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Apology

Thie manual is intended to be a guide to the philosophy and
use of the programming |anguage Conniver, which is "complete,”
and running at the Al Lab now. [t assumes good knowledge of
Lisp, but po knouledge of Hicro-Planner, in whose implementation
many design decisions were made that are not to be expected to
have congsequences in Conniver, Those not familiar with Lisp
should consult Heissman®s (1367) Primer, the Lisp L.G

" Menual (MeCarthy =t. al., 1962), or Jon L. White's
(1978) and others' (POP-G, 1367) excellent memos here at our oun
| ab.

Conniver embodies fed original ideas, but is hopefully an
original combination of the good ideas of others. HWHe must
acknouledge Carl Hewitt's Planner language (Hewitt, 1971) for
giving us most of our ideas about data structura, although
Conniver |ooks at ite world differently from Planner. The
contral structure, including the concepts "access" and "control,”
was enormousiy influenced by Daniel G. Bobrow. {(Bobrow and
Wegbreit, 1972). The variable declaration syntax is closely
related to the MUDDLE syntaw developed by Christopher Reeve. Our
phi losophy has been greatly influenced by Joel Moses.

Several people read the first versions of this manual and
influenced this one, especially David MecDonald, Terry Winograd,
Sidney Markouwitz, Michael Speciner, and Jeff RAubin. The current
semantice of datz-property functions s partly due to a
suggestion by Michael Genesrath. Last in thia category, but not
least in one respect, is Hichael Levin; his confusion at the
terseness of some of my explamations has gone one step toward
avenging the confusion of an entire generation of programmers at
his Lisp 1.5 manual,

Some of the notational conventions of the manual are:

Actual code is in upper case

Syntactic variables are |ouer case

Optional arguments or list components are delimited by
brackets ([,]) surrounding the syntactic variable and its
default value, if any.

Segment syntactic variables are delimited by stars (w).

Ouoted arguments are flagged with a guote (). Unevaluated
segment arguments start with "

"Control=letter” is indicated by "~letter”. "Up-arrou" is
denoted by ®; "Left arrouw," by -

"Altmode" is denoted bu §.

Arguments are often given mnemonic names, as in (ADD atom).
If the argument is not guoted, this notation means It is
to evaluate to something described by the name; hence,
(ADD (CAR X)) is legal if X starts with an atom.

ovr
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I BASIC CONMIVER
[.1 Introduction

Conniver is a programming language designed to make easy the
definition of processes cooperating to solve problems in the
realm of Artificial Intelligence. These problems are ocften
characterized by unpredictability of data-structure formats and
flow of control, since programmers must try to use them to model
flexibly some ill-defined part of the world. Each programmer
Hishes to make additions or changes to the data of his model in &
way that is as close as possible to what he is thinking, without
having to translate into some internal representation. It is
just as true that he cannot be bothered with representations of
processes and procedures; he would like to be able to refer to
environments he perceives as "here" or "where control was a
moment agﬁ.' Hithout regard to where these environments exiat on
some intermnal stack, or whether they can even be referred to
Hithout advance preparation. This second aspect of A.l. problems
is especially prominent uhen procedures are regerded as data
("beliefs"), to be monitored and understood as well as executed.

Conniver is a Lisp-like language which clears up some of
these deficiencies in Lisp uwith two additions:

(1} a system-maintained data base

(2} the ability to manipulate arbitrary control environments.
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Neither of these features is new. HAeaders who are acquainted
Wwith predicate calculus or PLANNER will soon receognize the more
obvious characteristices of the data base. Those uwith knouledge
of PAL anF to some extent the lambda-calculus and Lisp 1.5 will

glready understand Conniver's control structure.

[.2 Pattern=-fAcceasible Data

The data base is the place to begin. In some computer
applications, "data" means huge arrays of numbers, uhich it is
desired to store efficiently and erunch quickly; or a group of
gtrings stored in well-defined variables, to be -an?pulafud in a
Hell-defined sequence. In A.l.. the process that creates a datum
dogs not usual iy know who wants it or what he wants it for. Tt
cannot, therefores, store it in a standard varisble. Furthearmora,
data are often not numbers but facts, such as "Mary iz the mother
of God.® These facts are usually not so much computed as
discovered, and they are not usually paseed on to the next stage
of the computation, but merely "made available" to whomever needs
them. For example, some process may later ask, "Who iz the
mother of God?* or "Who are the children of Mary?" and the fact
given must be accessiblie.

This is achieved by letting facts be modalled as arbitrary

non=circular list structures, which are sccessible via any



1.2 3

combination of their components. These data structures are
called items, and they are just "therse" in the dats base, rathar
than being thought of as properties pointed to by their
individual atoms, Thus, a process may execute
{ADD " (MARY MOTHER-OF GOO)}
and that item will be present to other processes that need §t.
(Notice that Conniver syntax is that of M.I1.T. Lisp. The given
form calls for the application of the function ADD to one guoted
{unevaluated] argument, nasely [(MARY MOTHER-OF GOD}.) The effect
of ADD can be undone with REMOYE, as in
(REMOVE ' (MARY MOTHER-DF GOO))

which |eaves the data base in the state it was in before the ADD.-

After an ADD, if another process wishes to access a fact, it
may do so In aeveral ways. All of them rest on the notion of
specifying part of a desired fact and letting the aystem find all
present |tems which agree in the specified part. This is a form
of associative memory in which the user is free to let any piece
of an ltem be its key, and all the rest to be what ie retrieved.
The specified and unspecified parts are intermixed in a patiern
which resembles the 1tem, but has varigbles instead of constants
in the parts to be filled in by the memory suystem. For example,
the pattern [I=WHDO MOTHER-OF GOD} specifies "mother" and "God,"
but has a slot labeled HHD to be filled in li.e., be assigned as
a variable) if there ies an item {zomeone MOTHER-OF GOO) present

in the data base. The characters "I»" specify that WHD is a
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variable, i.2., the name of the contents of the slot, not the
actual contents.

The most fundamental way to use these patterns is with the
function FET{:H. which takes a pattern as an argument, and returns
a possibilities list containing all items which match it in the
sense described. [n my example, (FETCH " (!»WHO MOTHER-OF GOD))
returns

( {(«POSSIBILITIES (!=WHD MOTHER-OF GOO))

#1GNORE

{#ITEM ({MARY MOTHER-OF GOD) (B (B8 . +))}
({(LHD MARY)ID D).

This list contains all the itemsa (here there is only onel which
match the pattern, and a good deal more besides. (FETCH returns
@ lot of information which it must compute anyway; usually most
of it ie discarded.] The detailed format of this list will be

described later.
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1.3 Conniver Frograms

Usually, a 1ist of items such as this will be processed by
looping through 1ts elements, |ooking for one With some desired
property or doing something to each of them. Thie is done by
using the function TRY-NEXT, which removes the next possibility
from the list and returns it. In the case of item possibilities,
it returns the item and sets the pattern wariables as the
association list in its (tem possibility directs. 1f the
variable P is bound to the list given, [(TRY=MEXT P} has the value
{ (MARY MOTHER-OF GOD) (B (8 . +))), and the side effect of
seetting variables as the association list [((HHD MARY)) dictates;
i.@., it gives the variable WHD tha wvalue MARY. (The markera, of
the form (B (B . +)), on the item returned may be ignored for
nou. )

Now imagine the |tems (MARY MOTHER-OF GOO), (RHEA MOTHER-OF
GOD), amd (ISIS MOTHER-OF GOO) are in the data base. (The idea
that a creature can have ornly one mother is, of course, not built
into the system.) The following program will print out all these

mothers:

(FROG "AUX"™ (WHD (P (FETCH " {!-WHD MOTHER-OF GOD}1})
:LO0OP (TRY-NEXT P ' (RETURN NIL))

(FRINT WHOY

(GO *"LODOP) }
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This program is reminiscent of a Lisp PROG, with some
di f ferences:

{1} Local wariables are declared as auxiliaries explicitiy by
putting the atom "AUX" before the bound wariable list for the
PROG. (The list and marker could be omitted entirely.) Thease
variables are not automatically bound to WIL. Atoms appearing in
the list {like WHO) are bound but unassigned. List of the form
{atom expression}, HUE.h as {P (FETCH...}}, specify that atom is
to be bound to the value of expression.

(2] The second argument to TRY-NEXT gives its value when
there are no more possibilities. (It must be guoted to avoid
being evaluated when passed to TRAY-NEXT.)

{3} Tags are preceded by ":" to distinguish them from
ordinary atoms appearing in PROG bodies. This is necessary
because Conniver PROG's return the value of the last expression

in their bodies. For example,

{PROG "AUX™ (WHO (P (FETCH "(!'=WHD MOTHER-OF GOD1}1}

{TRY-NEXT P " (RETLRMN HILN)

HHO)
returns the first mother of God it finds, or NIL 1f there aren’t
any.

%) GO always evaluates its argument.
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l.4 Contaxts

So far, | have spoken in terms of one data base or world
model, in which items can be added and fetched. The major novel
feature of the Conniver data base is that any number of world
models, called gcontexts, are allowed. Each may be manipulated
entirely independently. These different states may be used to
model hypothetical worlids, alternative cases of a proof,

di fferent board positions in a game, or different times, or all
of these.

The user starts uwith a single, global context, bound to the
variable CONTEXT. He may change 1t by executing ADD to store a
ned item, or REMOYE to delete an old one. These changes will
cause [tems actually to appear or disappear from the "index"
which implements the associative data base. (See Chapter [11.]
A rather different kind of change is achieved if the form

{CSETQ COML1 (PUSH-CONTEXT CONTEXT))
Is evaluated, which stores a new context as the value of variable
CONl. (CSETQ is the Comniver analegue of Lisp's SETQ.) The
result is a neu data base uwhose contents are initially exactly
the same as those of CONTEXT. COML is said to be a gub-context
of CONTEXT; this is meant purely in the sense that a stack frame
of a language processor is 8 sub-frame of the frame beneath it on
the atack. (5See Chapter Il. Contexts are implemented as stacks

of "layers," uhich are analogous to stacks of frames.) Although
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initially CONL is identical te CONTEXT, arbitrary additions and
removals may happen to it which have no effect at all on CONTEXT.

For example, assuma that the “theology problem solver” | have
been describing has in itas data base (CONTEXT) the item (MARY
MOTHER-OF GOO) (and that the cther mothers have been removed). A
routine might perform the following actions, which involve the
specification of a new religion lor a heresyl:

{CSETOQ COM1 (PUSH-CONTEXT CONTEXT))

(REMOVE " (MARY MOTHER-OF GODY CONW1})

(ADD " (KOMNIVA MOTHER-OF GOOY DONWL)
MNow CON1 differs from CONTEXT only in whom it represzents as the
mother of Ged. MNotice that ADD, REMOVE, and FETCH take optional
second ar_gumunta which specify which context they apply to. The
default value of this argument is the value of CONTEXT. MNow
(FETCH ° (!=LHD MOTHER-OF GOD}} has the seme effect as before, but
(FETCH " [ 1»WHD MOTHER-OF GOD) CON1) returns
({«POSSIBILITIES (!s=WHD MOTHER-OF GOO))
#1GNORE

(«ITEM ((KONNIVA MOTHER-OF GOD) (18 (B . +)))

{ (LHO KONNIVAII}D.

I shall work into a less sacrilegious example, which will
serve as a justification for Conniver control structure, by
making the following observation. A common technigue in
Ennniuinu: is to rebind CONTEXT (e.g., in an “AUX"™ Iist]} to a sub-
context. This haa the effect of making "hupothetical" all data-
base changes performed inside the scopa of the new binding. It

dleo meana that returning from this scope causes all these
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changes to disappear, unless special precautions are taken,

1.5 Defining Conniver Functions

The usual place besides PROG's in which ene atatement after
another s evaluated ie inside a function body.

I mentioned before that contexts may be used to model board
positions in 3 game. The example | will now pursue is a part of
a tic-tac-toe program which has never been complieted. For this
program, | organize the data base as a collection of items about
the sguares. A sguare is a8 number from 1 te 33 a player is one
of the symbole D or X. In the initial context, there is an item
of the form (FREE s} for all sguares. Hhen a player p makes a
move in sguare 8, the item [HAS p 8) replaces [FREE sl.

One of the subroutines reguired in a tic-tac-toe program is
{(FORCEWIN player sguarel, uwhich is non-NIL if and only if a
player can force a W4in on the next sove of a game by playing in
equare. It is daefined using COEFUN, which ig analogous to Lisp's
DEFUN:

(COEFUN FORCEWIN (FLAYER SOUARE)
"AUX" ((CONTEXT (PUSH-CONTEXT CONTEXT))
(L 1" {{«P0SSIBILITIES)

#1GNORE
(#LENERATOR (WINMOYES PLAYER)})I))
(ADD 1" (HAS ,PLAYER ,SOUARE])
(REMOYE . ! " (FREE ,SOUARE])
(COND ((RMAKEMOYE (OTHER PLAYER])
(TRY-NEXT WM NILI} 1),
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In English, square is a forced win for player if player atill has
a8 Wwinning move after the cother makes his best reply to sguare.
Motice that this statement has a hypothetical [("if...") clause In
it, which corresponds to the pushing-down of CONTEXKT before the
move to sguare is made. When FORCEHIN is exited, none of the
aeffects of ADD, REMOVE, or MAKEMOYE will be visible.

FORCEHIN illustrates several neu Conniver features. The
macro-characters !" are used to signify gkeleton expansion.
" {welementss) s like " (vwelesentss), except that some of the
glements are evaluated and their values substituted into the
result, so .that it ig not EQ to the original "skeleton." Hithin
a skeleton, "," indicates that the value of a Conniver variable
is to be substituted. Thus, 1f PLAYER=X and SOUARE=S, !"(HAS
+PLAYER ,SOUARE) has value (HAS X 5], Other characters have
other uses; see Sect. YII.1.

(MAKEHOYE player) is the main tic-tac-toe player being cal led
recursively; FORCEHIN is iteelf a subroutine of MAKEMOVE. It
adds to the data base the best move player can make. (OTHER

player) ie defined as (DOTHER X)=0 and (OTHER 0)=X.
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1.6 Generators

The most important feature of FORCEWIN is the generalization
it makes of possibilities lists. The possibilities list WM
contains a ned kind of posaibility, of tupe wGENERATOR, whose
second element is a form, (WINMOVES PLAYER). UWhen TRY-NEXT sees
such a8 thing, it evaluates the form, in this case calling the
function WINMOVES.

Such a function might do anything. I1f it just returns, TRY-
MEXT just goes on to the next possibility (if anyl. In the usual
casa, however, the function behaves like a geperator, adding new
poasibilities to the list in Ite place. Thus, such a poasibilituy
"stands for™ the "real” possibilities which the function is
capahle of generating. In a rudimentary sense which will be
expanded, the list of possibilities is @ communication channel
betusen the generator and the function that called jt.

What WINMOYES wishes to communicate is all the winning moves
1te PLAYER has in the board position in which it is called. 1If
there are any, they are simply put into the possibilities list as
numbers. Hhen TRY-MNEXT sees an element of this sort (With no
flag like #ITEM or wGENERATOR), it assumes it is a value
possibility and merely popse it off and returns it. So, in this
case, the last |ine of FORCEWIN means, "return a winning move for
PLAYER, if any, else MIL."

The description of generators that is to come will introduce
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and justify Conniver control structure. Before | give it, let me
summar i ze what has been created so far. So far, Conniver is an
prdinary Lisp-1ike language Wwith a system-maintained data basa.
This data base has the interesting property that it conaists of
any number of contexts, related in a8 tree structure. [It might
look as if restricting them to be bound only to bindings of the
variable CONTEXT would collapse this tree into a stack, of which
only the topmost context would be important at any one time.
This assumption will be shoun to be false.]

A aimple version of the generator WINMOVES would look |ike:
(COEFUN WINMOYES (PLAYER)

"AUX" (SOUAREL P1 SOUAREZ P2 X}

(CSETQ P1 (FETCH *(HAS !,PLAYER '=SOUAREL}))
+ OUTERLOOR

(TRY=NEXT P1 " [ADIEUI]

(CSETO P2 (FETCH *{HAS !,PLAYER !»SOUAREZ)))
¢ INNERLOOP

(TRY-MNEXT F2 * (GO *OUTERLOCGPY )

(COND ({LESSP SOUAREL SOUAREZ)

(COND ((CSETO ¥ (THIRD-IN-ROW SOUARE1 SOUAREZ))
(COND ({PRESENT ' {FREE !,X1]

(NOTE X)) 1) )} )
(GO " INNERLDOP) ).

There are some new functions and notations to be explained
hers. The new functions are COND, PRESENT, THIRD-IN-ROM, NOTE,
and ADIEU, (LESSP is a Lisp function, which is callable from
Conniver.) COND is the Conmniver version of Lisp’s COND, which
differs from it only in that a COND clause, after the test form,
ie just |like a PROG; “AUX" variables and statement labels are
al lowed; but these features are not used here. (PRESENT patternl

is 8 system function almost like (TRY=NEXT (FETCH pattern}); it
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returns an item and sets the pattern variables if there is one
presant that matches the pattern. THIRD=IN=-ROH returms the third
equare in a lina with ite arguments, or NIL if they are not
col |l inear.

Before | describe NOTE and ADIEU, which allou WINMOVES to
communicate With its caller through its calling possibilities
list, let me explain the prefix "!," used in the three FETCH
ﬁattarnu {fincluding that of PRESENT). "I!,PLAYER®™ in this program
matches only the current Conniver wvalue of PLAYER. (It actually
has &8 =lightly more general meaning; see Chapter 1V for a
complete description of this and several other pattern prefixes.)
The FETCHes in this progras, like that of my earlier programs for
printing mothers of God, create possibilities liats {(Fl and FZ)
of items, which are used in TRY=NEXT=driven locops. MNotice that
Pl and PZ are substantially the same list, except that each sets
a different variable, and that FZ is re-created more often than
Fl. Each is a list of all items corresponding to aguares ownad
- by FLA?Eﬂt They are used to generate all pairs of sguares owned
by PLAYER. (The LESSF clause of the firat COND is used to
discard redundant or degenerate pairs. This is an inafficient,
but clear, way of doing things.}

Hhenever HINMHOVES has fuund.tun collinear occcupied squaras
Hith a free third collinear sguare, it must insert this third
(uwinning) sguare In the possib!lities list. This it does with

MOTE:. Hhen all winning moves have been discovered, Pl will be
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exhausted, and the TRY-NEXT at statement :0UTERLOOP will execute
(ADIEL]} . In thie case, ADIEU merely returns to TRY-NEXT, which

returns the first NOTEd winning square, if there are any.

