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1. Introduction

The automation of first order logic has received comparatively
little attention from tasaaréhers intent upon synthesizing the theorem
proving mechanism wsed by humane, The dominant point of wview [15], [18]
has been that theorem proving on the computer should be oriented to the
capabllities of the computer vather than to the human mind and therefore
one should not be afraid to provide the computer with a logic that humans
might find strange and uncomfortable, The preeminence of this point of
view is not hard to explain since until now the most successful theorem
proving programs have been machine oriented.

Nevertheless, there are at least twe reasens for being dissatis-
fied with the machine oriented approach. First, a mathesmatician often is
interested more in understanding the proof of a proposition than in bedlng
told that the proposition is true, for the insight gained from an under-
standing of the proof can lead to the proof of additional propesitions and
the development of new mathematical concepte., However, machine oriented

proofs can appear very unnatural to = humsn mathematician thereby provid-

ing him with little if any insight. Second, the machine oriented approach
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Project NR 347 020, U.5. Office of Naval Research. The author alsc is grate-
ful to The George Washingtes University and The University of Marvland for
the use of their computational facilities,



has failed to produce a computer program which even comes close to equaling
g good human mathematician in theorem prowving ability; this leads one to
suspect that perhaps the logic being supplied te the machine iz not as effi-
clent as the logic used by humans.

The approach taken in this paper has been to develop a theorem
proving program as a vehlele for gaining a better understanding of how hu=
mans actually prove theorems. The computer program which has emerged from

"natural" to a human

this study is based upon a logic which appears more
(i.e., more human oriented). While the program is not yet the equal of a
top flight human mathematician, it already has given indication {&videncé
of which is presented in section %) that it cen outperform the best machine
oriented theores provers.

Some work was begun ia [2], [3], [7], [10] and [17] directed
toward the intreductien of a reasoning by cases mechanism into automatic
theorem proving. 0One can give many examples where humans wse such a mech-
anism. Thus, in proving set A is identical to set B, usually one will
attempt to prove two cases: (1) A is & subset of B and (2) B is a subset
aof A. In proving that a system is & group, usually one will sttempt to
prove two cases: (1) if two elements sre in the group, then the product
iz in the group asnd (2) if an element is in the group, then its inverse
iz in the group. In proving a theorem by induction, one will prove a
basls case (i.e., that it ig true for say n=1) and also an induction case
{i.e, 1f it is true for n, then it must be true for n+l).

Howewer, some seripus ocbstacles have prewvented the effective

uge of reasoning by cases by previous sutomatic theorem provers. These



obstacles relate to the overall {i.e., global) organization of these pro-
grams. Any problem solving program must have an executive routine which
controle the allocation of ite computational resources. The executive
routine must have a procedure for (1) determining when and how to create

a goal ap& (2} preventing an explosion of geals from taking place., Pre-
vious theerem proving executives [3], [10], [17] made the mistake of assc-
ciating a goal with every nmew formula that got Eeneta;:dil By contrast,
the present program first makes an intensive attempt to solve a goal (which
typically will generate & number of new formulas for further processing
under the control of a local executive) before deciding to generate a new
goal, As viewed by the global executive, new goals get created only when
g goal gets split into subgoals (where the logical basis for the split is
a reasoning by cases argument). The rationale behind this is that the
resources for solving a goal without splitting are considersble (i.e.,
repeated use of modus ponens, the equality inference rule, rules for
gimplifving formulas, etc.) and therefore one should provide substantisl

opportunity for solving the geoal before introducing additienal goals.

1Th15 pistake was not made in [2] and [7] where procedures were
presented for breaking a theorem into component cases which them are
attacked by standard theorem proving techniques, However, these procedures
do not provide the means by which the application of the standard techniques
can interact with the mechanism that splits the theorem into cases. Thus,
if the standard techniques are inadequate for solving & case, the informa-
tion generated during the unsuccessful attempt is lost snd will neot contri-
bute to the process of cresting new subcases.



Hevertheless, the splitting of goals into subgoals is cften neces-
gary and if not controlled it could overwhelm the executive with more goals
than it could handle, The key to controlling this growth (and it haas
demonstrated its value in the present program) stems from the recognition
of the fact that it is not always necessary to solve each subgozl created
by a split in order te sclve an ancester geoal. For example, suppose the
program knows that it can prove a goal G by proving A and B. 5o it first
atte=pts to prove A and generates a number of new formulas in this attempt.
However, suppose that, although 1t still cannot prove A, it nevertheless
knows that it also could prove G by proving C and D, The program then would
attempt to prove C and D and would view these attempts as subgoals of A.
The reason O and I are regarded as subgoals of A is that their proofs could
depend upon Information derived from A, In this case, the solution of C
and D would mean that we still would have to prove B in order to conclude
G. However, 1f the proofs of C and D did not utilize imformation derived
from A&, then we would net have to prove B and could brimg the proof of the
ancestor goal G to an immediate conclusion. Similarly, if the proof of C
did not depend upon information derived from C, we could skip over the
proof of D.

From the viewpoint of human problem solwving, we can regard these
splite as "strategies" by which some ancestor goal is to be solved (it need
not be the immediate smcestor). - The program {(and also a human) may hawe a

number of different strategies under consideration simultaneously. In the

course of implementing these strategies, the program discovers which strate-

gles are of assistance to other strategies, which strategies must be coopleted,

and which strategies can be discarded.



2, Preliminary Concepts

The reader is referred to [11] for a tisorous treatment of the
bagic definitions and ground rules used by most programs which prove
theorems in the first order predicate calculus. An informal description
is presented in this section in order to make sure that the reader is
acquainted with the basic ideas.

We use the four leogical connectives =~ ("net"), 2 ("implies™),
A ("and"), -~ (Mor") as well as the universal quantifier ¥ ("for all™
and the existentisl gquantifier I (“there exists"). We assume an infinite

supply of wariables, censtants, functions and predicates.

Terme: A variable is a term, a constant is a term, and a function

E{tyseveyt ) is a term provided that its arguments tysessst  are zll terms,

Atomic formules: A predicate P{tl,i..,tn) is an atomic formula provided

that its arguments tl""’tn are all terms,

Literals: An atomlc fermula A is a literal and the negaticn of an atomic

formula ~A is 8 literal.

Formulas: An atomic formula is a formula. If A and B are formulas, then
~ Ay A2B, A~B, and AP are formulas, If A(x) 18 a formula that may
depend upon some variable x, then vxa(x) and IxaA(x) are formulas.

Given the desire to prove that the formula 4_,, logically follows

1

from the formulas *1-*2""'*n* we will assume that the formulas ﬁl'ﬁz""’ﬁn’

~ A ,q 8re 211 true and then attempt to derive a contradiction. The first



gtep is to convert each of the formulas 51’52""'&n'""&n+1 to prenex form
using a standard procedure [91. A formula which is in prenex form has all
its quantifiers (if any) at the front of the formula. The next step 18 to
remove first all the existential quantifiers and then all the universal
quantifiers. An existential quantifier is removed by replacing the existen-
tial variable it gquantifies by a function of those universal varlsbles whose
quantifiers appear to the left of the existential quantifier in question
[l1]. For example, in the formula Vu¥vEwVxP(u,x,w,v), the existential gquan-
tifier which gquantifies the variable w would be removed and w would be
replaced by a function of u and v, say f(u,v), since these varlables are
universally gquantified to the left of w. The resulting formula therefore
would be VuV¥w¥Wx Plu,x,f(u,v),v). Universal quantifiers then are drepped with
the understanding that the variables in question are to be given universal
interpretations {i.e. if A{x) is assumed to be true, then it is assumed to
be true for all possible values of the variable x).

At the heart of all current theorem proving progrems iz the use
of "matching” routines. fnr example, suppose the program established that
the formulas A(x,a,x} and ~A(b,v,b} both follow féﬁm the asgumptions of
the problem where = and ¥ are variables and a and b . are constants. A match=-
ing routine then would determine for the program that wariable x should be
set equal to b and wariable v should be set equal to a in order to elimin-
ate the sources of difference between the formula A(x,a,x) and the formula
Alb,y,b)., Since A(x,8,x) must be true for x=b (ez it is true for all values
of x) and ~A{b,v,b) must be true for v=a (as it is true for all walues of ¥),
this means that the formula A(b,a,b) would contradict the formula ~ A(b,a,b)

and the program would have obtained a proof.



3. The Lugi:al Deduction Eules

The wse of matching routines 1s implicit in the rules of infar-=
ence te be described in this section. Thus, when expressions E and E'
appear in the statement of an inference rule, it should be understood that
E and E' represent expressions which hawe been made identical by means of
& matehing routine. For exsmple, the application of A(b,v,b), A{x,a,x)>B{x)
to ruia R6 would mean that A(b,v,b) would be made identical to A(x,8,%X) by
getting x=b, v=a and this would result in the output B(b) where A{x,a,x),
Alb,v,b), Bi(x) and BE(b) play the role of A, A", B, and B" respectively.

