXT takes lists generated this way (as it finds them,
associated with iter pessibilities), and assigns the varizavles as
they direct.

if=addsds and if-repoveds work nicely with this matcher. To
invecke one (or the closure of cne), Conmiver binds its varizbles
and, in the method’s freme, matches its pattern sgainst an item.
Since there are no variables in items, &11 varisbles in the
patiern get values. The invoker then sssigrs then and staris the
1etl od.

If-neededs” patterns must often be matched zgainst patterns
(cf FEICH s) that themselves have veriebles. Invocation proceecs
*8 with other methods, tut = method varizble matched agsinst an
expression containing questior—rerked atons in the FETCh-pattern

simply does not receive a velue. If the method varisble is

Lidi LG

r1eceded by YI!IV instesd of "¥", the match fzils immediately. In
soet, sub-patterns of the form "lvar® find their gresatest uce in
potterns uf‘ if=neecdeds that, armed cnly with "¥Y, would have to
tavs as a first line, (COUD ((URASSICHEL “var) (ADILU})).

lletice alsc that TRY-UET in no case assipns 2 varisile in
the IETCE-pattern while invoking the if-needed cethod, when the
JETCH-pattern will be datapat. Thus matching an if-needed”s
(FOu A 92) egainst calling pattern (FOO 7X (FRILS 2Y)) does not
zssign ¥, ¥, or £ in either environecent. (And, if the if-
reeded’s pattern were (FOO A !Z), the method would not be
executed at &l1l.) It is only as the methed finds and KOTIES
instances, INSTAICE matches the FETCH-pattern against thec, and
TRY=-IEXT uses the results that such essignments pay take plecsa.
Since instences, like items, have no variables, 21l FETCl—-pettern
variavles are guarsnteed Lo be assigned by 1RY-LEKT. (Flanrer
users please note.] In the example given, if the method assigns
Z to (FREDS GALORE) &nd notes this instence of its pattern, ThlY=-
JEx. will assign X to A and Y to GALORE when it comes across it.
If, on the other hand, the method assigns Z to zomething like
LINCOLN or (SAILYS TURS), the metch by INSTANCE on the instance
(FOU A LINCCLN) or (FOO A (SALLYS FURS)) will fail, and ROTE will
reject it as a possibdlity.

A word shuuld be said here sbout skeletons, the 1ist
structures ALDD end RENMOVE use tc specify items; "skeleton" is

dei’ned just lile "pattern," except that only Y," and "G are
! b

el &7

all: wed; that is, every skeleton pust expend into an expressicn

with no variables.

FLGE 48

Uci: ¢ Commiver

Commiver is a reparkabdy friendly lansuare 10 use, Leocouse
its control structwe is "open to the public." The command
Clv: K typed at LIDT ceauses Comniver to print cut its version
number, set up an initizlly empty global conlext assigned tc
GLCEAL, and prirt
TiE-1

*
T:.e 2F? is printed cut whenever Comniver wants input. The ear it

is listening with initially is EAR-1. This is not 2 joke, tut a
tar inte a READ-CEVAL-PRINT loop at the top level. Interacting
with such a loop cught to be very essy for &n experienced Lisp
user; Comniver will atteopt to CEVAL everything typed at it, and
will print the resulit.

If input is switched to & new file (using UREAD), masses of
CEX E’s can be defined using

(CLEFUL name (*variable-declarations*) *body*).
C:EFR e, CLEXFE s, or something sirilsr, ere nct needéd because
of the flexitility cf veriatle decloraticns. Decloraticns can te
Just a list of stoms, but the éanstructinn
UOPTICHALY *declarations#*

enzailes functicn to supply default values for missing treiling
arguments. - For exarple, the declarstion (X “OELIOHAL™ (X
CLITEXT) Z) specifies one required end two cpticnel erguments; if
Y is missing, it receives the value of CORTLAT; a2 missing thifd

argument lesves £ rebound but wassigned.

FHGL 49

I the lest two elepents of ihe declaraticis are
"REST" var
vor is bound to & list of the ressining arpunenis, eoch
evaeluanted.

In pl=ce of a declared vericble, the forti (CUOTL var) uey
arpear in any oif the variable declaration slots, including “HESLY
‘var. This has the efiect of blocking evaluation of the
corresponding ergument, or list of arpuments in the case of
v F§T". A YEXPE of one arpument L in Lisp, therefore, has =s
counterpart a CEXPR with declaration (YEEST" “L).

(It should be pointed cut that this entire variable
declaration syntex was teken from HULDLE.)

In sirpilar fashion, CDEIGEH can be used to create generators
using the sspe variable declaration syntax, and ALD can be used
.tu create an initiel context of itens and methocs.

When zn error occurs (either a Lisp error or a czll to
“ERFOR), the systemn crestes & new frame with the frame of the
errcr ac ite control pointer, prints = message, defines a new
ear, and enters its REAT-CEVAL-FRIFT loop, printing
IA-n '

- .
The function BACETRACE can e used to get a lucid sumpary of the

control pointer chain from (FRAIE) upwards. Veriable velues can
be inspecteé, functions can be called, etc. Quitting completely
is done bty typing (GO EAR=1), EfF=1 being the always-definec top

level. Teo continue executiom, EXIT from EAF-n. Since the value

riiGh S

ray te irrelevent, the function (LISNISE frzue) has been provided
to ¢xit fron it vitk no particular value.

DISELIES comes 1in handy in conjunction with the “A-inierrupt
jeature. To stop Comniver between elementary sieps, hit TA.

This will csuse en "interrupt," and crezte & new ear. 1o restart
ti e process use (DIGHMISS); DISHISE tekes (IFRAML) as its deiault
arpument.

If &2 Corniver program is in the midale of eseculing & piece
.uf Lisp that it ealled, it will correctly intercept any “x’c not
cau ht by EFRSET ‘s in the Lisp itself. However, since Conniver
is written in Lisp, it is possible Lo mengle it by hitting "4 in
the niddle of deing sore internzl Conniverish thing.

Simply LISIISSing from an error will cause Conniver to try
agedin what it choked on before. If it hit = A, that means it
vill continuve. If it choked on 2 "k which turned off an infinite
pri-tout, DISKISEing will siart the infinite printout again. IT
it Lerfed because of an unessigred variable reference, it will
tar. sgain unless you assign it before LISHISSing.

You can get cut of Conniver &t any time by calling SICE.