1.7 Generalized Control Structure

The type of generator | have described so far is merely an
odd function uwhich ie capable of returning zeroc or many values
instead of just one. As such, it is not very interesting. In
some cases, also, It is inefficient. [t may be, for example,
much more expensive to generate possibilities than to use them;
or the expense of generating them may grod as fewer and fewer
remain; or the nusber may be infinite. Another type of
difficulty is that the generation of successive possibilities may
depend on what the calling function did with previcus ones; the
cal ler may want to advise the generator as to how to proceed., Or
it may simply be that the generator has no idea how many
poesibilities ite caller wants. (MNotice that FORCEWIN is
intereated in only one Winning move. ]

Hhat is needed is a way of returning some of the
possibilities while maintaining the generator in existence for
further duty if reguired. | will describe in a moment the Al-=
REVOIR feature that allows this to happen, but first the question

must be ansuered, uwhat s being maintained in existence? In this
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case, wWhat is being saved is a description of the "process"
embodied by the generator. This description must include the
values and names of the variables bound there, the body of the
generator and where control was before it returmned, and who it
returned to. All of this information is saved in the frams of
the generator. This frame is created when the generator is
called (as it is for every functionl. Normally, frames are lost
whan contraol raturﬁ: fraom theam; they are garbage-collected along
with their bound variables, including any bindings of CONTEXT
they may have. This is why [ said the context tree might look
like a stack. [t is also why, in most programming |anguages,
frames are stored on a stack ("frame®” originally meant "section
of stack”™), and always go away when they are popped off.

In Conniver, however, frames are accessible data structuraes
which can be protected from garbage collection merely by being -
pointed to. Protecting a frame in this way means that its
bindings muat remain in potential existence, =since they are
aluays capable of being resurrected. The ways in which such
frames can be used Will be described. For nod, notice that one
implication of this design is that Conniver control and context
structures must be at least as complex as trees (Cf. sect. [I.1).

One thing that can be dona With frames is to make tags, which
can be GOne to |ike atoms; however, GODing to & tag restores its
bindings, no matter when they were created. So, a generator can

keep itself in existence by generating a kind of tag as a
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possibility. This tag stands for the further possibilities it
can generate the way its original generator stood for all its
poasibilities. Such a tag is called an #»AU-REYDIR possibility.
and is generated by calling (AU-REVOIR). Thie form behaves |ike
(ADIEW) , but, by saving a tag to ite own frame, can potentially
Feturn "again,” inside the generator, causing it to note new
values, and repeat the AU-REVOIR or do an ADIEU.

As an example, consider the following version of WINRAOYES,
which returns one WHinning move at a time:
(COEFUN WIMMOVES (PLAYER)

"ALX® (SOUAREL P1 SOUAREZ P2 X)

{CSETQ P1 (FETCH " {HAS !,PLAYER !>=SOUAREL)N)])
: OUTERLDOP

(TRY-NEXT P1 " (ADIEU]}

{CSETQ PZ. (FETCH ' (HAS !|,PLAYER !-50UAREZ)])
: INNERLOOP

(TRY=NEXT P2 " (GD "OUTERLOOP)}

{COND ((LESSP SOUARE1 SOUAREZ)

(COND ((CSETOQ X (THIARD-IN-ROW SOUAREL SOUAREZ) )
(CONDO { (PRESENT ' (FREE I, X))

(NOTE X}
(AU-REVOIR) ) 3 ¥} )

(GO " INNERLOOPY )

The only difference is the introdustion of [AU-REYODIR)
folloewing (NOTE ¥). (This could have been abbreviated (AU-REVODIR
¥}.} Houwever, now 3 call to HINMOVES genarates just tuo
poszibilities: & Winning move and a tag to the end of the Al-
REYOIR.

¥ the tag is ever GOne to [(by TRY-MEXT the second time it
tries to pop off & winning movel, AU-REVOIR will do a return ip
HIMNMOVES and execution will procesd with (GO "INNERLOORP). The

aeffaect on TRY=NEXT will ba that it will magically come up With
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yet another winning move and tag. Only uvhen all winning moves
have been generated can WINMOVES do an ADIEU, which leaves the
possibilities list empty and causes TRY=NEMT to return ite second
argument.

Thesa two examples do nmot exhaust the ways in which a
generator may interact With a possibilities list. For
gophisticated problems, it will almost certainly be necessary for
generators to inspect the PDEEIEJLITIEE bound in the frame of
TRY=NEKT, filter some of them out, add propertiss to them that
the program looking at them should know about, or aven take
control of their generation by setting empty the POSSIBILITIES
bound in the frame of the upper TRY-NEXT and itself calling TRY-
MNEXT on each of the possibilities, in order to accomplish some
particularly complicated filtering. The functions GET-
POSSIBILITIES and SET-POSSIBILITIES emable a generator to access
thie binding of the liast. Clearlu, in order for a user’'s program
to edit a possibilities list, he must know the formats of the
various types of possibilities; these are given in the next
chapter. Communication the other way, from the yser of the
generated possibilities, is made possible by an optional message
argument to TRY=-NEXT that it sends to the generator, which is
returned, in the generator's activation, as the value of Al-
REYOIR. All of these features are described in detail in the

appendix [(Sect. ¥VII1.1.8].
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11 HAIRY CONTROL STRUCTURE

Chapter 1 has demonstrated that the contrel structures
necessary to support things |like generators are of 8 sort which
are illegal in most languages., Juat how illegal will now be made

clear.

[I.1 What a Frama Ia

I1.1.1 How to Be a Programming Language

If you were to simulate a PROG, there are tuo things you
Hould have to keep track oft which line of the program you dere
Horking ni‘n and what the current values of its "AUX" variables
Herg, If thie PROG evaluated another ome, you would have to
stop what you were doing, and do something simllar to the new
one.

In evaluating the neu one, houever, there are tuo ned things
to remember: wWwhich line of the old program to dWork on when you
get back to it, and what the values of the "AUX" variables of the
old program are:

(PROG "AUX" ((X 5) (¥ 18))

{PROG "AUX®™ ((X 58))

(PLUS X ¥))
(FLUS X ¥)1).
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The inner PROG reguires the values of the outer X and ¥ for tuo
reasons: it must be able to refer to them free (as it does here
with ¥}, and must be able to restore their values when it returns
{as it does here for X). Thus, the inner sum of this example has
value Bd8; the outer, and the whole expression, 15.

A language interpreter has need of the same information. It
gtores it in an object called a "fr," with four slote:

{1} BYARS (Bound YA&RiableSl: a pairing of a location with -
sach bound variable name.

[(2) IVARS {(Internal YARiable5)l: a specification of what the
interpreter is now doing. (For example, which line of a PFROG it
isa working on, or uhich argument of a PLUS it is evaluating.)

(3) ALIMNE {(Access LINK]l: the fr uhose BYARS and ALINE ara to
be ssarched for any free variables that are not bound in this
fr's BVARS.

(4) CLINK (Control LINK}: the fr to which control is to
return when it leaves this one. The [IVARS of CLIME apecify how
the running of that fr 1s to proceed.

He Will represent a fr by a box, With bound variables
Indicated beside it, whose CLINKE is an arrou pointing to another
fr, and whose ALINK is a dotted arrow pointing to yet another
one. ([Fig. 1{al.) 1f ALINK(fr) = CLINE{fr), a double arrow will

be used. (Our terminoclogy and notation are a simplified version

of that of Bobrow and Hegbreit [(1372).)
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The control structure during execution of the PROG's given before
igs shown in Fig:. libl.

It might be asked uhether anything more complicated than Fig.
1lib} s necessary or possible. In some languages, it is not.
PL/I, for example, allows this structure and no other. FORTRAN
imposes the additional restriction that ne twe fr's in a chain of
fr'e be created by the same function; hence, Fig. 1ib} is not

even possible in FORTRAM.

However, other structures are imaginable.
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Figure 2.

In Fig. 2(a}, X has value 188 rather than 1B in fr A. The
game e true for fr B of Fig. 2ib)l. Fig. 2(a) is a legal
structure in Algol, PAC Lisp, and Lisp 1.5. (In the last,
however, access fr's and control fr'e are different kinds of
entities.) Fig. 2(b) is legal in Liep 1.5 only. (These
structures arise from the application of "FUNARG's"; see below,
sect. 1.2.3.) The other cases are unusual. Fig. 2(c) shouws the
typical situation of a generator revived after an AU-REVYDIR. HNo
ore has yet thought of @ use for Fig. 2{d).

These abstract objects may be implemented in various WHays.
In FORTRAN, @ fr is not clearly distinguished from a functiong in
addition, each function has as ALINKE only the COMMON area. In
most |languages, fr's are implemented as stack frames, which can
be piled up as Fig. 1ib)}: Once such a frame returns controal teo

ite caller, that frame i= no longer referenceable. This
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condition rules cut the structures of Fig. 2(b) and (). {In
Lisp 1.5, the BVARS and ALIMK of a fr are preserved after it is

popped off, so Fig. 2(b) is possible.)

Motice that Fig. 3 C

/X

A B

FIGURE 3

is ambiguous, in that the tuo subfr's of C may be meant to be
chronolegical ly exclusive or not. In the former case, A and B
may share stack space; otherwise, as in Fig. 2(al, they may not.
It is clear uhat the chronological interpretation of Fig. 3 is:
C called A, A returned, then C called B. What is the other
interpretation? Simply that A stands ready to begin execution
again or supply ite bound variables' values (as in Fig. 2{b)).

[Me leave out a notation for IVARS in fr's of Fig. 3 and
elseuhere, to make things simpler., [t is clesr that & and B must
see different IVARS for C, so ihat different things may happen
when they return. (There is nothing to prevent A from returning
several times.) Leaving out IVARS allows us to be vague about
axactly which point in the execution of a fr we intend; remember

only that each CLINK must specify its superior's [VARS.]
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11.1.2 Conniver Control Structure

In Conniver, a fr is an internal list structure which
specifies BYARS, IVARS, ALIMNK, CLINK, and EXP, the last being the
form uwhose evaluation led to the creation of the fr. Hhenever a
non—atomic expression is CEYALuated, a neuw fr is created. (The
enly exception is FENPR applications; Lisp EXPR's, SUBR's, etc.
do get Conniver fr'a.)

Conniver fr's are used as internal interpreter structures
{(l.e., parts of other fr's) as described, but they are also
accessible to users as parts of frames, tags, closures, and wAL=

REYOIR possibilities. These concepts will be explained.

IT.1.2.-1 Framesa

A frame is a structure of the form [«FRAME fr). This is the
external representation of an unadorned fr. [t may be used in
tuo basic wayas, for relative evaluation or continuation.
Evaluation of an expression relative to a frame is a way of
creating lts frame with an abnormal access link (cf. Fig. 2(a)
and (b)), namely the fr of the given frame. ({Another way to do
this is with closures: see below.)] Relative evaluation s done

uith the function (CEVAL expression framel.
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Continuation of a frame is returning control to it as
directed by the IVARS of its fr. This is done by (CONTINUE
framel., To CONTINUE from a frame's control link, use (EXIT value
framel, which causes frame to return with value. When no frame
value is given, EXIT exits from the most immediately enclosing
COMD, PROG, CEXPR, or method body. HRETURN bypasses COND, so is
often more convenient {(See sect. ¥1[.1.5).

Frames are created by the function (FRAME), which returns the
frame of 1ts caller. (More precise and compiete definitions of
this and other functions are given in the appendix, sect.
VII.1.4.)

For examplie, after the execution of
(PROG "AUX" ((X 58))

(CSETO GLOB (FRAME))

(PFRINT "FOD)),
global variable GLOB will be bound to the frame of the PROG.
(Thie is because FRAME returns a frame with the ALINK when it is
called as its fr.)

Mo (CEVAL "X GLOB) has value S8, (CONTINUE GLOB) causes FODO
to be printed again.

Other functions can be used to manipulate Conniver frames.
(ACCESS frame) and (CONTROL frame) return the frames for the
ALINKE and CLINK of frame's fr, respectivelu. SETACCESS and
SETCONTROL reset the appropriate |inks of frames. For example,

(SETCONTROL A A} causes the state of affairs shown in Fig. 2i(d}.
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[1.1.2.2 Tags

Another way to use fr's is to create and use #r's associated
uith a labelled section of a PROG, function body, or COND clause.
Such an object is called & tag, and s of form [&TAG label fr},
where fr ie a frame whose IVARS instruct any CONTINUEr to begin
execution at that labelled piece of body.

Such a teg is created using the function [(TALG atoml}, which
searches the current body for & tag of the form "tatem". I[If 1t
ig not found, the CLINK of the current fr is followed, and the
process repeated.

Tags may be used in any context that allows frames, including
CEVAL and CONTINUE. A synonym for CONTIMNUE with a tag argument
e GO, If GD has an atemic argument atom, it is eguivalent to
(GO (TAG atoml).

For example, the following toy program prints out FOO BAR:
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(COEFUN PRINTFOODBAR ()} "AUX"™ (PLACE)
(COND ((CSETO PLACE (ZOWIE))
(GO PLACE]} 1)
(CDEFUN ZOWIE ()
(FRINT *FOO)
(RETURM - (TAG "PRINTBAR))
tPRINTBAR
{(PRINL *BAR)
MILY
(PRINTFDOBAR)
and returns NIL. (Note that GD always evaluates ite argumesnt,

and expects an atom or a tag.)

I1.1.2.3 Closures

Functiona and ather "procedural” objects (see below) may be
associated mith fr's to form closures, data of the form (#:CLOSURE
function fr). A closure behaves like 1ta function, except that
Its frame will have ALINK=fr rather than ALINK=CL INK.
Consequently, its free variables will be looked up using fr.
This may give rise to a structure of form Fig. Z(a)l or (b).

Closures are generated by (CLOSURE function), which returns
the closure of function in the fr of (FRAME). Since these
objects may be returned or assigned to free variables, they may
point to exited fr's, as in Fig. 2(b).

For exampla, the following function of X ceturns a function

which adde X to anything:
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{COEFUN PLUSK (X}
(CLOSURE " (CLAMBDA (¥) (PLUS X Yli)h).
Then, if F = (PLUSK 5}, (CALL F &) = 3, HWhen F is called, ¥ is

bound to 4.

Figure &,
Closures can be used in any context as though they were the
frames of their fr's. Closures of methods are described below,

Sect. 11.2.

I11.2 HMethods

This flexible control structure can be used to provide an
intimate association betueen 8 tree of problem=-investigating
Conniver processes and a tree of contexts. In particular,
procedures can be invoked by the addition or removal of an item
to a context, by virtue of being |inked to & pattern that matches
the item. Such gats base-sensitive procedures are cal led
methods, of type [f-added jf-removed., or jf-nesded.
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11.2.1 |f-addeds and |f-removeds

Hhen an item is added (removed), any present |f-addeds (]f=-
removeda} whose patterns match the item are jnvoked. Hhen a
method is invoked, @ ned frame is created for it and the result
of the match with its pattern [(see Chapt. I¥) iz used to create
ite initial variable bindings. ([If the match fails, the mathod
ig, of course, not invoked.) Auxil iary wvariables may be bound by
including an "AUX" declaration at the beginning of the method
body. Execution begins at the front of the if-added's ([if-
removed’a) body, right after the "AUX™ if there is one. For
example, the (anonumous) method .

(1F-ADDED MIL (HAS !sUHO !>SOUARE)
( (REMOYE !" (FREE ,SOUARE]) )

Hith name MIL, pattern (HAS !'=-UHO !=SOUARE}, and body ({REMOVE

" {FREE ,SOUARE}})}, automatically erases (FREE squarel when it is
asserted that (HAS someone squarel. [ts use as a bookkeeper
could save 8 line in the function FORCEWIN (sect. 1.5).

A method s itself a data-type stored in the context-
structured data base, so it may be present only in the contexts
the user specifies. Methods are ADDed and RENDOVED just |like
items, and like items, Indexed in the data base by their patterns
(see sect. I11.1.2.2). The function IF-ADDED (IF-REMOVED)
creates an if-added {i*—l‘ﬂl'r.ﬂ'-"Ed] method with the pattern given by

its first argument and the body given by the rest of them. The
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above method can be put in the current contest by

{REALIZE (IF-ADDED (HAS !=LH0 !=SOUARE)
{(REMOYE !"® (FREE ,SQUARE)) 1

and removed by UNREALIZing an object E[ 1o the one added,

This Eld=restriction means that an attempt by a user to re-
read and ADD a file full of such anonumous methods (=say, after
editing a bug out of onel will put eguivalent coples of all of
them in the data base tuice, all to be called tuwice when neaded.
Te avolid this problem, an |f-added (or |f-removed) can be
gzgociated with am atomic name; thus

(ADD (IF-ADDED HAS-FREE (HAS !=UHD |>S0UARE)
(REMOVE !" (FREE ,S0OUARE}) 1)

causes the atom HAS-FREE to be aszsociated with the method (under
the indicator DATUM), and to be passed around by the indexing
routines, Executing the above expression a second time will now
causa the method to be re-constructed {in case it had bugs in its
previous Incarnation), and associated with HAS-FREE, but not to
be re-indexed, because the atom is eguivalent to the method in
the eyes of the sustem, and therefore already present. In fact,
I £ (IF-ADDED HAS-FREE...) has been executed,

({ADD "HAS-FREE}

Ie eguivalent to tha ADD above (cf. asect. [I1.4).
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11.2.2 | f-needads

The third method af data base-control structure interaction
igs by use of [f-needed methods, which cooperate as intimately
Hith FETCH as if-addeds and | f-removeds with AODD and REMOVE.
Often there ies a class of data items which are to be regarded as
"present™ in a8 context on the basis of some procedural criterion
rather than by virtue of actually being there and FETCHable. An
i f-needed can be used to associate such a procedure with the
pattern of a typical ltem of the class. Any if-neededs present
in a context will be found by FETCH, if their patterns match its
pattern argument, and stuck at the end of its possibilities list.
They are invoked by TRAY-MNEXT when it comes to them in the same
way ADD and REMOYE invoke their methods: the result of a
successful match {an alist; see Chapt. IV.) wWill be present in
the possibilities [ist of the method; it will be used to start
the bound variables of the method's frame, which are augmented by
any "AUX" wvariabl!es that may be around. Execution begina in the
method, which behaves |ike a generator function (see seact. 3]
HWith respect to the possibilities list TRY-NEXT is working on.

Within an |f-needed method, the function INSTANCE of no
arguments returns an instantiation of the method's pattern, uWith
all variables given their current values. Then [NOTE (INSTANCE])

{or gimply (NDTE)) causes such @ note possibility to be appended
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to POSSIBILITIES. Since TRY-NEXT has the same effect on a note
as on an item posaibility, MOTE simulates the presence of that
instance as an item in the current context. ADIEU and AU-REVOIR
work in the same way as before.
- The patterns of |if-neededs may use match characters which are
not wsually used elsauhere. This is because if-needed patterns
are matched against FETCH-patterns that may include other
variables, whereas all other patterns are matched againat
constant list structures. The most important such special prefix
is "!<", variables prefixed which match only with expressions
with variables when the method is entered. When the function
INSTANCE is called, the variables prefixed with "!<" will have
been assigned by execution of the body of the method, and their
values will be transmitted back to the variables that they
matched in the FETCH-pattern.

