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INTRODUCT TON

As originally proposed, perceptrons were machines that scanmed a dis-
crete retina and combined the data gathered in a linear fashion to make de-
cisions about the figure presented on the retina. This paper considers
differential perceptrons,which view a continuous retina. Thus, instead
of summing the results of predicates, we must now integrate, This in-
volves setting up a predicate space which transforms the typical percep-
tron sum, ﬁﬂiﬂ §ek) Linto ij‘l&r‘.i":{ﬂ# , where £ is the figure on
the retina, i.e. in the differential case, the figure is viewad as a func-
tion on the predicate space. We show that differential perceptrons are
equivalent to perceptrons on the class of figures that fit exactly onto a
sufficiently small square grid. By investigating predicates of various
geametric transformations, we discover that translation andgry“getﬂy Can
be computed in finite order using finite coefficients in both continuous and
discrete cases. HWe also note, that in the perceptron scheme, combining data

linearly implies the ability to combine data in a polynomial fashionm.



BASIC CONCEPTS

We are only going to consider subsets of the plane that fit an in-
tuitive jdea of "nice"; sets that one could draw a picture of,

A figure, f, 15 a subset of the plane such that:

1) f is compact
2} every point x in f is either an interior point or has an in-
terior point within a distance e, for all e» .
3} f has only a finite number of components and holes.
4} for every point x on the bourdary of f:
a) there exists ew0 such that curvature is defined at all
boundary points within a punctured e-ball about x.
b) either curvature is defined at x, denoted Cﬂ’ ar the Timit
of the tangents from either side makes an angle at =, denoted A:,

Let F be the set of all figures.

Points on a straight line segment on the boundary are defined to have
curvature equal to zero and no angle defined. The magnitude of Ax is the
radian measure of the amount onme turns upon passing the vertex. For instance,
the angle at the vertex of a regular n-gon is Z4/n. the exterior angle rath-
er than the interior anale. ]Axl will always lie in  (0,7) and the sign
can be determined as follows: if one moves around the edge, keeping the
figure to one's right, and the interior of the angle lies to one's right then
the angle is positive. Similarly, if one moves about the edge keeping the
figure to one's right and one is moving clockwise with respect to the center

of curvature then the curvature is positive.



For example, in the adjacent figure the
curvature at 1 and 2 is positive; at 3 and 4
it is negative. The angles at A and B are ‘P

positive; the angles at C, O, and E are nega-

tive. The angle at F is the limit of tangents of
tangent circles, it is -TJ. A
For the remainder of this paper by predicate we mean a function

F-—‘P{ﬂ,‘.l?s. A predicate of finite index, p, i5 one whose value depends only

on whether each point of some fixed finite subset of the retina, X, satis-
fies a given local property with respect to the vetina. X is the support of
p, denoted 5 (p) = X. The index of p is |,:l;|,

The simplest example is the index 1 predicate p“ whose support is f_ug
and (1= 1 b xe £ L Let (% K0 tq. %) = XE (RO e can define
a predicate |:1."r'.'I by pw{f'} =1 iff I,E{.‘Ilﬁﬁ Xy s an interior point of f, and
Ill is a boundary point of f where curvature i5 defined and equal to -“h.. The
index of pi. is the number of distinct points amoung I'I‘ }12. 1{3. Xy and
S[p-i]l is those points.

Most sets of predicates of finite index may be topologized so that they
are at least a subset of a topological group X that has an invariant integral

defined upon it. If we view a figure f as a function on this space via

fip) = p(f) then in most interesting cases it will be clear that £ is inte-
grable . More generally, we can then write ktrj-&?-, dp where a:X*‘?R
is a reasonable function.

Let ]}x be the index 1 predicate as above. Let K = pi, Then we may
topologize K with the topology of the plane, i.e. tl‘lﬂi;'l‘l!d'i{:ﬂtES correspond
bijectively with their supports. Then the integral over K is the Lebesgue

integral. Alternately we may topologize K with the discrete topology re-



sulting in the counting integral ¥%“”Phﬁ

Suppose J is the set of all index 1 predicates p such that p(f) =1
‘fH: S{p) is a boundary point of f. We can topolegize J so that it is
homeomorphic to R and jf;m;lp is equivalent th’C{x, y) dxdy where C
is the characteristic ’ function of the boundary ::j--F1l f. Unfnrtum'tel-, 3
the boundary is a set of measure zerein the plane. We would, however, Tike
to be able to associate a measure with it, the length of the boundary, which