This lezves all Cormiver structures intect, but puts you in a
lis; READ=EVAI~FRINT locp, where Lisp errors dont generate

anm. ying new eers. To restart in exactly the state befcre

(5iCP), eall (EULK); you're lack in Conniver, (kUL and SIC0F have

nore sophisticated uses; see the sppendix.)

e AGE B

Lisp andé Conniver

Lisp furcticns €o not usuzlly e=ll Comniver CLIIEs,
CEITRATCR ‘s, snd CILY“s (the anslopue of ISULLR’s im Lisp),
tei:use Lisp stecks are for more perisheble ther Corniver’s
frere-trees. (lut see the cescription of CLVAL, below.)
Conniver can call zry Lisp functicn, thouzh, and Lisp Ehbh’s,
TEX R's, LSUER s, and SULR’s can take Comniver asrpurents in forns
Evaluateﬁ by Conmpiver. Tor example,

(FRINT (TRY-LEXT P LIL))
is perfectly legal. Lisp functions called by Comniver can
reference Cenniver verietles free by use of the function (CVALUE
var), atkreviated ",var". Ior example, Lisp functicns should
refer to COLTEXT =5 ,CONTLXT.

Since Lisp can”t cell CEXFR’s, functions thet do Conniving
things pust bte written in Cenniver coun to & low level. The
restlting slowdown pay pake one cringe, but there is & reuedy.
Any piece of pure Lisp may be made more efficient by prelixing 1t
with the "&€" pacro—charecter, and making all Conniver veriaile
references explicit by use of ",". For exauple,

&(THIRD-1i-FOW ,SQUARE1 ,SQUAREZ)
wrere TEIRD-IH-ROW is an EXFR, is much more efificient than
{ TEIRD-1i~EOW SQUARE1 SQUAREZ)
beceuse it expends into
(/€ THIRD-Ii~-ECQW (CVALUE SGUARE1) (CVALUE SQUAREZ)),
/€ teing a FELFER, namely

(LAMELA (EXP) (LVAL LxX¥)).

Cerniver alweys gives ILhFh's complete control cver their
arpurent evoduation, so just hands the expressicn (/U ...) 10
1.A , s=ving generating a irame andg interpreting the expressicn.
T:e &€ mecro is thus = way o hend-compiling srbitrary secticns of
code invelving no CHxFR's, GEHERAICL s, or CIN1's. The ¢ cey be
used inside skeletons and patterns used by ALD and EEMOVLE, &nd
“ETCH; just 25 "," in such & context mesns “substitute the value
of a2 variatle,” so "&Y rpeasns “substitute the (Lisp) value cof an
expression.” Ancther use of the & macro is getting the Lisp
value of a variabvle within Comniver; &CONTLAT, for instance,
rets the Lisp velue of CORTEXT, just as “,% gets iis Conniver
value. (It should be pointed out here that if Conniver can find
no tinding of an stom while looking for its CVALUE, it takes the
rlcotal Lisp velve, if any, so that sometimes € snd , do the sape
thi. ;3 this has the conseguence that Conniver concludes a
variable is unbound enly if it is globally unassigned by lisp.)

A lisp progran, if it reelly wants to, can use CEVAL to
Cormiver—eveluate & form. 1f it is a well-behaved form, this is
just like using EVAL, but there are pitfalls. Some of the
protlems stem from the Ifzct that the frame and its daughters
generated by execution of the form may hang arcund (with a LAIG,
for exapple), after an EXIT tack to the Lisp. Vhile contrel is
in this strvucture the first time, Lisp varizbles bound in its

ealler ray te accessed (with €), and in genersl everything is

cool. After it returns, however, the lisp return peint venishes,
along with its frape, vindings, etc., arnd even ihe frare of the
EXP. CEVAL.

If control re-enters the Conniver structure, the new Lisp
stack-state above it will have rolhing to do with the oripiral,
God will imow what Lisp variables are referencesble, and a return
from the structure’s top level will have no obvious meaning.
This is not to say that a process created in this menner hzs no
use, but merely to emphasize the dangers in crecting one.
Atterpting to € & Lisp variable will probebly find it unbound
vereating & Lisp—error in Conniver), and an attenpt to return
from the control structure sgain gererates & Conniver error
(whese EAR has as control pointer a frare crested sbove the
structure for Jjust this purpose the first tinze control returned
from it). |

There is still znother problem which is even worse. If,
during a CEVALuztion, contrcl leaves the new Conniver contrcl
structure it created (e.z., by GCing to an cld tag), and never
returns, the entire old Conniver process will be running with a
Lisp steck glightly different from what it started with. In
rarticular, 211 the lisp frames that were eround when CEVAL was
celled are still there, but there is no way to detect or flush
ther. In such a situation, STOF (see Appendix) no longer does
the right thing, =nc the stzck hos teen enlarced in perpetuity.
Enough such pathological CEVALs can cause a pdl overilow. The

thGL B4

user is sirongly encoursred to use LUL and SYUF Tor Lisp—Corniver
interacticn, even if they are trickier,

Cne pleesent thought is that pany Conniver iunctions arc
actuzlly LXFR“s, or have EXIR versions which do almest the same
thing. (In the corpiled Cormiver system, oi course, these cre
J1 B s or FEUER"s, tut 1 will contirue to use the term ID0H in
the loose sense "Lisp functicn.®) For example, the CEVAL you get
if you call it Ircm Lisp is clesrly differert irom the CIiT
version the Comniver intErpretér would find. 411 functions with
E ¥ wversions can, of course, be called from Lisp. FHappily, they
include all the deie base-menipulation functions, but the EFR
versicns of ADD, RENOVE, REALIZE, and UNREALIZE differ slightly
from the CETFER versicns beczuse the invecation of any if-sdded or
if-renoved rethodés must be CEVAL"ed. Since if-sddeds and if-
removeds are probably not ftoo closely linked with the procecs
that trigrers them, these are probably safe CEVALS.

Cne worry the user doesn’t have to have is whether his Lisp
functions will clobber or rebind interns]l lisp varisbles used by
the Comniver interpreter. All Comniver atons Conniver doesn”t
Lar: you to see have been "half-killed" in such & way thaet they

will print out btut cannct be recogmized during user input.