For axample, to express the idea that all dwarves are
vicious, in such a way as to insure that FETCH finds all duarves

when 1t looks for wicious persons, one might execute

(ADD (IF-NEEDED YD (YICIOUS l<X)
"AUX" ([P (FETCH " (DHARF !>X11})
:LOOP (TRY-NEXT P * (ADIEUY)
(AU-REYOIR (INSTANCE} )
(GO "LOoP) 1)

YO will be invoked when it is found by a call like (FETCH
*IVICIOUS !=¥)), i.e., an attempt to generate vicious creatures.

It would not be invoked by a call |ike [(FETCH * (VICIDUS LYNDON)),

becausa l<¥ will not matech & constant like LYNOOM. This method
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motes one viclous duarf each time TRAY-HEXT is called. (The

matcher iz explained in detail in Sect. [V.)
11.2.3 Closures of Hethoda

Methods may have closures just as functions do, and thasa,
too, can be added to the data-base. [f such a method is invoked
by a data-ﬁa:u change, control Will be in 8 procedure with an
access |ink that differs from that of its caller (like functional
arguments in Lispl. This raises the posaibility of a8 process in
an old environment being auakened by the addition of an item to
its context, or the removal of one from it. In fact, the
function HANG can bring exactiy this state of affairs about.
{HANG is not a Conniver primitive.] (HANG release expression)
evaluates expression (typically a transfer or return), but only
after ADDing @ method closure that implements a test for the
release condition. This condition is of the form (IF-ADOED
pattern) or (IF-REMOYED patternl. I[f an item matching pattern ia
ever added {(or removed, as the case may bel, HANG returns as its
value the frame of the process which was interrupted while adding
{or removing} the item, with the side effect of assigning the
variables of the pattern.

For example,

{CSETO F1

(HANG " (IF-ADOED (HIMN !=PLAYER}]
(G0 "FOOY )Y



[1.2.3 39

goes to :FOD, but execution will resume with a return from HANG
if anyone adds (HIN someonel to the data base, and PLAYER will
have gotten value someone in the frams F1.

HANG can be definad as
(COEFUN HANG (RELEASE EXFPRESSION)

"AUX" (HANGFRAME)
(CSETO HAMNGFRAME (FRAME))
(REALIZE (CLOSURE
{CEVAL (CONS (CAR RELEASE)
[CONS (CADR RELEASE)
"{IEXIT (FRAME)
HANGFRAME) 1133))

(CEVAL EXPRESSION (CONTROL)) )
By adding the CLOSURE of the method, the HANG is assured of the
continued existence of ite activation. UWhen the pattern is seen,
the method immediately causes the HANG to return for a second
time (i.e., have its frame be exited), this time uith value
{FRAME}, which will be the frame of the mathod closure's
activation. The method EXITs from the correct frame because it
looks up the value of the variable HANGFRAME by searching up the
access chain (see sect. I1.1), which points off to the frame of
the HANG in which it was closed., Notice that, having added to
the current context the closure that doss these marvelous things,
HANG CEVALuates EXPRESSION in its (HANG's) control frame, the
frame of ite caller, which is what the user presumably intended.

HANG thus explioits the fact that every frame has tug superior
frames it points to, an access frame used for free variable
evaluation and atom tag searching, and a gonirol supsr-frame that

control is expected to return to. (See sect, [1.1)
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The utility of method closures is somewhat reduced by the
fact that it is dangerous to ADD closures of methods containing

bindings of CONTEXT. This is explained in sect. [I11.1.2.2.

11.3 Generatoras

The basic operation of generators was explained in Sect. | as
an illustration of Comniver contrel structure. 5Since we have
gxplained more of it noW, it is worthuhile to describe in detail
how generators do what they do.

A generator is any process which communicates with another
process through @ possibilities |ist. The list of possibilities
iz a communication channel uwhich must be set up before the
generator ls called. As we have seen, the generator is
associated with that particular liat by being found as a
wENERATOR or +METHOD possibility in it. Once the function or
method is called, it behaves |like any other, except that the
value it ﬁight RETURM is ignored; all its important values are
to be deposited in the l[ist, as the data the possibility "stood
for" to the TRY-NEXT. This means that, unlike most functions,
genarators may return zero or more values, instead of exactly
o .

The mechanice of thie are simple. Hhile it is running, a

generator can see an invisible variable bound to the rest of the
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posaibilities list, starting from where it was found. NOTE,
ADIEU, and AU-REVOIR put new possibilities into this part of the
list, in the order in which they are called. AU-AEYOIR also
leaves an #AU-REYODIR possibility, which ie |ike a tag (sect.
VII.1.B}.

The real trick is in TRY-NEXT. UWhen it finde an AU-REVOIR
frame in a possibilities list [while it is chewing on the |ist
after the generator has returned), it replaces the contral link
in the top frame of the generator structure to point to the ned
TRY=MEXT, and just EXITs the AU-REVOIR frame. This is howu
structures of the form of Fig. 2(c) come about. Control stays in
the generator on its second round, with all free variables as
before, until it is ready to return again, uwhen 1t will return to
the mew TRY-MNEXT, and ultimately to the caller of that TRY-NEXT.

A generator may return anything as a posaibility. However,
there may be special types it wants to use, either one of the
system-dafined types, or something the user has made up. These
Wwill have format (type-atom ...). The systes-defined types are
»lTEM, «METHOD, #GENERATOR, #AU-REVDIR, #NOTE. These are

explained in detail in Sect. VII[.1.8.
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I1.4 Applications of Contral Structure

Thie control structure is intended to be manipulable by the
user. HANG, for example, is uritten in Conniver, not Lisp. In
thie section I give two guick examples of the kind of
manipulations that may be done easily with Comniving conmtrol

gtructursa.

11.4.1 Backtracki ng

The backtracking control structure primitives of Planner can I:l_u

uritten fairly simply in Conniver as fol lows:
(CSETA FAILURE-STACK NIL)
(COEFUN FAIL () "aux" (T1)

(COND ((NULL FAILURE-STACK) (PRINT "FAILED) (GD EAR=111)}

(CSETO T1 (CAR FAILURE-STACK))

(CSETA FAILURE-STACK (COR FAILURE-STACK)}

(GO T1}) }
(EAR=]1 is explained under "Using Conniver,” below: (G0 EAR=1}
gets a program to the top levell. This version of Plannear
maintaine a |ist FAILURE-STACK of environments to fail back to.
The list is taken apart by FAIL, which pops off the next element
and GOes te it. The list is built by FAILSET:

(COEFUN FAILSET (T)
(CSETO FAILURE-STACK (CONS (TAG T) FAILURE-STACK)) )
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Mote that since FAILURE-STACK is an ordinary Conniver wvariable,
there may be local bindings of it, hence a complex structure of
failure astacks bound at different levels.
(COEFUM GODAL (PATTERN) "aUx" ((DATA [FETCH PATTERMI]
t GOALF

(FAILSET "GOALF)

(TRY=-MEXT DATA " I(PROG [CSETO FAILURE-STACK

(CDR FAILURE=-STACK])
(FAIL}1) |

This version of GOAL obeys Conniver conventions for data base
smarch, pattern format, etc., but behaves |ike the Planner
version in that it responds to a failure by TRYing-the-NEXT
matching datum unless there aren’t any, in wWhich case it

continues the failura.

Clearly, the tupe of penerator we are describing does not
work with AU-REVOIR. Instead, we must call SUCCEED explicitly to
return:

(COEFUN SUCCEED ()
(ADIEU [INSTANCE}} Vs

and generation of more than one instance is done by failing back
to failpoints within the body of the |f-needed method.

The tuo remaining functions aimulate ASSERT and ERASE in that
their effects are undone on fallure:
[COEFUMN ASSERT (SKELETON!

{FAILSET "ASSERTF)

(RETURN (ADD SKELETON)}
1 ASSERTF

(KILL SKELETON)
(FAILY )
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(COEFUN ERASE (SKELETON)

[FAILSET '"ERASEF)

(RETURMN (REMOVE SKELETOMI)
: ERASEF

[INSERT SKELETONI

(FATIL] }
KILL amd INSERT are wversions of REMOVE and ADD which do not
aaarch for and invoke |f-removed or |if-added methods; here they
are used to undo the effect of ASSERT and ERASE before failure is

allowed to propagate.

I11.4.2 MHultiprocessing

It is just as easy to create various types of multiprocessing
in Conniver. This comes In handy for building goal trees, for
example. The easy wWay to do this is often just to throw tags and
frames around, but you may prefer a more rigid format. The
following little nusber treats all processes as atoms With a tag
under the indicator FROCESS which indicates where control is to
resume to continue execution of that process. The atom CURFROC
aluways has one such atom as its value:

{CSETO CURPROC (GENSYM))
Frocesses are created in association with @ function of no
argumants by the function CREATE:
(COEFUN CREATE (FUNC] "AUX" ((NEWPROC (GENSYMI))
{PUTPROFP NEWPROC (TAG 'APPLY) 'PROCESS)
{(RETURN NEWFROC)
: APPLY

(CALL FUNC)
(CERR PROCESS TRIED TO RETURN) }

+*
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Processes so created may be resumed at any time with the

following function:
(COEFUN RESWHME (PROC)
(PUTPROP CURPROC (TAG "RESUME] *PROCESS)
(CSETQ CURPROC PROC)
(GO (GET PROC *PROCESS))
:RESUME) .
Processes never return (that would generate
lasgt |ine of CREATE), but resume each other
they wish. To do this, they must know each
simple scheme shoun here doesn’t explicitiy
of communication, but it is not hard to ses

example, might be redefined so as to return

process that ultimately resumes the process

an error, as in the
back and forth as
other"s names. The
allow for that kind
how RESUME, for

the name of the

that cal led it.

To destroy a process, execute (REMPROP process-atom

"PROCESS). It will then be garbage-callected.
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111 HAIRY DATA STRUCTURE

The basic features of the Conniver data base are its context
gtryuctyre and indexificetion. They allow the user to create sets
of data which are fetchable by pattern, have property
associations, and exist in different configurations.

Until the discussion of ieplementation in Sect. 3 of this
chapter, the right way to think about contexts is as a tree of
data bases. Anything that ies added (including properties; see
sect. 2] to a given context is immediately present in it and all
ite daughters, and will be automatically present in all new
daughters that are sprouted from it using PUSH-CONTEXT. Houwever,
the effect is completely invisible in its super-contexts.

Exactly the same applies to removal of data (or properties);
whatever Was removed is gone in sub-contexts, still around in all
super-contexts that wused to contain it. The mechanism for all
thia.uill be explained in sect. 3.

In Chapter I, the data base was thought of as containing
i tems, arbitrary lists that were present or absent in each
context. Such itemes are implemented as types of data, called
item data, which can be referred to, as we have seen, by
patterns. [n this chapter, we Wwill look at how to refer to |tems
by pointers to their data, and thus introduce the concept of
manipulating a datum.

A datum is a8 system-maintained entity, which has
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characteristics which depend oo its type, and which is esither
present or absent in any given context. The data we have =een so
tar include item data and three kinds of method. These types are
lndexable data, which appellation refers to the peculiar pattern-
directed way of accessing them. I will return to consideration

of the data index later (sect. II[.1.2).

II1.1 Types of Data
I111.1.1 Objects

A more primitive kind of datum has the same behavior wWith
respect to contexts, but has no pattern to be referenced by. It
s accessible, like any Lisp structure, by a pointer to it. This
Is the pghisct.

Many pecople are completely mystified by the notion of an
ob ject datum, mince they prefer to think af 8 data base as a set
of hﬂnﬂn_auaurtinna. The most simple way they can think of to
access it is to ask something like [PRESENT " (BLOCK A}}, which
checks whether A is a block; or [FETCH " (BLOCK !=X}), which gets
a possibilities list of things currentiy believed to be blocks.

However, this kind of a data base is a recent development in
A.l. A more primitive kind just assigns various sysbols as
properties of other sysbols, This type is sometimes simpler and

more efficient to use. The first step touard making this kind of
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data base context-dependant would be to invent a "symbol" which
is "present” only somes of the time. This is part of the concept
of object.

For axample, 8 vision program, as it reconstructs a visual
scene from a8 vidisssctor image, must consider more tham one set
of possible real-uorld objects, and decide what is really there
on the basis of which is most consistent with the evidence. This
orld might be modelled as a |iat of Conniver objects, only some
of which are present in any context. Thus, an object proposer
might summarize ite conclusions by adding a new data object to
the |ist POSSIBLE-THINGS:

(CSETQ PDSSIBLE-THINGS

(CONS (CSETO NEW-THING (DBJECT * (R4 RS R3)))

POSSIBLE-THINGS)H).

This form creates a possible object, MEW-OBJECT, considered to
conaiat of regionas &, 5, and 3. (A realistic data structure
would undoubtedly have to contain mere information.) This object
looks |ike (#0DBJECT (R& RE RA3}), and has structure (R4 RS R3),
which the system ignores. MNew objects are, of course, absent in
all contexts.

To make this datum present in the current context, one
executes (REALIZE WEW-THING); to make it absent, he executas
(UNREALIZE NEW-THING). The predicate REAL returns [its argument
if it is present, or NIL if it is absent; UNREAL, the opposite.

To illustrate the use of these primitives, imagine a data

structure for tic-tac-toe as follouws. Let X5 be a Lisp array of
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9 data objects like that above, such that (X5 n) is the X in the
ggquare n; let 0S5 be a similar array of 0 objects. With this data
structure, the predicate [FREE square) can be defined thus:

(COEFUN FREE (SOUARE)
(NOT (DR (REAL (X5 SOUARE)) (REAL (D5 SOUARE) D)) }

To put an X in sguare 5 (the center), for example, execute
(REALIZE (X5 51)

I+ thieg is done in a particular context, the board will "have an

X in tha center" in that context and all contexts sprouted from

it. By resetting or rebinding CONTEXT to a higher point in the

branch, the "X" modelled as (XS5 5) can be made to "vanish," as

(XS 5} reverts to absence.

This gimple introduction to objects |leaves them rather
uninteresting, since they have exactly one context-dependent
property (presence or absencel and a context-independent
atructure. In fact, the most interesting uses of objects involve

more general properties, Which are discussed in Sect. I1I1.2.

[11.1.2 Indexable Data

An object behaves |ike any normal Lisp structure. You use it
by having & pointer to it, to which functions and predicates are
applied. The only difference is that its properties depend upon
the current Conniver context.

Another class of data have the same properties as objects:

given a pointer to one, exactly the same operations (REALIZation,
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UMREALIZation, reality testing, etc.) can be performed. Housver,
the way you obtain a pointer to one is by use of patterns. That
is, upon specification of all or part of a list structure
associated with such a datum, Conniver will generate or
regurgltate the data that match what is given. These are called
indexable data, because the restoration of a datum from a
description of a piece of It s not possible Without the presence
of an index to all data of its type.

The indexable data types implemented in Conniver are ]Jiem

data, methods {of several tupes), and method glosuraes.

111.1.2.1 Types of Indexable Data
[T1.1.2.1.1 ltem Data

The cbvious gperations on item data have been described In
Chapter [; From that chapter, 1t should be clear that item data
can aluways be referred to by their associated |tems or patterns
that match them, using functions |ike ADD, RERMOVE, PRESENT, and
FETCH. Houever, sach of these functions returns pointers to the
1tem data invelved, the direct accessing of which is more
efficient that access through the index.

For example,

(CSETQ D1 (ADD * (HERSHEY BAR]))
returns

( (HERSHEY BAR] (B (B . +)1)},
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or something similar. This structure has a CAR which is the item
af Interesst, and a COR which describes ite properties in various
contexts (see sect. [I1.3). The whole thing is an jtes datfum,
and 18 pointed to by the Jtem index. This means that (in a sub-
context thie time) if (REMOVE ' (HERSHEY BAR)) is executed, the
game |tem datum can be found, certain musbo-jumbo performed on
it, and

( (HERSHEY BAR) (1B (1)) (B (g 18)))
returned. This is the exact same datum (it is EQ to the first),
uith its structure changed. (As will be described belouw (sect.
31, lTts "tail® indicates that it is still present in the original
context, but absent in the sub-contaxt.}

It takes effort to go from the structure (HERSHEY BAR), EOUAL

to the |tes wanted, to [[HERSHEY BAR)...), which is EO0 to its
i tem datum. However, in this case Ol is a pointer to this datum,
a0 there s no redson uwhy one cannot executs

(UNREALIZE D1)
in tha same sub-context as the previous REMOVal, with exactly the
game result. In particular, REALIZE and UNREALIZE call if-addeed
and i"—l'ﬂll'l'lﬂ'u'ﬂﬂ methods respectively, just as ADD and REMOVE do.

In fact, ADD can be defined as

(REALIZE (DATUR item))

where DATUM is a function that maps items Intc their associated

item data. (If an item datum uEes not previously indexed, DATUR

generates one.) REMOYE has a similar paraphrase.
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For a description of the exact meaning of an item's being

indexed, see below, [11.1.2.2.

111.1.2.1.2 HMethods and Hethod Closuraes

The use and creation of thess objects is dealt with
elseuhere, in Sect. [1.2 and VI[.1.2. Some description of howu
they behave as data will be given hers.

Any datum that starts with the atom #CLOSURE is treated as a
closure. If a datum starts with any other atom but «0BJECT, it
is supposed to be a method, of the form

(type name pattern body ...),
whera "..." is its tall {see sect. 3}. It can be called by TRY-
MEXT or INVOKE (sect. [II.2), or lindirectly) by ADD and REMOVE.
User-defined method types can be used in any way the user wishes.
(Sect. VII.2.2.F)
If a method has a non-NIL atomic name, it is a special case

of 8 named datum (sect. 4}, and the name is uniformly used by the

system and user to refer to it.

ITT1.1.2.2 The Index

There are tue senses in which an indexable datum may be
“there."” One is the same as for object data: "there" means

"present in the current context." This is implemented by the set
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of markers on the “"tail" of every datum. The other sense is
"pointed to by the index,® that ias, findable by asking the index
maintainer for potential matches to a patterm. Indexable data
Will be indexed in this fashion only when they are present or
have a property (sect. 2] in at least ona context. (The
motivation for this ie that ons version of ((A B Cl), a
propertyless |tem datum, is as good as any other version of ((A B
Cl), so there is no point in making all of them unigue.}

From the user's point of view, the index is just a list of
all propertied data. UWhen a datum acquires presence or some
other property, it is added to tha list. Hhen all its properties
ara flushead ﬂr.tha contexts it has properties in are garbage-
collected (see sect. 3}, it is deleted from it.

