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A CONCRETE AFPPROACH TO ABSTRACT RECURSIVE DEFINITIONS

HITCHELL WAND
Massachusetts Institute of Technology
Artificial Intellipence Laboratory
Cambridge, Massachusetts, USA

Abstract: We introduce a acn-categorical alternative to Wagner's Abstract Hecur-
sive Definitiors [Wg-1,2], using a generalization of the notion of clone
called a y-clone. Our more comcrete approach yields two new theorems:

1. The free p-clone generated by a ranked set is isomorphic to the set of
loop-representable flow diagrams with function symbols in the set. 2. For
every element of a p-clone there is an expression analogous to a regular
expression. GSeveral well=known theorems of language and automata theory are
drawn as special cases of this theorem.

1. IRTRODUCTION -

A common facet of such recent research in computer science is the study of
certain complete lattices. One defines so-called "alpgebraic" elemente [S5c] im a
complete lattice by a fixed-point equation:

(uxel} [x = Flx}]

Our aim (as is [Wg=-1,2]"s) is to "algebraicize" thie process: to determine
the properties of this construction so that we may recognize certain propertiss of
& particular system as instances of some general properties of fixed-point systems,
a&nd thus concentrate ocur attention on the properties which are unique to the parti-
cular system under study. -

Previous approachee to this problem have leaned heavily upon categories, in
particular, upon the notiom of an "algebraiec theory." We have felt for some time
that the introduction of categories at best presents a pedagogical barrier to many
computer scientists, and at worst may lead an investigator to miss important
regults because of his imperfect understanding of the notation. We have therefore
worked towards developing more comcrets representations for these mathematical
structures. While no doubt the most elegant mathematics will come in categorical
language (and indeed many of our results are strongly categorical in flavor) it is
instructive to see how much can be developed without the explicit imtroduction of
category theory. )

In previous work we showed how "clones of eperations™ [C] could be used
instead of algebraic theories. Using clones we obtained a development of the alge=
braic theory of automata entirely analogous to the string case [Wa], a highly
transparent proof of the theorem that every algebraic functor has a left adjoint,
and & Jordan-Holder Theorem for the eminently nonabelian category of theories.

In this paper, we apply these techniques to the study of "abstract recursive
definitions." 1In Secticn 2, we define our basic object of study, the p-clone,
which is roughly Wagner's "set of meanings of an additively-clesed language." 1In
Section 3, we obtain a characterization of free p-clones in terms of loop-
representable flow diagrams, extending a theorem of Flgot [E] on finite diagrams.
This is our key result, for it enables us to prove theorems about any p-clone by
considering only the well-knewn p-clone of loop-representable flow diagrams
(regular trees)}. We note that the normal form theorem of [Bk] may be obtained
trivially in this wav. In Section &, we use this result to show that the general
fixed-point operation can be replaced by a much more restricted form in which
gimultanecus equations are eliminated. We call such & restricted form a Ygquagi-
regular expression" because a fixed point on a single equation is seen to be



analogous to the Kleene star. Our versiom of this theorem is stronger than that
of Bekic [Bk]. We draw as corollaries several classical theorems of language
theory which until now were considered quite separately, .

2. DEFINITIONS

The starting point for an algebrzicization is the observation that the cholce
of the permissible F's is crucial. Owe can characterize thls cholice by saying
that the F's must be chosen from some clone of continuous cperations on L (ie the
morphisms of some theory). Then the fixed-point operation is seen as just another
closure operation on a set of continuous functions. This leads to the following
cruclal definition: .

DEFINITION: Let L be a complete lattice with lesst element lJ and for each
nz0 let V, be a set of continuous functions LM + L. Then V= |V, is a p-clone of

operations on L 1ff

1) for allm, all 1, 1 £1 5 n, ef = Axy,..,%,) [x4] 18 in Vg,

i1} for all £&Vn, EIJ."Enevk‘ fu{El""Bﬂ} = 1{I||..,11} [f{ElfxllinlkaI-!!
En_{ﬁlnu.‘-ﬂt]}] il i“ ‘rk.

111) for all feVp, Bl sEnEVi4ns fu{gh*.,gn] = Alxygee,xg) [E((u(er,..,en)
ELD) Wi 2 n) [eg = g1(K1gsesXgaClaeestn)])] 15 dn Vi,

iv) 1if aeV, then Kj(a) = A(x;,..,x,) [a] i in V.