Ag described in sectlonm Z, we begin with a set of formulas all
of which are assumed to be true, New formulas are established with the
help of rules RZ through RlZ. FRule Rl determines when a problem has been

solved.,

El. A problem is solved when it has been established that both the
literals A" and ~A& are true,

E2, Eeplace formulz ~~A by A

B3, Eeplace formula A-B by A,B.

Rb, Replace formula ~(A~B) by ~A&, ~B (i.e. if cne wishes to
prove A~ B, then either prove A or prove B).

E5, Eeplace formula ~ [(AZB) by A, ~B (i.e. if one wishes to prowve
& B, then assumeé A and prove B).

R&. {Hﬂ-‘dui ponens) If it has been established that A' and ADE are
true where A is a literal, then add B' te the zet of true formulas.

E7. (Modus pomens) If it has been established that ~B' and ADE are

true where B Ls an atosic formula, them add ~A" to the set of true

formulas.



B8, (Modus ponens) If it has been established that B' and AD~B are
true where B 1s an atomic formula, then add ~A" to the set of
true formulas.

E9. (Reasoning by cases) Split A*B into case A and case B as shown
in section 4.

R10, (Reassoning by cases) Split ~(&~B) into case ~A and case ~B
as shown in section &.

Rll, (Equality relation) If it has been established that r=t and A(r')
are true where A{r') is a literal that depends upon the term r',
then add A{t") to the set of true formulas, See section 7 for a
more complete discossion of this rule, Also, see section 8 for
the treatment of functions that are elther both assccilatiwve and
commutative or just associative as the program has special routines
which incorporate such functions inte the equality relation.

Rl2. 1If it has been established that P{tl,‘..,t“} and '“P{ti,...,t;]
are true literals where P is not the eguelity predicate and if
£ has been made identical to ti by means of a mateh for all i#j
but this match fails for i=j, then add ~{t,=t') to the set of

I

true formulas.

0f the machine oriented approaches to autematic theorem proving,
by far the most important have been those based upon the resolutlion prin-
ciple [15] - Although resclution is based upon a single inference rule
for generating new formulas, it is5 convenmient to regard it as two rules
-- called unit and non-unit resclution reuﬁentlvely. Unit resclution

I !
says thatr 1f 1t has beesn eatablished that hl-and Alwf AEHJ‘....ﬂr are



true where hl'ﬁz""’ﬁr are literals, then we can add Eé urﬁéhg' ----- A; to
the nét of true furnulaﬂ.2 From the standpoint of rule RY9, the formula
ruhlxggﬁfg *"'Ar can be thought of as representing r cases given by the

r literals '""'1*&2"'“"&1:' The application of unit resolution te the for-
mila '“Alx; ﬁémf,...+ﬁt then haz the worthwhile property that it produces
as output a formula with one less case (i.e. Ai hfhixf,,,,A; hazs only

r=1 cases). m the cother hand, nop-—unit resclution takes as input the
two formulas "-'Alv ﬁ.zx.f. ..”.lul_ and Aiv Bzv.....ﬂt and generates as out=
put aiv..“.h;‘v B‘Ev-”..E't which is a formula which rule B9 would
regard as rtpr.l:nmting r+t-2 cases. GSince rz2 and tz2, it follows that
r+t=2 Zmax(r,t). This means that the output formula of & non=unit resolu=
tion will have at least as many and cften more cases than either of its
input formulas. Since the ultimate cbjective is to eliminate all cases
from some formula, it is understandable that non-unit resclution would be
much less effective than unit resolution and indeed researchers soon gave
preference to unit resclution when generating new formulas [19], [4]. How,
gince ~A~B is logically equivalent to A DB, unit resolution at least is
related to modus ponens (see rules R6 through RB) which is a common form

. of human reasoning whereas non-unit resolution appears wery unnatural to

a human. The suspicion i!.quit& strong that humans do not use non=-unit

EAE in the other deduction rules described in this section, we

are adopting the convention which considers expressions written as E and
E' as having been made identical by means of a matching routine.



resolution when making deductions but deo use a form of unit resolution
precisely because non-unit resclution is so much less efficient than unit
resolution.

There 1= no mechanism in resolutlion for breasking a difficult
problem into two or more simpler subproblems. Yet this is a common fea-
ture of human problem solving. The wvalue of such a mechanism is that it
is generally easier to solve a number of simple problems than it is to
solve a single hard problem. The present program uses reascning by cases
as the logical basis for generating a goal=subgoal hierarchy and this is
degcribed in section 4. FHowewer, the following simple example can help
to illustrate the main ideas.

Example: We wish to obtain a contradietion from the following six axioms
{41 through A6} where %, v, and z represent variables and 2, b, and ¢
represent constants.

Al. =x#(yxz) = (xwylaz

AZ. P(xxy)w ~P(x) s ~P(¥)

A3. Pla)
A, P(B)
AS, Piec)

Ab. ~Plax(bwc))
The progrem first attempts to find & contradictiom by repeated
use of all the deduction rules except BEY and B10. At this stage, the only
new formula it can generate is A7 which is cbtained by substituting 41 into

AB using Tule R:i.l.:‘r

3Stfictl:.r speaking, we are substituting the yight side of Al inte
Ab sfter the match between xw(vwz) and a#(bae) produced x=a, v=b, and z=g,



AT. ~P((azb}xc)
Actually, the program would not have considered A7 as distinct from AB
if it had been told that the symbol #* satisfies the associative law Al
(see section B). However, for purposes of exposition, we have assumed
in this example that the program has no explicit knowledge that # is assc—

clative.
The remainder of this proof can be understood best by referring

to Figure 1 which describes the goal-subgoal hierarchy that was generated

from this example.

Fipure 1



The node labeled T in Figure 1 represents the top level goal which consists
of the desire to obtain a comtradiction from the axioms Al through Ab.
Since after generating the formuls A7 the program finds that it has exhaus-
ted 1ts resources without obtaining & contradiction, it now turns to a
reasoning by cases argument (i.e, rules B9 or R10). Axlom A2 1s chosen to
be split into cases which become subgeals of T as shown in Figure 1. This
generates Af.

AB. P(xwy). Case 1 of A2,

Once again, the program attempts te find a contradiction using all
the resources at its disposal except rules B9 and R10. This attempt dis-
covers two distinet contradietions. The first contradiction is bétHEEﬂ AR
and AB for x=a, v=b#c and generates the formula AD.

A%, ~P(a)~~P(bxc). Cases 2 and 3 of A2 for x=a, v=bxc.
The second contradiction is between A7 and A8 for x=axb, y=c¢ and generates
the formula AlD.
410, ~Plawxb) s ~PF{c), Cases 2 and 3 of A2 for x=awxb, v=c.

After no more new formulas can be generated nor new contradictions
obtained, the program discharges all formulas that resulted from the attempt
to solve cage 1 of AZ but formulas A9 and ALD now replace cases 2 and 3 of
A2, This means that AL through AV together with A% and ALD are the only
formulas uvnder consideration by the program once case 1 of A has been dis=
charged. The progrem now chooses to split AY into ceses as shown -im Figure
1. This generates All.

A11, ~Pi(a), Case 1L of A9.

A contradiction is obteined between A3 and All. This rtesults in ALL being



discharged and Al2l gemerated.

A12. ~P(b#c). Case I of A9,

Again, an attempt is made to solve this last case (1,2, "prove Flbwc)™)
without further use of a reasoning by cases argument (i.e. rules RY or R10).
This attempt fails. In fact, it even fails to generate any new formulas.
However, rather than abandon its attempt to solve this case, the program
gplits AlD and considers the formulas Al3 and Al% that result from the split
as subgoals of Al2 as shown in Figure 1. Although the sclution of Al3 and
Al9 would solve T, they are treasted ss subgoals of Al2 since the program has
no & pricri way of knowing whether the information derived from 412 will be
needed in the sclutions to AL3 and ALS ., The program now attempts to solve
Al3,

All, ~P{a*b). Case 1 of AlD.

The attempt to solve Al3 also fails so an attempt is made to split AZ.
Although the solution of the goals created by the split of AZ would solve
T, these gosls are attached as subgeals of ALY as shown in Figure 1 since
infermation provided by thelr ancester goals might help in their solution.
Indeed, it should be recalled that A2 was split once before and resulted in
the formulas A9 and Al0, The reason ancther attempt is made to split A2 is
that new formulas (i,e, Al2 and Al3) mow are avallable which were not avail-
able during the previcus attempt.

The program now attempts to solve Ald,

Al4, P(x,vy). Case 1 of AL
This second attempt te splitc AZ results in fwe new contradictions. The
first contradietion is betwean AlZ and AlLG for »=b, y=c end generates the

formula AlS.



A15. ~P{b)»~P(c). Cases Z and 3 of AZ for x=b, y=c.