When the data base is initialized, each index (one for items
and each method type) is indead just a list of its contentsa.
However, when this |ist exceeds 3 certain size, it ia broken doun
into subindewss, according to the contents of the CAR's and COR'a
of ites elements. Each subindex specifies an Index for each
different atom that appears inm a slat, These indexes ara
themsel|ves indexified | f they becoma too |arge.

Now uwhen a pattern s given to the data base, 1t can isolate
a8 amall asubset of candidates for matching before running the
relatively :nﬂjlu matcher, [t does this by looking for a bucket,
in the index, corresponding to each constant position of the

pattern, and taking the smallest bucket it finds. For methods,
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im sach position, it must teke into account the bucket for
methods with @ variable in that position.

Thus, for example, the function FETCHI, which fetches items,
worke as fol | ows:

4. Search the item index for candidates.

b. Throu auay all those absent from the current context.

c. Match the others and make up a possibilities list.

The indexer's efficiency depends on tuwo numbera,
wATOMINDEXTHRESHOLD and «STRUCTINDEXTHRESHOLD, which determine at
what size buckets of the tuo tuypes (which we really didn®t
describe) are broken doun. No one knows what the "best” valuss
are for the numbers, or what they depend on. [f you want to
Wworry about this, talk to OVH,

The indexes point at item data and therefore keep them from
being garbage-colliected. This is, of course, esssential, since as
long as the contexts that contain them are around, such data
might have to be accessed by pattern. However, thie feature can
lead to difficulty. If an item datum has a property that
includes a pointer to 8 context in which that property is
accessible, the resulting circular structure (context -» datum —»
property =» context; see sect., 3) will be uncol lectable. S5op =ome
interesting properties (like "frame in which this |tem wuas

added,” if it points even indirectly to a binding of CONTEXT) are

unfeasible.

The biggest bummer is that method closures almost aluays
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point to frames with @ binding of context that includes the
closure. Thus the presence of many closures will choke up free
storage irrevocably. You might have to write your own special

garbage collector to delete these data by hand.

111.2 Properties of Data

It is aluways possible to given any datum a name (sect. &) and
gssert |tems about it, in order to record its context-dependent
properties. However, for reasons of efficiency (and becauss
items are not aluays the best means of represanting everythingl .
it is also possible to associate jndicators with properties on &
datum, and retrieve them in a context-dependent fashion.

To associate indicator With property in context, use

(OPUT datum property indicator contextl.
Thia causes datum to have the pair [indicater property ...) on
ite tail, where "..." is garbage described in sect. 3. This pair
is returned. This property pair Will be associated with the datum
in all subcontexts of context unless it is removed or overridden
in one of them.

(DGET datum indicator context}
returnes the firet indicator-property pair found on the datum by

searching the context, |ts super-context, ete., or NIL if there

ien"t one. Finally,
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(DREM datum indicator contest)
does a DGET, but smakes gll paire found with that indicator
invigible in context and all its sub-contexts, so that future
OGET'e in them will return NIL (See sect. 3).

As an example of what can be done With property functions,
consider the representation of the tic-tac-toe board as an array
SOUARES of 9 objects. Let each such object specify the occcupant
of t.he corresponding sguare in 3 particular context as its
property under the indicator DCCUPANT:; if it 1s empty, let the
object be absent in that context. Then FREE can be written
{COEFUN FREE (SOUARE) (UNREAL (SOUARES SOUARED) )
grnd the occupant of a sguare In the current context might be
found by

(AND (REAL (SOUARES SOUARED)
(CADR (DGET (SOUARES SOUARE) "OCCUPANT))

which returns ¥, 0, o~ MIL. Then FORCEWIN sould be written
(COEFUN FORCEMWIMN (PLAYER SOUARE)
A" ((CONTEMT (PUSH=COMTEXTX]))
(OPUT (REALIZE (SOUARES SOUARE]) PLAYER "OCCUPANT)

(MAKEMOYE (OTHER FLAYERD)
(TRY-NEXT (CENERATE (WINHOVES PLAYER)) NIL) ]

I1f the semantice of propertu=liet manipulators does not qulte
fit your needs, there are more primitive functions, described in
Sect. ¥YII.Z.4, which enable you to tallor-make uour own versions

of them.
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[11.3 Implementation of Contexts

A context is profitably considered an abstract object whose
only interesting characteristics are how it got started and what
has been donme to it and ite superiors since. Houwever, for some
purposes it may be useful to know that a context ias implemented
as a list of gontext layers, each of uhich describes the
differences betueen a context containing that layer and one not

containing it. Actually, it is of the form (#CONTEXT &layeraw)

for debugging purposes.

111.3.1 Presence and Absence

To be precise, a layer's functions are to indicate which data
are to be thought of as realized in contexts containing that
layer, and which such mentions by other layers are to be
gancelled in contexts containing it. The first function is easy
to grasp: every datum 1s present in a context if and only if a
search up the context from most recently pushed to most global

finds a layer that mentions that datum. (Fig. 1.)
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20
£3
saarch
direction £2
£1

coNTEXT= (*conTeEXT f1 £2 /3 f0)

FIGURE 1. Seach Rules.
However, if that mention has been cancel led when the datum was

"wunreal ized" in some subcontext, it doss not count.

To make this clear. imagine the following context structure:

FIGURE 2

The numbers are context-|ayer nusbers. Four contexts, cl (28,
18, BY, <2 (4B, 3B, 1B, 8), c3 (38, 18, 8}, and c4 (1B, B), are
identified (besides the global context cB (= (B}))}. ©C& Is super-

context of all but cB.
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Mow imagine that the structure of Fig. 2 is begun by a
process that sprouts a sub-context from the global context c@,
and hypothesizes that the object datum NEU-THING (cf. sect. 1.1)

is really "there,” in a8 visual scene, (Fig. 3)

ABSENT 00 (pROG "aAUX"
CONTEXT
N O (l

NEW -THING
—0 10 .

-
L]

(REALIZE NEW-THING)
PRESENT ' C4 .

-

FIGURE 3 '}

Thias causes NEH=-THING to sprout a 13i| of context-markers (o=
markersl, so that it looks like (#0BJECT (R& RS R3) (18 (B .
+1)1), and is present in all sub-contexts of c&, actual and
potential (The format of c-markers is described in detail in
Sect. YII.Z2).

Mou the process creates tuwo sub-processes, sach With 1ts own

context, in this case, cl and c3:

ABSENT
NEW-=THING

PRESENT 10

30
10-CANCELLED

NEW-THING ABSENT
c3

ci

FIGURE 4

{cseTa c4 (PUSH-CONTEXT))))
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Each process investigates the interaction of NEW-THING with
previous parts of the scene. The investigation in c3 leads the
machine to doubt that NEW-THING is there, so it executes
{UMREALIZE MEW-THING C3), making it absent there by "hiding" the
fact that c& mentions the ebject. The object remains absent in

any sub-contexts of c3 generatzd by further pushing. (Fig. B}

ABSENT

NEW-THING CO

PRESENT

c1
c2

c3 -._‘L\m- CANCELLED ABSENT

FIGURE &5

Mow MEH-THING = (»0DBJECT (R4 RS R3) (3@ (1)) (1@ (@ 38))),
indicating "present in all contexts with layer 1B except thoss

Wwith layer 38 as well."

Meanuhile, the process running in ¢l still believes NEW-THING

ies thera. Imagine that it discovera it to be the only possible

supporter of another object uhich is knoun to exist, and hence

that NEW-THING is certain to exist a@lso. [t executes (REALIZE

NEWU-THING CB), which makes |t present in all the contexts:
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PRESENT o
co
NEW=-THING 10
c4 30
PRESENT
c3 40
c1i
20 c2
FIGURE 6

Now NEHW=-THING looks |ike (#0BJECT (R& RS R3) (3@ (1)) (18 (8 381)
(8 (B . +))); that is, & cancellation applies only to
outstanding, not future, realizations of a datum. Later
realizations will override it., (If (REALIZE NEW-THING C&) had
been executed, the same effect would have occurred, except for
NEH=THING" &8 remaining absent in cB. Ite tail would have
consiated of (18 (B . +}) again.)

Not all UNREALIZations cause cancellation. [f NEW-THING were
UNREALIZED in c4 at the second step, its tail would be emptied
rather than be made to contain, say, the c-marker {18 (1 18}).
That is, c-markers never cancel thamaslves.

In any given context, the predicates REAL and UNREAL can be
used to determine 1f & datum s present or absent., REAL returns
its argument if there are any outstanding [uncancelled) mentions

of it in the current context branch, or NIL otheruwise; UNREAL,



[11.3.1 B2

the opposite.
All of these primitives operate by altering or examining the
tails of their arguments, uwhich consist of c=markers of the form
{lnum (refco . status) aproperty-pairew)
where Inum identifies a context layer, status is +, NIL, or a
list of canceling |nums, and propertu-pairs are explained below

[Ef- sect. "I"II..E]'.

[11.3.2 Implementation of Properties

The association of properties with data is in some sense a
generalization of the notions of presence and absence.
"Presence" can be considered an indicator whose associated
property ie ignored. It is either there or not thera.
Properties, on the other hand, have distinguishable values, so
they may be overridden as well| as cancelled.

Properties are implemented as cancellable "pairs® which are
associated with c-markers. 1f 8 c-marker on a datum |ooks |ike:

in {...)...lind prop . statusl...],
It means that datum has the ind-prop association in contexts with
layer p, except those which cancel it, as indicated by status,
which s "+" if there are no cancellations., (Details are given

im sect. YII.2.)
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I11.3.3 Context Layers

A context layer is implemented as a list {(&LAYER Inum
wdataw), uwhere Ipum is its unigue layer number, and data are all
data with at |east one occurrence of Inum in their tails. The
reazon the layer must point to each such datum ia that when it ise
garbage-col lected, the magic Comniver garbage collector must be
gble to remove all these ococurrences. (Unfortunately, this mesans
contexts point at the data they contain, so the loops mentioned
in Sect. 1.2.2 are possible.)

Anyuay, it is possible to loop through the layers of a
context and the data in the layers, and thus apply some function

to, say, all the data in a context.

IT1.32.4 Nonstandard Contests

Most contexts are generated by PUSHing and POPping -CONTEXT.
These processes cause the generation and discarding of contesxt
layers. Since individual layers are somatimes important, it is
desirable to be able to string them together into neuw contexts.
Then a layer which has a c-marker of non=NIL status on 8 datum
Hill make that datum present in any context in which it appesars.
A layer whose number appears as a cancel ler of c-markers or

properties can be thrown in to make certain data or their
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properties go auay.

The only restriction on generating new contexts is that the
|ayers must appear in order of decreasing Inums, This is because
operations |ike testing the vieibility of c-markers and property
paira involve taking the intersection of tuwo set of lnume {(the
etatus and the context layersl, which is done faster with ordared
sets.

The functiona which create neu contexts are described in

Sect. VI1I.2.E.

IIl.4% Named Data

Dccasionally it is convenient to refer to an arbitrary datum
by an atom rather than a pointer to the datus |tself. Sometimes
this 18 a matter of convenience. Sometimes, as with functions,
the datum must mention itself without being circular. In the
case of methods, as mentioned before (sect. [1.2), one needs to
be able to refer to thes by an E0 name when redefining them in
order to aveid having two around with the same pattern; an atom
fills this need. [tem data are also occasionally to be thought
of as El things: an item that refers to another item wants to
mean that particular thing, not & data structure EQUAL to it.

Of course, the user may use any ad hoc scheme he wishes to

associate an atom uith & datum. 1f he knous atoms might have
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data under the property FOO, the item [POSSIBLE FRAB)] might mean
"the |tem under indicator FOO on FRAB is poassible.”

Anocther possibility s to create a more intimate association
betueen an atom and a datum, in which the system considers the
atom te stand for that datum in every situation, much as an atom
uith an EXPR property always stands for the associated function,
in forms, as an argusent to APPLY, etc. in a Lisp program. This
association is needed for named methods, and has been extended
for use With all types of data. Any datus may be given a name
umith the function NAME=DATUH. If it already has a name, the name
uill be changed. This function alters every old system=
maintained copy of the datum to be the new name, even down fto its
neme alot if 1t ia a named method. Thus the index, context
layers, etc., Wwill point to the atom instead of the datum
directiy.

The other uways to give a datum a8 name are with the method-
defining functions, and the function DATUM with two arguments.
All of these are documented in the appendix, sect. YII.Z2.2.

The association of an atom with an item datum is a bit
imperfect, because of a probliem with the identity of a
propertyless datum. As mentioned in sect. [II.1.2, an item datum
Hith mo properties is not pointed to by the index. DATUR of
gomething like (A B C) is a brand-nexs {{A B C}} each time if the
ltem has no properties or presence. This will be true even if

thare is an atomic mame for a particular such propertyless datum.
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1f the thing did have properties, this atom would be uRat the
system would return as the DATUM of ite item, but if it ia
unindexed, there is no way to find the atom, and the system is
fooled into returning a new non-atemic |tem datum each time DATUR
is called. Thus, If item (A B C) corresponds to ({A B C} (1B (B)
(FLAUS 12 . +))), and you execute (DATUM *(A B C) *FOO), then
FOO will become associated with that datum, and (DATUM "{A B C})
Will thenceforth return FOO.

However, 1f the item datum is just ((A B C)), (DATUM '"(A B
C)) will be ({(A B C}) no matter how many times you name it. So

be careful on the timing of naming data.
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I1¥ ON PATTERN-DIRECTED INVOCATION

Methods can be invoked in association with adding items to,
fetching |tems from, and removing items from the data base. The
invocation depends on a8 match between the method's pattern and
the item, & match being an assignment of values to the pattern’s
variables that Will make it EOUAL to the item. Since when if=
nesded methods are called, it is necessary to match two patterns
againat each other, the matcher aluays returns a list of tuwo
alists that specify assignments of as many variables on both
sides as possible. [f there is no match, NIL is returned.

The matcher may be calied by (MATCH varpat datapat); HATCH
is asymmetric in that it is biased toward assigning variables in
varpat to constants from the other side. A pattern ies a non-
circular list structure with "variable parts" marked by the
prefixes "!>" and "!,". "ls>var" must satch a8 variable-free
section of datapat. (This restriction will aluays be met when
patterns are matched against |tems.) HMatching "lsvar" against
something causes var to be bound on the alist for variables in
varpat, With a value corresponding to what is matched. For
example, (MATCH " {(FOO !=X) " (FOO BAR}) returms (((X BAR])} NILY.
(Hera, "MIL® is the alist for variables in (FOO BAR).)

The matcher is multi-level (that i=, variables can occour
below the top level of list structurel, and dots are allowed in
patterna, as [(DIND OESI . 1»X). Hence, the pattern [((FREDS =X}

. 1>REST) matches
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{ (FREDS FATHER) WHISTLES)
( (FREDS FATHER) WHISTLES DIXIE)
{{FREDS GONE) HE SAID),
generating association |inte
{{xX FATHER) (REST (WHISTLES1})
((X FATHER) (REST (WHISTLES DIKIEI)}
(X GOMNE) (REST (HE SAIDI)),
respectively. (The second |ists are always NIL in these cases.)

Hhen FETCH calis the matcher, it uses the varpat alist to
make up an item possibilityu. Thus, if items (SPIRD LIKES ROCKS)
and {SPIRD LIKES DICK) are present in the current context, (FETCH
"{SPIRO LIKES !'=HHAT}} might return
({«POSSIBILITIES (SPIRD LIKES !»WHATI) #IGNORE

(#ITEM ((SPIRD LIKES ROCKS) (18 (B8 . +)1)) ((MHAT ROCKS}))

(wITEM ((SPIRD LIKES DICK) (B (8 . +}}) ((HHAT DICK))})}).

TRY-NEXT takes the association lists from item possibilities
and assigns the variables as they direct.

The other principal prefix is "1,%, which refers to the
current binding of Tts variable in the match so far, or the
current Conniver binding, and matches ites value. For example,
the pattern (GRAMOFATHER !=X !,X} matches all items corresponding
to people who are their own grandfathers.

Another frill is the ability to specify a cestricied maich.
[f "I»" prefixes a non-atomic expression, 1ta COR is & list of

forme that must all evaluate [in Lisp}! te non-NIL after
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assignment of ite CAR. For example, I=(X¥ [ATOH !'.¥)) matches
only atoms, and !>(CREATURE (FEATHERLESS !,CREATURE) (EOD (NUMBER-
OF-LEGS |,CREATURE]} 21} matches featherless bipeds. If it is
desired to bind and initialize a variable in its pattern’s alist,
one can write "!, (var initial-valuel." For example, (FUNCT-OF
1-FOAM !, (F (CAR !,FORM))) matches (FUNCT-OF (FACTORIAL S)
FACTORIAL) but not (FUNCT-OF [PLUS 2 21 MINUS). Finally, if it
is desired to specify an item shape without naming or saving |ts
parts, the prefix characters "!»" can stand alense. Thus, (FETCH
*IFOO !»)) returns a possibilities list of items of the form (FOD
x}, but applying TRY-NEXT te it sets no variables.

| f-addeds and i f-removeds work nicely with MATCH. To invoke
one, Conniver applies MATCH to its pattern and the item that
triggered it. 1f the result is non-NIL, the varpat alist is used
to start the variable bindings in the method's frame (uhich may
be augmented by "AUX" bindings).

An if-needed method is really an entirely different kind of
entity. Firat, its match occurs at FETCH-time, 1ts alists being
saved in a #METHOD possibility until TRY-NEXT calls it. Second,
such a method is a kind of callable subroutine, which should be
capable of more than verifying or achieving conditions
represented by constant patterns. In particular, one would [ike
to be able to specify that a slot represents an gutput variable,
to be set by the method but pot by the match. This is

accompl ished by use of the prefix "l<"; "levar" matches only
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expressions 4ith variables (var being assigned to that
expresaion, but only so the user can see what is going to happen
on output).
Thus, when (NOTE (INSTAWNCE}) is called to create a value to
be added to the posaibilities list, MATCH is called again in a
special (secret] way, this time uwith the FETCH-pattern as wvarpat,
which treats the method pattern as an essentially constapnt
gtructure whose variable slots are to be filled as indicated by
the values tha wvariables have picked up in the method.
Az an example, consider the =sethod
({IF-NEEDED FIND-SUFPPORTERS
{ON 1>X l<Y)
"AUX" ((P (FETCH * (SUPPDRTS !>Y [,X}}))
: LOOP
(TRY=-NEXT P " {ADIEU})
(AU-REYOIR (INSTANCE})
(GO "LOOFY ).
Thie method will appear in a FETCH=possibilities=liat generated
by. =.g., (FETCH *{ON BO¥1 1=B}), but not one generated by, &.0..
(FETCH "{OMN !»A TABLE}}, which is looking for "asupportees" of an
object called TABLE. UWhen FIND-SUPPORTERS is entered, X will
have the value BOX1l, and ¥ the value !>B. At statement :LOOP, ¥
is set to the next supporter of BOXL. One such supporter is
returned sach time the method is entered or re-entered.
Notice that this method has a completely different purpose
from one with the pattern [ON !<X l:¥), which would find the

"gupportees" of a given cbject ¥; or one with pattern (ON 12K
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=¥}, which verifies a support relation.