(1) and (11) gusrantee that V is & clone [C] (ie, the (1,n) morphisms of ld."
theory). (1ii) is a rather general fixed-point operation. Given x,,..,%y, one
computes {fu{gl,..,gn',l',ll‘:_:|,..,xk} as follows: GSubstitute the xy¢ inte the fixed-
point egquations

cy = Ei{llpttgﬁkiﬂlthtﬂnlp

golve them, and then take flcyi,..,cn). The Tarski fixed point theorem assures us
that this algorithm yields a continuous function [T]. This is obviously a nota-
tional variant of the fixed-point operation of [Wg-2, Sec. II]. The last opera-
tion of taking f of the ¢'s is of course superfluous; it is included so that all
our functioms will take their wvalues in L. A recurring theme in this paper will
be the replacement of this operation by more restricted forms, without loss in
power. (iv) is a technical requirement which we need to provide compatibility
with theories, We say L is the carrier of V.

Where V is clear, we will pften omit the infix operator V in (i1}, and write-
f(gi1-vsBp): If V is a y-clone, we will sometimes write n(V) for the set V, of
n-ary operations of V, when writing ¥V would be cumbersome, We will denote alge-
bras by names, eg ACF, ACh, AGr., If A 1s an algebra, let Car{A) and Ops(A) denote
the carrier snd operations of A, respectively. We call an algebra whose carrier
is a complete lattice and whose operations are continuous a lattice algebra. We
will use N to denote the set of non-negative integers. -

p=Clones are ranked algebras in the sense of [Hi],.so we can define y=-clone
homomorphisms, u=clone congruences, etc,, in the usual way and get all the usual
elementary theorems. For this paper we will only be concerned with homemeorphisms.

DEFINITION: Let V be & py-clone of operations on a complete lattice L, and
W be a py—clone of operations on a complete lattice M. Then a map h:V =+ W ig a
P=clone homomorphism 1ff

1) 4f £eV,, h(E)eW,



11) he]) = ef, (D) = |, h(Kya) = K (h(a))
110 hiEV (g, 8] = (RCEI¥(R(BL),. . hlg,))
v) h(EH(g1.e.80)) = (£ (hig1),. ., higg))

Evidently U=-clones are closed under intersection, so we can talk about
uCl{A), the least p-clone containing the operations of a lattice algebra A, and
conriruct it in the uswal inductive manner. Our-first theorem is a non=inductive
characterization of LCL(A).

THEOEEM 1: (Mormal Form Lemma), Let A be a lattice algebra, FEL{ECL{A)}).
Then there exist n,f1,..,fy in Ops{A) (with f4 r{i)=-ary) end a function
vil*N + N - {0} such that if § £ r{i), then v(i,]) £ ntk and such that

£ = (P (g1,.008n)

where

kn kdn - eFin
Be = f1V(euy, 1) e oty (a2 (1)) OF B4 T %u(1,1)

ie, f is the first coordinate of the solution of a set of fixed point equations,

each of which involves only an operation from A composed with an appropriate tuple
of projections which "select" the right "inputs".

The proof is quite easy, although we will draw it as a corollary to Theorem 3.
Thie ig similar to the Bagls Theorem of [Wg-1 Thm 4.7]. It is called the "Hormal
Form Lemma" because it ig intimately related to normal-form theorems in language
theory. We will do one simple example to show this connection and a slightly har-
der one to show that one can study "non-standard" language features in this frame-
work. Fer the rest of this section, let I be a finite set of terminal symbols

and L be the complete lattice of subsets of L * (ie languages over I ).

EXAMPLE 2.1: Three generating algebras for the context-free languages. Let
ACh be the algebra whose carrier is L and whose operations are as follows: for
each ac L, a O-ary operation {a}, and two 2-ary cperations: union and "+" =

A(5,T) I{3t|iEE, teT}] By the Wormal Form Lemma, we need only consider scts of
equations of the form

eqg = {al . -
£y = I:j e
ey = l:j*«\'."k

This we recognize as Chomsky Normal Form. Thus O(UCL{ACh)} 1s the set &f con-
text free languages over L . Similarly we can construct ACF wnd AGr- corresponding
to unrestricted CF gra=msmars and Greibach normal-form grammars. The "aormal form
theorems" of language theory are seen to be statements of the form "MCL(A) = some
set of languages." Thus WCL{ACh) = uCl{AGr) = pCL{ACF), but CL{ACh) = CL(ACF) ¢
Cl{AGr). Se the student's intuitive notion that Chomsky's normal form theorem is
"easier" than Greibach's is supported in this theoretical framework.