LT
rlak b

Appendix
dle Conniver Lelerence Source

lhereas the previocus section of this merusl is a
discursive cverview of Conmniver for the purpose of illustretion
ol znd intrcduction to the ideas epmbodied in Cormiver, this
section is an attenpt o provide & reference source for ihe
active user. Thus, it contains & detsiled cescription of each
pricitive of the languare, enumerating the possible error
conditions that zre sssociated with that pripitive and its
limitations which cight not be immediately zpparent. Fesides
primitive coperators, every langusre hes a set of reserved words
(syntactic indicators and significant verisiles). These will be
duly noted. A copprehensive index to the primitives, reserved
words, @nd error corments is in the rear. This reference
paterial is divided into a section on the evelustor end a section
on the data Lese functicrs. Esch section is preceeded by =
surnary of reneral information followed by & listing of
privitives crganized into categories. Lot surprisingly sone
Zunwticns appear more than cnce. The formal conventions of this
section zre:

Actusl code is in upper case

Syntactic variables sre lower cese

Cptional srguments are delicited by brackets ([,])

surrcunding the syntactic variable and its defzult

value,

sful Bo

cervent syntactic variatles are delivited by sters (#).
Every iunction defined lLes its type (or types) specified next to
a2 sample call. CIhis and CLAPRs ere invisitle irom Lisp anc thus

are only defined in Conuiver cooe, evolding interference vwith

ILI5Y functicns of the sape rape,

riGE LY

Tre Evalusator
The Commiver interpreter eveluates expressicons in &

pmanner sicilar to that of IlSF. Ihe basic syntex is as f'oliows:

conni ver E}:'I,_."I‘_Eﬁﬂiﬁﬂ = nurber l; aton l'

‘s—expression || ¢s-cxpression [(functicn
arruments)

ergurents = erpty || comniver expression) ...

conniver expression K

The eveluation rules are:

1« A5 in LIEF quoted eXpressions and nunmbers evaluate to
themselves.

2. The value of an atom is its value as & variable. I it 1is
bound in Conniver thet velwe is used; if not the LISE velus 1s
vsed. Thus, if a variable is urbound in both LISF and Conniver
its evaluation results in the LISP unbound varisble errcr. An
error &lso results from the eveluation of a variable which is
mzssigmed (thoush btound):

UHASSIGHED VARIAFLE offending-variatle

3. &n expression following an @ is passed directly off to LISP
for EUE.j.lﬂtiDIl... ke recormend that code be written so that =5
much as possible happens in LISF because of the considerable
speedup attainatle.

<, Functicnal applications are processed &5 follows:

FY AT &

If the function is &tomic, it is checkeo for CILT, CLXEL,
 ENERATCEH, TEXFL, TEULR definiticons. If an ator hoas twe cuch
definitions, the first on its property list is takern; this Leans
that if the user wents & function to be a FLXFL in Lisp code and
a ¢ XPR in Conniver ccde, itke CIJPR must be aelined last =0 as Lo
be first on the proyeriy lict. I{ it is none of the sbcve, 1t is
assimed to be a LISE EXPH, SUER, or IEI_JLF, thus undefined
fun: tion errcrs come Ircm LISF.

If the function is a FEXFk or ISUEL the form is pessed to LISP
for immediate evaluation.

If it is a CINT (such a&s COID) the forr is evaluated by the
appropriate internal Cormiver routine.

If the function is & CEXFR or GENERATOER, the erguments are
paired vith the forral perspeters of the functicn (znd perheps
evalusted) == specified by the declaration in the function (see
CDE: Ui, CDEFGEN for deteils). After binding, tke body of the
function is execuiec.

If the function is an EXFR, SULR, or LOUER the arguments are
eveluated by Corniver and then the LISF function is applied to
tie resulting argument list with LICP AFFLY.

If the function is nor—atomic then either it is an anonymous
CLANEDA expression I{IGEJEFH} cr it is an znonymous LAMEDA
- expression (EXPR) and treated accordingly.

Ilote that there are no other cases. TEE- fmmtic:h rosition is

never evalusted as in LISF. Functional arguments are handled

byt
.

[
i
T
[Ty

explicitly, preventing anbiguity, using the furcticn CALL.

Ixecution ¢f the bocy of a CEXFh, GELLLATUE, FPROG or
 ET OD proceeds as follovs:

If it begins with the reserved word "AUXY then the second
elerent of the body is taken as a declaraticn of auxilis=ry
variables (FRCG varizbles in LISF). Such a declaration is o
mixed list of ators and initializations. Each atom iz bound but
left unessigned. An indtialization is & list of an aton and an
expressicon. Jhe atom is bound end assigned to the value of the
EXD e5510N.

The rest of the body is then executed sequentizlly (unless the
sequence is changed by a GO). The value of the body (and hence
of the function, is the wvalue of the last expression in the body,
uless & return is forced by RETURR, EXIT, or DISHISE.

hGL EU

I. Comrunieation with LISFE
A. (BUR [stuff FIL]) FSURL (but it eveluates its erpuwcent)
E. (SI0F [stuff IIIL]) LSULR
These functions allow LISPE snd Conniver propracs to treat each
vther as co-routines. Control is passed from Comniver to L1SE
via STOY and from L1SP to Copmiver via EUN. The argument to 3I0P
is returned as the LISP value of REUL a2na the arpument of RUL is
returned as the Commiver value of S10P. SICP mey only bte celled
if Conmiver is rumning, otherwise:
Conniver-lL0T-RULNI I]G—S'_I‘GP
LN may only be called if Commiver is not running, ctherwise:
Cormiver ALREADY RULLING.

I%zpple: To have Cormiver evaluate expressions passed to it from
LISF, we put Comniver into the loop:

(PRCG "AUX" ((KESSACE “EI-LISF))
:LCOP (CSEIQ FESSAGE (CEVAL (S10P LESSLGE)))
(GO “LOCE))

Cormiver returns to LISF with the wvalue EI-LISF. Therealter LISP
cay get an expression evelusted by Cormiver by calling

(RUL expression)
Tie value of REUN will be the Conniver value of the expressicn.

bithin & (Lisp) CEVAL, STCF causes its argument to be
returned as thé CEVAL"s value; this will be true even if Conniver
control has left the structure that CEVAL set up. FRUN will not
ret the profram bteck to the executicn point of that STOP, because

G B

after lesving the CIVAL, Comniver is slready rwmning. o, 11 you

vant STCP to do the right thing, don’t use CEVAL.

If, for some rezscn, the Corniver interpreter (not the
doto—bose — see LALA-IIIL) needs to be re-initialized, it can te
dore s0 by executing (from LISF only):

C. (START) SUER

START resets 2ll of the Commiver internsl verislles (inclucing
the eard) and poes into the top-level listern loop. The data Lase
is not disturbed, vt all contexts previocusly bound only to
Cunpniver veriebles will be lost to perbeze collecticon. STALT
binds COITEXNT to a floiel context containing GLOEAL &s its ondy
c=framnec.