Occasional ly, houwsver, one Wishea the decizion of what to do
in cases differing in this way to be made after the method ia
gentered, In this case, one can use the prefix "I17" uhich is
ambiguous; it matches anything, but its wvariable is assigned 1§
and only if it matches a variable-=fres axpression. The

comp lementary ambiguity on the FETCH-side is handied by the

prafix "1;" which means "I»" if its wvariable is unbound in the

current match alist and unassigned by Conniver; or "1,% if itse
variable ie assigned or bound in the match aliet but unassigned.
These characters are tupically harmdy in situations where a
pattern is to be expandad according to its definition, regardless
of exactly what is variable in it. For example, if men are
aluways to be treated as featherless bipeds, the follouwing method
does the conversion if one iz looking for men or attempting to
wverify that something is a man:
(IF-NEEDED IS=MAN
(IS 17X MAN)
“AUX" ({F (FETCH * (IS5 YtX BIPED}}})

tLOOP

(TRY=MNEXT P * (ADIEU)

(COND (({PRESENT " {FEATHERLESS !,¥))

(AU=-REVOIR (INSTAMNCE}}} i

(GO "LOOF) ).
It takes the place of the tuo methods that would be required
uithout “I!1?" and "1;", which would have "l<" and "I=", or "Ix"

and "1," inatead. (Micro-Flanner users please note that the

micro-Planner prefix "§7" includes both ambiguities, and would
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take the place of all prefixes used in [S=MAN.]

Finally, scme if-needed methods claim to be able to expand on
the gyntactic forms of calling patterns rather than to be able to
generate items similar to those represented by those patterns.
The corresponding method-pattern variables are signaled by the
prefix "1'*, which is analogous to the "'" of CENPR bound—
variable declarations. "!'var" binds var to an expression
Hithout examining its internal structure In any way; its
variables are neither substituted or bound. For example, a
method for causing (FETCH " (AND sconjunctsw)) to set the
variables in the conjuncts correctly might look |ike:

({IF-NEEDED AND-EXPANDER
(AND . !"CONJUNCTS)
(COND (CONJUNCTS

"AUK" ((P1 (FETCH (CAR CONJUMNCTS)))
(F2 (FETCH !"(AND . «(COR CONJUNCTSII))
COP2)
i LOOPL
(TRY-NEXT P1 " (A0IEU1}
(CSETO COPZ (COPY P2))
: LOOPZ
{TRY-NEXT COPZ " (GO "LOOP1))
[ALU-REVOIR (INSTANCEN)
(GO *LOOPZ)}
{ (AU-REVOIR (IMNSTAMCE))} 1.

For example, if the items (GREEM BOM3), (GREEN BOX1), (GREEN

BOX4), (DN BOX1 BOMZ2), and (ON BOX4 BONS) are in the data base,
repeatedly TRY-NEXTing [FETCH " {AND (GREEN !=X) (ON 1,% IsY}1})
uill set X to BOX1 and ¥ to BOXZ, then X to BOM& and Y to BOXS,

then quit. The methed's value is always («NOTE NIL), because it

never concerns itsalf with binding calling pattern variables. (A
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mora afficient implementation, by the way, is ocbviously
possible,)

All the syntactic frills such as restrictions and bound
variable initialization are legal in method patterns. Houwever,
it is generally meaningless to restrict a "!l<"-marked variable.
I# Y<(¥ (ATOR !,X)} appears in a pattern, it is not clear what is
being restricted. [t is certainly pot possible by such a
restriction to prevent fulure assignments of X to anything non-
atomic. All restrictions apply oniy at match time. In the case
gf "I1?", restrictions will be run only i f the prafixed variable

is asaigned in the match.
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¥ USING CONMIVER

Conniver is a remarkably friendly language to usse, because
ite control structure is "open to the public." The command
CNVR™K typed at DOT causas Conniver to print out its version
number, set up an initially empty global context assigned to
GLOBAL, and print
EAR-1

—

The "_" is printed out whenever Conniver wants input. The ear it
is listening with initially is EAR-1. This is not a joke, but a
tag into a READ-CEVAL-CPRINT loop at the top level. Interacting
Hith such a8 loop ought to be very easy for an experienced Lisp
ugser; Conniver will attempt to CEVAL everything typed at it, and
will print the result, formatting the output so that variables
and special data types print in a lucid fashion.

If input is switched to a nes file (using UREAD), masses of
CEXPR"s can be defined using

(COEFUN pname (svariable-declarationsw) wbodys].
"CFEXPR"g", "CLEXPR's", or =something similar, are not neaded
because of the flexibility of variable declarations.
Declarations can be just a list of atoms, but the construction
"OFTIONAL" wdeclarationa#

enables function to supply default values for missing tralling
arguments. For example, the declaration (X "OPTIONAL" (Y
CONTEXT) Z) ;puuifiau one required and two ocptional argumante; if

¥ is missing, it receives the value of CONTEXT; a miesing third



argument leaves I rebound but unassigned.
I¥ the last two elements of the declarations are
"REST" war
var is bound to a list of the remaining arguments, each
evaluated.

In place of & declared variable, the form (QUOTE var) may
appear in any of the variable declaration slots, including "REST"
*war. This has the effect of blocking evaluation of the
corregponding argusent, or list of argusents in the case of
"REST*. A FEMPR of ome argument L in Lisp, therefore, has as
counterpart a CEXPR with declaration ("REST" *L1J.

{1t should be pointed out that this entire variable
declaration syntax was taken from FUDDOLE.)

Hhen a Lisp or Conniver error occurs, the system initially
causes a Lisp READ-EVAL-CPRINT loop to be created as close to the
error 28 possible. (Such a foop s created by the fumction
CERAR.) Hithin this loop, only Lisp evaluations can take placa.
If It is desired to continue from the CERR, type (RETURN value-
desiredl. Altmode-P 18 eguivalent to (RETURN NIL). Users®
instances of CERR (and CBREAK, which prints a less alarming
messagel may do anything they wish with a returned value. The
system usually ends an error message with "// <something> <= 7"
This means that (RETURN value) will cause that something to be
value. For example, if an attempt is made to evaluate ¥ when it

is unassigned, the message



UNASSIGNED VARIABLE X // VAL <- 7
is printed. [f the user types (RETURN 5), X will get value 5,
and the evaluation will proceed from the CERR. [f there is no
cbvious thing to ke returned, the system will type “// GO ON?"
Any value returned will be ignored, but if the user wishes to do
his own patching and proceed, he may. Finally, if there is
nothing to be done, an attempt to proceed will land him in the
nearest EAR loop.

Hithin such a context lor any piece of Lisp), if it is
desired to return to the closest Conniver frame and create a
listen loop, evaluate (EAR). This creates a Conniver EAR-n loop,
whose creation is signallied by the printing of
EAR=n
which behaves just like the top-level one. A variant function is
NEAR, which returns to the nearest already-existing Conniver
listen loop. Finally, the function TOP flushes the entire
existing control structure, resets the EAR-counter to 1, and
starte up a2 new EAR-1. (GO EAR-1) is similar, but can only be
executed from Conniver.

The function BACKTRACE can be used to get & lucid summary in
a CERR- or EAR-loop of the gontrgl pointer chain from the current
Conniver frame upuards. Variable values can be inspected,
functions can be called, etc.  The functions UP, DOWN, and J can

be used to move an EAR-lpop around in the control structure.
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This is handy for "editing” the stack, checking out variable
bindings in the top-most activation of a recursive structure,
etc. (See sect. ¥I[I[.3.1.)

Since a tag is a sort of frame for most purposes, a Conniver
listen loop can be flushed by EXITing EAR-n. The function
(DISHISS framel has been provided to exit from it with no
particular value. DISMISS takes (FRAME) as its default argument.
Hithin a LISTEN loop, 8P is eguivalent to (DISMISS).

To stop @ Conniver program externally, use control-H [(“H).
This will generate 8 READ-EVAL-PRINT loop (as it would in Lispl,
Which can be exited with 8P, From thias loop, (EAR) will pet uyouw
to Conniver, which remesbers the Lisp expression it was working
on. OISAISSing this EAR=n Will cause the Lisp evaluation to be
re=attempted (not resumed).

Another way to interrupt a Conniver is with A, whose action
depeands on the next character read. In general, this character
must have a A (“uparrouw A"} property on its property list; this
property should be & function of one argument {the character),
Which is called when ""A that-character" is typed at Conniver.
If there is no such function property, a guestion mark ia printed
as "A"s sole function.

There are several built=in systes functions that are handled
by this mechanism. “AE causes (EAR} to be executed at tha next
interruptible place in Connivery *AN, (NEAR}. ™AT causes (TOF)

to be executed immediately. A Lisp READ-EVAL-PRINT locop may be
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caused wWwith "AL; this is equivalent to a CERR loop. Tuwo others
do not cause |isten loops: ™AF flushes the current input buffer
i¥ control is already in a READ, and is thus equivalent to a
million rubouts; “AX prints the current expression being
CEVALuated inside Conniver, and continues. ™AX is a way of
checking up on what the evaluator is doing Without stopping it.

The Conniver error system cperates with the more general
Conniver interrupt systes. The Lisp variable CINTERRUPT contains
a liat of expressions to be CEVALuated at the next opportunity.
The function (CINTERRUPT expl adds exp to the end of the list.

I%# will cause it to be evaluated the next time control returne to
Conniver. {Besides the error system, |f-added and |f-removed
methods alse cause interrupts to happen.) The function (ALLOW T-
or-NIL}) enables or disables al1 interrupts. [f Interrupts are
digabled, CINTERRUPT gqueues them until (ALLOH T} is executed.

In many places in Conniver ™G or "X will cause Lisp to go to
a8 very-top-level READ-EVAL-PRINT loop; in such situations they
are equivalent to STOP (see below). However, just as Lisp must
protect itself from such things during garbage collection,
Conniver disables all such Liep interrupts when ite data base i3
in & momentarily inconsistent atate--i.e., when it is making
changes to it. At such times, there is no way to stop the thing,
o don*t give it, B.g., & circular |list as a context.

You can get out of Conniver at any time by calling STOP.

This leaves all Conniver structures intact, but puts you in a
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Liesp READ-EVAL-PRINT leep. To restart in gxactly the state
before (STOF), call (ARUN}; you're back in Comniver. (AUN and

STOP have more sophisticated uses; see the appendisx.)
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¥I LISP AND CONNIVER

Liap functions do not wsually call Conniver CEXPR"a, and
CINT's {(the analogue of FSUBR"s in Lispl, because Lisp stacks are
far more perishable than Conniver's frame-trees. (But see the
description of CEVAL, below.) Conniver can call any Lisp
function, though, and Lisp EXPR's, LEXPR"a, LSUBR"s, and SUBR"=a
can take Conniwver arguments in forms evaluated by Conniver. For
exanple, |

{PRINT (TRY-NEXT P NIL})

is perfectly legal. Lisp functions called by Conniver can
reference Conniver variables free by use of the function (/,

var), abbreviated ",var®. For example, Lisp functions should
refer to CONTEXT as ,CONTEXT.

EAR, MEAR, STOP, and other Conniver system functions use
labeled CATCHes and THROWs to do non=local control jumps. The
way Lisp currently works, there is no way to prevent undanted
interaction with userse” wunlabeled CATCHes should they be in the
Way. For example, (CATCH (MNEAR!) will return something
meaningless rather than go to the nearest ear.

Since Lisp can"t call| CEXPR's, functions that do Conmniving
things must be written in Conniver down to a low level. The
resulting slowdouwn may make cne cringe, but there is a remedy.
Any piece of pure Lisp may be made more efficient by prefixing it
Hith the "a" macro-character, and making all Conniver wvariable

references explicit by use of ",". For exasple,
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@ (THIRD-IN-ROW ,SOUARE]L |, SOUAREZ)
where THIRD-IN-ROM is an EXPR, is much more efficient than
(THIRD-IN-ROW SOUAREL SOUAREZ)
because it expands into
{/@ THIRD-IN-ROM (/, SOUAREL) (/, SOUAREZ)),
J@ being a EEXPE., namely
(LAMBOA (EMP) [(EVAL EXF}).
Conniver aluwaus gives FEXPR's complete control over their
argument evaluation, so just hands the expression (/& ...) to
EYAL, saving generating a frame and interpreting the expression.
The & macro s thus @ way of hand-compiling arbitrary sections of
code involving no CEXPR's or CINT'a. Ancther use of the & macro
Is getting the Lisp value of a variable within Conniver;
@CONTEXT, for instance, gets the Lisp value of CONTEXT, juat as
“," gets 1ts Conniver value.

A Lisp program, if it really wants to, can use CEVAL to
Conniver-evaluate a form. [f it is a well-behaved form, this is
Just like using EYAL, but there are pitfalls. Some of the
problems stem from the fact that the frame and its daughters
generated by execution of the form may hang around [(With a HANG,
for examplel, after an EXIT back to the Lisp. Hhile control is
in thie structure the firset time, Lisp variables bound in its
caller may be accessed (with &), and in general everything is
coal. After it returns, houwever, the Lisp return point vanishes,

along With its frase, bindings, etc., and even the frame of the
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EXPR CEVAL.

|1 f control re-enters the Conniver structure, the new Lisp
gtack-state above it Will have nothing to do with the original,
none of the old, nod unbound, Lisp variables will be
referenceable, and a return from the structure’s top level will
have no obvious meaning. This is not to say that a process
created in this manner has no use, but merely to emphasize the
dangers in creating one. Httuipéing to m a Lisp variable will
probably find it unbound lcreating a Lisp-error in Conniver)}, and
an attempt to return from the control structure again causes the
entire Conniver to return to Lisp (thinking it is returning to
the Lisp frame that started the CEVAL), in such a way that
AUMning or STARTing is impossibla.

There i= still another problem which is even worse. [f,
during a CEVALuation, control leaves the new Conniver control
structure it created {e.g., by GOing to an old tagl, and never
returns, the entire old Conniver process will be running «ith a
Lisp stack slightly different from what it started with. In
particular, all the Lisp frames that were around when CEVAL was
called are still there, but there is no way to detect or flush
them. In iunh a gituation, STOP (see Appendix} no longer does
the right thing, and the stack has been enlarged in perpetuity.
Enough such pathological CEVALs can cause a pd!| overflou. The
user ls strongly encouraged to use RUN and STOP for Lisp-Conniver

interaction, even if they are trickier.
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One pleasant thought is that many Conniver functions are
actual ly EXPR"s, or have EXPR versions uwhich do almost the same
thing. (In the compiled Conniver system, of course, these are
SUBR's or FSUBR's, but | will continue to use the term EXPR in
the loose sense "Lisp function.") For example, the CEYAL you get
if you call it from Lisp is clearly different from the CINT
version the Conniver interpreter would find. All functions with
EMPR wersions can, of course, be called from Lisp. Happily, they
include all the data base-manipulation functions, but the EXFR
versions of ADD, REROVE, REALIZE, and UNREALIZE differ slightiy
from the CEXPR versions because the invocation of any if-added or
i f=removed methods must be CEVAL'ed. Since if-addeds and if-
removeds are probably not too closely |inked Wwith the process
that triggers them, these are probably safe CEVALa.

One worry the user doesn'it have to have is whether his Lisp
functions will clobber or rebind internal Lisp variables used by
the Conniver interpreter, All Conniver atoms Comniver doesn’t
uant you to see have besen "hal f-killed® im such a way that they

Hill print out but cannot be recognized during user input.
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VIl APPENDIX: THE CONNIVER REFERENCE SOURCE

Hhereas the previous sectiona of this marnual are a
discuraive overview of Conniver for the purpose of illustration
of and introduction to the ideas embodied in Comniwver, this
section is an attempt to provide a reference source for the
gctive user. Thus, it contains a detailed description of each
primitive of the language, enumerating the possible srror
conditions that are asspcciated with that primitive and its
limitations which might not be immediately apparent. Besides
primitive operators, every language has a set of reserved words
{nynéa:tiﬂ indicators and significant variablesl. These Will be
duly noted.

This appendix has three sectiona, one describing the
evaluator, one for the data base functions, and one for wvarious
debugging aids. Every function defined has its type lor tupes)
spacified next to a sample call. CINTs and CEXNPRs are inviaible
from Lisp and thus are only defined in Conniver code, awvoiding

interference with Liep functions of the same name.
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YII.l The Evaluator

The Conniver interpreter evaluates expressions in a

manner similar te that of Lisp:. The basic syntax is as followa:

gonniver expression = number * atom °
'g-pxpression * ss-sxpression
A 1"g-gxpresszion ™ (function wargumentsaw)

where the arguments are themselves Conniver expressions (and zero

ig 8 possible number of them).

The evaluation rulea are:

l. &s in Lisp, guoted expresaions and numbers evaluate to
themse | veg.

2. The value of an atom is its value as a variable. This value
Hill be determined by its value from some local binding or a
hidden list of global values.

3. An expression follouing an ® is passed directly off te Liep
for svaluation. He recommend that code be written so that as
much as poessible happens in Lisp because of the considerable
speedup attainable.

4, An expression following 1™ is called a skeleton, which is
expanded as follows: atoms expand to themselves; ",atom" expands
to the Conniver value of atom; "eexpression" expands to the Lisp

value of expression; "{lesexpression . restl" expands to [(APPEND
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Lisp=value-of-expression expansion=of=restl; "{lexpl . rest}”
expands to (CONS expansion-of-expl expansion-of-restl. For
example, If X« (ABC), !"(,X D «(COR ,X) (le(CODR ,H) . X)) =
(A BC)YDIBCY ICABECH.

5. Functional applications are processed as fol lowa:

If the function is atomic, it is checked for CINT, CEXFR,
FEXPR, FSUBR definitions. If an atom has two such definitions,
the first on 1ts property list is taken; thie means that if the
user wants a function to be a FEXPR in Lisp code and a CEXPR in
Conniver code, the CEXPA must be defined last so as to be firat
on the property list. 1f it is none of the above, it is assumed
to be a Lisp EXPR, SUBR, or L5UBR, thus undefined function errors
come from Lisp.