EXAMFLE 2.2: Copying Rules. This fremework is ideal "for formulating ideas
about general operations on strings. Here we formulate the ¥ operation of [M-W].

Let A have as constant operations the elngletons as before, a 2-ary union, and
n-ary operations '

Fp = {fg|well,.. nl*)



where

fil,..:ipfﬁlp--,sn} - {Hil-.-uipiiikllﬂksskll

This is the algebra of "I0" substitution: £11(8) = {ww|weS}, The f's are clearly
continucus, so we can take yCl(A). O(uCl{A}) is a class of languages properly con
tained between the context free languages and Fischer's I0 macro languages [Fi].
{1v ]ﬂ > 1} is generable, so the clase is not closed under inverse homomorphism.
(We have a number of results for these languages, most notable an intercalation
theorem which shews that {a™"c” |n>1} is not in the class. Thus copying of pro-
per phrases is seen to be a very weak operation). This iz an example of a nen—

trivial theory whese (0,1)-definitions in the given semantic demain do not form an
AFL.,

3.  FREE u~CLONES AND RATTONAL FLOW DIAGRAMS

We assume the reader is Familiar with the complete lattice of flow diagrams
a8 developed in [Sc]. We modify his development in the following trivial ways, in
the spirit of [E] : 1. We replace function and predicate symbols with a ranked
set & of symbols which combine functions and predicates. 2. We imagine that
rather than having a single exit, any finite branch of a diagram terminates in a
pesitive integer which symbolizes the "return ecode” of that exit, just == a
function/predicate exits on a specified exit line. We are particularly concerned
with altering the set of primitive symbols and permissible return codes, so we
will use the following notaticns: E(2) for the lattice of flow diagrams with sym-
bols in & F (%) for the set of finite diagrams with symbols in [, | appearing
only at exits, and with exits in {1,..,n}; and B, (i) for the set of diagrams
representable by leops with the same symbol and exit conventions as F (). We
refer te a loop-representable diagram as a rational diagram.

Hote that Ry() € Ryeq (). We define R(Q) to be the disjoint union of the .
Balfl}. R{Q) is thus a ranked set: every element has a unique arity. We similar-
ly define the ranked set F(7) of finire diagrams as the disjoint union of the
l‘nfﬂ}«

Consider the algebra A whose carrier is E(0) and which has for each feily an
n-ary operation Cf given by Cg(d,,..,dp)

"We will also have occasion to discuss Cqs where d is any ‘n-ary flow diagram. .
Cald,,..,dy) is the diagram formed by attaching to each exit of d numbered 1 a
copy of diagram d;. Since exits occur only at the end of finite branches this
Speration is always well-defined. '



THEOREM 2: pCL(A) = {C4|deR()} (with the natural ranking)

PROOF: HCL{A) S R(Ql): The proof follows the inductive construction of
Cg{Cg,4-a:Cgy) = Cd, where d is the diagram

WCL(A). For each CgeOps(A), feBn(0).

Eﬂ
1..k ktl, 1:+n
A

ST T

» Ely.:ygn are a1l diagrams already defined in

(where in the induction steps, f

HCL(A) ).
Given a rational diagram d, take any loop representation of

R{R) C uCl{A):
Humber the boxes in the representation 1,..,n, including the exit nodes, and

it.
Typical fragments of the flow chart look like:

nusber the first box executed 1.

The fixed point equations &re

Cm = Xj
eq = f{“j||+-.ﬂjp}
S0 Cg = {E?}utﬁir--rgn}l where
- +n
or gm = af;]""'“

QED

of R(D) as "the u=-clone of rational

Because of this bijection we can speak
Following this bijection,

diagrams.” It will be helpful to show some examples.
we will often write d for Cj.



