MASSACHUSETTS INSTITUTE OF TECHROLOGY
A.I. LABORATORY

Artificial Intelligence October 1972
Memo Mo. 270

TEACHING OF PROCEDURES--PROGRESS REPORT

Gerald Jay Sussman

Work reported herein was conducted at the Artificial Intelligence Labora-
tory, a Massachusetts Institute of Technology research program supported
in part by the Advanced Research Projects Agency of the Department of

Defense and monitored by the Office of Maval Research under Contract
Number NOOO14-70-A-0362-0003.

Reproduction of this document, in whole or in part, is permitted for
any purpose of the United 5tates Government.

Progress feport — Teaching of Frocedures
by Gerald Jay Sussmpan

The idea of tuilding a programmer is very seductive in that it
holds the promise of massive bootstrapping and thus ties in with many
ideas about learning and teaching. I will avoid poing intc those issues
here. It i=s necessary, however, to explain what I am not working on. I am
not interested in developing new and better lanruages for expressing
glporithms. When FORTRAN was invented, it was touted as an automatic
programmer, and indeed it was, as it relieved the user of complete
specification of the details of implementaticn. Newer programming
languages are just elaborations (usually better) of that basic idea. I
am, however, interested in the problem of implementation of a partially
specified algorithm rather than & complete alporithm and a partially
specified implementation. This problem is truly in the domain of
Artificial Ihtelligﬂnne because the system which *solves" this problem
needs & great deal of knowledge about the problem domain for which the
glgorithm is being constructed in order to "reasonably” complete the
specification. Indeed, & programmer is not told exactly the alporithm
to be inmplemented, he is told the problem which his program is expected
tc sclve.

A programper hardly ever starts with no progranm at all., Usually,
he has a program which is almost but not quite applicable to the need. In
this case, the programmer determines how the given program is to be
modified to display the desired behavior; he makes a patch. This

PAGE 2

technique is closely related to debugging; in which a progren desifned to
solve a known problem misbehaves in some case. The bug must be understood
#nd & patch concocted. In general, under goocd conditions, the creation of
o progrem to solve some problem can te viewed as debugging an existing
LTrGETaMm .

Thus, the purpese of this project is to produce & "programmer.” I
rm relying deeply on intrespective concepts of how I do progsranming.

FAGE 3

I. Automatic Program Construction

I have been constructing a preogram called "HACKFE®™ which writes
and debugs programs in the EBELOCKES world. It currently shows signs of
life, writing some elementary programs by debugging and patching. The
program HACKFR as well as the programs it operates on are written in
CONNIVER.

The physics of the BLOCKS world is as follows: there are blocks
cn a table and a hand. The hand can 1lift only one block at a time. Hence
the hand camnmot 1ift a block if there are others on it. A block can only
be placed on another if there i= enough space on the other. Here we
introduce one primitive which moves blocks in this world. (FUTON A E)
puts block A on block B if A“s top is clear and B has space for A on it,
ctherwise it produces an error. HACKER does not consider the structure of
FUTON just as I don”t think about CONS. HACKER does, however, know about
FUTON and gets the error comments from it when it is incorrectly called.
HACKER starts out with one well-commented but very limited program io
work with:

(IF-NEEDED I-F-ON (IMPERATIVE-FOR (ON '(X (ATOM !,X)) (Y (ATOM ',Y¥))))
(NEEDS (AND (CLEARTOP !,X) (SPACE-FOR !,X 1,Y})
(PUTON X Y))
(ADIEU “CK))

PAGE 4

This program is called by pattern—directed invoecation; if we need an
inperative for getting atomic object X (not & tower) on an atcmic object
Yy it is called. Its body consists of a call to FUTON commented by iis

prerequisites. The (ADIFU “0K) informs the caller of success,
HACKER also knows:

(IF-NFEDED M~O—CLEARTOP
(MEANING-CF (CLEARTCF ! “X)
(NOT (EXISTS !,(Y (GENSYM))
(CN 1,Y 1,X)3))
(NOTE))

i.e. cleartop(x)2 -1 Iy 7. on(y,x)