A Conniver yprogram may safely be stopped for examﬁmtiﬂn by
hitting ~a (control-a). This causeés a new €ar io be genersted.
The program can be resured a2t the place it left off by exiting
from the resulting listen locp via:

D. (DpIstdss) CINT

M= see: BACKTRACE, LISTEN When in Comniver IEASE=LASE=10. and
all cheracter macros ere in effect; these return to their LISP

de:eults when returning via STOF.

shuk B2

ITI. Flow ﬂf.ﬂﬂnlrﬂl modification

A. (COND clausel ... clausel) CIHT

Ciel in Conmmiver is almost identical to COLL in LISE except for
the fzet that the CLE of a clause is a penersal FROG beody. Thus
it pay contein sn "AUNY declaration (See LDefinition of
procedures, FRUG) and staterent labels (tass). Thus entering &
Cl.Ll cleuse produces a nev activotion tlock 50 remecber this when

usins EXIT etc. This is a legal use of CONL:

(COKD (= B 1) wilixe (i ¢ E&E.qu‘:‘"‘ﬂ?ﬂﬂﬁh 338)
r)

(GO ’LDGPJ}
(T 2))
rext we consider the unconditional transfer:

E. (GO atom or tes) CIET

GO0 glways evelustes its argument, avoiding the anbiguity of LISF.
1f its ergurent is an atonm, GO searches 1ts environment lor the
nearest body conteaining (CTAG stom). This is eibreviated by the
use of & LIEF character macro as :ztom. |

Czution: do not read Cormiver code into LISF as the mecros sre
not in effect.

Execution then proceeds from the statement label found. If its
ergunent is a tzg (see TAG snd ACTELOCK, control is transferred
to the tag, perhaps nor=locelly. I the arpument is of the wrong
type or an stomic ter cennol be fourd we get:

EAD TAG

i GL E£3

C. (EXIT velue [frame (ACIELOCK)]) CIni
D. (ALTURL wvslue) CLill

E. (DISHISS [frame first non—COLD Irare]) CIul

EXIT returns from the frame indicated with the value indiczted.
If no frepe is given it returns from the nesrest activaticn
block. Cauticn: CUKD causes an activation block. RETURN,
returns frox the nesrest nor—COID activation bilcck. DISHISE is
EXIT from the freme specified with the value iIl. If no freme is
Fiven it does & (RETURN RIL). If there is no sctivetion block to
EETURI from or EXIT from we get:

EETURN FROE WHAT?
cr EXIT FROK WEATY
If DISHIES or EXT is given & nor—frape they cocplein:

EAD FRALE |

Fo (ADIEU proposzall ... proposelll) CEXER

G. (AU-REVCIR propcsall ... proposslll) CEXPR

These functions return a possibilities list froc a generator,
WO.Eing proposals 1 ... i in that order. (licne ray be supplied.)
(ree NOTE). ADIEU leaves for good but AU=REVOIER finishes by
noting a tag inside AU-REVOIR so that TRY-KEXT can resure the
generator vhere it left off. The velue of AL-EEVOIE, con
resunption, is the rcessage pessed in TRY-KEXT. (see TRY-HEXNT).

afiiz L4

11I. Irere Lanipulelors:

A. Constructors:

1. (TAC oton) SULK
2. (ACTELCCK) SULR

A seerches the envircnment for the first activation block
cen aining 2 stztement label :atom. It returns o tap struciure
vhuse frame is that activation tlocli and whese Lody-pointer is to
that stetement label.

ACTELOCK searches for the first sctivation block (freme with 2
body) in its envircnment and returns a tag to the begimning of
the body. IT either a TAG or ACTELOCK is unsuccessful in its
search it returns KIL.

Z. (FREAME) SUEE
4. (ACCESS [frare (FRAKE)]) LSULR
S« (CONTRCL [frare (FRAKE)]) LEUEL

FRANE returns the frame with respect to which it was evalusted.

ACLEES returns the access frame of its argument.

COLTROL returns the control frame of its argurent.

The argucent to ACCLSS or CCRIRCL pust ke a legitipste frame

(#tag, *freme, *clesure). IT it is not we get the error message:

EAD FRAKE SUFFLIED _
£. {(CLOSURE procedure) SUER

CLOSURE produces the lambds—closure of the procedure ({funciicn,
renerater, cethod) indicated. Later invocation cf the closure

(ree CALL) causes tke envircrment of the procedure (its access

Liae £

vl ter, where it searches for bindings of iree variavles, tars,
etc.) to be the enviramment in which the closure was constricted.
e.r. I X = 4 then:

(CALL ({CLAHZLA (x) (CLUSURE “(CLAMEDA (Y) (+ X Y)))) =) =)
has the value £ but

(CALL ({CLAHELA (1) (+ X 1))) 3) %)
haos the velue <.

This is the classicel "FULARCY device,

E. Hodifiers
1. (SETACCESS fremel frare2) " SUER
. (EETCCRIRCL fremel freme?) SUER
The: € very dangercus functicns (for experts only) are used ior
rodifing fremes. They set the sccess cr control pointer of iramel

to freref.

C. Interrogaticn

(EXFRESEION frare)} SUER
This functicn returns the expressicon whose eveluation created the
frare supplied. It is useiul for hunting arround in the frare

structure.

IV. Helative Dvelusticn:
A. (CEVAL expression [irame (FEARE)]) CLLT p L UEH
'This is the standarc :elatiue evaluation functicn. The expression
is evalupted with respect to the frame specifie¢ (default, ihe
current environpent) as iis access frame. I the frape supplied
is not lecitimate, ue pet:

EA ITRAKE

The LSUER definition of CEVAL can be used to do Commiver
ryeluations from Lisp. Unibrtunately, if you use it to do
something reslly clever, you probaily are deing the wiongs thing.

See "Lisp and Conniver" for an account of the dengers involved.

E. (CALL functicnzl asrpument ergl ... argl) CINT

(AL applies the furcticnzl argument to the arguments suppliec.
It evoids the LISF ambiguity in the case that & functional
arpument is the value of a variable and we have no way of
pusranteeings that it has no function property. The functicnal

armunent may be & function, generator, or clesure of a function

or Fenerator.