is defined for f€F. Suppose then that for each x = {xl,...,xn} E {.ﬁ‘]“

there is a predicate p"‘, such that p:[f':l = ] i{f each Xy is a boundary

point of f and perhaps satisfies some other property as well. Then this set
of predicates, call it L, can be topologized so that it is homeomorphic to
{{F\E]lﬂi We will use the Lebesﬂue taken over the surface in [R.E” correspond-

ing to the boundary of f, f.e. [x.....x )€ R%" §s on this surface Wf each

Xy is a boundary point of f. This integral 15 normalized so that the "area"
of the surface is the length of the boundary of f raised to the power n.
We are now ready to fit these fntegr-a]é. into the genaral perceptron

scheme: a linear sum with a threshold., The idea iz that we have a set of

predicate spaces ?_m‘! . and an integral over each, jmf';.ﬂ'.;p QF
K

iy
where the integral may be any of the types discussed , and we now wish to

sum these integrals in some manner. MNote that it is guite possible for
there to be a topological structure on this set of predicate spaces, for
instance if II. is the space of all index 1 predicates where pély is such
that p(f) = 1if S{p) is a boundary point of f and curvature is defined
there and equal to r then the set {Ir}h‘_m may be given the topolo-
gy of the line and so to sum integrals of the form Lﬂ{pl f(p) d p

we may write J S alp)f(p)dpdr.
| N

b-.



In general, we may identify the set of predicate spaces, ;_“"-Lih !

that we wish to sum over in a differential perseptron, with a subspace of
a topological group that has an invariant integral. Indeed, the discrete
topology admits any group structure as a topological group and any set is a
subset of the free group generated upon it; therefore, we may write a per-
cetpron as LP{-E'] rj 5 M.Fl JE;,“ dp {,-E\-_I . The order of 'f is

the maximun of the indices E-‘F predicates in any of the Kﬂt



IT EXAMPLES

To illustrate the concepts of the previous section this section con-
sists of a number of examples of differential perceptrons. The first three
examples demonstrate the usefulness of topolegizing predicate spaces with

the discrete topology so that integrating reduces to counting.

Example 1: kp convex = I_The figure on the retina is cunwexh1 .

Wote that a figure is convex if anmd only if there exists a pair of
points belonging to the figure such that the midpoint of the 1line segment
joining them is not in the figure. Let px be the index 1 predicate such
that fipx} =1 1if and only if xef. Let U be the set of all predicates
F'x.lﬁ""lpxtn p"" a5 Xy, Xg, and Ky TUR independently over the retina,

For pelliet a(p) = 1 if Xq iz the midpoint of E;Eﬁ and zero otherwise. Then

giving the discrete topology we can write the order 3 perceptron:

i“.“iﬁ;}“ = rgmp": Fier ¢ L'J
U

Example 2: I+Jreg. paly, = r}he figure on the retina is a regular
polygo 'l .

A figure will not be a regular polygon if and only if it satisfies at
least one of the following properties:

1. It is not convex.

2, It has nonzero curvature at some boundary point.

3. It has two unequal angles.

4, It has three adjacent vertices a, b, c, such that the length of ab

does not equal the length of be.



Let V be the set of index cne predicates where for p€V, S(p) = {:ng
and f(p) = 1 if and only iff x is boundary point of f where curvature is
defined and not equal to zero.

Let W be the set of all predicates p = fﬁng]e is defined at = and at
y and is unequal at those two p]aceé] as x and y run independently over the
retina.

Let X be the set of all predicates which recognize the following 3 pewit

configuration: Q o where od LTV
;oA b nd
;f'eﬂ’“P "m.qpl__i o o, gﬁrll
T
LR

Let U be as previously then, giving V,W, and X discrete topologies:

rjﬁ v — rEMF‘I{'Lm + S += tp rg{tﬂ r4 -f.‘.'_l'l
I Py u v W % .
If we wish to recognize only regular n-gons then let Y be the space, with

discrete topology, of all index 1 predicates that output 1 when their support

lies on a boundary point which is the vertex of some positure angle other

than AM/w - Then addingif{p} to the linear sum for q"re-g. poly.