The second contradiction iﬁ between Al3 and Al4 for ¥=a, v=b and generates
the formula AlG.

Al6, ~Pl{al~ ~Pi(b). Cases 2 and 3 of AZ for x=z, v=b,

After no mere new formulas can be generated nor new contradictions
obtained, the program discharges all formulas that resulted from the attempt
to solve case 1 of A2 but formulas AlLS and Al6 now replace cases & and 3 of
A2. The program now chooses to split Al into subgoals of All as shovm in
Figure 1.

A17. ~Pi(b). Case 1 of AlS5.

A conttadiction is obtained between A% and Al7. This results im ALT being
discharged and AlB generated.

Alg, ~P(c)., Case 2 of AlS.

A contradiction is obtained between A5 and Al8. Now since both the genera-
tion of A17 and A13 as well as the sclution of these gosls in no way depen=
ded upen the parent goal A13, the program can conclude the proef of Al2
immediately without attempting the proof of ﬁl?.ﬁ By contrast, the solution
of Al2 did inveolve information derived from Al2 since its solution depended
ppont AlS which was derived from Al2, Howewver, since Al2 is the last gosl in
the split of AY9, this sllows the progrem tec conclude that it has a solution

to the top level goal T.

_ l|:I;'th]:u:n.l_g]:L in this sizple example the proof of ALY would have been
trivial, one cannot expect to be se fortunate im gemeral.



The above example by its wvery simplicicy failed to emphasize the
role plaved by the equality inference rule and modus ponens in the
present theorem proving program. A very important feature of the program is
its mechanism for controlling the number of formulas generated by the
equality inference rule and this is described in section 7. Also, & formula
coded as ADB is used with modus ponens as a means for solving a case
whereas the same formula coded as ~AB would be uwsed in generating the
separate cases ~A and BE. One encounters a number of formulas such as
=y D%k = ya Whose usefulness lies in the help they provide in solving
a case rather than as a means for generating separate cases, The program
has facilities for exploiting such formulas and these facilities are

described in section 5.

4. PReasoning by Cases

The initial data given to the program is the list ELD.Ll} whare L1
is a list of formulas from which a contradiction is to be found and L, is an
empty list. A formula F is removed from L1 and prepared as a pessible input
to one or more of the deduction rules. F is mot allowed to be of the type
o8B orF ~(A~B) slnce we wish to make s concerted attempt to solve the problem
baefore apliteing it into subproblems. If F can be spplied successfully to a rule
which requires only one input (i.e. rule RZ, R3, R4 and R5), then F is discarded
and the output from this applicatien of the deduction rule is placed eon Ll'
For example, if F is the formula ~{ATB), then F would be discarded and instead
the form:lss & and ~B would be inserted omn Lif

If F casnot be applied successfully to a one input deduction rule,

then an attempt is made to apply it to a two input rule by using a forsula

from Lﬂ as the second input. A successful application to such a rule would



mean that the output would be placed on Ll unless the rule is R1 in which
case a contradiction would be found., After every formula on Ln has been
paired with F as the second input to each deduction rule, the formula F
gets placed on Lﬂ.5 & new formuls F now is resoved from L1 and the pro-
cedure TEéEJEH irgelf until either & contradiction has been ocbtained, the
list I.1 has been exhausted except for formulas of the type A“B or ~{A~B),
or & time limit has been ¢xclldad,ﬁ

If a contradiction cemmot be found inm the above manner, then an
appeal must be made te rules RY or R10. BRule R9 splits a disjunction of
the form Blhfﬂixst.‘.;war whereas rule R10 splits a negative conjunction
cf the furnﬂv(ﬂIfxﬂthﬂj....tht). If at this stage there are no disjunc-
tiens or negative conjunctions on 11, then the program must admit failure,
Otherwise, a disjunction or negative conjunction is takem from L. and a

1
list El is constructed as follows. El 1z a list of four elements. Ei

1
(i.e. the first element on list K1} initially represents the list

EBI,B ‘BE"“"Br}* EI,E is either the syabol v u? the symbol ~~ depending
upon whether an application of rule R9 or R10 is being made. §y 5 initially
is an empey list. Kl,# initielly is a list of the wvariables appearing in
any of the formulas 31=31-33=+***-B,+ Although the fellowing discussion
will assume that rule B9 is being spplied, the treatment of rule R10D is

very similar by virtue of the logicel equivalence of ~{AA~B) with ~A~%,

Eﬂu will be shown in section 7, a soccessful application of rule
Ell to F often will cause F to be discarded immediately in favor of the
resulting output which iz placed om Ll.
&
The action taken by the program if the time limit is exceeded
is described ar the end of the present sectiom.



-.1?_

The state of affeirs is summarized now by the list {LD, Hl' Ll' LE}

where L2

in this case is El} together with all the disjunctions and negative

is a list consisting of the first formula on list “1 1 {which
¥

conjunctions of Ll’ As before, a proof is attempted first without using
fules B9 or El0. Only this time, the ocutput of a deduction rule is
placed on 'L1 instead of on Ll' a formuela F which fs8 removed from 'l..2 and
applied to the deduction rules is either eventually discarded or trans-
ferred to 11 instead of to lﬂ’ and the deduction rules which require

two inputs will pair the formula F with formulas from either Ll ar lﬂ
instead of just from Lﬂ'

Suppose a contradiction is cbtained. How should we proceed? An
ochvious method would be to (1) remowve El from the list Hl,l of cases
which have not wvet been solved and place it on the list K1'3 of cases
which have been solved already, (2) reestablish Ll as it had been just
pricr to the creation of Lo {3) erase LE and replace it with a new
list L2 consisting of the next case Hziwhich iz now the first formuls
cn list Kl,l} together with all the disjunctions and nepative conjunc-
tions of Ll’ and (4) zearsh for a contradiction in A similar manner as
in case 1 when B, had been the controlling hypothesis.

The difficulty with the above four step method 1s that, in the
solutien teo case 1, a variable x appearing in BI may have been set equal
to some term t; Af this variable x also appesrs inm one of the formulas
Bz, BH"“**’ Br, then this Epﬂcifi:atinn that x should egual t must
preveil alsp in at least one of these subsequent cases. In order to

insure that x in fact does equal t in this latter case, the variasbles of



Bl’ BZ"""' ET are classified into types according to whether the
variable is to be given a ";niueraal“ or "cxistential" 4interpretation.

Wormally, all the variables would have universal interpretations
{i.e., 1f formula A(x) is true, then it is true for all values of the
variable x}, since all the existential variables already were eliminated
by the procedure described in Section 2. However, in attacking Case 1,
we pow place an existential interpretation on those wvariables which appear
in both Bl and one or moré of the [ormulas EE’ 33, ----- ¥ Br (i.e., if
A{x)~B(x) is assumed to be true, then we sust find some value of x which
will permit a solutiom to each case). For this purpose, we will say
that an existential wariable has been specified if it is set equal to a
term ¢ where t ig not & universal 'Faria.hle.Tlr

How in first attacking Case 1, we seek applications of the deduction
rules (except rules 9 and R10) and subject these rules te the reatrie-
ticns that no existential variable mav be specified unless the specifica-
tien occurs during & successful application of rule Rl (i.e., we specify
an existential variable only when so doing will assure the proof of a
gubproblem thereby providing a wvaluable restriction om the generatiom
of subproblems).

If 2 successful solution is found which does not specify any

existentizl wvariagbles, then we proceed directly to Case 2 by thé Faur

?Hnte thet if an existential variable has been set equal to a univer-
sal varlable, then the existential variable is still free te assume any
value which cen be assumed by the universal wvariable. However, since a
universal varisble by definition can assume any wvalue, this means that
this existential variable has not really been "tied down" or "specified"
upan being set egual to the universal variable.



step method described above (i.e., we assume BI and discard all formulas
that were generated during case 1 when Bl was the hypothesis of the case).
The reason we go directly to case 2 when no existential variahle was
Epﬁ;ifiad iz that the zolution of case 1 would not have committed any
variable appearing in any of the subsequent cases.

However, suppose the successful selution necessitated the specifica-
tion of at least one existential wariable, Then we wauld not proceed
directly to case 2. Instead, the wse of existential variables enables
the program to find a nusmber of different solutions to case 1 during the
game attempt at solving the case; this avoids the duplication of effort
. that would appear if the program were to proceed directly to case 2 as
soon as 1t found a single solution only to find later that it must
generate still more solutions to case 1 in order to sclve the original
problem. Im particular, let x represent the wvector of existential
variables. Each time a solution to case 1 is cbtained which resulted in
a different specification t of the vector x, we generate the disjunction
of the remaining cases for this specification {i.e., we generate the
formula Bzit}HfﬁE{t}.....H;BTEtJJ.E After no more golutions can be found,
the program discharges Bl and all formulas generated from Bl except
these disjunctions Ezftjxfﬂattj ----- Hfﬂrft} each of which represents the
remaining cases associated with a different solution wecter t. Rather

than consider any of the remaining cases I through r, the pregram later

Eﬁn? existential wvarisble which wes left unspecified by this solu-
tion would ke replaced by a new universal wvariable in the formula
Ezft}xfﬁgft] ..... kfﬂrﬂt].



will apply a reasoning by cases analvsils to oné or more of these
disjunctions Biitjxxﬁj{t].1,.1HIEI{£}+ However, the criginal disjunctiom
BIHJBE ..... xxBr 5till would be retained for a possible future spplication
of rule B9. The reason for this retemtiom is that subseqguent spplications
of rules B9 and E10, by generating & posl=subgosal hierarchy such as

was illustrated in Fipure 1, could provide additional formulas which

might form the basis for new solutions to case 1 of this disjunctiom.