PAGE &7

V. Variable panipulators:

A. Interrogators:
1. (VILOC atom [frame (FRAME)]) LSUER
€. (RVALUE atom [frame (FRAME)]) LSUER

7. (CVALUE atom) FSUER
4. (LVALLUE atom) FEUER
5. (ASSIGKED atom) FSUER

VLOC returns a locative to the value of the atom supplied if it
is found in the frzce specified, if not, it returns NIL.

RVALUE returns the resl velue of the atom given in the frace
specified (it dees not check for *ULASSIGHEL). If the varisble
is unbound in Cormiver, the LISF value is talken. If it is unbound
in LISF, the eppropriate LIEF error occurs. If either VIOC or

EVALUE are given an illeps]l frepe, we get:
EAD FRAME SUFFLIED

{CﬁALUL atem) (abvlreviated ,atom via macro-cheracters) gets the
current Conniver value of the atom. This is how LISF code called
by Conniver code gets the value of Conniver variables..

LV, LUE gets the LICF value of its argurent. (LVALUE atom) is
equivalent tc (tut not identical to) Gatowm.

ASEIGILD returns as its value, T il its argunent hes a value

.other thon *ULASSICHED) and HIL if it is unassisned.

L. lLeoditfiers:

1. (COLT stom value [frome (FEANL)]) LIUER

0L €O

2. (CEEIQ zton value) ClLiil,SULE

Fe. (ULASEIGH etom) SUER

Er

C. T is the most powerful assignment operator; it sets the atow
to the velue relative to the frepe specifiedc.

C3 IQ is & pinor convenience; it does not eveluste its 1irst
erpument.

ULLEEIGCH sets itls ergurent to *ULASSIGLED,

C. there is one more function for working with varistles:
(BIND =tom value) SUER
This is for experts only; it binds the atom to the value in the

current Irsre.

1Bl £Y

VI. Delinition of Procedures:

1. (CIEFUL ator declaration *body*) FSULK

2. (CDEFGLIi atom ceclaration *body*) FSUER

These functions zre used to define the atonw to be & functicn (or
Fenerator) vith the formel perameters specified by the
declaration and with the body given. Functions zare placed under
the indicator CEXPR and generators under the indicator GEUERATOR.
The body is simply a seguence of stztements to be evaluoted
sequentially. It may (or may not) begin with a déeclerstion of
auxiliary variables (descrited later). The forrel perameter
declaration syntex is as follows:

declaration = (gbligatory varisbles optiomsl veriables

€X0 55)

obligatory variatles = empty § marl ... peril

parl = aton | “aton
optionsl variables = enpty f "CPTICRAL" opl ... opli

opl = ator | “atom § (atom default) [(“aton default)
excess = enpty | “REST" atom] "RESTY “aton

The semantics is as follows:

1) Formal persmeters are ratched zgainst argurents from left to
right.

2) There must be at least Dn&-E.r.gmsnt for each obligatory
variable.

%) Unless there is an excess collector declared, there nay not
ke more arpuments than declared veriatles. |

riakb G0

£) hrrurenis are evaluated unless the correspending forpel
parzmeter is quoted (7).

5) If the arpurents run ocut vhile binding opticnals, they are
Tilled with either *URAZCIGRED, or if an expression for the
defeult value is given, the value of the default expression (in
the frame of the function with 211 previously processed variables
bound) is used.

6) /n excess collector gels the list of arpurents or velues of
crouments (depending upon the existence of 2 7)) left over.

This elepent syntex is due to Chris Reeve of FUIDLE. Lote how
“reautifully this does away with FEXFR s and LEXFR's and how much
more flexible than LISP it is.
If the evaluator is not satisfied that the nunber of arpunents
is right for a function it copplains: '
WRORG § OF ARGUHENTS
If the syntex of a decleration is not as specified ebove the
error copmert:
BAT DECLARATICH
111l bte penerated.
Io create a method we use the constructors:
C. (IF-ALL: D stom pattern *body*) ISUER
D. (IF-REMCVED atom pattern *bﬂﬁy¥J FSUER
E. (IF-KEELED atcm pettern *bpdy*} FSUER
The given atonm is defined to be & method of the type indicaied,

invoked by the given pattern, with the given bedy. The methieod

FiiGE 11

requi‘_r;ed is the value of the consiructor. 1f the atom iz nct
specified, the rethod is not nared, but of course, it pey Le
saved as the value of & variable. Yo be accessible, a pethod
rust be put into the data lese via ISERT or AIL.

The body of & procedure is £s follows: The velue oi a
functiom is the veluve of the last expression in the body (or of a
RETLRH, EXI1, or DISHISS). The body is just a sequence of
expressions to te evaluated. If it begins with "AUXY (a2 recerved
worc) then the next element of the Lody is taken as & declaration
of suxiliary variables (FRUC variatles in LISP). Such 2
declaration is 2 list of atoms and initializaticns. Each atom is
bound btut left unassiged. fn indtislizstion is a list cf an atom
end an expression. The ator is bound and assigned to the value of

the expression.

cial 2

VII Possibilities lisis
A mossitilities list (created by ILLGCH or a generailer

function) hes the following foreat.

possibilities = (FFLSSIETLTIIES posl ... posi)
rosl = (#*HLTHOL pattern methndjl

(*GEKERAICR form)f

(*AL=REVOIR body fr)f

(*ITEN iten alist)f]

anything else

Thus anything may be 2 possibility btut the specifically menticned
types have special interpretetion in:

A. (TEY-NEXT possivilities [nomore KIL] [messzge IIL]) CSUER
TRY-NEXT is used to try the first pessibility on the
possibilities list. In deing sc, it clebbers the list, reucving
the first one. If there are none, it evaluates noncre and
returns the value. The action taken by IRY-HLX1 on each type of
possibility is as follows:

1. (*HETHOD pattern if-reeded method)

The method is involked. It generates and returrs a pessibilities
list (protebly by either ADIEU or AU-REVOIR, though it may CONS
one up). This new possibilities list is then spliced into the
piven cne, replacing the methed possibility which crezted it.
TRY-FEXT then lcops back to try the first pessitility in the

FRGE 15

new. ¥ consiruvcted possibilities list. The patiern is used Ly
IR _ANCE inside the method as the calling pattern. If en ii-
neeced or cther kind of generatcr doesn“t returi & possibilities
“ist to TRY=-IEXT, whkat it dees return is ignored.

Z. (*GENERATCOR forn)

Ex ctly the szme as a method except thet the form is evalusted
rather then the metlhod invoked.

Ze (*AU-REVOIE body 1T)

This is the way AL-REVCIR can be resumed. The TRY-HNEXT rocs off
to the appropriate rlace in the AU-KEVOIR which passed this baclk,
The AUREVOIR returns to its celler (the generator or method)
with the optional TEY-INEXT messzge as its vaelue.