(IF=NEEDED S-F-KOT-ON
(SUFFICES-FOE (NOT (ON !°X 1°Y))
(EXISTS 1,(Z (GENSYM))
(WHERE (ON !',X !,Z) (WOT (= 1,2 t,Y)))))
(HOTE))

i.e. zgy F. on(x,z)>"0on(x,y)

"urther concepts will be introduced as needed. In section IT (Heuristic

Propramming) we will deal with more diffieult concepts concerned with

FAGE &

space,

Ve talk to HACKER by asking it to achieve a desired final state,
e.g. (ACEIEVE (OH A B)) or, say (ACHIEVE (AKD (OK & BE) (0N E C))).
ACHIEVE Tirst tests if its poal is already achieved and if =sc it returns
CK. If not, it searches for a wey to accomplish the goal.

Consider (ACEIEVE (ON A E)). If A has a clear top and there is
space for A on B, then when I-F-ON is invoked, it calls (PUTON A “B)
which dees the job. Suppose, however, the situation was:

(ON A TAELE)

0B | e owsn

(ON C A)

I-F-ON is invoked, it calls FUTON. PUTON gets angry and returns the error
comment:

UNSATISFIED FREREQUISITE (NOT (ON C &)
FACKER then backtraces, checking the truth of the comment (NEEDS (AND
(CLEARTOP ,X) (SPACE-FOR ,X ,¥))...). It finds it untrue. Since this is =
NEETS comment, it writes code to achieve the prerequisites and patches it
in. Now I=-F-0H looks like this:

PAGE &

(IF-NEEDED I-F=ON (IMPERATIVE-FOR (ON !(X (ATOM X)) (Y (aTCM ,¥)))
(SETUP (CODE=-FOR (AND (CLEARTOP !,X) (SPACE-FOR !,X !',Y¥))
(PROG "AUX* ((FROTECTEDS NIL))
(PROG (ACHIEVE (CLEARTOF !,X))
(PROTECT (CLEARTOP !,X)))
(PROG (ACHIEVE (SFACE-FOR !,X 1,Y))
(FPROTECT (SPACE-FOR !,X 1,Y)))
(UNFROTECT PROTECTEDS)))
(PUTON X Y)))

SETUF is a comment explaining the ressons for the code written; to setup
for (PUTON X Y). CODE-FOR is a comment explaining that its second
argument was written to achieve the first arpument. The code written
binds a variable PROTECTEDE and initializes it to NIL. It then achieves
ard protects each subgosl, unprotecting them before leaving. Protection
iz a mechanism for catching bugs of interaction between subgoals (to be
explained later).

This code was gpenerated by a process I call pattern-directed
macro—expansion from a macro in HACKERS bag of coding tricks. (The
concepts of a "bag of tricks" is due to Richard Greenblatt). This trick
iz fairly complex and looks like:

PAGE 7

(IP-NEEDED C—F-AND (CODE-FOR (AND . !°L) !!CODE)
"AUX* ((F NIL))
(FOR-EACH-ELEMENT G L
(CSETQ P (CONS (LIST “PROG (LIST “ACHIEVE G)
(LIST “PROTECT G))
F)))

(CSETQ CODE (AFPEND “(PROG “AUX* ((PROTECTEDS NIL)))
(REVERSE F)
“((UNFROTECT PROTECTEDS))))

(NOTE))

The complexity stems from the ability to code for AND of any number of
elements. HACKEER then backs up the stack and starts running from
(SETUP+..)s He gets to (ACHIEVE (CLEARTOP !,X)) before rumning into
troutle. (CLEARTOP A) is not true so he looks for an imperative for
cleartop. Not finding any he realizes it’s time to write scme code.
Finding M<O-CLEARTOP he sees that CLEARTOP is a defined concept and thus
he writes, by pattern-directed mecro-expansion:

(IP~NEEDED (IMPERATIVE-FOR (CLEARTOP 1X))
(MEANING=CF (CLEARTOP !,X)
(ACHIEVE (NOT (EXISTS Z1 (ON Z1 1,X)))))
(ADIEU "OK))