So far we have assumed that we did not need an additional reasoning
by ceses analysis in order to solve case 1. However, if another applica-
tion of rule B9 and R10 is needed, the program must decide whether
the application should be treated as a subgeal of case 1 or whether
the sase analwysis of le;EI ..... x;Br gheuld be abandoned altogether.

The heuristic that is used to determine whether case 1 is worth pursulng
is the presence or absence of existential variables in El. Thus,

case 1 would be sbandoned if and enly if an existential variable appears
in Bl:. This heuristic also simplifies the programming since it means
that we do not have to compare existential variasbles that criginated
from different disjunctions. In any event, the sbandonment of case 1

is net necessarily permanent. Case 1 is just postponed in faver of an
attempt to solve the cases of some other disjunction or negative
conjunction. This attempt could provide the material with which to
achieve solutions to case 1 of lefﬂzr....xfﬁr when and if this

disjunction is reactivated at a later dara.g

glf there were no more disjunctions or negative conjunctions, then
not only would the abandomment of caseé 1 becose permanent but the program
would terminate its attempt to solve the original problem as well.



In general, the state of the system is described by a list

{Lﬂ' Hl, LI' KE' L2|+-r|-| Rn' 'I..ﬂ-r Ln + 1] where Ki centains the infor-

mation controlling the reasoning by cases enalveils of some specific
disjunction or negative conjunction and is defined in a manner similar

to ﬁl. Thus , K represents the list of cases which have not yet been

i,l
solved, Ki a iz the symbol "~ or -~ depending upon whether an application
¥

of rule B9 or BE10 is being made, K1 is the lizt of cases which have

3

¥

been solved elready, and Ri 4 is the list of existential wvariables
L]

appearing in formulas on list E The first formula en list K

i,1°

represents the case currently under attack and Ei 1 “i +2"""Kh

were generated in an attempt to solve this case. Fer 1 £ i £ n, formulas

i,1

appearing in Li already have been processed by the deduction rules and
are under the immediate control of Ei' Formulae appearing in LD ware
processed prior to the application of any reascning by cases analysis.

Formulas appearing inm L

s+ 1 have not vet been processed by the de-

duction rules.
A new case gets initiated at what is then the lowest lewvel of the

guval-subgoal higarchy. If this lowest level is n, then the empty list

Ih +1 would be created. The first formula on list Kh 1 would be placed
. L]
en L if Kh 3 = st if K = , then the negation of this formula

n+1 T, 2

would be placed on Ln + 1" An attempt first is made to solve this case
using the deduction rules (except rules B9 and R10) and the output of
these tules is placed on Lh s 1 If a formula F, which appears on

Lh +1° iz applied to a two input deductiom rule, then the second in-

put would come from one of the lists Lﬂ, Ll”""’ Ln' If F is neither



a disjunction nor-a negative cenjunction, then it eventually would be

elther discarded or transferred from Lh +1

Since the application of EIFFEE""'HKHI to tule BY? means that the

to L.
n

program must find r solutions instead of just one solution, it is a
matter of great concern whether lefnz.....xfﬁr iz really needed for the
proof; for if it is not needed, then its spplication to rule B9 could
be & great waste of effort. Furthermore, 1f for each of these r cases,

the program should choose unnecessarily & formula C.~~C

1
gpplication to rule R9, then it would hawve to find ret solutions when

2‘-i.-xxﬂt for
only ocne was really needed. Clearly, the computational effort could
stewball 1f the program is not careful about how it applies formulas to
tules B9 and R10. This is neot just a theoretical possibility. In the
course of searching for a preoef, it is not unusual to generate many
irrelevant disjunctions and negative conjunctions. Which of the many
digjunctions and negative conjunctions is the program to choose for
applications to rules E¥ and R107

One way of attacking this problem is to let the decision to select
a particular disjunction or negative conjunction represent the node of
a goal tree. Although the use of goal trees iz a common appreach in
artificial intelligence research, it will not work here because a good
method for evaluating these nodes is not readily available.

Let us summarize the situation which hes just been described.
Beasoning by cases offers the opportunity to decompose a problem by con=

gidering each case separately and automatically erasing all formulas



that were generated during the attempt to solwe a case before proceeding
te any of the subsequent cases, Op the other hand, reasoning by cases
could lead to a disastrouws explesion of subpreblems under consideration
by the theorem prowver. How then do we prevent such an explosion from
taking place?

The escape from our dilemma tumrms out to be surprisingly simple
and one which is likely used by human theorem provers as well. The basic
idea i to determine whether the solution te a case depends upon the
hypethesis of the case; for if no such dependence is found, then none
of the subsequent CAsES need be considered.

Recall that the svstem is described by a list {LD, Kl' Ll’ KE’ LE‘

th
..... s E_, Lﬂ, Lh + l}whare Ki controls the case analvsis at the 1

level of the goal-subgeal hierarchy. We say that formula F depends upon

Ki if either F is the hypothesis of one of the cases of Ki or else the

derivation of F utilized this hypothesis at least cnce 23 &n imput to
oneé of the deducticn rules. We then define DIF) = dependence of formula

F = the set of theose Kl uypen which F depends. We next define Di .
3

dependence of the scluticn to case t of K, = the wnien of 211 IMFY taken

i

over all formulas F that appeared in the solution to case t of Ri. In

particular, suppose the sclution to case t of Ei itegelf utilized a

reasoning by cases argument. Then this additicnal case snalysis must

Letting n

i+1"

have been solved under the control of some E i+

represent the number of cases that were zolwed in the case anslysis of
Ki 1 and lEttinF ﬁi + 1,0 represent the dependence of the particular

disjunction or negative coenjunction which generated KL + 1 we would



obtain D as the wnion of all Di + 1, taken over all integers 1| for
-]

i,t
which 0 2 § 2mn, .
Upon obtaining a solution to case t of kK;» the program asks "1s
xi a member of Di,t?” If the answer is yes, the program goes directly
to the next case of Ki- Howewer, if the answer is ne, then it skips
cver all the remsining cases of KI and instead immediately concludes
that it has soclved the currently active case of Hi _ 1"
Furthermore, before a case of L) actually is attempted, the program
first examines the lists Hj+3 for all j 2 1 in order to determine whether
the case had been sclved already. TIf the answer is yes, the program
assigns the same dependence to the solution of this case as prevailed
for its previously sclwved duplicate and then skips over this case by
proceeding directly to the next case of Ri.
The program alse would not attempt to split a formula F into cases
i1f one of the cases of F represented & specializatien of a literal
already appearing on some I..1 (i.e., there i1s no peint in examining any
of the cases of F_unleaa each of these cases is supplving us with some
new information). For this resson, & further restriction is placed
upon the specification of an existentisl wvariable. A specificatiom of
an existential variable iz allowed by K only if it does mot transform

& subsequent case of E  intoc a specializatien of a literal already

appearing on an Li for some 1 < n.



We have sald nething as yet about the crder by which disjunctions
and negative conjunctions get activated by rules B9 and R1D, Associated
with every goal G is the list 5(G) of those disjunctions and negative
conjuncticons that were available to G at the time of its activation.

The attempt at solving G without wtilizing rules B9 and B1D results in =
new list T(G) consisting of the elements of 5(G) followed by those dis-
junctions and negative conjunctions that were created during this attempt.
If it is decided to sprout subgoals from G, then the first available
formula F on list T(G) becomes the instrument for the split. Suppose

G' is one of the cases obtained from the split of F. 1If no two cases

of F have the same variable in common, then 5(G'} would be T(G) with
formula F removed as there then would be no need teo split F more than
cnce. Howewver, 1f the same wariable sppears in more than cne case of F,
then we may wish te seek additicnal splits of F at & later date and sc
S(G") would be T(G) with formula F transferred from the first to the

last element in the 1ist.1n

101¢ the attempt to solve G' without R9 and R10 fails to find &
gingle new solution end an ewistential variable appears in @', then F
is abandoned and a special mark is placed on F to inform the program that
F no longer is available for a split. However, if the sttempt to solve
G' without RY and R10 falls to find a solution but no existential variable
appears in G, then G' would Become a parent goal wherewpon this special
mark would be removed frem all formulas of T{(G). The raticnale for re-
moving these marks (and thereby providing new cpportunities for splits)
is that the use of G' as a parent goal would provide new information that
had not been available when these marks originally were inserted.