-Tf

yields "-lJ req. n-gon.

Example 3: Circles

A figure is not a circle if and only if it satisfies one of the fol-
lowing properties:

1. The figure is not convex.

2. There is a boundary point where a nonzero angle occurs.

3. There exist two boundary points x,y, such that Cx % Cy.



Thus, let I be the space of all index 1 predicates such that for
El, fip) =1 1if and only if S(p} is a boundary point of f where a non-
zero angle is defined.

Let 5 be the space of all predicates p = l_x and v are boundary
points and Cx # E;.-'_i as x and y range over the retina.

Then, with U as before , and with discrete topologies all around:

Yerete®l Zapkp + Zko +Zhp 071
If we wish only to recognize circles with radius r then let T be set,
with discrete tupulugyJﬂF all predicates p =Tx 15 a boundary point where

curvature is defined and not equal to lf;1 . Then adding in;f fip) to

T
the sum for '"!’cfr::'[e J,.rieldikh:‘irde of radius r.

Example 4: total curvature

Suppose Cx and Ax are the classes of index 1 predicates at x such that
a1l for relRand se [-W, W] there exists peCx, q€hx such that p =M% s
alwﬂé.‘,-? point where curvature is defined and equal to T‘-T and g =r:u is
a boundary point where angle is defined and equal to s-ll . Let alp) = r
and alq) = s then giving Cx and Ax the discrete topology and summing:

EF{p] = The curvature at x, if defined;0 otherwise.
Cx

%ﬂp}

Thus if the outside integral 1T}t2?f{P] +-jgfipj}31 is the boundary
Ax Cx

integral discussed previously then the entire integral is the total curvature

The angle at x, if defined,0 otherwise.

of f. This determines that the Euler number (components-holes) of the fi-

gure is less than some threshold.



ITI. RESTRICTED EQUIVALENCE OF DISCRETE AND DIFFERENTIAL PERCEPTRONS

In this section we show a restricted eguivalence between discrete per-
ceptrons and differential perceptrons.

IT we SHIF-EIIHFFEEE. square lattice on the retina we may consider it as the
retina of a discrete perceptron. Figures that fit neatly into this grid, 1.e.
figures that the discrete and differential perceptron have in common will be

referred to as squareifigureg. We will show that discrete perceptrons and

differential perceptrons are equivalent when restricted to squared figures.
The only discrepency arising in this restriction is that corner connected
figures are locally connected at that corner in the standard topology of the
plane whereas, by the convention stated in Perceptrons, on the discrete
retina there is no connection there. We will reverse this convention and con-
sider such a figure to be connected and consider its complement to be locally
disconnected at that point.
If one Tooks at a small neighborhood of a point on the retina that

has a squared figure on it one may see only one of the following:

O® 000® 62 06
Thus any index 1 predicate 531:13&:1 by Euch? Figur?ﬁzgiﬂt to an in-
dex 1 predicate which recognizes one or more of the above.

Thus if a differential perceptron is applied only to squared figures

we may eliminate from all sums the predicates which are never satisfied by

a sqyred Tigure. Then if that perceptron is of finite order it may be cast

i ™
in the f:-th{f] L r Eiﬂ{p)f{p] dp(ﬂ. We will show that if we put a
L=l A,
L



grid on the vetina and consider it as the retina of a discrete perceptron
then we can construct a class of predicates over this discrete retina, for
each 1, such that the summation of these classes yields the same value as
I”a{pl f(pldp.

In the following discussion we shall assume that such a 5um+"r. with a
fixed threshold,®, is given. MWe will show how to construct a sum of predi-
cates over the retina, now viewed as a discrete retina, which is identical
in value to q}.

Visually, an e-grid divides the plane into boxes; we can make them dis-
Joint by including with each box only its upper and right hand edges and

not the end corners of these edges, i.e. is an entire box.

Consider the retina with a grid on it. If we let "subsets" be subsets

{of the retina) which are composed entirely of boxes then for each integer

we can order the “subsets" consisting of exactly m boxes. Let E: be the

Keh such " subset’ having m boxes. This gives us a partition of any predi-

cate space [:

Iﬁ ={p;1 |5{p:ﬂ]:1 and for all j and all 1&m 5[n]¢ﬂ?}.