If the function is a FEXPR or FSUBR the form is passed to
Lisp for immediate evaluation. In this case, Conniver does not
define a new frame for its evaluation.

In all other cases, a new frame s created, with appropriate
access and control |inks.

[f the function is a CINT (such as COND) the form is
evaluated by the appropriate internal Conniver routine.

If the function is a CEXPR, the arguments are paired with the
formal parameters of the function (and perhaps evaluated] as
gpecified by the declaration In the function (sse COEFUN for
detailsl. After binding, the body of the functicn is executed.

If the function ie an EXPR, SUBR, or LSUBR the arguments are
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evaluated by Conniver and then the Lisp function is applied to
the resulting argument |iet with Lisp APPLY.

1f the function is non-atomic then either it is an anonymous
CLAMBDA expression (CEXPR) or it is an anonymous LAMBDA
expression (EXPR] and treated accordingly.

MWote that there are no other cases. The function position is
rnever evaluated as in Lisp. Functional arguments are handled

|up1i:itlﬁ, preventing ambiguity, using the function CALL.

Execution of the body of a CEXPR, PROG or METHOD proceeds as
fol lous:

If it begina uith the reserved word "AUX", then the auxiliary
variables that follow it are bound. (See belou, Sect. YII.1.2.)

The rest of the body is then executed sequentially (unless
the sequence is changed by a GO). The value of the body land
hence of the function) is the value of the last expression in the

body, unless a return is forced by RETURN, EXIT, or DISRISS.
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Vil.1.1 Communication with Lisp

A. (RUN [stuff NIL1) L5SUBR
(STOP [stuff NILI1) LSUBR

Hhen a Conniver program is running, its control structure is
"garviced" by a set of Lisp programs which wae the Lisp stack.
Control repeatedly returns to one called BUNL, which is the
"inner loop" of the system. Bensath the frame of RUNL on the
stack is ite caller, which iz expecting a valuea to be returnead.
The function STOP can be used to return such a value.

When it does, the state of the Conniver computation is not
disturbed, because it must all be saved in various frames anyuay.
STOP leaves everything in such a state that [RUN =} will cause
the Conniver to start again, as though S5TOP had returned =x. RUN
does this by calling RUNL. Hence, a later [(STOP yl) will make
RUMN1 return to RUN with value y. RUM returns this value.

Hence, these functions allow Lisp and Conniver programs to
treat each other as co-routines. Control is passed from Conniver
to Lisp via STOP and from Lisp to Comniver via RUN. The argument
to STOP is returnad as the Lisp value of RUN and the argumant of
RUN is returned as the Conmiver value of STOP. STOP may only be
called if Conniver is running, otheruise:

CONNIVER NOT RUNNING--STOP
RUN may oniy be called if Conniver is not running, otherwisa:
CONNIVER ALREADY RUNMIMG--RUNL.

Example: To have Conniver evaluate expressions passed to it from
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Lisp, we put Conniver into the loop:

(PROG "AUX" ((MESSAGE "HI-LISP})
:LO0P (CSETO MESSAGE (CEVAL (STOP MESSAGE)))
(GO "LOOF)}

Conniver returns to Liep with the value HI-LISP. Thereafter Lisp
may get an expression evaluated by Conniver by calling

(RUN expression)
The value of AUN will be the Conniver value of the expression.

Hithin a [Lisp) CEVAL, 5TOP causes ite argusent to be

returned as the CEVAL's value; this Wwill be true even if Conniver
control has left the structure that CEVAL set wup. RUN will pot
get the program back to the execution point of that 5TOP, because
after |leaving the CEVAL, Conniver ie already running. So, be

careful with using STOP to return a value for a CEVAL.

1, for some reason, the Conniver interpreter (not the data-
base -- see DATA-INIT) needs te be re-Initialized, it can be dons
by executing [(from Lisp onlyl:

C. (STARTI sueR

START resets all of the Conniver internal wvariables (including
the sar) and goes into the top-level listen loop. Global
Conniver variable bindings and their values are not changed. The
data base s not disturbed, but all contexts previously saved
only as valuss of Comnniver variables uwill be lost to garbags

cal lection.



¥Il.1 38

Hhen in Conniver [BASE=BASE=18. and all character macros are
in affect; these return to their Lisp defaults when returning via

STOP.
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¥Ii1.1.2 Procedurs definition

All of the functions belouw define procedures which include a
slot called the "body." The body of a procedure is evaluated as
follows: The value of a function is the value of the last
gxpression in the body lor of a RETURN, EXIT, or DISAISZS). The
body is just a sequence of expressions to be evaluated. If it
begins with "AUX" {a reserved word}l them the next element of the
body is taken as a declaration of auxiliary variables (PROG
variables in Lisp). Such a declaration is a list of atoms and
initializations. Each atom is bound but left unassigned. An
initialization is a list of an 2tom and an expression. The atom
is bound and assigned to the value of the expression. This
expression must not evaluate to & tag or frame for the current
activation of the procedure in which the "AUX® appears. To
initialize a variable to a tag, uou must allow 1t to be bound to
wUNASSIGNED, then CSETO it to the tag value desired.

A. (COEFUN "atom "declaration "wbodys) FSUBR

This function is used to define the atom to be a function
Hith the formal parameters specified by the declaration and with
the body given. The definition will be placed on the atom's
property |ist under the indicator CEXPR. The body ies simply a
sequence of statements to be evaluated seqguentialliuy. 1t may flor
may not) begin with a declaration of auxiliary variables

{described later). The formal parameter declaration syntax is as
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fol lous:
daclaration = (ghligatory variagbles pptional varigbles
axcess)

obligatory variables = empty ® parl ... parN
par] = atom ® "atom
gptional variables = gmpty * "OPTIONAL" opl ... opN
gpl = atom ® "atom * (atom default) ™ ("atom default)
excess = empty ® "AEST" atom * "REST" "atom
The semantics is as follous:

1) Formal paramaters are matched against arguments from left to
right.

2} There must be at least one argument for each obligatory
variabla.

3) Unless there is an exceas collector declared, there may not
be more arguments than declared variablas.

&) Arguments are evaluated uniess the currasp;nding formal
parameter is guoted ("), -

S} If the arguments run out while binding optionals, they are
filled with either #AMASSIGNED, or if an expression for the
default value is given, the valus of the default expression {in
the frame of the function with all previously processed variables
bound) is used.

€] An ewxcess collector gets the list of arguments or values of
arguments [depending upon the existence of a ") left over.

This elegant syntax is due to Chris Aeeve of MUDODLE. Mote hou
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beautifully this doas auauy with FENPR"s and LEXPR's and hou such
more flexible than Lisp it is.
[f the evaluator is not satisfied that the number of
arguments ies right for a function it prints either
TOO FEW ARGUMENTS--YARS = resaining vars // ARGS <= 7
and wanta arguments for the |leftover variables, or
TOO HANY ARGUMENTS--ARGS = remaining args // VARS «- 7
and wants variables to bind the leftover argumuﬁt: to. If the
syntax of a declaration is not as specified above the error
comment:
BAD DECLARATION--YARS = rotten variables // YARS <= 7
Will be generated, and anything RETURMed will replace the rotten

variables.

To create a method ue use one of the constructors:

B. (IF-ADDED ["atom] 'pattern "wbodys) FSUBR
{IF-REMOVED ['atom] 'pattern 'wbodys) FSUBR
(IF-NEEDED ["atom] "pattern *wbodys) FSLUBR

The given atom is defined or redefined to be & method of the type
indicated, invoked by the given pattern, With the given bodu.

The method required is the value of the constructor. [f the atom
is not specified, the method is not named, but of course, it may
be saved as the value of a variable. Te be accessible by
pattern, a method must be put into the data base via INSERT or
ADD. Once a named method has been added to some contexts,

redefinition of the same name will cause It to remain present in
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the same contexts.

The pattern is the analogue of the variable declarations of a
CEXPR: im particular, the appearance of any tupe of match
variable (except "!,var”) signdis that variable is to be bound

when the method is invoked. The pattern is used as described in

Chapter 1V.
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¥I11.1.3 Sequence Evaluators

A. (PROG ["ALK" "auw-variable-declarations] "wbodyw)

(PROGBIND auw-variable-declaration °wbodyn) Em

The value of a Conniver PROG is the value of the last
expreasion in its body. The expressions in the body are
evaluated in order after any "AUX" varlables are bound. Thess
variables are subject to the same format and restrictions as
those for CEXPR's and methods. The sequence of evaluation may be
altered by use of GO (Sect. VII.1.5).

PROGEIMD is |ike PROG except that 1t evaluates its first
argument to give a |ist of auxiliary variables. For example, if

Kafi,

(PROGBIND (LIST (LIST X 51) (PRINT Al)

binds A to 5 and prints "5",

B. (COND *clausel ... 'clausaN) CINT

COND im Comniver is almost identical to COND in Lisp except for
the fact that the COR of a clause is a general PROG body. Thus
it may contain an "AUX" declaration [(See Definition of
proceduras, PROG] and statement labels [tags). Thus entering a
COND clause produces @ ned activation block so remesber this when

using EXIT etc. This is & legal use of COND:
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(COND (0= N 1} "ALX®" (1 21 P)
(CSETO P {ACTBLOCK) )
tLOOP (COMD ((= (CSETO A (1- M)) @)
(EXIT 3 F1))
(GO *LOOP))
T 21

C. (AND 'wbodyw) CINT

{OR " sbodu) CINT

These are exactly equivalent to their Lisp counterparta. AND
returns the value of the last element of its body or NIL if one
of the elements evaluates to NIL. (AND) = T. OR returns the
value of the first non-NIL element of its body, or NIL if all of

ite elements evaluate to NIL. (OR) = NIL.
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¥11.1.4 Frame Creators and Manipulators

Conniver keeps track of what It is doing by maintaining a
structure called a fr for each invocation of all kinds of
functions except Lisp FEXPR"s or FEUBR"s, A fr is basically a
astructure with five slots: [VARS, BYARS, FORM, ALINK, and CLINE.
IVARS are the internals of the interpreter; BYARS are the
variable locatives for the variables bound in the frame; FORM is
the inprauaiun whose evaluation gave rise to this frame; and
ALINK and CLINK are the access and control fr's uhere free
variables will be looked up and where control will return,
respectively.

These objects are not explicitly touchable by the uaer, but
are parts of frames, tagse, and closures, the data types returned

or manipulated by the functions of this section.

A. (FRAME] SUBR
{ACCESS [frame (FRAMEI]) LSUBR
[CONTROL [frame (FRAFE]]) LSUBR
(EXPRESSION frame) SUBR

FRAME returns the frame with respect to which it was
evaluated. This means the nearest enclosing frame in which
variables are bound. This means that in most reasonable places
in @ PROG er CEXPR, (FRAME) will be the frame of that PROG or
CEXPR's activation. This means that constructions |ike [ACCESS
{ACCESS (FRAFEI}]) will have the correct meaning, no matter hou

deeply nested they ara.
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ACCESS returns the access frame of its argument.

CONTROL returns the control frame of its argument.

EXPRESSION returns the expression uhose evaluation created
the frame supplied. It is useful for hunting around in thes frame
structure.

The argument to ACCESS, CONTROL, or EXPRESSION must be a
legitimate frame. [f it is not we get the error message:
BAD FRAME SUPPLIED // FRAME «- 7

By "legitimate frame" is meant anything that contains a
pointer to an internal fr. This includes all the data types of
this section, frames, tags, and closures. In what follouws,
“frame" is used ambiguously to refer to any of these or "#FRAMEs"
in particular. The ambiguity is harmless because the sustem

never cares which you =mean.

B. (TAG [2toml) LSUBR
(ACTELOCK ) SUBR

TAG searches the control link chain from (FRAME) for the
first activation block containing a statement label :atom. [t
returns a tag structure whose frame is that activation block and
Whosae body-pointer is to that atatement labael.

TAG of no arguments is eguivalent to ACTBLOCK, which searches
for the first activation block (frame with a bedy) in its
environment and returns a tag to the beginning of the body. If
mither a TAG or ACTELOCK is unsuccessful in its search it returns

NIL.
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C. (VFRAME atom [frame (FRAME}]] LSUBR
YFRAME searches up the access |ink chain from frame until it
finds a frame in uwhich atom is bound as a Conniver variable. It

returns that frame.

0. (CLOSURE procedure [frame (FRAMEI]} LSUBR
CLOSURE produces the |lambda-closure of the procedure

(function, methodl indicated. This is an object of the form
(#CLOSURE procedure frl. Later invocation of the closure (see
CALLY causes the environment of the procedure (its access
pointer, uhere it searches for bindings of free variables, tags,
etc.) to be frame E.g. [f X = & then:

(CALL ((CLAMBDA (X} (CLOSURE " (CLAMBDA (Y) (+ X ¥)1)) 3) B)
has the value B but

(CALL ((CLAMBDA (X) " (CLAMBODA (Y) (+ X ¥))) 3} 5)
has the value 3.

This ia the classical "FUMARG" device.

E. (SETACCESS framel framel) SUBR
(SETCONTROL framel frameZ) SUBR

These functions are used to alter the ALINK anmd CLINK,
respectiveluy, of framel to be framel. These will alter the
locatives of free variables referred to in framel, and the frame

to which it returns. Each function returns its second argument.
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F. (SAMEFRAME framel frameZ) SUER

Functions like FRAME cons a new |ist structure each time they
are called, 8o E0 will not work as an identity test on frames.
(EQUAL will not work because frames may be circular.) SAMEFRAME
should be used. [t returns non-NIL if and only if framel and

frameZ actually refer to the same fr.
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¥Yi[I.1.% Alteration of Flow of Contraol

A. (CONTINUE frame) CINT
(GO atom=or=tag) CINT

These two functicns cause a given fr to bacome the current
process description; that is;, they cause control to resume in a
previously constructed frame. 00 is a special case af CONTINUE
which takes only a tag argument; (GO tagl is esguivalent to
(CONTINUE tag), but GO has other uses. GO aluays evaluates its
argument, avoiding the ambiguity of Lisp. [f ites argument is an
atom, (G0 argl is eguivalent to (GO (TAG argll; that is, it
searches up the control link chain from (FRAME} for a statement
fabe|l "targ.™ Execution then procesds from the atatement |abel
found. [If the argument is of the wrong type or an atomic tag
cannot be found we get:

FOLLOWING NOT SEEN AS TAG--argument-=-GO // ARG <= 7
CONTINUE can cause the error

BaD FRAME SUPPLIED 7/ FRAME <= 7

B. (EXIT value [frame (ACTBLOCK)]) CINT
(RETURM walue) CINT
(DISMISS [frame first-non-COND-framel) CINT

EXIT returns from the frame indicated with the value
indicated. If no frame is given it returna from the nearest
activation block. Caution: COMND causes an activation block.
RETURN returns from the nearest non-COND activation block.

DISMISS is EXIT from the frame speclfied with the value NIL. I
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no frame is given it does a (RETURN NIL). If there is no
activation block to RETURN from or EXIT from ue get:

WO FRAME WITH BODY--EXIT // FRAME <= 7
or

WO NOM=COND FRAME WITH BODY--RETURM // FRAME <- %
and the frame you RETURN will be EXITed with no further checking
for bodies.

[f OISHISS or EXIT is given @ non-frame they complain:

BAD FRAME SUPFLIED // FRAME «<- 7

C. (ADIEU posl...posi) CEXPR
(AU-REVOIR posl...posN} CEXPR

These functions return to TRY-NEXT from a generator, NOTEing
possibilities 1 ... N in that order (None may be supplied. See
NOTE). ADIEU leaves for good but AU-REVOIR finishes by noting a
tag inside AU=REYOIR so that TRY-MEXT can resume the generator
Wwhare it left off. The walue of AU-REYOIR, on resumption, ia the

message passed In TRY-NEXT (ase TRY=-NEXT).
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Yii.1.6 Relative Evaluation

A. (CEVAL expression [frame [FRAMEI]) CIWT,.LSUBR

This is the standard relative svaluation function. The
expression is evaluated with respect to the frame specified
{default, the current environment) as its access frame. If the
frame supplied is not legitimate, we get:

BaD FRAME SUPPLIED // FRAME <- 7

The LSUBR definition of CEVAL can be used to do Conniver
evaluations frem Lisp. Unfortunately, if you use it to do
something really clever, you probably are doing the wrong thing.

See Chapt. Y] for an account of the dangers involved.

B. [CALL functional-argument argl ... argh) CINT

CALL applies the functional argument to the arguments
supplied. It avoide the Lisp ambiguity In the case that a
functiconal argument is the value of a variable and we have no way
of guaranteeing that it has no function property. The functional
argumant may be a function, generator, or closure of a function

or generator.

C. (INVYOKE method pattern) CINT
INVOKE attempts to match the pattern of the given method
against pattern. [f the match fails, the value 18 NIL.

Utheruise, the method-pattern alist generated is used to start
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the method's variable bindings, and its body is executed as a
PROG, ites last expression ylelding its value {uniess the flow of

contraol is altered).
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¥I11.1.7 VYariable manipulators:

A. (VLOC atom [frame (FRAME]]) LSUBR
(RYALUE atom [frame (FRAME)}]) LSUER
(f, "atom) FSUBR
(LYALUE *atom) ESUBR
(ASSIGNED? atom) SUBR

¥LOC returns a locative to the value of the atom supplied if
it ie found in =ome frame in the access |link chain starting uwith
the frame specified; if not, it returns NIL.

RYALUE returns the real value of the atom given in the frame
specified (it doea not check for #UNASSIGNED). [f either YLOC or
RYALUE are given an illegal frame, ue get:

BAD FRAME SUPPLIED // FRAME «- 7

{(/, atom) ({abbreviated ",atem" vla macro-characters) gets the
current Conniver value of the atom. This is how Lisp code called
by Conniver code gets the value of Conniver variables.

LYALUE gets the Lisp walue of ite argument. (LVALUE atom) is
equivalent to (but not identical to) matom.

ASSIGNED returns as its value, T if ite argument has a value

lother than #UNASSIGNED) and NIL if it is unassigned.

B. (CSET atom value [frame (FRAME}]) LSUBR
[CSETO "atoml wvaluel ... "atomN valuesH) CINT,FSUBR
(UNASSICH atom) SUBR

CSET is the most pouwerful assignment operator; it sets the

atom to the value relative to the frame speclfied.
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CSETO is a minor convenience; it does mot evaluate its odd-
numbered arguments (the atoms).