EXAMPLE 3.1
£(glel, el bl

EXAMPLE 3.2 represents the disgram:
(Md)[d = £(g(d,x;),h(x;,d))]

The arguments to the fixed point
equations are (x;,%;,c;). So

d = (eh"(f(glel,ed) nief,ed)))

EXAMPLE 3.3
The algorithm gives

ey = fleg,e3)

ez = gix;,e2)

The argument vector 1s
(x1,00,C3), BG

d = (eh)(Eled ed),alef,ed))
By inspection, we alsoc have

d= (eh¥eeced, e ceh¥ g

In the last example, we see that, in general, there are many expressions for
the same (not just equivalent) flow diagram, We will study this phenomenon in
more detail in the next section.

We are now ready for our first major result:

THEOREM 3: R() is the free p-clone generated by @, that is: if V is any
p=clome and j is a rank-preserving map j:8 + ¥, then j extends wniquely to a
p-clone homomorphism J%:R{Q) + V. )

PROOF: We extend j to % as follows:
1) 1f £, JM(E) = 3(0); (D = |

1
114) 4f d,,..,d cF (D) and fed,,
JR(E(d e 0dn)) = (HUENVIIE,), .. 5%(a))

11) j!{e';} = e

iv) 4f d;,..,dg,..,ER (D, then
J*(4dyg) = Ugi*dg)

(1) = (441} extend j to a well defined map on F{R). Further, j*lF(ﬂ} i{g &
clone homomorphiss F{O) -+ 1'11} le, 1f dogeF, (R, d,,..,d,; Frll}), then
J¥(dg(dy,..,dp)) = (I*(dp))¥(§*(dy),..1%(dy)), since F(R) under composition is
clearly isomorphic to the ranked set of {i-trees under substitution, which is just
the free clone generated by 2. We note that =ach approximant (in the sense of



[Sc, Sec. 3]) to a rational diagram is in F({}) (ie, it has no embedded 1's). This
is enough to show that j* is well defined on R(0). '

He must now show that j§* is a Y—clone homomorphism. From that it also fol-
lows that the image of j®* is in V. J* 1is clearly rank preserving and preserves
projections and |. It also preserves compositions on F(1). To show that it pre-
serves composition in general, let P,(d) denote the n-th approximant of d. It i=s
easy to see that 1f dyER(1), then

Pi!'.dul'.dnu.dn}l}g {Piid.;.]l}{de|'.ll,-”l’j_{ﬂ“'.lflI;Pzi{dﬁ{d|,n.dnﬂ
This gives the second equality in

J%(dp (dy 4.0 ,dn)) = (L3P (d, (d; ,...d5)))

« §%(LI (P (dy))(P1(d,),. . ,Pgldy))))

= L 4% (P (dy }) (Peld, ), .. Pi(dn)))
L4 CG* (P (d, )00 (™ (Py(d, ), .. J*(Py(d)))
U g3*(Py(dy D)) (LD d™(Py(d )y I3 I*(Pi(dp)))
G P (AN E* (P (), 3% (L 4Py (d) )
[CLIC I MCEIC I I LTI

(The fifth equality follows from the fact that U is a closure operation in
[Lk'* L]). To show that j* preserves fixed=-point, for any clome V define a func-
tiom E:{l,..,n}:ﬁ:{?k+n}n + Vy by induction on the second argunent, as follows:

':{hlﬂI'SI.l"lEn} = _]_ " E
E{ilﬁllﬁli"lan} - i:[{'*] !"‘qulcillplgll"lgn}l"lc'l:“ipi-3-1|!+:ﬂ-;-|}:.

Tarski's fixed point theorem then yields that

fu{-ﬁj ’ -*:En] = f{l-!Pcf.l:P:-E. o .Enh- 'H-L‘P': t“:'F:E] ¥ I-;E-n]}'

Furthermore, from the properties of j* already known, it is easy to prove by
induction on p that

:I*{E{i-lp'l&] g ld"n]} - f.:l:i.,,]},j:.'{d]_}*, » :-j *{dn}}
and

_ Eﬂ-rplﬂlrl-lﬂn} = c“-jF""]-:-E.b-#iEn}
%o then '

j*(dﬂ-“{dli"'dn}} = j*{du{up'cl:lpppﬂ;“-.d“}:-uupcf“:F|51|l+1'in}}}
U*H.”U*{LIPHI-P-du--;ﬂn”---,:l*':upﬂ{nm.d_lnndn}'.ll'.ll
(j!{di}:l "-upj*{ﬂ{llpvd]_ l**:dﬂ}}l--:tu*{E{an|d1|-+:d—n}1}

(1%(d ) (001, p, 3% (d, )y ey 3% (d) ) oo o L pCln,py 3% (dy ) 4 o ey
$%4))) .