In other words, I; iz all p& I such that S{phtﬁﬁ and at least one point
k
ﬂ-F S(p) 15 in each box in B, If (al11) p€ 1 has index m then for m¥n,

m = ﬁ Therefurmfl alp)fip)dp £k,“-au|[|:|.}nf|[p:u]lr:l|:n.

Each E; has a finite number of “subsets," and these can be numbered. Let

jn:; be the it such "subset. ¥ For p I:‘T there ic at

most one "subset" ] ﬂ; such that pfj D;} = 1; for all others p{jD;} = 0. Thus
o o
regardless of what a squared figure f looks like outside of E:, plf) =1 if

; koo k
and only if fr18m = jﬂum'
pl’-.jd::‘] if and only if p{ .Dk

Naw 1::1 can be paritioned inte (U jd;}l}d where

J
J = 1 and J is the set of all predicates in

¥ We will dlso vse DX 4y represent The(sqvared) fiqure congistin
only of The 5-:‘1,5,_-_‘\’JJ DX. ¢ 1 S



I:.‘“ that are never satisfied by a squared figure. Thus for j1 7 jE’
d; qg-l; = § and alp)fipldp =$‘J&: a(p)fipldp.
m

At this point we must consider what type of integral we are dealing
wWith in the expression J;a[p}fl[p}dp {which represents ocne of the summands
inT -LME J'Ha{p‘.lf{p}dp-cﬁ-l ). If this integral is the Lebesque integral
or the Léaésﬂue integral over the boundary, as described in Basic Concepts
then it will be finite over any figure since all figures are compact. If,
however, I has the discrete topology and the inteqral is the counting inte-
gral then it may be infinite. Thus we define predicates over the retina with
the superimposed grid, now viewed as the retina of a discrete perceptron, in
two ways. If the above integral is the counting integral and the entire sum
iz finite when taken over any figure, for instance if its predicdfes look
for corner features, or if the integral is of the first two types, then let
;IF'k be a predicate over the (now) discrete retina with coefficient P.{JF' }
by fl{jF‘ ) -U ﬂp]flﬂ}*ﬂ-l and A[JF‘k‘,l = J'a[p}jﬂm{p]dp, this latter co-

m
efficient always being finite. If, however, there are figures for which
ﬂa{p‘jf‘{p] is infinite, for instance if its predicates Took for interpal
* points of f, then we note that the integral must be either infinite or
zero, Thus we let F' rf.hal[p}lf{n] -fﬂ-l as before, but since we
cannot have 1!‘|f1TIItE n:crefﬁ::‘?eﬂt& in the discrete perceptron scheme, we
1'n5tEad. let H{jP“ﬁ‘,l = 21, depending on whether.f;&{p']f[p} = 4@ and in

the linear sum we are constructing, allow ﬂ.l[JFk'J to appear fnfinit'l_',r often

5o that the effect is the same. Thus ﬁip]lf{lﬂdp .Z:M F ]ffJP ).

mykyJ
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We can now write a discrete perceptron equivalent to by applying the
above to each I{ in %ﬁfa{pjf{ﬂdp. Hote that this new perceptron has
order less than or Equ;I to the order nF?.

Mow we will show that if we have a discrete perceptron defined upon
the retina that we may construct a differential perceptron that is equiva=-
lent when restricted to squared figures. Let f be a {squared} figure on
the discrete retina. Let the area of each box in the grid be E. If we
have a linear sum for a discrete pﬂrceptrnn.'f{'F}I':rE&{t}}fI:D}Ga!rJE may as-
sume that 15 in positive normal form,

Let ﬂ.ﬁ be a mask {in the discrete sense), ':!,u, (f) = 1 if and only if
foA, for some fixed "subset" A of the retina. Then A =;_I.'l|1'!"i where F‘i are
boxes. Define HA to be the class of predicates (working on the continuous
retina) containing all predicates of index n, with S(p)CA and 5(pWER for

any proper "subset®™ B of A, i.e. there is one point of S{p) in each ‘I"'i and

for any n-tuple of points Koseers }:?’tand p (f) = 1 if and only if :-:F'F,

for 1=1, 2..., n. Furthermore, since a figure occupies all of A1 or none

of it, for peM,, p(f) = 1 if and only if AT, Then.l fipldp = E" if
i

At and 0 otherwise. 3o QA (f) = UE”_LAF[;;}EP. Therefore we can dupli=-
cate any sum over the discrete retina as the sum of intearals of the above
type.