UNASSIGN sets ite argument te #UNASSIGNED.
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¥YI[.1.B Possibilitiea |lists

A possibilities list (created by FETCH or a generator

function) has the following format.

possibilities = ((«POSSIBILITIES thing)
last-possibility
posl ... posi)
thing = expression or pattern that created thie list
posl = (#METHOD method methalist callalist pattern)®
{«GENERATOR form)®
(wAJ=-REVYOIR fr}™
(%ITEM item-datum alist}™
(»NOTE alist) =
{user-defined-pos-type ...J1"
anuthing =lss
last=possibility = %IGNORE ~ (#BLOCK #processesw) *

previous=poal

Thus anything may be a possibility but the specifical iy mentioned

types have special interpretation in:
A. (TRY-MNEXT possibilities [nomore NIL] [message NIL])

CINT
TRY-NEXT 18 used to try the first possibility on the

possibilities list. In doing so, it clobbers the |ist, removing

the first one. I[f there are none, It evaluates nomore and
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returns the value. The action takem by TRY-NEXT on each tupe of
possibility s aa fol loua:
1. (»METHOD method methalist callalist cal Ipattern)

The method is invoked, with initial bindings given by
methalist. (The tuo alists are usually from the MATCH that FETCH
used to filter out useless methods.) It may generate new
possibilities using ADIEU or AU-REYOIR. The neu possibilities
are then apliced into the current one, replacing the mathod
possibility which generated them. TRY-NEXT then lcops back to
try the first possibility in the newly augmented possibilities
list. The callpattern is used by INSTANCE inside the method for
generating output alists.

Method possibilities are assumed to behave as a kind of
generator, as just described. If they return a value (e.g.. by
running off the end of their bodies), the value is ignored.

2. (%GENERATOR form)

Exactly the same a= a method except that the form is
evaluated rather than the nuihud invoked. Hithin 8 ogenerator,
NOTE (see below) works, but INSTANCE does not.

3. (#AU-REVOIR fr)

This is the way AU-REVOIR can be resumed. The TRY-NEXT goes
off to the appropriate place in the AU-REVOIR which passed this
back. The AU-REVOIR returns to its caller [the generator or

method) wWith the optional TRY-NEXT message as its value.

&, (%I TEH item-datum alist)
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The alist is a list of variable-value pairs probably
constructed by the matcher. The wariables are set to the
indicated values and the item-datum is returned as the value of
TRY=NEXT.

5. («NDTE alist)

This type of possibility has the same side effect as a wITEM
possibility Wwith the same alist, but returns the entire
posaibility instead of an item. These are produced by the
function INSTANCE mentioned below, and are a method'a way of
gimulating items.

E. (user-definad-pos-type...)

14 @ possibility is non-atomic, and begins with an atom with
a «FOS5IBILITY property, that property is assumed to be a
function of one argument. TRY=NEXT callae that function with the
possibility as argusent, and returns whatever value the function
produces. For exasple, to create possibilities of the form
(#ASSUMPTION item conl, which return item and have the side
effect of setting CONTEXT to con, define

(DEFUN ASPOS (POS)

(CSETQ CONTEXT (CADOR POS))
(CAOR POSI1)
(DEFPROP »ASSUMPTION ASPOS +POSSIBILITY)

7. Anuything else is returned as the value of the TRY-NEXT,
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At any given time, the last-possibility slot of the
poassibilities list contains the last possibility that was
returned. Initially, this is «ICHNORE; when contral is In the
process of entering a method, it is (%BLOCK #ready-processes#),
which structure is used to avoid certain timing errors. This
elaborate machinery is present so that two not-necessarily-
pynchronized processes may suck possibilities out of the same
list and be sure of getting exactly the same posaibilities in
exactly the same corder. [ [(DOVH) am not to blame for it.

Thus we see that TRY-NEXT does not stop churning back for
more possibilities created by called generators until elther the
possibilities liet ies empty (i.e., ((«POSSIBILITIES...)} «ICHNORE)
or an item possibility or an "anything elee” is first on the
fist. If TRY-MNEXT ie given a bad possibilities list we get.

BAD POSSIBILITIES LIST

B. (GENERATE * form} CEXPR

This function takes one unevaluated argument, which it
@ssumes is a generator form. [t returns a possibilities list
Hhich starte With the first non-method or generator possibility
returned by the form. Thus, [(TRY-MNEKT (GEMERATE form}) ie
egquivalent to (TRY-NEXT 1" ({«POSSIBILITIES form} «IGHORE
(%«GEMERATOR forml)), but (GEMERATE form) is ppt eguivalent to
1" {{#POSSIBILITIES form) «]CGHORE («CENERATOR form)}), because the

generator is actually called by GENERATE.
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A& method makes item possibilities as instances of its
invocation pattern uwith:
C. (INSTANCE) FSUBR
uhich returna the current instance, in the form (&NOTE alistl,
where alist is a pairing of the variables in the callalist of the
currant method with values obtained in a new match of the method
alist. It will get upset if there are unassigned variables in

the pattern and will ask you to assign them.

A generator or method may note a8 ned possibility via

D. (NOTE [possibility (INSTANCE)] posZ...posN]  LSUBR

This function adds each of its arguments to the current
possibilities liat; hence, it can be called only in a generator.
It cannot be called with zero arguments; (NOTE) means (NOTE

{INSTANCE) ).

E. (ADIEU posl...posN) CEXPHR
[AU-REYOIR pos...posM} CEXPR
If a generator [including &8 method] wants to get the

possibilities list of the TRY-NEXT it feeds, it cam:

See Sect. YI[.1.5.

F. (GET-POSSIBILITIES) FSUBR
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[t can replace the possibilities list of that TRY-NENT by:
G. (SET-POSSIBILITIES possibilities-|ist) SUBR
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¥11.1.9 The Interrupt System

In this section ue outline the Conniver interrupt system in
its crudest form. The system uses it for errors and calling if-
added methods. These uses are described in the remaining

gections of the appendix.

A. (CINTERRUPT expressionl S5UER

(NDL expression) SUBR

These tuo functions both cause expression to be evaluated as
apon as control is next in the Conniver evaluator (if interrupts
are alloued; see B). They may be called from Lisp, In which case
the interruptions will be deferred until the current Lisp
evaluation is over. The difference betueen them is that
CINTERRUFT stacks its interrupt so that all previously ordered
interrupts will be run first, whereas NOW causes expression to be

evaluated before the old ones.

B. (ALLOM "T-=or=NIL) FSLUBR

(ALLOW NIL} causes interrupts to be disabled; i.e.,
CINTERRUPT amd NOW will stack expressions that are not evaluated.
ALLOW of anuthing else enables interrupts; at the next possible

place, all pending interrupts will be run.
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¥I1.2 The Data Base

The Conniver data base is a hierarchical structure of
contexts, or a "tree” of gontext-laysrs, containing four types uf
datar opbjects., item data, methods, and pethod glosures.

Objects are of the form:

(#0BJECT arbitrary-structure sc-markers#l.
Item data are of the form:
(1tem wc-markersdel
uhere item is any non-circular list structure.
Methods look |ike
(type name pattern body wc-markersd,
where type is [F-NEEDED, IF-ADDED, or IF-REMOYED, or a user-
defined method type; name s an atom which is the method’s name
unless it is NIL; pattern is 8 non-circular list structure with
all variables (if any) marked as !svar, levar, !,var, etc.; and
body ia a function body.
Method closures look like
(«CLOSURE method fr wc=markercawl,
where method is a method, and fr is an internal frame polnter.

Any datum may be given an atomic name by PUTPFROFIng it on the
atom under the indicator DATUH, Thisz is done automatically by
the method-defining functions, but must be done manually for
objects, item data, and closures. The function NAME-DATUM may be

used for this.
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Al 1 such data have (possibly NIL) listes of g=mparkers
associated with them. A c-marker is of the form
(lnum (refco . status) aproperty-pairss)
where Inum is a layer number; refco is a reference count of the
number of references besides this one to the layer number Inum by
this datum; status is «, NIL, or a list of Inume of layers where
the c=marker is gancelled; and property-pairs are of the form
{ind prop . status), where ind and prop are arbitrary, and status
is as for the whole datum. The c-markers on each datum are in
order of decreasing Inums, as are the Inuma in 8 status.
A c=marker or status with a given Inum indicates a mention of
its datum by the gontext-|lauer associated with that Inum. A
nuntﬂutTlﬂgur ig af tha form
(+LAYER Inum sedatas)
uwhere Inum is its unigue layer number, and data are the data it
mentions.
A context is a list like
[CONTEXT #layersl,
Hhere layers must be in order of decreasing Inums. [t is worth
mentioning here that none of the functions that depend on an
explicit or implicit context argument check for the presence of
the #CONTEXT flag at the beginning of the context. Hence, any
I!lt Hith a list of layers as its cdr is 8 legal context; in
particular, [(COR context] = (POP-CONTEXT comntextl for all

practical purposes.
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Every datum has various properties, including presence or
absence, which vary from context to context. Tupically, data-
base changing functions (like ADD, REMOVE, DPUT, and DREM) apply
only to the current context and its subcontexts, while data-base
searchers [|ike FETCH, PRESENT, and DGET) search the present
context from the most local layer upwarda, ignorimg all canceled
c=markers or pairs. These notions will now be made precisa.

{The next two paragraphs may be ignored.)

Each context rigorouasly defines the status of every datum as
present or absent, @3 follows: (f the datum has a c-marker uhose
Inum corresponds to some lauer of this context and whose status
ism + or @ list Wwith no Inums corresponding to layers of the
context, it is present, else absent. In other words, it is
present If it has at |east one yncancellied c-marker. In
particular, if it is unmentioned by all lauers Tn the context, 1t
is absent.

Each context also determines the properties that a datum has,
as follows: I1ts property for indicator ind is the prop of the
firet property pair in a8 c-marker With Inum corresponding to some
layer of the context, such that that pair is uncancelled in the
context; i.e., the firast pair Whose status shares no Inums with
layers of the context. 1f there is no such palir, the datum has
no such property.

Euuru.n-marhur must -specify alther non-MIL status, or non-NIL

property-pairs, or non-zeroc refco, or any combination, and carmnot



¥il.2 117

be cancelled by its own Inum, or it does not constitute a
mention. System functions delete all c-markers of the forms R
(B1): a status of the form (...M...) which appears anywhere in &
c-marker (nN...} i3 converted to NIL. For example, if (5 (B . B}
ever arises, it is converted to (5 (B}Y) and deleted.

Hhen a layer is not pointed to by anything, it is subject to
garbage collection. All c-markers embodying @ mention by it will
be deleted from their data.

[tem data, methodsa, and method closures are [ndexable data;
they can be referred to by pattern in FETCH and other functions.
This indexing is dons automatically by the system whenavar an
unmentioned datum becomes mentioned (by ADD, OFUT, and other
functionsl; unindexing occcurs when its last mention is removed
{(by REMOYE, DREH, the garbage collector, etc.). Anonymous
unindexed item data and methods are subject to garbage collection

if unprotected.
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Data-Base Errors

The data-base functions are tightly interuoven. They all
call a common body of invisible functions which analyze their
arguments; it is these that print most error messages. Hany
functions generate the following two messages:

TOO FEW ARGIMENTS--function #F RESULT <- 7
TOD HANY ARGUMENTS--functien #F GO ONT

The first will cause whatever you RETURN to be the value of the
function, The second will ignore the extra arguments §if you
proceed.
Many functions use system routines to break a datum into
usable chunks. They can generate the message
MEANIMGLESS DATUHM -~ function // DATUM < 7

If you RETURN a better datum, the system will wse it in place of

the bad ona.
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¥i1.2.1 Data-Base Initialization

(DATA=INIT [n 1881 [m 1B8]1) SUBR

Thies function wipes out all currently exieting contexts, and
unindexes all indexable data. It creates a brand-new data base
governed by the parasters n and m. n is the total number of
context |ausrs allowed; if the data=base functions ever attempt
to maintain more than this number at once, the message

TOO MANY CONTEXT LAYERS -- LAYER
will occur. (See LAYER for @ more complete account.)

The second parameter, m, ie the increment between the numbers
of context layers consecutively generated by LAYER. Given the
ordering constraint on layers, and the fact that SPLICE (gv.]}
must be able fto generate layers with |pums betuween those of any
tuwo layera, even 1 f they were generated consecutively, they
cannot be numbered B, 1, 2,..., but B, m, Zm, 3Im,....

Conniver does a (DATA-INIT 1B8. 18.) when it is lpaded,
creating 8 data base uith at most 188 layers at a3 time, numbered

E. IH-‘. EB*. 3“1-,-1-1.1.
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VI1.2.2 Qatuw Creation and Hanipulation

A, [OBJECT I[structure NIL]) LsuBR

creates and returns a brand-nen object of the form (%0BJECT
structurel, Where structure (s arbitrary. This object is
initially absent in all contexts, and, of course, not E0 to any

other.

B. (NAME-DATUM datum atom) SUBR

This function causes datum to be called by the name atnh.ih
all future dealings with the system. It returns the atom. If
datum is as yet unmentioned by any contexts, this is eguivalent
te (PUTPROP atem datuml}, but NAME-UDATUR avoids certain timing
errors associdted with the other method.

Orce a datum s named, the name should be used thenceforth in
referring to it. If an already-named datum is renamed, the
system will use ihe new name from then on.

One reason for naming data is so they can be used In |tems.

A pointer to an actual non-atomic datum as a component of an |tem

{as, (POSSIBLE ((INWOCENT NIXON) (B (B . +))))) is & no-no.

C. (DATUR item [namel) LSUBR

[tem data are normally created implicitly whensver the user
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names one WHith a skeleton that does not refer to any currently
indexed item datum. If, houwever, the user creates an item datum
himsel|f, by wusing LIST on an item, it is obviously guaranteed not
to be El to an indexed item datus for the same item (if anyl.
Thus, if he executes (REALIZE (LIST *(LINE GBB1)1}) and (ILINE
GEEl) (3 (8) (ABSENT T . +11) is already indexed, the ned one
Will be indexed as well. (The indexer could check for this, but
it would slow things doun.) Then FETCH will find both, and
PRESENT will find an unpredictable one of them. To get around
this problem, use DATUM instead of LIST. DATUH returns LIST of
the result only if it can®t find it in the index; if it can, it
returns the unigue item datum with that instantiated skeleton as
ite §tem.

If DATUH ie given a8 second argument, 1t becomes the name of

the datum, and is the values returned.

D. (ITEM |tem-datum) SUBR
This function is eguivalent to CAR for the usual tupe of item

datum, but also works on atomic-named data. It is the Inverse of
DATUM. Thus, if you execute [(NAME-DATUM (ADD " (GZORN ZEF)) °FDOD)
then (ITEM °"FOO) = (GZORN ZEFP}, and

(DATUM (ITEH "FOO))} - FOD

{ITEM (DATUM " (GZOAN ZEP))) = (GZORN ZEP)
E. (IF-ADDED ["atom] 'pattern 'wbody:s) FSLUBR

(IF-REMOYED ["atom] 'pattern °wbodys) FSUBR
(IF-NEEDED ['atom]l 'pattern 'wbodys) FSUBR
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EHE ’.':t s 1.'1-[1-11-2! El

F. (METHOD-TYPE atom) SUBR
{DELETE-METHOD-TYFE atom) SUBR

These functions are used to define ned method types, in
addition to IF-ADDOED, IF-REMOYED, and IF-NEEDED. {METHOD-TYPE
atom) causes atom to become defined as a method-defining function
just like IF-ADDED, with its oun index. [f DATA=INIT is
per formed subsequentliy, all such methods will be deleted. For
example, following (METHOD-TYPE °PRE-ADD),

(ADD
(PRE-ADD PL (ON I=X 1sY¥)
(AND (PRESENT (ON 1,X I=Z)]
(REMOVE !"(ON X ,Z11}])
Hould define and add a ned method of this type. Presumably, such
a ned method is intended to be used with a user's own ADD
function; he is responsible for setting up routines (using
FETCHH, INVOKE, and TRY-NEXT) to use the method properiy.

If the user wishes to define methods of the ned tupe wWith
gome function of a different format from that of the standard
kinde, ha should define the defining function firat; METHOD=TYFE

Hill avoid redefining it.
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¥11.2.3 Enlarging, Depleting, and Searching the Data Base

A, [REALIZE datum [context COMTEXTI) CEXPR,LSUBR
{UNREALIZE datum [context CONTEXTI) CEXPR,LSUBR
{ACTUALIZE datum [context CONTEXTI) L5UBR
(UMACTUALTZE datum [context CONTEXTI) LSUBA
(ADD 1 tem [context CONTEXTI) CEXPH,LSUBR
{REMOVE item [context CONTEXTI) CEXPR,LSUBR
{INSERT item [context CONTEXTID LSUBR
(KILL item [context CONTEMTI) LSUBR

These functions make datum present {REALIZE, ACTUALIZE, ADD,
INSERT) or abasent (UNREALIZE, UNACTUALTZE, RERDVE, KILL)Y, by

giving 1t "+" status in the c-marker for context's first layer,
or by canceling all outstanding c-markers, respectively. Here,
"datum”™ means datum (REALIZE, UNREALIZE, ACTUALIZE, UNACTUALIZE)
or "item datum referred to by item®™ [ADD, REMOYE, INSERT, KILL).
All of them return datum. (ADD and REMOYE can be used to alter
the status of data not referred to by skeleton; see ¥11.2.3.B.)

The effacts of these functions are invisible in all super-
contexts of contexty these effects will be collected as garbage
if the top layer is ever caught unprotected by the garbage
col lector.

1¥# ADD or REALIZE is given a item or indexable datum
argument, respectively, all if-added methods matching datum's
name that are present In context will be invoked. Similarly,
UNREALIZE and REMOYE invoke if-removed methods matching datum's
name. In all cases, the data base change occurs before any

methods are called. HMethods are called only i f datum’s status
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changes; i.e., realizing a present, or unrealizing an absent,
datum is a no-op. Methods are called by stacking invocations of
them as Conniver interrupts. Hence, [(ALLOW NIL) will cause all
i f-addeds to remain uninvoked until interrupts are re-enabled,
Harning! The LSUBR versions of these four functions execute
hidden CEVALs to accomplish the method inveocations. [f the
methods do anything really clever and subtle, invoking them will

probably scred your program.

B. [(ADD atom [context CONTEXTI) CE¥FR,LSUBR
(REMDYE atom [context CONTEXTI) CEXFR,LSUBR
(INSERT atom [context CONTEXTI) LSUBR
(KILL atom [context CONTEXTI) LSUBA

I+ ADD and REMOYE are given atomic arguments, they are
synonymous With REALIZE and UNREALIZE; INSERT and KILL with such
arguments are synonuymous with ACTUALIZE and UMACTUALIZE. The
most common wee of this extra meaning ies in using ADD to add

methods, which usually have atomic names.

C. (FETCH pattern [context CONTEXT]) LsSUER
(FETCHI pattern. [context CONTEXT]) LSLUBR
(FETCHM pattern [type "IF-NEEDED] [context CONTEXTI)

LSUER

FETCH returne a possibilitiesz list conziating of item
possibilities for all items present in context that match
pattern; followed by method possibilities for all if-needed

methods in context whose patterns match pattern. For the format
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of these lists, see Sect. VII.1.8.