There 1z still one locse end that needs to be tied. We have said
that in attempting teo soclve a case we first seek a solutien using all
the deduction rules except BY and B10 but impose a saximum lisit on the
time spent locking for such a sclution. The reason for this maximum
time limit iz that we do not wish to commit too much of our computational
resources Im this attempt when additional wse of rules RO or ER10 may
be necesgary. Therefore, if the time limit expires before a solutiom
can be found and the program dees not wish to abandon the geoal, it would
remove from the system those formuelas Fl. Fz.,,.... Ft which hawve not
vet been processed by the deduction rules and combine then into & single
compound formula "w(a = a}xﬁ{FlfﬂFz...,.fHFt}. This compound formuls
then is placed at the bottom of the list of disjunctions and negative
conijunctions that are associated with the current goal where 1t would
be applied to rule RY only after those formulas which precede it on the
list. This allows the program to nuntinu; work on a goal by utilizing
a reasoning by cases argument witheout waiting to process all the for-

mulas F , F . If it should turn out thet one of the formulas

l' F2|||||- t
Fl. F1,+.,.,. F: is necessary for the scolutiom to the goesl, then

eventually the disjunction “wia = l}Hf{FlfHFi.....fMFt] would get split
by rule B9, In that event, case 1 censisting of the hypothesis "w{a = &)

would be solwed trivially and FlfRFE,,,.,fmFt (the hypothesis of cese 2}

would be decomposed by rule B3 thereby reestablishing the formulas

F F F

1* Faareees Foo



5. fome Facilities for Representing Procedural Information

When presented with a new axiom, ; human often will have some ideas
about how the axiom is to be used. A program that can absorb these
ideas has an advantage when it comes to solving actual problems. The
present program has three malin channels through which such infomation
can be recelved and utilized.

First, as mentioned in Bectien 3, the procedure by which an sxiom
A2E 18 used in a probles 1s different from the procedure asscciated with
the logically eguivalent amxioem ~AB; the first formulatiom is used to
help solve a case, whereas the second formulation is used to split &
problem into separate cases. |

Second, & routine, associated with an input F te a two iloput
deduction rule, cen decide whether & particular feormula should be
paired with F as the second input to the rule. Third, descriptive
information, associated with one of the inputs, can be passed slong to
the output of a deduction rule; this descriptive information might be
a factor later in deciding whether thi= output formula should be accepted
as a second input to a particular twe input rule.

For example, before the formulas ADE and A" are spplied to rule BB,
the program checks to see whether a special attribute appears with ADE.
If this attribute is not present, then the program would continmue its
attempt to apply ADE and A' to rule R6. However, if this attribute
doeg BPFEBI_With ATZE, it would have some IFL-V rootine B aasnciateﬂ

with it; the program then would execute the routine R using the formula



A' g imput data to the routine. TUnder these circumstances, the
decigion to comtinue (with this application of ADE and A' te rule HA)
would be made on the basis of the result obtained from this execution
of routine R. Thus, & routine B assccilated with the formula %860 x_lE.G
might reject {3"1}F1 G as the second Iinput to rule R6 in order to
avold an endless applicatiom of rule Ré to HEG:II_:LEG. Another way to
handle this exsmple stems from the fact that any attribute appearing
with formula B gets transmitted to the output formula B' upon the
successful application of A B and A" to rule RE, Thus, the routine

R might reject A' 1f it determined that the creation of A' cccurced as
the cutput from a previously successful aspplication of rule Bf to xeG 5
::._lE.E; routine R could make such a determination merely by checking

to see whether a special attribute that appears with I.lE'G appears alse
with A",

There is eme attribute, known as the "expansion" attribute, which
iz processed by the program in a special way, Thus, if the expansion
attribute appears with a literal, then the program does not allow the
liceral to be used as an input to any of the deducticn rules except
iule Ell and then only in the role of A(r'). After each previcusly
generated formula of the type * = t has had a chance to be paired with
this expansien literal for a possible applicationm to Rl1l, the expansicn
literal is removed from the system. For example, the placement of the
E:q:-a.nainnlal:trihutﬂ with ®kz > y#z in the formula x > ¥y DX#2z > yar
would. cause this latter. formula to generate expansions, Thus, formelas

b >cand x > vyoxx2 > vz applied to rule Bé would generate the



expansion bec > cwz. Similarly, the application of b = ) with the can=

cellation. lew x#wz > vz = % = ¥ to rule K7 would generate n(bka = caz)

11
ag an expansion.

G. The Problem Solving Executiwve

Any problem solving program must have some overall scheme for
allocating its computational resources. This "global" allocation
already has been described for the present program in Section 4 in
connection with the implementation of rules B? and R10. Howewver, the
present program alse must conduct "local" searches which are character-
ized by an attempt to find a contradiction without further use of rules
RS or R10. These local searches must likewise have a procedure that
controls and guides the computational effort; we describe now this
local allocation.

A non=litersl is given priority ahead of & litersl when it comes

to deciding the next formula to be removed from L and applied

n+1
to the deducticn rules. Among non-literals, the order is first come
first served. Among literals, pricrity is determined on the basis of
a lexicographic ordering which cheocses the literal which (1) depends
upon the fewest number of the Hi {i.e., so that a solution cbtained

from this literal would have a better chance of not necessitating the

solution of too many additiomal cases), and in the event of a tie

lluuwevqr. we would net generate the expansicn if either b or e
were of the form usv vhere u and v were existential wvariables since we
wigh to aveid the effert of trying to create a split by solving for
one existential wariable in terms of the osther.



attempts to choose a literal which (2) deoes not possess the expansion

attribute, and in case of still another tie chooses the literal which

{3) has the least complexity where complexity is measured by the storage
space takem up by the literal.

However, in trying to find a direct solution to a case involwing
existential variables, we do not process any expansions if a solution
already has been obtained. The reason for this is that the processing
of expansions is too expensive to Justify thelr use when losking for
additional splits since we can do so at a later date if the current

gplit should prove insufficient.

7. The Equality Relatiom

It should be noted that unlike the treatment of equality by resclu-
tion based theorem provers [11], rule Rll does not permit the replace-
ment of & term in a formula unless that formula is & literal ner does
it allow this replacement to be made on the basis of an equality r = t
unless the truth of r = t alveady has been estsblished. The reason
we can l:ll:; this is that the ressoning by cases mechanism serves to detach
the individual literals from & formula as it analyzes the separate
cases 5o that eventually these literals will be awvailsble for use by
rule R1l. However, the advantsge in postponing these replacements is
that it keeps apart those formulas wsed in selving cne case from for-
mulas used in solving a later case with the result that formulas stemming
from different cases do not interact with each other to produce additional

formulas. Also, since the program does not always have to consider



all cases arising from a split (as was discussed in Section 4}, this
postponement enables the program to avoeld the necessity of generating
formulas from a later case if the current case should prove to be
irrelevant to the solution of a higher level goal.

In rule Rll we impose the requirement that neither r nor r' can
be wariables; for if either r or r' were a wvariable, then the match of

r with r' alwavs would be trivially sa:isfiudilz

The significance of
this restricticn is that it limits the application of rule Rl1l to
situvations where 1ts successful applicatiom would provide us with some
"information" in the sense of [16] (i.e., the success of a rule gives
vs no "information" if its success is a foregone conclusion). The

. practical wsefulness of this restriction is that it greatly reduces
the number of formulas generated by rule Rl1l with little rtisk that

one of the discarded formulas will be necessary for the socluticm.

In applying the eguaelity b = ¢ as an input to rTule Ell, the
program will identify b with r and ¢ with t (i.e., it will replace b
by © rather than replace c by b) on the basis of the following eight
conditions, where conditiom i takes priority owver conditiom j fuf i<3j:
(1) e appears as part of term b,

(2) wmore wariables appear in b than in ¢,
(3) ¢ 1s a constant which sppesrs in a speclal list provided to the

program by the user (so far, this list has consisted only of idemtity

12
This assumes of course that r does not appear as a subelement of

"' and viece versa.

I



gymbols such as O and 1),
{4} =a special attrlbute appears with the equality b = ¢ which tells
the program that the right side of the equality sﬁnuld be substituted
for the left side (so far, this attribute has been used just once
and that was to denote that b had significance only in its capacity as
the definition of c},
(3} b, but not ¢, represents an associative product (i.e., & iz of
the form r*t where % obeys the associative law; see Section B for
discussion of associativity),
(6} neither b nor ; represent an associative product, but b is 2
function of more argumemts than c,
{(7) both b and ¢ represent asscciative products such as R RELET
where n, the number of terms in the product, is greater for b than it
is for e, and
(B} b is of greater "complexity" than ¢ where, as in Section &, the
complexity of an expressicn is measured by the grorage space it
pocupies. A IR B ST

If neither b nor ¢ can be identified with r on the basis of the
above eight conditions, then an arbitrary choice is made. If & decision
is made to identify b with r buf an attribute appearing with formula
b = ¢ indicates a desire that both sides of the equality be given this
epportunity, then ¢ alse would be matched with r and if successful

the output A(t')} would be desigrated as an expansion.