FAGE |

HACKFR then runs the new imperative but he needs to achieve the not
exists expression. It is not yet true, has no imperative, has no
explicit meaning, but we have a trick for this case:

(IF-NEEDED (CODE-FOR (NOT (EXISTS IV 1°G))
(FOR-EACH !,V 11G1
(ACHIEVE (NOT 11G2))))
(CSETQ 61 (SUBST (LIST “/! V) V G)
G2 (SUBST (LIST “/1/, V) V G))
(NOTE))

Thus we expand the ACHIEVE, patching to get:

(IF-NEEDED (IMPERATIVE-FOR (CLEARTOP !X))
(MEANING-CF (CLEARTOP 1,X)
(CODE-FOR (ROT (EXISTS 21 (ON 21 1,X)))
(FOE-EACH Z1 (ON 121 1,X)
(ACHIEVE (NOT (ON 1,Z1 1,X))))))
(ADIEU “OK))

FOR=-FACH is a canned loop commonly found in CONNIVER programs. This code
is run until it hits the expression (ACHIEVE (NWOT (ON !,Z71 !',X)). Here
we expand the macro S-F=NOT-ON getting:

FAGE ¢

(IF-NEFDED (IMPERATIVE -FOR (CLEARTOF 1X))
(MEANING=CF (CLEARTCE !,X)
(CODE-FOR (NOT (EXISTS 21 (ON 21 !,X)))
(FOR-EACH Z1 (ON 1Z1 !,X)
(SUFFICES-FOR (NOT (ON !,Z1 !,X))
(ACHIEVE (EXISTS Z2
(WHERE (ON 1,21 !,22)

(NOT (= 1,22 1, XN
(ADIEU “OK))

We run this new code until we have to expand the expression (ACHIEVE
(EXISTS ...)). Here we need the trick:

(IF-NEEDED (CODE-FOR (EXISTS !V (WHEEE !°G !°Q))
(PROG “AUX"™ (!,V)
(CHOOSE !,V !,Q (POSSIELE !,G))
(ACHIEVE !,G)))
(NOTE))

Thus we get:

FPAGE 10

(IF-NEEDED (IMFERATIVE-FOR (CLEARTOF !X))
(MEANING-CF (CLEARTOP !,X)
(CODE-FOR (WOT (EXISTS 21 (om 21 !,X)))
(FOR-EACH Z1 (ON !21 !1,X)
(SUFFICES-FOR (NOT (oW 1,21 1,X))
(CODE-FOR (EXISTS Z2 (WHERE (ON !,Z21 !,22)
(NOT (= 1,22 1,X))))
(PROG wAUX™ (Z2)
(CHOOSE Z2 (NOT (= !,Z2 1,X))
(POSSIBLE (ON 1,21 1,Z2)))
(ACHIEVE (ON !,21 1,22))))))))
(ADIEU “CK))

This code runs, CHOOSE (by magic of its own) makes Z2=TAELE. (ACHIEVE
(ON C TAELE)) (remember Z1=C) finds I-F-ON and calls it recursively,
solving thu problem.

Note that by just running this specific example we get I-F-ON
patched for situvations where X is not CLEARTOP and a completely general
CLEARTOF routine which not only solves this specific case but also any
recursively or iteratively complex example. E.g. the performance program
can now, without modification, achieve (CLEARTOF A) in:

FAGE 11

hote also that the knowledge used in writing this program i= divided inte
two independent classes:
1) Enowledge of the proglem domain:
I-P-ON, M-O-CLEARTOP, S-<F=KOT-ON
2) Domain independent programming knowledge:
i.e. all CODE-FOR methods.
It is my hope and honest belief, that almost all "programming" knowledge
can be coded into a small number (perhaps 50) coding tricks. New problem
domain dependent knowledge can be easily added; for instance, I can
define the concept of a tower as:

(IF-NEEDED {HEAHIHG—GF (3—TGHEH LI I'E]
(AND (CNW 1,X 1,Y) (on 1,Y £,2))))