FETCHI returns a possibilities |list containing only the item
possibilities. FETCHM returns a list of only the method
poasibilities of the type tupe, that are present in context amnd

match pattern. (Type may be a user-defined tuype (Sect YI1.2.2).}
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Y¥11.2.% Properties of Data

A. (REAL datum [context CONTEXT]) LSUBR
(UNREAL datum [context CONTEXTI) LSLUBR
(PRESENT pattern [context CONTEXTI) L5UER
{ABSENT item [context CONTEXTI) LSUBR

These functions return datum if and only if 1t is present
(REAL, PRESENT] or absent [UNREAL, ABSENT) in context, and NIL
otherwise. REAL and UNREAL are handed their data arguments
directly; PRESENT tries to return a randomly chosen prasent item
that matches pattern; ABSENT takes DATUR (gv.) of its argument
and then calls UNREAL.

PAESENT behaves a lot like (TAY-NEXT (FETCHI patternl); in
particular, It assigns any variables In pattern to the pieces of

the item that they matched.

B. (DPUT datum property indicator [context CONTEXTI)

LSUBA
[DGET datum indicator [context CONTEXTI) LELBR
({0OREM datum indicator [context CONTEXTI) LSUBR

(DPUT+ datum property indicator [context CONTEXTI)

(DGET+ datum indicator [context CONTEXT]) tgﬁgg

(DREM+ datum indicator [context CONTEXT]) LSuBR

DPUT associates the palr (indicator property . +) With datum
in the firgt ("most local") layer of context; |ike REALIZE,
UNREALITZE, and their ilk, these effects are invisible above

context and garbage-col lectable if ita top layer is reclaimed.

DGET finds the first uncancelled pair associated with Indicator
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in any layer of context, starting Wwith its first layer; if there
is no such pair, its value is NIL. DREH has the same value, but,
as @ side effect, cancels all uncancel led pairs starting uith
indicator; it does it by adding the Inum for the top |auer of
context to the status for all these pairs. Thus, after a OREM,
OGET for the same datum, indicator, and context will return NIL.
DFUT+, DGET+, and DAEM+ are exactiy the same, but they ignore
all context layers bafore the first in which datum has
uncancel led atatus. Thus, OPUT+ gives & datum propertiess in the
context in which it is realized. This is useful 1f a property
happens to be calculated for the first time in 8 hypothetical
context, but is iteelf non=hypotheticaly OPUT+ makes sure it is
visible from all subcontexts of the one in which the datum first
appeared, and saves having to calculate it repeatedly, once per
hypothesia. If OPUT+ is given a datum which is absent in

context, the error message

ABSENT DATUR -- DPUT+ // GO ONY

OECuUrs.

C. (DPUTL datum property indicator layer) SUBR
(DGETL datum indicator layer) SUBR
(DREML datum indicator |ayer) SUBR

These functions manipulate properties in an explicitiy given
context layer. DPUTL associates property with indicater in the
c-marker for layer on datum. As usual, these effects are

invisible in super-contexts not containing layer, and will be
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garbage-collected if layer is. OGETL and DREML search the c-
markar of layer on datum for 8 pair with first element =
indicator, and return it, or NIL if there isn"t one; OREML

removes uwhat it finds.
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¥i1.2.5 Hanipulating Contexts

A. (LAYER) LSUBR
(FLUSH |ayer) suUBR

LAYER returns a ned layer with a8 number higher than that of
any other. (It uses the second argument to DATA=INIT igv.),.
adding it to the number of the previous one it generated.) If
there are as many layers already as provided for by DATA=INIT,
LAYER calla the context layer yarbage collector to free space for
more.  If all the places are taken, the messags

TOOD MANY CONTEXT LAYERS -- LAYER
is generated.

FLUSH removes all copies of the Inum of ite argument from all
data mentioned by it. [f some datum loses all of Its c-markers
because of it, 1t Will be unindexed. The error messages that can
come out are due to Conniver errors, Which should be ignored,

since wa do not wish to hear of unpleasant things. They are:

MO REFERENCE COUNT FOR LAYER |num
oM DATUM datum --FLUSHL

TOD FEW REFERENCES TD LAYER |nus
OW DATUMN datum ==FLUSHL

B. (PUSH-CONTEXT [context CONTEXT]) LSUBR
(POP-CONTEXT [context CONTEXTI) LSUBR
(FINALIZE [context CONTEXT]) LSUBR
(NEW-CONMTEXT layer-|ist) SUBR
(SPLICE context) SUBR

These functions create new contexts, and return them. PUSH-

and POP=COMTEXT return contexts with one new layer added to, or
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the front layer removed from, context, respectively. If POP=
CONTEXT tries to pop the last c=layer (i.e., GLOBAL} off, it errs
uith the message

EMPTY CONTEXT -- POP-CONTEXT // SUPER-CONTEXT <- 7
and returns what you give it.

FINALIZE has the same value as POP-CONTEXT, with the side
effect of making its argument an equivalent context to its
superior. That ia, all data will have the same properties in the
super-context that they had in the original one be equivalent.

NEW-CONTEXT creates a context by CONSing the flag «CONTEXT
onte layer-list. The layers in the list must be in order of
decreasing Inums, or the message

UNORDERED CONTEXT -- NEW-CONTEXT // LAYERS <- 7
appears, and NEW-CONTEXT tries again with the list you give it.

SPLICE adds a brand-ned layer to context, just after 1ts
first frame. This layer will have a currently unused number
betueen those of |ts successor and predecessor. If all such

numbers are in use, the error message is

MO MEW CNUM BETWEEN low AND high —— NEWCNURM
SPLICE is called for its side effect. Its wvalue is E0Q to its

argument, but changed, of course,
Since SPLICE and PUSH-CONTEXT call LAYER, they can cause its

arror.
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C. (IN-CONTEXT context form) CEXPR, SUBR
CEVALuates form with CONTEXT rebound to context. Thus, for
oxamnpla,

{IN-CONTEXT C1 " (ADD " (FALL SKY})})
is equivalent to

(ADD " {FALL SKY} C1).
In genaral, IN=CONTEXT allous you to pretend any function takes
an optional context argusent. The SUBR wersion of IN=CONTEXT

calle the Lisp CEVAL.

D. [(MENTIONERS datum [sign NIL] [context CONTEXT])
LSUBR

(CONTEXT+ datum [context CONTEXT]) SUBR
MENTIOMERS returns a list, in decreasing lnum order, of all
the layers in context that mention datum. If sign ies non-NIL, it
ignores all cancelled c-markers. [f sign does = NIL, MENTIOMERS
returns all mentioning |ayers.

CONTEXT+ returns the closest super-context of context in
uwhich datum was realized; i.s., uwhose firet layer has a c-=markar
on datum with uncancel led status. Hence, (OPUT+ datum prop ind
context) means the same as (DPUT datum prop ind (CONTEXKT+

contaxt) ).

E. [C-MARKER datum |ayer] SUBR
This function returns the c-marker for layer on datum, or MNIL

if layer doesn't mention datum. If layer is subsequently
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garbage-col lected, or the c-marker degenerates to the form "(n
(B8¥)," the c-marker Will no longer be attached to datum. Never

gay Conniver didn"t give you enough rope.
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¥il.2.6 The HMatcher

The matcher is documented in detail in Sect. I¥. Here we
meraly summarize the meaning of sach of the variable prefixes

that it knows about.

A. !»var -- The basic matcher variable, which matches any
expression which does not contain any variables (after
substitution for "!,var's"}, and binds var to it on the alist for
its side of the match. The only exception is that a !»var
appearing in a FETCH-pattern need not match a variable-lass
expression in a method pattern; 1t will be bound to #UMASSIGNED,
and, when the method returns, will be assigned to the piece of
method pattern it matches, Wwith method variable values
substituted. The form lzivar wrestrictionss) matches any
variable-iess expression such that all the restrictions are non-
NIL when evaluated.

B. !,ver -- This form does not bind a variable, but refers to
the wvalue associated with a previous binding; =2ither one produced
by !> or the Conniver binding in existence when the match is
started.

C. 1, i{var valual == This binds var to value, and matches
anything that wvalue would match.

0. lswar == In general, l<var makes sense only in a method
pattern. It matches only an expression with variables in it
after substitution of values for "!,"8", and binds var on the
proper matcher alist to that expression.

E. I!?var == Thieg is also for method patterns only. 1t matches
any expression that elther lavar or levar would matchy in the
former case, it binds var to the variable-less expression
matched; in the latter, to #UMASSIGMED. Hence, inside a method,

such a variable will be assigned only if it matched a definite
Bxpress i on.

F. livar -- This is another ambiguous expression, which only
Works in FETCH-patterns. If var is unassigned, it behaves |ike
levar: otherdise, |1ke !,var.

G. !"wvar -—- This expression appears to have no use axcept In
method patterns. [t matches any expression, without looking at
it, and binds var to it, even if it contains variables whose
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values could be substituted. It 18 useful for doing obscure
syntactical decompositiona on patterns.

All these features are explained in greater detail in Sect.

Iv.
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¥11.3 Debugging in Conniver

There are four classes of debugging functions in Conniver:
listen-loop (breakpoint) functions, infermation printers, a trace
package, and variable monitors. The firat three classes of
function are discusaed in the three sections below.

Yariable monitors are not a8 particular bunch of functions,
but a mechanism for using Lisp functions for performing debugging
actions uwhen wvariables are referenced or changed. It is
implemented as follous: Conniver variable locatives, at the top
and lower levels, are implemented as |lists of the fors (atom
value [monitorl). The optional monitor is a Lisp LSUBR or LEXPR,
of two or three arguments. [t will be called uhanever the
variabie ie accessed or set, in tha former case Wwith two
arguments, in the latter with thres. The tuo arguments for the
case of accessing are the name of the accessing function (usually
"F:") and the locative involved. For setting, the three
arguments are the satting function (e.g., CSET), the locative
before the set, and the new value.

There are no special functions for placing a monitor. [t can
be dona with RPLACD in the following fashion:

(RPLACD (¥LOC atom) (LIST monitor))

Another debugging feature is tha “A-imterrupte, described in
Sect. ¥. Each function of A is reprinted in this section in its

logical category:; & complete listing is found in Sect. V.
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Remember that others may be added by the user.
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¥Ii1.3.1 Listen=Loop Builders and Manipulators

A. (LISTEMN message) CEXFR
(EARD SUBR
{NEARD SLUBER
(TOF) SUBRR

These functions create and return to listen |oops whose
bodies contain loops referred to by tags of the form EAR-n.

These are called "ears." LISTEN creates a new such loop, which
is a READ-CEVAL-CPRINT loop just like the top level, printing its
message argument, followed by EAR-n. Hhenever it is ready for
the next input, it types "_" {iaftuarrnu or underscorel. Within
such a loop, the follouwing internal Lisp variables may prove
useful: ¥ is bound to the last expression read; %, to the value
of the last expression; and _ to the expression before last.
These must be accessed using “®." [f you wish to flush the
current input |ine, tupe “AF, which responds with 8 carriage
return and a reprint of "_."

Within such a loop, the tag EAR points to a place in the body
which prints EAR=-n and restarts the loop; the variable EAR=-n is
bound to that tag. Thus (GO "EAR) and (GO EAR-n) have the same
effect. Like all other tags, ears may be used for relative
evaluations and EXITing as well as GOing; therefore, to cause a
LISTEN to return a value, use (EXIT value EAR-n). 8P or
(DISHISS) causes NIL to be returned.

The remaining functions manipulate such liaten loops. [(EAR)
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interrupta Conniver in the next possible place, sprouting a new
ear; “AE calls this function. I[MEAR) interrupte Conniver with
(GO "EAR); i.e., it causes it to return to the nearest already-
existing eary AN calls it. (TOP) flushes the current Conniver
stack, resets the ear counter to 1, unbinds all previous ears,
and sprouts & ned EAR-1; typing “AT has the same effect. Both
~“AE and AN work only at places uhere Conniver is interruptible,
i.2., betueen steps in evaluation. They cannot be used in the

middle of infinite printouts, Lisp evaluations, or READ's.

B. (UF [n 1] [action "BT) [whichlink "CONTROL]) CEXFR

(DOUN [n 1] [action 'BT]) CEXFR
[(J [frame original-LISTEN-access-frame] [action "BT]]
CEXFR

Hhen a LISTEN loop I8 created, |ts access and control |inks
are the same. Evaluations are with respect to them. The
functions of this section enable you to move this entire loop
around the control tree to examine and alter variables and
control structures. UP soves the EAR-loop m frames up elther the
control or access links, depending on whichlink. Hhen uou
arrive, the value of action Will be printed, unless it ia BT (the
default), which causes the same data to be printed that BACKTRACE
(Sect. ¥I1I1.3.2.8) uwould print, DOWUN moves n frames back doun the
links followed by UP. J jumps to a new frame, from which it ise
meaningless to go DOWM. (J) returne you to the original place in

the tres.
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All this movement occurs by clobbering the access link on the
LISTEN frame. The current one is stored as CURFRAME. The
contral link is not disturbed, so (DISHISS) or 8P work even if
you have moved the frame away from where it started.

If you attempt to go UP off the top=lewvel EAR or DOWM further
than you®ve come up, the message

excess FRAMES TOO FAR

uwill appear, and no action will be taken.

C. {CERR "w#messages:] FSUBR
{CBREAK "wmessagess) ESUBR
{CERRMESS) SUBR

The messages are printed on the same |ine, one after another,
those of the form "mexp” being Lisp-evaluated, after which a Lisp
READ-EYAL-CPRINT loop is created. CERR first prints "+wERRDR#&"
and the form Conniver was working on. Expressions of the form
{RETURN walue} cause the CERR or CBREAK to return the given
value; 8P is eguivalent to {RETURN MWIL): A listen loop like this
is created at the next Lisp=interruptible place by ™AL.

Most catchable data base errors cause CERA-loops to be
created. Hithin such a leop, an ERRSET will catch all Lisp
errors, including *X. ~AF will flush the current input buffer.
(CERRMESS) causes the messages to be reprinted. [f the priority
interrupt system has been disabled uwhile the data base is in an
inconsistent state, CERR or CBREAK will turn it on for the

duration of the loop; if it is left with RETURM, it will go off
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again. 1f "G is executed, however, the data base may be
screued; it might be right to DATA-INIT follouwing such a hasty

ratreat.
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¥i1.3.2 Data Printers

A. (CPRINT exp) SUBR

{CPRIN] exp) SuBR

These functions behave exactly |ike their Lisp counterparts
PRINT and PRINL; except that they are "prograsmablie,” in the
sense that special data types are printed in different ways
according to their CAR"s. CPRIML prints atomic argument on the
current line; if ite argument’s CAR is an atom with a CPRINT
property, it does something special; otherwise, it CPRIN1's its
CAR, then its COR. (He are not being very precise.} If the
argument does have a marked CAR, the CPRINT property 1s assumed
to be a FEXPR or FSUBR; CPRIN] merely applies it to the thing to
be CPRINTed. In all cases, CPRINL returns the thing printed.
CPRINT prints a carriage return, CPRIN1"s its argument, and
prints a space, then returns its argument.

The built=in data types treated specially by CPRINL are as
follows: all guoted expressions, statements |abela, matcher
variables, and other system macro'd data are printed in the same
format as they are input; tags, frames, and closures are printed
in such a way that internal fr pointers are replaced by the
expressions that gave rise to those fr's. The user is free to
add ned data formats to this list by creating FEXPR'e attached to
atome used to flag them. For example, to make all comtexts print

out as |lists of numbera, execute
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(DEFUN CP-CONTEXT FEXPR (CON)
(PRIN1 (PATH CONY) )

{(DEFFROFP #CONTEXT CP-CONTEXT CPRINT)
B. (EXPRESSION framel SuBR

(BACKTRACE [number E3EB363]) LEXPR

EMPRESSION returns the form whose evaluation gave rise to
frame; It is documented in Sect. YII.1.4.

BACKTRACE tupes out, in a very readable form, the expressions
corresponding to each frame of the current process, starting with
the current frame, and proceeding by control links to the top
level:. The cptional numerical argusent may be supplied to limit
the typeout to that many frames. The backtrace is programmable
in the following sense: (if an expression's CAR has a BACKTRACE
property, the property is assumed to be an EXPR or SUBR of twuo
arguments, a frame and a list of arguments; BACKTRACE applies the
function to the frame and COR of the expression and does nothing
else. Thie iz used internally to print EAR-frames, PROG's,
I;E]r'q'D'u. and other things in special formate. Another way to use
expressions 1a With ™AX, which causes the current [(EXPRESSION

(FRAME}) to be printed. Execution then continues.

C. (PATH [context CONTEXTI) LSUBR
The value of PATH is a |ist whose firat element ia «CONTEXT,
followed by the inums of context's |ayers. Such an object serves

no useful purpose, but it ie much more more lucidly printable
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than context itself, in general.
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¥11.32.3 Tracing in Conniver

For those Wwho |ike to trace, there is a crude trace package
uhich exists as CNVR;CTRACE . It is not normally part of the
Conniver system. Suggestions and volunteers for improving 1t are
ualcome.

The Lisp tracer may also be used while Conniving.

A. I[CTRACE ®wapecaw) CEXPR

Each spec ie of the form (avom EN wthings-to-do-on-antrancesw
EX wthings-to-do-on-axitx)l. The order of EX and EN is
unimportant., If am EN is present, 3 message will be printed
When the function is entered, and the things to do will be
EVALuated; EX is similar. Both are ecptional, although leaving
both out is a slow o—-op. 1f 8 apec is an atem, 1t i3 eguivalent
to (atem EM (COISPLAY «ARGS) EX (COISPLAY =VAL)). (See hulnufl
Hithin a traced function, #A&RGS will be bound to a list of
evaluated or unevaluated arguments (the status of each of which
depends Imaginatively on the variable declarations of the
function); and »VAL will, on output, be bound to the wvalue the
function ia to return.

Functions, generators, and methods may be traced.
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B. (CUNTRACE *watomssq) CEXFR

Each atom must be a CTRACEd function, which is untraced.

C. (COISPLAY #thingax) FEXFR

This is a8 handy function in tracing. It prints out a table
of the Lisp value of each thing, unless it is an atom, when its
Conniver value Will be printed. Thus, to see the arguments to a
function and the CAR of the Conniver variable FOO, use
(COISPLAY wARGS (CAR ,FOO}), and get
#wARGS = whatever=they=are

(CAR ,FOO) = whatever=it=is.

0. /: ‘atom) FEXPR
{/: atom) is the internal representation of :atom. The

Lisp trace packapge can be used to trace the function "/i," thus

showing your flow aof control.
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