If in rule E1l (1) one of the above eight conditions does prevail
for r = t, (2) A({r") is not an éxpansion, and {3} the matching of r to
t' does not reduce the gemerality of r', then the generation of Alt')
by rule K11l allows us with reasonable confidence to eliminate A(r')
from further consideration provided that the new formula A(t') does not
depend upon any of the Ki not already depended upon by A(r'). The
program takes advantage of this by emploving rule R11 as the first
deduction rule to be applied to a litersl; the literal is giwven the
role of Alr") in rule BEll and different equelities r = t are paired
with it in the hope that one of these equalities will lead to & quick
elimination of the literal. Indeed, 1f the applicacion of one of these
equalities to rule R1l generated the literal L' from the literal L
without eliminating L but a subsequent application of a different
equality to rule Rll did eliminate L, then the program would eliminate
the literal L' as well.

We have already restricted the applicaticn of rule R11 by not
allowing the specification of an .EIi!tﬂhtitl variable (l.e., we required
in Section 4 that an existential variable could be specified only if
the specification occurred during an application of rule R1). We now
place & further vestriction on rule R1l by not allowing any varishlé from Al(r')
to be gpecifiedl. (i.e., the match of r to r' in rule R11 is not
allowed 1f it reduces the penerslity of r') unless A(r') is either an
equality b = ¢, or its negatien "(b = ¢}, or an expansicn. In order to

compensate for these restrictions on the treatment of literals which



do not involwe the eguality predicate, we included B12 as a rule of
inference as this rule takes two such literals as input and produces
the negation of an equality as output. However, since one of the
motivations for rule R1I was its compensation for the restriction of
gubgtitutions into wvariables, we will require that at least one of the

twe input literals to rule R1Z must possess a variable.

8. Associativity and Commutativity

Functions which are either assoclative and commutative or just
associative play & fundamental role in mathematical reasoning. For
example, addition and multiplication in ordinary arithmetic each
gatisfy both the assocliative and commutative lews. On the other hand,
the multiplication of operators (such as found in matrix multiplicatiom)
provide importeant examples of functions which satisfy the asscciative
but not the commutative law. In wview of the great importance of
associativity end commutativity, special routines were built intec the
program in order to provide a more accurate simulation of human problem
solving as well as to exploit better the power which is available
whenever it is known that a particular function satisfies either both
the asspociative snd commutative laws or just the asscciative law.

An associastive functiom f is cne which depends on two argusents
and satisfies the relationship f(x, f(v,2)) = f(f(x,v),z) for all x, ¥,
and z. It fellews from this that the expressions fla,f(b,flc,d))),
f{f{a,b),£(c,d)), end £(f{f(a,b),c),d) are all equivalent if f is

asseciative.. Using the more familiar product symbel & in place of £,



the abowve expression can be written as ak(ba{ced)), (asble(ced], and
({azbl*clhd respectively. Clearly, the key feagture of an asscciative
product is that it is independent of the way the parentheses are
grouped. A humaﬁ who uses an associative product acknowledges this

fact by writing the above expressions as axbscxd; at one stroke he
therefore saves processing time as well as memory by avoiding the
necessity of treating these equivalent expressions as distinct entities.
Although an associatiwe product iz defined formally es a functiom of
two arguments, it is used by humans informally as if it were a function

of an indeterminate number of arguments s pareany B where m can

1* 2

be any integer greater than 1. The same point of view is adopted by
the progrem which, for am associative fumction f, strips the parentheses
from different expressions involving f by reducing them to the canomical form
f{sl, Bopevasey ﬁm). Thus, the program immedistely would reduce
£(f(s,, ffss,.sjjl, E(f(sys 850, 8.)) to £is,, =, g5 515 595 Bg)
if it knew f to be asspcilative. Througheout the remalnder of this section
ir will be assumed that the funectiom f is associatcive.

Standard match routines, such as described in Sectiom 2, can reduce
and eventually eliminate the differences between two expressions 4 and
A" omly if A and A" have the same structure (l.e., only 1f in those
places where the two expressions A and A" Jdiffer, a wvariable appears 1in
one expressien which can be eguated to the term appearing in the
corresponding part of the other expression). Howewer, for desling with
associativity (and especiglly for comsutativity) a more generalized

methed of matching is useful (such as the pattern matching of [&])



which can rearrange the peosition of terms within a structure as well
ags determine values for variablea located at fixed positicns.

The present program utilizes a routine MATCHA which can bring
into correspondence two asgoclative functions f{51,+++++, sm} and
f{tl"""‘ tn} even though m and n may not be equal to each other.
The execution of .HAIEHAEf{ul.,,,,.. a_), fEt1.1++++, tn}} operates
as follows. For purposes of expositien, we extend the definition of
f to allow it to depend on cnly & simgle argument by defining
f{sl] = 8,. With no loss of generality, we assume m £ n. If m= 1,
an attempt is made to bring 8y inte eorrespondence with f{tl, ..... s T3,
perhaps by a substitution of certain terms for variables, after which
an exit iz made from routine MATCHA. Suppeose m »* 1. We first attempt

to find a substitutien which will make s, identical to t, =snd 1if

1 1
successful, we then execute | HAIEHA{fEsI,..++,, sm}, f{ti"""’ tnjj
for this substituticn. After ,HﬁTEHAE£E52,+.+++, sm}, f{tz, ..... . tn}j

has been executed, we unde any substitution of a term for a variable
that might have been needed to make 5y identical to ty- At this point,

ifm=mnor s 1is not a variable, we exit from the routine MATCHA. Other=

1
wige, beginning with r = 2, we set the variable 5, equal to the term
f{tl"" tr} (provided of course that £q does not appear in f(tl,... tr}}
and then exescute .HEICHA{E{EE, ..... sm}, f{tr + l......:ﬂ}} for this
substitution; after this has been tried fer all integers r such

that r > 2 and m - 2 £ n - (r+l), an. exit is made from the routine

MATCHA., TFor example, 1f % and v are wvariables, then the execution of



MATCHA(F (x,y},fla,b,c)) would produce two successful matches corresponding
to x=a, y=fib,c) and x = fla,b), y = ¢. Similarly, the execution
of MATCHA(F (x,a,x,a,b),f(b,c,a,b,c,y)) would produce only one successful
match (i.e., for = = fib,c), v = fla,b)).

The replacement mechanism in rule R11 15 designed to take advan-
tage of knowledge that a function f Is associative., Thus, suppose r and
r' in rule R11 are terms of the form F{r1,...., rmj and flr!,...., r;}
respectively where m £ n, For each integer j such that O <j<n=-m,
the program would attempt to find a substitution which would make Fi
identical to r}

i for all i =1,2,...., m. If the program 15 successful

for some J, then the cutput of rule RIT for this | would be of the form

A(t") ifm=n, A{F{t‘,r;+],....r;]] ifO0=]<n-m,
Hfffri,++++,rj.t'.ri+m+],....rA3ﬁ if0< jen=m and

Afffri,..+.rj.t‘}} if 0< ] =n=m. For example, f{x,x) = & would cause
a(fla,b,b,c)l) to be replaced by Alf{a,e,c)) where m =2, n = 4 and j=1.
An additional replacement routine is available for use when m < n
and some r, is a universal variable. Thus, for each Integer | such that
< j<n=m the program would execute a routine
HATEHE{f{r],....rm],Ffrj+],....r;}}. The routine MATCHB is the same as
routine MATCHA except that (1)} it does not allow a substitution which
reduces the generality of ffrj+|,++..rA} and (2) it proceeds
differently when It reaches the point where, for some p 2 j+m=1,

it must execute HATEHB{F[rmJ,Ffr$+r,+pp.r5}}. Instead of execut-

ing HATEHBff{rm},F{r;+1,....r$]] by trying to bring - into corres=-



pondence with f(r; + 1,.qq,r;} {as MATCHA would have done) it tries

to bring r‘ inte correspondence with f{r% ;j for some integer

g opreceet

q such that p < g t n. If the program is successful for some j and g,

then the output of rule R1l would be A(f(t")) if 0 = j < g = n,

a{f{t’,rt*l + l.n.,rl;}} if0=9<gq <n, A{f{ri......rj‘, t*, ré PEETERST
r;]} if0<j<q<mn, and Aff(ri,....ri.t'}} if 0 < j <q=n. For

example, flx,x) = e would cause A(f{a,b,e,b,c,a)) to be replaced by
A(f(a,e,a}), vhere m =2, n =6, =1, p= 3 and q = 5.