4, (#*ITEM iter =list)

The alist is a list of variable-velue pairs probebly constructed
by the matcher. The variables ere set to the indicated values
and the item is returned as the value of IRY-IE:T.

. Anything else is returned as the value of the TRI-HENT.

Thus we see that TRY-NEXT does not terminste until either ike
possibilities list is empty i.e. (*FOSSIEILITIES) or an iten
possibility or an "anything else" is first on the list. If IRY-
+E i1s given a bad possibility list we get.

EAD POSETEITITIES IIST

A method pales iten possibilities as instances of its invoecstion
pattern with:

i« (ILSTALCE) TSULR

which returrns the current instance. It will gei upset if tlere
are wnassimed variatbles in the pattern and will cry:

INFURE ILETANCE

4 penerztor or rethod mey note a new possibility wvis

C. (HOTE [possibility (ILSTANCE)]) - LSUER

The list of possibilities that have been noted since the
renerator was started (or last resumed at an AU-REVUIR) is stored
in & variatle, FROFCSALS, in the reverse crder of notation
(chremoleogically). This is the list which is reversed and
returned (with *FOSSIEILITIES CClSed on) by AU-LREVOIR and ALIEU.
If a generator (or & method) wants to get (to see or clobier) the
possibilities list of the TRY-NEXT it feeds, it can:

L. (GET-POSSIEILITIES) I'SUER

It can replece the rossibilities 1:'!.5'1;. of thet TLY-NEXT by:

L (SET-PCSSIEILITIES Bﬁs&ibilities list) EXFE

FEGL 5

1II1. Debugring Adds

Ae (BACITRACE [nurber GSEL6C]) LLXTR

DACKTRACE types ocul, in & very reacable furm, the expressions
corresponding to each frage of the current process, starting with
the current frame, and proceeding by contrel lirks to the tcp
level. The opticnal nuperical srgucent may e supplied to limit
the typecut to that many fromes.

E. (EXFRESSICN frame object) EXFR
Has &5 its value the expression of the freme, tag, or closure

pessed to it. This is useful to find out what in the hell is
corming off when you are playing with control structures.

C. (CIAG stom) FEER

Tr s is the interns]l representation of :at&ﬁ, & statenment label.
Flesse note that the LISP trace peclage can be used to trace
C.A , thus showing vour flow of control.

Tl e Datz Lese

The Conniver data bese is a hierarclical structure of
contexts, or a "trec" ol context—fromes, containing four types of

vt 2 objects, iteeps, pethocs, ond rethoed closures.

Objects are oi the Iform:
(#0LJECT arbitrary-structure *c-mparkers#).
Tters ere of the Iorm:
(nare *c—markers#*)
vhere name is any nor—circular list structure.
Methods look like
(type namze pattern body *c-parkers#),
vhe: e type is II-IVEEDED, IF-ALDED, or IF-RKELCVEL; n=me is an aton
which is the method’s name unless it is NIL; pattern is a non-
circular list structure with 211 variables (if zny) merked zs
(GIVEW war) ("?var") or (ASSIGH ver) (“!var"); and body is a
-enerator-function body if type is IF-HEELEL, and & CEXFK body
othervise. Any atom with such & structure on its property list
under the indicstor KETROD is eguivelent to that method in every
situation as fer as the system is concerned, but the stom oDust ke
the name of the method.
Method closures look like
| (*CLOSUEE method fr),
where metheé is 2 rethod (possitly specified by neme), and Ir is

an internel frane pcinter.

L W L &
ool

A1l such date heve (possibly LIL) lists of c-markers
associated with them. & c-verker is of the forrp
(cnum status *property-pairs+)
w! ere cnum is & o—frame nucter; status is +, -, or LIL,

indicating reslization, unrealization, or unspecification in thet

¢—frane, respectively; and property-pairs zre nor—atomic s—
expressions. The c-merkers on each daturm are in order of
decreasing cnums.
A c-parker indicates & pention of its datun by its context—
frive. A context-frame (c—frame) is of the forn
(*CTRAHE cnum *data)
where cnum is its unique context—-ireme number, and data are the

date it mentions. If cnum = 0, this is the glolal contexi-irame

GLOEAL, for which dote als;'&}'s = NIL.

A context is a list like

(#CONTEXT #*c~frames*),

where c—irares rust be in order of gecreasing crnums, with o-frape
CLOFEAL = (*#CFRALE ©) as the last one. It is worth mentioning
here that none of the functions that -:iégend on &n explieit or
imilicit context arpument check for the presence of the *COLTEXT
ilar at the beginning of the context. Kence, any list with a
list of c~frames as its cdr is a legel context; in particular,
{CL: context) = (super-context context) for 211 practiczl

[PUrpcses.
Fach corntext rirorously defipnes the siatus of every dz=tum as

- W

» 0L b

rresent or zbsernt, =5 follows: 1f the iIirst stcius—deflining
mention of the éetur by a ¢c—Irape in the contexi specifies
reelization (stotus = +), it is present, else alsent; in
particuler, if it is unspecifiec by &l11 c—Irazmes in the conlext,
it is ztsent.

Every c-marker rust specify either non-lIL status, or non=LIL
property-pairs, or voth, and cannot te (0 -), or it does not
conctitute & mention. GSystenm functions delete all c-markers of
the form (n KIL) or (0 -}.

Vhen a o—freme iz nct pointed to by anything, it is supject
to gartare collecticn. All c-pmerkers ecbodying & mention oy it
111 bte deleted from their data.