PAGE 12

1. Heuristic Programming

Sp far we have been dealing with well-defined and understood
~oncepts like CLEARTOP (which even has an explicit definition), NOT-
(liness (for which we have a sufficient condition) and Oliness. The blocks
world also contains a n:cu-l::_h fuzzier concept, SPACE-FUR, which we can not
=n clearly work out. For achieving CLEARTOP, there is gnly one program.
1f it cannot do the job there is no hope. For SPACE-FOR, however, we have
rdous strategies which can be tried, m-:n one of which is puaranteed to
work, nor is the failure of one an indiecation of ultimate fajilure. We now
investigate the methods required to handle such concepts and the
constructs which are entailed.

Suppose that the scene is:

] EL (ON A TAELE)
A (ON B TAELE)
o/

end 'we want to put A on B. (CLEARTOP A) is true but we get stuck at
(4PACE-FOR A B). Since it has no direct route to achieving the goal,
HACKER looks around for a way to assign blame for this failure. Here we

introduce a new set of facts.

PAGE 13

{IF-NEEDED M=H-SPACE-FOR-1
(MAY=HURT (SPACE-FOR !'°X !'"Y) (CLUTTERED !,Y))
(NOTE))

(IF-NEEDED M—O-CLUTTERED
(MEANING-CF (CLUTTERED ! “X)
(EXISTS !,(Y (GENSYM)) (WHERE (ON !,Y !,X)
(NOT (FROTECTED (ON !,¥ 1,X))))))
(KOTE))

(IF-NEEDED M-H-SPACE-FOR-2
(MAY-HURT (SPACE-FOR !“X !°Y) (HAPHAZARD !,Y))
(NOTE))

(IF~NEEDED M~O-HAPHAZARD
(MEANING-OF (HAPHAZARD !“X)
(EXISTS 1,(Y (GENSYM)) (WHERE (BADLY-FLACED !,Y !,X)
(0N 1,Y 1,X))))
(NOTE))

(IF-NEELFD C-F-NOT-WHERE
(CODE-FOR (HWOT (WHERE !*X !°Y)) (ACHIEVE (NOT !,X)))
(NOTE))

PACE 14

These facts tell HACKER:

1) Iack of space can be attributed to two possible causes: a
cluttered surface or a haphazardly arranged surface.

2) A surface is cluttered if it has on it objects which are not
on it for a reasen (if they were, the ONness relation would
have been protected by the program which needs it preserved).

3) A surface is HAPHAZARD if it is not packed, that is, if there
are "badly placed* objects on it.

HACKER comes up with M-H-SPACE-FOE-1 in searching for a blameful fact. He
tests (CLUTTERED B) and finds it true. Thus he asigns it blame for the
failure. Since this is an uncertain situation (as triggered by MAY-HURT)
it gets compiled into a very special piece of code using a function
STRATEGY-FOR. Also, since SPACE-FOR is a named concept (like CLEARTOP) we
wake an imperative for it:

(IF-NEEDED (IMPERATIVE-FOR (SPACE-FOR 1X 1Y))
(STRATREGY-FOR (SPACE-FOR !,X !,Y)
(ACHIEVE (NOT (CLUTTERED !,Y))))
(ADIEU “0K))

This is then expanded (by straight pattern-directed macro-expansion as
before) into:

PACE 15

(IF-NEFDFD (IMPERATIVE-FCR (SPACE-FOR !X 1Y))
(STRATFGY-FOR (SPACE-FOR 1,X 1,Y)
(MFANIRG=OF (NOT (CLUTTERED !,Y))
(CODE~-FOR (NOT (EXISTS Y3 (WHERE (0K Y3 !,X)
(KOT (PROTECTED (OK Y= 1,x1)1)))
(FOR-EACH Y3 (WHERE (ON 1Y% 1,X)
(NOT (PROTECTED (OK 1¥= !,X))))
(SUFFICES-FOR (NOT (WHERE (ON !,Y3 !,X)
(KOT (PROTECTED (ON 1,¥Z !,X)))))
(ACHIEVE (NOT (OK !,Y¥3 1,333
(ADIEU “OK))

Since (ACHIEVE (NOT (ON !,Y3 !,X))) is a problem already solved, this
does it. STRATECY-FCE is special in that it sets up an interrupt
condition on its first argpument being true. Thus if the situtation was:
and the problem was (ACHIEVE (ON D C)) the FOR-FACH loop to get rid of A
and F would not run to termination. As scon as A was removed (and put
down on the table) control would return to STRATFGY-FOR because tho
(SFACE-FOE D C) would become true.