For the remainder of this section it will be assumeéd that the
fenction f also satisfles the commutative law (i.e., £(x,v) = fiy,x)
for all x and ¥). The program uses the routine MATCHC to bring into

correspondence two functions f(sl,.m.,smj;und fie "'*'tn} when 1t is

1+
known that £ is commutative as well as associative. The execution

of HﬁTEHEEf(alf....amJ‘ f{t1f++.tnii eperates as follows. With

no less of penerslity, we assuse m < n. If m = 1, an attempt is made
to bring 5, into correspondence with f{tl,..,tn] after which an exit
ig made from reutine MATCHC. OSuppose m > 1. We first attempt to

find an By {giving pricrity to those s, which are not wvariasbles)

i
for which a substitetion can be found that makes 84 identical to tj
for some tj' If we are unsuccessful, we exit from the routine MATCHC.

Howewer, if we are suecesaful for =ome 5y and tj' we execute MATCHC
{ftglgiiii’ﬂi - l: Hi o+ lp!-!-im}, f{tl-.-l--l--l-l-tj — l. tj + 1‘----tn}}
for thie substitution and then exit frem the routine MATCHC.

The execution of rule Bll, when it ig kneown that £ is cossmutative

as well as associative, is poverned by the routine REPLACE. Thus,



gsuppose T and ' in rule R11 are terms of the form f(r ,....,rm} and
f(rjseeser)) respectively where m < n. The execution of REPLACE
{f{rl,..q+,rm}, f{ri,+a++.t;}} operates as follows. Beginning with

4 = 1, the program attempts to find a substitution which would make T

identical to r5+ If the program is successful and m > 1, it would

execute LREELAEE{ffrz.,+++.Im}. f{ti.....,ri o1 rj FMETEEE

for this substitution. If the program is successful snd m = 1, then

2x 1)

the output of rule Bll for this j would be of the form A(E(t', Ii,....,
:5 -1 I5 + l,....,r&}}. The program carries out this procedure for
each integer j such that 1 < j = n {funless a j is found which produces
an output for rule R11l that allews A(r') to be eliminsted).  For.:r
example, £(x,x) = & would cause A(f(b,a,b,c)) te be replaced by

Alf(e,a,c)).

9, Computational Experience

The theorem proving ptugraﬁ described in this paper was written
in IPL=V and run on IBM 360/50 and 370/145 computers. The maximum
partition available to the preogram was 250,000 bytes of core storage.
This emounted to 22,000 IPL-V words {after losding the IPL=-V interpreter)
of which 7,000 were consumed in loading the program leaving 15,000
IFL-¥ words for actual work space. Although the awvailasble mam;ry was
not large by current standards, computing time was more of a limiting
factor than memory, for IPL-V is an interpretive lanpuage =nd therefore
wery slow in execution. The program might well have run an order of
magnlitude faster £f it had been written in a language that was capable

of executdon in a complled form. The computing times of the examples



reported in this section are for the 370/145.

Among the theorems proved by the program were all nine problems

from group theory and number theorvy which were reported in [4]. It is

also capable of solving much more difficult problems than these as

evidenced by the examples to be described in this section. It accom-

plished this without the use of any bounds on substitutions.

The following interpretations are used with the examples of this

gection:

(1) xe ¥ ﬁeans "t is a member of set y",

{(2) %¢ v means "x is a subset of ¥",

(3] = = v means "set x is identical to set y",

(4) = iy means " the union of sets x and ¥v",

(5) =M y means "the intersection of sets x and y",

(6) = - v means "the set obtained by taking set x and removing from
it all elements that appear in set ¥",

{7} 1 means “ the universal set consisting of all elements",

(8) SB(x) means "the set of all subsets of xz",

{(9) & means " the agsoclative product for the group",

(10) e means " the identity element for the group",

(11} E(x}.mﬂanﬂ "x iz a subgroup of the group"

(12) p(E,Y) menas "the product set XY consisting of all elements Xav
such that x € ¥ and v € YY",

(13) prime{x) means "x is a prime number",

(14} Il? means "% divides ¥",



{15) rational(x) means "x is a rational number", and
{16) s=sgrt(x) means "the sguare root of x".
Exsmple 1: The set of all subsets of A intersected with the set of

gll subsets of B is fdentical to the set of all subsets of A intersection B,

Al. ([ftx.y} EX :-fiz.yﬁ E?} A {f{x,?} ey O fix,¥) tx]) xSy
A2, X EyD ((EEIZ} zey) A (zEV O :Ex})

AT, (zEx A2EY) D ZEX M ¥

b,  zEm oy & (zEx AOoZEW)

AS, (zCxAzCy)ll ezl =y

A6, 2T xEMyY D (2CxAzCy)

AT. (gc x~zE)) O ze SB{x)

A,  zEgB(x) . D (Ecxo 2EL)

49, ~fsB(A) M SB(B) = SE(A NB))

The program proved example 1 in one minute from the above set of
initial axfioms and generated 36 new formulas in the process. Althouph
this theorem had been proved in [2], that program utilized routines
that were especlally designed for set theorv. However, this has not been
an easy theorem for geﬁﬂral purpecse thecrem provers. Vhat is perhaps
remarkable about the effort of the present program is that it did
not geneérate a single formula that was not necessary for the proof
{i.e., each of the 36 additional formulas penerated belonged to the 36

step proof produced by the program).



EI_H"P_liit The =square root of every prime numher iz irrational.
Al, xe(y*z) = (xway)az

AL, xmy = ¥y

A, X = FOXERE = Y&E

A, Xzz = ¥REZ_ X =¥

A5, esx = X

AB. FRE = X ¥ = &

AT. agqrtl{x)sgrt ix) = = .

AB. ylyax

A%, wlxox = yehix,v)

AlD. prime H::'.I 2 {“r{:l{f}ra':z} W Y I.n"z}

All. v prime (e)

AlZ, ratienal(x) 3 (£(x) = xeg(x)A[o[p/e0) onyfete)) v = e))
413. % [prime (a) o “rational(sgrc(a)))

The program proved example 2 in 26 minutes and generated “536 . new
formelas in the process. Although example 2 has been the cbiect of
considersble attention in the literature [14], [5], [12], the present
program is the first to prove this thecrem wil::l'.mul: the aid of special
hints that reflected a previous knewledge of the proof. The program
produced & 30 step proof which is reproduced below. Since the basic
operations for equality, such as its reflexivity x = x, are implicit in
the operation of the program, they are not mentioned directly in the
proof. Also, no direct mention is made of Al and A2 since the effect

of these axiome is implicit in the choice of match and replace routines



used by the pregram as described inm Sectipn B.

Proof of Example 2:

Ald.

Ala.

AlG.

A8,

419,

A20,

AZZ.

AZ3,

Al

A25.
A26.

primef{a)l Rule E5 applied to AL3.

n % rational (sqrt(a)] Rule RS applied to Al3.

rational [sqrt I:a}]l Rule E2 applied to AlS.

wlafyrz) wwalfysrafz Rule R6 applied to ALD and Ald.

[f [sqrt{a.‘.l:l = Eqrt(u}*g{ﬂqrt{a)”ﬂ [m[}-ff [Eqrt{a}].].
wm{y!g{sqtt{a)]]w = e] REule E& applied to AlZ and AlG.
f{aqrt {&}_]I = ggrtia) ig[aqrtia}] RBule BRI applied teo AlH,

wfy/£ (sare(a)) ) wre(yle(sqre(a)]) v = ¢ Rule B3 applied to
AlE,

sqrt{x)}asqre(x)wz = x=z Rule R applied to A3 and A7.
sqrt(aleg(sqre(a) sz = f(sqrt(a)]#z FRule R6 applied to 43

and Al9,

sqrt(a)sf (sqre(a)] = asg(sqrela)] Substitution of AL® into A21
using R11.

axg(sqre(a))wg(sart(a)) = f(sgrela)) *f(sqre(a))] Substitution of
A23 dnte A22 using R11.

w(afy*z) Case 1 of Al7.

“(akx = ywz) where y and z are the same variables that appeared
in A25 (i.e., vy and z have been given an existential interpretatiom).
Rule R12 applied to AB and A25. A contradiction is ochtained between
AZ4 and AZG for vy = z = f_{sqrt{a]] and x = n{sqrt{a)]#g[sqrt{a}].

This causes A2Z5 and A26 to be replaced by A27.



AT .

AZB.

AZ9.

A3D.
A31.
A32.

A33.

AL,

AdG.,
A37.

A3B.

A4,

aff{iﬂ::{a]]anff[aqrt{ﬂ}} Cases 2 and 3 of A17 for v =z =
f{aqrt{a]}.

wiy/f(sqredal]] case 1 of A20.

miytx = f{aqrt{a}]] where v is the same variable that appeared
in A28. PRule E12 applied to AB and A28, A contradiction is
cbtained between Al9 and A29 for v = sgrtfa) and % = g{sqrt{a}].
This ceuses A28 and A2 to be replaced by A3f.

n{sqrt{a)/g [sqrt (a) }} v [sqrtla) = e] Case 2 and 3 of A20

for v = sgrt(al.

aff[ﬂqrt{a}] Case 1 of A27.