What we have proved is that for any linear sum of order n over the dis-
crete vetina, i.e. any discrete perceptron, w-e'mu.'e an equivalent linear sum
of order n over the continuous retina, which at least works for squared fi-
gures. Conversely, if we have a linear sum over the continuous retina of
grder n which works for squared figures then there is an equivalent linear

sum of order n over the discrete vetina. In particular, anything which

% with X €A, Theve s ome peMa with S(e) =%, %k



cannot be calculated as a linear sum of finite order with respect to the dis-
crete retina, with our reversed convention concerning corner connectedness,
cannot be done in general with respect to the continuous retina in finite
order. S5ince the proof in Perceptrons that connected has no representation
as a linear sum with finite order does not involve this convention the re-
sult follows: there is no Tinear sum of finite order over the continuous

retina which determines ‘f’tnnnected.
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GEGMETRIC TRANSFORMATTONS

In thie sectlon we discuss some interesting differential perceptrons.
We willl consider the retlna to be divided into two half plares, A the left
half', B the right. Glven a flgge in each half we are interested in having
a perceptron recogrize whether or not they ddffer by a geometrie transforma-
tlon; e.g. translation, rotation, reflection, and comblnations thereof.

The space of predicates we will use, K, 1= the space of index 3 pre-
dicates such that for peK, S(p) = {1{1,. X 131 and P(p] =1 1femd '“"rf
H"' x, ,H-._'Ihnﬂ X4 Qre \hﬁﬁw fbl!';"i & ﬂ"i 'F » We think
of K as partitioned ints equivalence classes under translation; to be precise,
the equivalence class of peK is a1l geK such that 3{g) = t3(p) where t3{p)
1s a translaticn of S(p). Thus each equivalence eclass consists of all pre-
dlcates whose support 1s some flxed conflguration of three (not necessarily
distinet) points. Given a econfipguration C, K, will dencte the equivalence
¢lass of all predicates in K whose support 1s C. The topology of a olass
K. 1s that of i 82 1= easily seen from the bijective map from the center of
gravity of the support of each predicate in I{G to the plare.

Given a space of prediecates 3, gh and EE'

will dencte the subspaces of
8 with support lylng entlrely in A and B respectfully.
Suppose two figures f and g 1ie in A and B respectfully. Given two con-

fipmations C. and €., not necessarily distinet, define = Kﬂ x KE' .
1 2 C.y €7 ey

pgﬁé“;ﬂe iz of the form By X Do, 'plc)(gl, F-EEKEE and 8(p) = S{PI}USEPEI' and

flp) = I‘(]:nl,‘.lf{pzjl. That 1= k%icg is & space of index 6 predicates ard 1=

!
a four dimensionsl subspace of R'. If we now look at the retina as a whols

it eontainsthe flgure g, dencted fz, If pz]%.‘Bc then felp) = fglpy, x py) =
1°2



f{pljg{pz]. Therefore by the Fubinl theorem:

fg(pldp = { rg Tlpy)elp,dp,)dp, = ({A f(p, Jdp,) {{H glp,lap,).
CE I%E C [

1 2

SAmilarly, 1f we define Ko :1'% x E% and T lies 1n A then
G807 5

f{pl X pEII = f{pl}f{pe} 80:

S ot = Jof
A £ipy )fp,ddp,ddpy= ( f, flpdap 1 £p,ide,)
0,0, I.%l k¢ Ké Kg

2

If C=C =C, then we write K& Kcmc and 1%; ,

Mow, if f and g are figures in A and B respectfully: {{:hi'[p}dpn-(’[@ gl{]:ﬂu:lpilE
( J’ftmdp:IE - 20}, 1))y lo)an) + {J}%g{mdp:nz -
feiplap + J, &lpldp.
Ko
2

fipidp - 2,
&

c

4

g
%] p

Futhermore, sinee the support of all predicates in E have their Eup—

port in A, [,felp)dp ={'{A f£(p)dp and similarly ,}l'{a & (p)ap = = [ g(p)dp
> 2 Koz
&

Clearly any finite degree polynomial comblnation of Inteprale can be
formed in this manner, that is, the concept of finite order linear sums owver
arbitrary predicate spaces automatically Includes findte degree polynomial
gums. Thus If we write a polynomial sum as abowve we will mean the equivalent

linear sum over the appropriate spaces.