I have not described yet how to use the HAPHAZARD concent; I
leave that to the next section on debugeging for an example. Note,
however, that only a few new programming concepts, CODE-FOBR=LOT-WHERE,
MAY-HURT and STRATECY-FOR have been added in this section, but lots of
new problem—domain -:mnc&rts vere introduced.

FACE 16

IT1. Automatic Debugeing

Consider what will happen if we tell HACKER to (ACHIEVE (*=TOWER
" B C)). He will write:

(IFP-NFEDED (IMPERATIVE-FOR (3-TOWER !X !Y !Z))
(MEANING-CF (3=TOWER !,X !,Y !,2)
(CODE-FOR (AND (ON !,X !,Y) (ON !,Y 1,2))
(PROG "AUX" ((PROTECTEDS NIL))
(PROG (ACHIEVE (ON !,X !,Y))
(PROTECT (ON !,X !,Y)))
(PROG (ACHIEVE (ON !,Y !,Z))
(PROTECT (ON !,Y 1,2)))
(UNPROTECT PROTECTEDS))))
(ADIEU “OK))

This program has a bug! The first clause of the (CODE-FOR (AND ...) v..)
vete A on B. The second tries to get B on C. First it tries to (CLEARTOP
F) so B can te grasped. This forces an attempt to (PUTON A TABLE) but the
First clause protected (ON A B) so A can“t be moved. Thus we get the
error comment from PUTON: FROTECTION VIOLATION (ON A B). At this point,
IACKER is entered via a BUG routine called from FUTON with the error
comment as its argument. From this vantage point HACKER locks up the
~tack to see if there are any alternatives to be considered. He reasons:
I would have viclated the protection by putting A anywhere; I had to put

PAGE 1T

A somewhere to get it off E. Even if T had another way to ret it off & T
couldn”t use it because the protection is on (OW A B). This restriction
contradicts the meaning of (CLEARTOP B) and thus contradicts that goal.
But (CLEARTOF B} is necessary to setup for (PUTON E C) sc it deesn”t help
to try to achieve (SPACE-FOR B C) first. (& possible alternative — a
FLANNER program would have tried it, and failed). Thus a2ll of the moves
are forced from (ACHIEVE (ON E C)). This subroal is thus inconsistent
with the restriction; but it is necessary for the goal (AND (O & EB) (ON
E C)), but above this the restriction is gone. In fact, the resiriction
was placed in order to protect the previously achieved subpoal (O A E).
Thus we have no way to achieve those subpoals in the given order sc I°11
patch it so the offending step is belfore the offended one:

(IF-NEFDED (IMPERATIVE-FOR (3-TOWER 1% 'Y !2))
(MEANING-CF (3-TOWER !,X !,¥ 1,Z)
(CODE~FOR (AND (ON t,X !,Y) (ON !,¥ 1,2))
(PROG "AUX" ((PROTECTEDS NIL))
(PROG (ACHIEVE (ON !,¥ 1,Z))
(PROTECT (OW 1,Y 1,2)))
(PROG (ACHIEVE (ON !,X !,Y))
(FROTECT (CN !,X 1,¥)))
(UNPROTECT PROTECTELS))))
(ADIFU “OK))

EAOE T

This program is correct, But not all bugs are so simple; let us concider
snother:
The situation is that all blocks (A, B, and C) are on tor table
and the problem is: (ACHIEVE (U A B C)) where:
(IF-NEEDFD (MEANING-CF (U '°X 1°Y 1°Z)
(AND (0N 1,X 1,Z) (OK 1,Y 1,2)))
(KOTE))