Iters, rethods, and method closures are indexable datz; they
can e referred to by pettern in FEICH and cther functions. This
inc xing is done sutopeticelly by the systen whenever an
unpenticned datur btecones menticned (by ADD, KELOVE, DFUT, and

other functions); windexing occurs when its lest mention is

remcved (oy DREL, the mertese cocllector, etc.). Unindexed items
and anonymous methods are subject to garkbage collection if

unp: ctected.

riGh g

[ete-fose Functicons

These functions are tightly interwoven. Iy &ll call &
compon body of invicible funecticns vhich ancdyze thelr arpuwenis;
it is these that prict most error messages. weny lfunctions
penerate the following two Lesseres:

100 FEW ARGURENTS
TCO LAWY ARGUHENTS.

These will bte accoppanied by a print-out of the form that czused
the troubls.
lieny functicns use system routines to breal & datum into
usatle chunks. They can generate the nessage
HEAITRGLESS DATUK == functicon,
where functicn is one of AHALYZE, CRARXERS, or rAITERN.
Functions that talke skeletons instead of pelierns es _
arguments resent finding "?" or "!" in them. Tkey generate the
ressage
VARTAELES Il A SKEELETON — INSTANITATE
(IN.TARTIATE being the routine that generates zn item fron 2

s e eton).

relal £O

J. lete-tase Initisliization

(i ATA=ILIT n m) wULh

This functicn wipes cul all currently existing contexts, anc
unindexes all indexclble dote. It creates 2 brard-new dets Lase
rovernea bty the parapters n and m. n is the tolal nuohker of o—
frames allowed; if the cate-base I'unctions ever attenpt to
maintain more than this nuober st once, the pessage

TOO HAIY COLTEXT=FRAmMES —— CFRAIE
will occur. (See CTRANHE for a mpore complete sccount.)

The seccnd parapeter, m, is the increment between the numbers
of context-Iirames ccnsecutively generated by CIRAKE. Given the
crdering coanstraint cn c-frames, and the fact that SFLICE (¢v.)
rust be able to generate c-frames with cnums between those cf any
two o-frames, even if they were generated ccrsecutively, they
car: ot be nupbered C, 1; Z5.0ey but 0, by 2Ly S0y ecas

Commiver does a (DATA-IKIT 100. 10.) when it is loaded,
creating a data btase with at most 100 c~frames £t 2 tire,
jupbered O (CLOEAL), 10+, 2Cas 30eseass

P

IT1. DIaturr Crestion

A. (CEJFCT [structure NIL]) ' LSULR
creates a bramd-riew object of the form (*QLJLCT structure), where
structure is artitrery. This cbject is initially absent in all
contexts, ard, of course, not E(to any other.
If UEJECT hes too pany erpunents, it errs with the wessepe
TCO HANY ARCUMELTS

b. (DATUL skeleton) SUER

Iten cdata zre normally created implicitly whenever the user
nam: & one with & skeleton thet does not refer toc any currently
indexed iter datum. If, however, the user creates an iten daotun
khipself, by using LIST on a neme, or using the “sipnulated iteg"
of en instance ;;upﬂsal, etc., it is obviously gfusrenteed nct to
be EQ toc an indexed item datum with the same nare (if any).
Thu: , if he executes (REALIZE (ILIST “(LIVE GCO1))) and ((LILE
GCO) (S =)) is slready indexed, the new ome will be indexecd as
well. (The indexer could check for this, tut it would slow
thirgs down.) Then FETCE will find both, and FRESENT will find an
unpredictable one of them. 7To get zround this problem, use DATUI
instead of LIST. After instantiating skeleton (lilke ATT), LATU
returns LIST of the result only if it can”t find it in the index;

if it can, it returrs the unigue item datum with thst

PHGE €2

instantiated skeleton as its nape.

AGE L3

I111. Inlersine, Lepleting, end Searching the laia lase

fe \HEALIZE daturm [contest LUHTEhugJ CIonI i, LEULK
URREALIYE detun [context COLTLED]) CEFH, LEULR
ATD skeleton [context CUNTERTT) CrAlH , LSU L
IERCVE skeleton [context CORTLRT C=XF, LEULE
IRSLERT skeleton [context COLTEX] LSUYR
#111 skeleton [context CONTEXT]) LSUER

These functions make datum present (REALIZL, ALD, ILSELY) or
absent (UGREALIZL, REMOVE, LILL), by virtue of realization cor
unrealizeticn in context’s first context-frace. Here, "aztum®
peans datum (REALIZE, UKREALIZE} or “item datum referred to by
ske eton" (ALD, EENCVE, ILSERT, KILL). ALID and REHCVE can te
used to zlter the status of date not referred ic by skeleton; see
I1Il.E.

The effects ¢f these functions e&re invisible in all super-
contexts of context; these effects will be collected as poartage
if the top c—{frece is ever caught unprotected by the garbegse

collector.
If ADD or REATISE is given & skeleton or indexable detum

argiment, respectively, a1l if-added methods patching detun”s
nem¢ that zre present in context will be inunﬁeﬂ. Sipilarly,
IIPEALIZE end REMOVE inveoke if-removed nethods patching datum”s
PElt .

bWarning! TIhe IEUER versions of these four functions execute
hidden CEVALs to accomplish the method invncafinms. I the
rethods do enything really clever and subtle, involdng ther will

probably SCrew your [rofTak.

E. (ADD method [context CORLEXT CIXTFE ., L=Ukh
FELCVE nzeth!::d context EGIETJ]_;:’I } CLAFR :Ew...k
ILSERT method [context COHTERYL LSULE
KILL method [context E{]]-TJ:.}E{]] LSULE

I1f ADD and EEMOVE are given method, method rname, or wetlod
closure arguments, they are synonymcus with HEALIZE and
LD EALTZE; the sape is true of 1KSHT and KIIL. These functions
can not be given any other datun types as arpunents. (Zince
the:e is no vay to tell whether ((FCO BAR)), for exarpple, is

meart to be an item or the neme of cne.)

C. (FEICE pettern [context CONTEXI]) LSUER
FETCHI pattern [context CORTIEXT] LSUER
FETCHE pattern [type IF-KEELED] [context Eﬂli%‘%ﬁ}

FETCH returns a possibilities list consisting of item
pessibilities for 211 itens present in context ithat match
pattern: followed by method possibilities for all if-needed
methods in context whose patterns metch pattern. For the fcrmat
of these lists, see “Hairy Control Structure.”

FETCEI retwrns & possibilities list containing cnly the item
pessibilities. FEICHE returns a list of only the method
possibilities of type type that are present in context end ratch
pattern.

FETCHH rey spewn the error meésssge

shub £

T00 LAWY ARCULENTS.

L) S B

IV. Eroverties of Leta

A. (REAL dstum [context EGii';l-.}“.iH:)L LSULR
ULRLAL catum [context CORT lj ILEUER
TRESENT patiern Ecﬂnte:-:t COLTEXY ; I1EULR
AESELT =keleton [contexi COLTEXI LEUEK

These functions return catuw if and only if it is present
(REAL, FRESENT) or sbsent (URREAL, AESELT) in context, zng 1.IL
oiherwize. KEAL end ULREAL are handed their deta arguments
directly; FRECENT tries tc return a randowly chosen present
iter thet ratches pettern; AESENT takes DALUN (qv.) of ils
ske eton anc then cells UIRLAL,

- FRESENT behaves a lot like (TRY-HEXT (FLTCE pattern)); in
perticulear, it sssisms any "¥9%- or “!Y-parked variatles in
ratiern to the pieces ol the item that they petched.