£(sqre(a)) = ash(f(sqrt(a)),a) Rule R6 applied to A% and A31.
auh{f[sqrt{a}],a]*z = f[sqrt{a}}*: Fule E6 applied to A3 and
A2,

ash(f[agqrt(a)) ,a)®sqre(a) = asg(sqrt(a)] Substitution of A23
inte A33 using rule R11.

h(f [sqrt{a)].a}#sqrt(a) = g(sqrt{a)]. Rule B6 applied to Ad
and A34.

wu[sqrt(a) /g(sqrt(a)]] Case 1 of A30,

ml[sqr:l:a:lﬁ = g[sqre(a))] Rule R12 applied to AR and A36. A
contradietion 1s cbteined between A33 end A3ZT. This causes A3G .
and A37 to be replaced by A3SH,

sqre{a) = e Case 2 of A30.

eksgrii{e) = & BSubstituticn of A3E inte AT using rule Ell.

sgrt{a) = &  Substituticn of AL into AZD using Bule Rl1l.



Abl, @ = a Subsritution of A3E into A4D using rule R11.

A42. prime (&) Substitution of A&l inte Al4 using Tule R11.

A eontradiction is obtained between A1l and A42. This causes A%
through A42 to be replaced by A43.

A3, aff[sqrt(;}] Case 2 of AZ7. The program solved this last
case merely by noting that it is the same as a case which had been
golved previously (i.e., it ig the same as A31). The proof of
the theorem now is complete since all outstending cases have been

solved.

EKEEEle 3: Grau's three axioms are sufficlent to define a ternary
boolean algebra.

The following five axicms define a ternary boolean aléshra.
Al. f[I{u,y.uh, v, f(x.y.W}] - f{x,r.f{u‘v.w)]
A, fly,x,x) = x
A3, f[z,y,g(?)]- x
Bl. Ei(x,x,v) = x
B2, £(gly).vzx) = =
The object is to show that axioms Bl and B2 both follow from axicms Al
through A3. That this io-fact.could becdone was anncunced in the
mathematical literature [6] but no proof was presented. It was proved
gubgequently by an interactive theorem proving program [1] which
utilized a human participant in the proof finding process. The following
18 step. proof is guite different from the ome in [1] and did mot

Invelve any human participation. The program i presented with axioms



Al through A3 as well as the denial of B2. It was not necessary to

deny Bl since Bl was produced in the course of proving B2, The proof

took 110 minutes during which 245 new formulas were created.

ah. aff(g(a),a,b) = b] Denial of BZ.

A5. f(y,v,fix,y,w)] = £(x,v,f(y,v,w))  Substitution of A2 into
left side of Al using rule R11,

MB. fly,v,y) = £[x,5,£(r,v,¥)] Substitition of A2 into left side of
AS using rule R11.

AT f{y.?.ffn,y.?}} = f(x,y,v) Substitution of A2 into right =ide of
A5 uszing rule RIL.

AR . f[f{u,u,u}, v,f{v.w,w]} = F{u,v,w) Substitution of A7 inte right
side of Al wsing rule RI11.

AD. f[E{v,H,u}, v,u] = flu,v,w) Substitution of A2 inte A% using
rule FR11.

Al0. f(x,x,5) = £[gly),x,y] Substitution of A3 into left side of A9
wsing rule R11.

a11. x = £{g(gtx)) ,x,g(x)) Substitution of A3 into left side of AlD
uging rule R1l.

ALZ, g{g(:)]- *®  Substitution of A3 intq All using rule B11,

a13. £[x,g(y),y) = x Substitution of Al2 into A3 using rule R11,

ALk, fE}r.gfz}. f{x,y,z)} = f{x,v,y) GSubstitution of Al3 into right
side of AS using rule E1l.

ALS. £(y,glz), £(x,7,2)] = y Substiturion of AZ into Ald using rule RI11,

Als, ffy.g[gf?}}.x] = ¥ Gubstitution of A3 inte AlS using rule R11.

AlT. f{x,x,¥} = x Substitution of A12 inco AlS using rule Rll. This



proves axiom Bl.

ALB, flx,y,%) = x Substitution of A6 into Al7 using rule R11.

M19. £(gly).%,¥) = x Substitution of Al7 into ALD using rule R1L.

420, £(y,x,2(y)] = x Substitution of Al2 into A19 using rule R11.

A21. fx,7,x) = f[gf}f}.‘_l.',.:{ } SBubstitution of AZD into left =ide of A9
using rule R11,

A22. f[g(:.r},:.r.x] = x Substitutien of AlS into AZ1. This completes the

proof since AZZ contradicts A4.

Example 4: In a group, 1f xwxsx = ¢ and fix,v) = E.-_.,*x"lﬂ'l for all
x and y, then f(f(a,b),b] = &

Al, xalv#z) = (xay)az

A2, X = yIOx4z = yaz

Ad., = yozém = zdhy

Ah, X%z = yREOX =¥

-A-El z W

EEY T XK = ¥
b, xke = x

AT, e%x = x

A0, xExEx = e
All. fix,y) = :'r-'-'_'f?‘l'-lt_l""_'r‘_l
a1z ~(f(f(a,b),b) = )

Example 4 was discussed in the appendix to [13] in which it was

shown that a paramodulation proof of this theorem could be feund which



teck cnly 47 steps whereas a comparable proof using ordinary resclution
took 136 steps. However, these proofs were not obtained from am actual
procedure for finding proefs but were the product of an inspired human
effort. By contrast, the first computer produced precf of this theorem
was obtained by the present program. This proof was 44 steps long and

took 30 minutes during which 415 new formulas were created.

Example 5: Let K be & subgroup of group G and Xog be the right coset
of E in G for some geG. Then Kog is identical to K if and only if

£ is a member of E.

A1. ma(ykz) =(xay)ws

Al. X = ¥y XAZ = yz

Ad. X = ¥ D EAX = Zwy

Ab., xhz = yaz D x =y

AS. zex = zmy S m = ¥

Ab . wke = X

AT. eex = x

AB. xhx T = @

A¥, % Twx = g

.AlD. f:t_]'}_l = %

A11. [#0x,¥) ex D £(x,5) e7] O xcy
Al2. zcv D (zex T zey)

A13.{zex s 2EY) D zEX ¥

A4, zexUv D (zex~~ z=v)

15, (ZEX.~zZEY) O ZEXMIY



A16. zExy O (zex A zey)

817, [zex A v(zey)) O 2ex =

AlB, 25 % - ¥ }{aﬁn"utzw}]

Al9, (RC ¥ A ¥PCHR)J® =¥

A20. x = ¥y D(xC ¥y~ yOx)

a21. f({ex)ex A nlx) =) O px)ahix) =)

( Alet) o (plx) ™ =) ) et
A22. s(2) = [eEz .~ (xEz o x Lez) A~ (% Tez o wez) )
A23. s(z) 2 (xwyez v “(xez) wiyez))

A2h, s(E)
AZ5. xEKoz o [z = m(x,z)#=z ~ mix,2) cK)
AZ6, x#z EFoz v “W(xeK)

ATT. N{{Rug = K D gek) o~ (geK 2 Kog = E:I:]

The program found a 46 step proof to example 5 in B minutes during

which 21% new formulas were REnE!ﬂtEﬂlz.

Example 6: If H and K are subgroups of group G, then the product set

HE is a subgroup of G if and only if WK is identical to EH.

Al-A22, Same as in Expmple 5.
423, s(x) O [B{}r} o (zeplx,y) 2 (z = mix,y,2)anix,y,2) ~Amix,v,2)ex

Aonlxy,z)er))}

Lamxiums A? through AlQ0 were not allowed to interact directly with
each other since the remaining initial axioms were placed in a set of
gupport [20]. The purpose was only to save a little computer time as
these nine axioms were wery famliliar and their fnitial effects quite
predictable.



a24, s(x) O (s3) D {uww eplx,y) & luex) v “(vey)])
425, s(x) o [8ly) o (80w eplx,v) o M5 = uar) ~ v = tav)
o w{uEx) s (wEY) w e(rwt Ep{'x.ﬂ}]]
A26. s(H)
427, s(E)
ME.«([F{H,K} = p(E,H) 2 s(p(B,E) ) (s(p(H,K)) o p(H,E) = pﬂi-ﬂl']')
The program found a 134 step proof to Example 6 in 72 minutes during
which 960 new formulas were r.:'r:eat.e:l.“
To this author's knowledge, examples 5 and 6 have never appeared
before in the literature on automatic theorem provimg. Each of these
examples is noteworthy in that theé computer was confromted with a
very rich set of initial axioms. Both of these exsmples (and especially

Example 6) should preve to be guite a challenge to machine criented

automatic theorem provers.

Iasane as footnote 13,
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