Tn this case the code penerated is:

(ITF-NEEDED (IMPERATIVE-FOR (U 'X 1Y t2))
(MEANTNG-CF (U !,X 1,Y !,Z)
(CODE~FOR (AND (ON !,X !,Z) (ON 1,Y 1,Z))
(PROG "AUX® ((PROTECTEDS NIL))
(PROG (ACHIEVE (ON !,X 1,Z))
(PROTECT (OF !,X 1,Z)))
(PROC (ACHIEVE (OW !,Y¥ 1,2))
(PROTECT (ON !,Y 1,Z)))
(UNPROTECT PROTECTEDS))))
(ADIEU "0OK))

This code is nearly CK, but when we execute (ACHIEVE-(ON A C)) A poes on
the middle of C (a heuristic to maximize stability). This blocks the
(SPACE-FCR E C) becuase C isn’t larpge enough to hold B with A on its
middle. What does HACKER do? The performance program is in (STRATEGY-FOD

FAGE 19

(SPACE~FOR B C) ...) when it discovers that it cammet win by the clutter
strategy as (ON A C) is protected. Since there are no cther strotersies
currently coded, STRATEGY<IFOR asks HACKEK for help. BACKLE finds another
strategzy, M-F-SPACE-FOR-2; the HAPHAZARD stratery, and finds, indeed,
that (HAPHAZARD C) is true. This is then coded up as before zs an
alternative strategy: (from now on I will leave out details of expansion,

filling in with ... and conly showing relevant serments.)

(STRATEGY-FOR (3PACE-FOR !,X !,Y)
(MEANING—CF (NOT (CLUTTERED !,Y¥)) ...)
(MEANING=OF (KOT (HAPHAZARD !',Y)) ...))

This code indeed solves the problem but we must introduce some more
rrimitives.

(IF-NEEDED (IMPERATIVE-FOR (PACKED 1X 'Y))
(KEEDS (CLEARTOP !,X) (PACK X Y))
(ADIEU “OK))

(IF-NEEDED (SUFFICES-FOR (NOT (BADLY-PLACED '°X '°Y)) (PACKED !,X !,Y))
(NOTE))

Note: STEATEGY-FCR takes any number of strategiles and exhausts them in

the given crder.

BAGE 2C

lete: PACK pushes its first arpument as far as it can from the center of
its =econd argument, without falling off.

This patch, though it works in this case, and is often useiful, is
not a good patch. In fact, HACKER realizes the troutle ouicldy. We see
that in runmning the patch, A is pushed to a corner of C. Hut A was the
last object moved, (HACKFR keeps a record of this) and if an object is
moved twice with no intervening cother manipulations, it should heve been
moved to the correct place the first time, This is not Just o matter of
efficiency — if the problem had been: (AND (ON A C) (CN D A) (0 E €)
(CH E B)) we would have had trouble pushing the towers (D A) or (T E).
Though there is a permutation of the AND which will werk, the problem is
compounded with compound objects (not yet discussed) as in (AND (OH
(TOWER D A) C) (ON (TOWFR E B) C)). In any case, HACKFE has an eye
peeled (an interrupt set) for double movements in execution of a sinfle
command. He allows the execution to proceed but leaves & note to himsell
to investigate the problem when the command returns successfully. Fach
time an object is moved, the "physics™ leaves a note on the HISTORY list
with the activation of the mover. Thus when the progranm successfully
returns HACKER sees that the first mover of A was:

(PUTON A C) called by (ACHIEVE (CN A C))

snd that the second was: (PACK A C) which left & in & good position.
Thus he edits the first goal to read: (ACHIEVE (ON A C PACK)) which will
put it down packed the first time (I lied to you about I-F-0F and PUTON:
they really have an cpticnal peositicn defining argument whose default is

"oenter”),

FPAGE 21

The DEBUGGING knowledge appearing in this section is not as
explicitly stated as in the preceeding sections because it iz not yet
coded. A major eriterion for the code is that it break up into ITOCHD and

rrogramming knowledge.