= (e NIM %), 5% (dy))

Last, we must show j* is unique. Tt will suffice to show that if h is a
p=clone homomorphism R(Q) = V, then h = {h|ﬁ}#, This follows by an easy induetion
on the iterative construction of WUCL(A). OQED.

" We are now able to prove theorems about any l'-clone by considering only the
p=clone of rational flow diagrams. For example, the Mormal Form Lemma follows
immediately from the comstruction of the second half of the proof of Theorem 2.
{Compare, for example, the lengthy proof of [Bk]}. In the next section we show



some of the power of this technique. We conclude this section with a technical
result we will need to apply the theorem.

CORDLLARY : Let RS denote the forgetful functor sending any p-clene to the
ranked set of ite operations. Then there fs a natural injectiwve p-clone homo-
-morphism j:V + R(RS(WV))

&, TWO NORMAL FORM THEOREMS AND THEIR APPLICATIONS

In this section we apply Theorem 3 to get two more normal form theorems for
the p-clone of a lattice algebra. Our first theorem, which was also discovered
by Bekic [Bk], is a "Currying Lemma" for the fixed-point operation: It says that
sny simultanecus iteration {E“}u{fi,..,fnj can be replaced by a sequence of itera-
tions involving only a single equation. Our second theorem strengthens this
result by specifying that the only permissible functional compositions be of the
form g(ty,...tp), where geOps(A). We conclude with a series of corollaries,
including several classical theorems.

NOTATION: We write Y(f) for (el)”(£).

LEMMA 1: Let @ be & ranked alphabet. Let g ,...g-;ncﬂkh. Then in R{0)
(ePY (B yuessBn) = -
(B (g, (eK*™t e Tm T ¥ (g)) s sy (R L eEIRTE, Y (g)))

PROOF: The left-hand side represents the flow diagra= represented by

gy
..k k+l. .k

é__ [50

—-and the right-hand side represents the flow diagram represented by

gy X E B
ok kel k+n—.'L k B k#l. L ktn=1 ko
%1 k H—l..km\}. k o k-1 k

The second flewchart is obtained from the firet by making separate copies of the

--@gn box for each of € ,..,8p~ - These both clearly represent the unique flow dia-
gram in R(p) which starts with g and which has the property that immediately
below each node is the tuple of nodes mairked exits 1,..,k,g;,..,8q"

L

e e A




LEMMA 2: Let V be a y-clone, £;,..,f eVj4n. Then
{E?]ucfl'ilifu: =
Gt Ll C PN O A N 5 cod S TE 9 D TR SR = s b NI 5 nt S T €N D))

PROOF: L.t j be the natural insertion V + R{RS(V)}). Then j of the left<hand

glde equals j of the right-hand side, applying Lemma 1 in RE(BES5(V)). Then the
lemma follows since j is an injection.

- THEOREM &4: (Rekie) Let A be a lattice algebra,fepCl(A). Then there is an
expression for f in which the only occcurrences of Y are of the form (el)M(g).

FROOF: Call an occurrence of U good '.Lf:l;' it iz of the allowable form; 1:511 an
elenent of WC1(A) good iff it has an expression in which every occcurrence of ¥
——good. If gy,..,8, are good, then h = (ef)¥(gy,..,8p) 18 good, by induction on n:
If m =1, h ia gnnd by definition. If n = pt+l, by Lemma 2 there ewist good
£14. ++f, such that h = (eP=13H(f,,. cafp ), which is good by the induction hypo-
thesis. Kow by Theorem 1, for every fcunl{A} there exist g,,..,gn which are good
(indeed, they have no occurrences of Y) such that £ = (ef)H{g,...,Bq)- QED.

LEMMA 3. Let fEﬂm.:Eu--:EnEﬂk- Then in RE{73)
((X(£)) (BraesBn) = Y(E(Bys-esBpaefll))

PROOF: Both expressions represent the same flow diagram as does

f
1..n ntl

ie, the unique diagram, starting with £, such that the immediate descenients of
each f are 51,.,.3“,5, and the immediate descendents of each g4 are exits 1,..,k.