« (DPUT datum property indicator [context cc:;-aTL:a:TaJ
LsUER

(DGET datum indicator [context CONTEXT]) LSUER
(DRE} detum indicator [context CORTEXT]) LEUER

(DFUT+ catun property indicator [context EDI-E%H_%

£DGEI+ detun indicator [context CORTEXT % LEUER
LDHE+ detum indicator [context COETEXT LEUER

(DPUT- datum property indicator [context CGL'E%E
EDGET- detun indicetor [context CONTEXT g ILSUER
DiEl= detun indicator [centext CONTEXT LSUER

DPUT associztes the peir (indicetor property) with detur in

the first ("rost local") c-ireme of context; like REALIZE,

Frbrn LY

| i FALIZE, &nd their ilk, these efiecis zre invisiule abuve
ccntext end partege—collectelble if iis tup c-irzne is recloimed.
Ii'E finds the first peir sssociotec with lncicotor in any o=
frape of context, startirg with its first o-{rape; if there is no
such pair, its value is kIL. DLl has the sarpe value, but
ree. ves the pair as 2 sice effect.

DPUT+, LOCET+, and DhEMF+ are exectly the sape, but they ettend
only to the c~fremes in which datup hos reslizec ("+") status, up
to the first c~freme in which detum is unrealized. If LPUL+ is

given & datunm which is sbsent in context, the error pessope
AESELRT LDATUL — DEUL+
GCCUTS.

DFUT-, LGET-, and IREl~ are exasctly arslogous, but they
ignore =11 frames with status # "=, and all frenes after the
first in which éatun is reslized (merked with "+"). In additiom,
if the datur is sbsent by virtue of unspecified status in all c-
frares of context, LPFUI- uses GLOEAL as the repcsitory of its
properties; DGEI- and DREEi~ treet CLOEAL as specilying
inrealization if its c-parker on datum is parkec NIL =25 well as
if it is marked -.

If DFUI; s arpument is in fset present, the error nessaye

FRESENT DATUE — IFUT=

is generated.

cFGE

C. (DEUICE céotum property incicetor c-irame) SURK
DOGIICE cotup incicator c—frone SULL
DrenCl cotur indicator —frape SUEE

These functicns manipulsete properties in en explieitly given
context=irane, LPUICY associates property with indicatcr in the
Cc=marker for co-Irare on cztum; if there is no such e-merler on
(atum, LEUICE puts it there, withoul changirng iis status. /45
usuel, these effects are invisitle in super—contexts not
containing c-frame, and will be rartage-collected if c—frome is.
DGETCF and LREMCI search thet c-parker for = peir with first
elerent = indicator, and return it, or KIL if there isn”t one:

DREL.CT removes what it finds.

Ll B

Ve Benipulatine Contexts

A. (CFRALE) LSULKE

CIRALE retwrns & new c—Irane with 2 number higher than that
of eny other. (It uses the second arpument to LATA-ILIT (gv.),
adding it to the previous one it generated.) Ii there are cs
many contextis already as provided for by LDAYA=ILIT, CERALL calls
the c—frape rartare collector to free space for more. If =11 the
places zre teken, the messare _ '

TOO KARY COLTEXI-FRAMES — CEFRAME

is genersated.

E. (PUSE-COLTEXT [ccontest {HLaI{'TE:ﬁT}J LSULR
POE-COWTEXT [context CORTEXT] LEUER
IEW=COFTEXT c-frame-list) SUER
SFLICE context) SUER

These functions creste new contexts, and return thec. FUSI-
ard POP=COITEAT return contexts with one new c—-irame adaed to, or
the front c-freme repoved from, context, respectively. If I0P=
CLHTEXT tries to pop the last o-frare (i.e., GLOEAL) off, it errs
with messege

EHPTY CONTEXT — POF=COHTEXT.

KEW-CONTEXT creates a context by Cﬂrés;i_rag the flag *CONILAT
onto c—Ifrape-list. The c—Iframes in the list must be in order of
decreasing chums, or the messsge

URCFDERTT: CCLTEXT — NEW-COLTEXT

LaGL L0

arpears. In adoiition, the syster refuses o creale & new conlext
vithout GILCLAL es its last irape, snd will EFLACD GQLOLAL in il it

isn’t there.

SFLICE =zdds a trand-nev c=frape to context, just after its
first frame. 7This c=Irere vill heve a currently unused nuoier
between those of ils successor and predecessor. I all such
nunbers ere in use, the error message 1is
¢PLICE is clled for Its side effect. Eits veive ia E to its
argunent, but chenged, of course.

Since SFLICE sné PUSE-COCHNTEST czl1 CIHANE, they can csuse its
erTor.

Co (IN=-CONTEXT context fornm) CEXFR
CEVALuates form with COLTEXT rebourd to context., Thus, for
exarple,

(I=CORTEXT €1 “(ADD “(FALL SKY)))
is equivelent to

(ADD “(FALL SEY) C1).

‘n peneral, II~COKTEXT allows you to pretend eny function tekes
an cptional context argument. (There i= no SUEFE wversion of this

program becouse it rust rebind 2 Conniver verialle.)

D. (MENTIOKWERS datum [sifn KIL] [context EGK:EE%.%LIEH
{ C—HARKEE datum c—frame) SUEE

KELTIOIERS returns & list, in decreasing c-Irame-nunber
order, of a1l the e-frares in context that mention datum. If

siqm is non=LIL (i.e., + or =), it ignores g£ll renticns witk

s:atus # sifn, except that if sifn = =, a pention by GLOLAL
spoelifying no status is counted as unreslizaticr in GLORAL. IF
sign does = LIL, HETIURLLE returns all rentioning c-fremes.
C=HARKIE returns the c—parker of datup with cnun = nunier of
e-frame, cr LIL il c—frare coesn”t wention cetuc. I o=frore is
subsequently garlare-collected, or the c-parker ceases lLeing a

mention, the c-parker will ro lonper be attached to datws. liever

say Comniver didn’t give you encugh rope.

E. (FATE context) SUER

is & debugging convenience, Iis value is a list whose first
elerent is *COH1EXT, followed by the cnums of context’s o-frames.
Euch an object serves no useful purpose, but it is nuch more more

lucidly printable than context itself, in gener=1l.

A
¢ Winmprand
i in-)