LEMMA 4, Let V be any p=clone, E[:‘irm.l vByesesBneVi. Then
(ENY (g aenly) = TV By s eenaefEl))
PROOF: Apply Lemma 3 in R(RS(V)).

THEOREM 5: Let A be a lattice’algebra, fEV = HCIILJ Then there is an
expression for f in which the only occurrences of ¥ are of the form (e})¥(t) and
the only occurrences of V are of the form g (ty,..,tn) where gEOps(A).

PH[h]F For an expresgion t satisfying Theorem 4 and a subexpression t' of
the form £V (8, v+ +18n) let d(r') equal the number of cccurrences of Vor ¥ in f.
Let |t] dencte the sum of the d(t') for all the subexpressions t' of the form
£V (§14:185)- Then the following two rules send t t95 an ¢xpression t' equivalent
to t and such that |t'| < |t].

RULE 1: Replace a subeéxpression of the form {E?Ef})v (- «38g) (Where gieVi)
by !{E?EEI pee -lsll'lthil M

RULE 2: Replace a subexpression of the form (fV(g, ,..,g )V (hy v o by} by
fulcﬁlvl:h] P |hk_}: '*1Envfh1 LR "J-hk}.'l



These preserve the value of t by Lemma 4 and by the definition of *. By the
previous observation, any sequence of applications of Rules 1 and 2 must terminate,
leaving an expression in which each left-hand side of a V i1g either an operation
in A or a projection. So now apply

RULE 3: Replace a subexpression of the form eJ{g, ,..s8,) bY By-

Since Rule 3 is length-decreasing it too must terminate, leaving an expres-
glon which zatisfies the theorem. OQED.

DEFINITION: An expression satisfying Theorem 5 is sald to be guasi-ragular.

COROLLARY 1 (Kleene): The regular sets and languages generated by right-
linear grammars coincide. :

PEDOF: Apply Theorem & to the p-clone generated .b]r the nl_gabra whose opera-
tions on the complete lattice of I -languages (L of Examples 2.1 and 2.2) are
& ¥+ aS for each a& f .

COROLLARY 2: The context—free languages are closed under substitution,
gymbol iteration, and nested iterative substitutiom.

COROLLARY 3 (McWhirter [McW]): Ewvery context—=free language is obtainable
from the singletons by substitution, union, and symbol iterationm.

PROOF: Apply Theorem &4 to uCl{ACF).

COROLLARY 4 (Gruska [Gr]): Every context-free language is obtainable from
the singletons by concatenation, union, and symbel iteratiom.

PROOF: Apply Theorem 5 to pCl{ACh),

COROLLAEY 5 (Engeler [En]): For every flowchart program there is a side-
effect equivalent flowchart program in "normal form".

FROOF: Apply Theorem & to R(i1).
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CORRIGERDIM:

The Corollary to Theorem 3 should read: “There is a natural map
11V = R(RS(V)) and a natural uclone homomorphism k: R(RS(V)) -»V
such that k{j(x)) = =."

In Section 4, the proof of Lemma I ghould read:

"Let LEE{t y+sst ) and BHS(t_ ,..,t_) denote the left-hand and right-
hand e:@teaainuﬂ with ¢ Euhnti*btad For f Then

LHS(f £) = LHS{h(j{EIII....h{j{fﬂl}} (by the Corollary to Thm 3)

1l-llr

k{LHB{j{EI},..,jifn}} (since k is a homomorphism)

k{HHE{j{fl},..,jifﬂ}} (by Lemma 1 in R(RS(V)) )

RHS(k(I(E,0) 5.0 k(I(E_2D)
= lﬂE{fl,...fn}"

The proof of Lemma 3 should refer to this proof.

HOTE:

In Section 1 we gaid "It is imstructive to see how much can be
developed without the explicit introduction of category theory."
Subsequent developments have convinced us that the results developed
herein represent cloge to the limit of what can be done without
the explicit categorization. We expect that any extension of these
notions will indeed require categorical language. In particular,
our Theorem 3 1s a special case of a much more general theorem, which
is proven much more easily!