ie

For a figure £, its intermal spectra i1a the function V:{all three

point configurations}> B where V(C)= f{p)dp. By the nature of flgures
if for some pe, f(p)=l then V(C)=0. fo

We will prove the followlng result: Ewvery figure is characterized
up to translatlon by 1ts intermal spectra. Howsver, first we need the
followlng lemma from peometry: If & trapezold has bases of length D and
De, for some e, O<e<D, then Iin order that both diagrnals have length less
than or equal to D it is necessary that the endpoints of the shorter base
each lie within & ball of radius {EE}J"JE ghout the associated endpodnts of
the lohger base,

To see this constructed two cireles as in I on the following page; IB
will be the longer base of the trapezold, To get IT mark off distances D-e
from A and B to get F and G and construct elreles of radius D at F and G.
The clrele at & and the clrele at B have thelr centers D-e apart, the zame
1z true for the elreles at F and A. Thus 1t 1s necessary that the endpoints
of the shorter tase lie in the shaded reglons. We would llke to caloculate
the distance |AT| = |AK|. &ince all the clreles have the same radius notice
that the vertical lines in ITI bisect the segments of AB lying In the shaded
reglons, By construction each of these segments has length e. Two appllicat-
lons of the Pythagorean Theorem ylelds |[W)= EIJTI = I:rEJHE-

Suppose two figures are translates. Then 1t iz clear that thelr inter-
nal specirs are ldentical, Convversly, suppese two flpaoes T and g are not
translates. Then conslder thelr three wectn:rr spectra (as In Perceptrons).
W= lnow there are some vectors of maximal length D in £ and length E in g;
(these hawve thelr endpoints on edge points of the Mpures); but glven one
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\Qu:]{ver.:tm* E in £ {er E in gl there are no 1 wectors parallel to if,
Choose a maxlmal vector Dydn f. There are three\possibilities:

1} Maximgl vectors in g have length EFD. Suppose, without loss of
generality, that DE=d=0. Then there are two interior polnts of [ separated
by a distance D-e for some &, O.e.d. Plek a third interior point anywhere in
f. ©Call the configuration formed by these three points . Since no trans-
late of C fitz into g we have: ff(pld»0 and re(p)dp=0.

kg ke

2] Maximal wectors in g have length D but there is no such veector paral-
lel to E Henee all peirs of interdior points in g 1lving on & line sepment
parallel to ﬁ are separated by a ddstance less than D=4 for some d=0. Plek
two interior pointes in f separated by a distance Dee for some &, keced and
pick any third podnt in £, Call the confipuration formed by these three podnts
C. Then: I f{pldp30 and JSglpldp = o.

e e

3) g has a maximal vector of length U parallel to I; Sinees by assump—
tion £ and g are not translates, 10 we place the figures on top of one another
with these maximal vectors colneclding then at least one of - and g-f is
nonempty , say f-g 1s. Furthermore, from the definition to figures it follows
that f-g has & nonempty interdor. Flek an Interior point x of f-g; there 1s
a2 @*0such that a d-ball about x 1s 8 subset of f—g. Now plek@, O<e<d, such
that2(De) ™2 «d and such that there are two interior polnts of f lying on a
line segment parallel to D separated by s distance D-e. Consider the confipg-
urgtion C formed by these two peints and x. By the preceeding lemm and the
fact that D is maximal translates of this conflguration do not fit into I



ore
A
wiless the two points separated by the distance D-e within a distance

l.'I:IF!iIl“"rE of the endpoints of D, But then the point in C corresponding to
x s£il11 lies in the d-ball about x, 1.e. 1t =tlll lles 1n f-g. Therefore:
[f{phdp=0 and fgl(pldp = 0.
e e

Since the three vector spectra characterdzes a flgure in n-space, in
particular, since a maximal vector in an n-space flpure 1s udque, the above
proof shows that the intermzl spectra of a figuwre In n=space; where configura=
tions eonsist of any three pointe In n=space; characterdizes that flgae up to
translatlon (in ne-space).

Thus, glven a figure £ in A and g 1n B, they are tranclates 1 and only

ifs: Mipkp = jeipldp for a1l C l.e. if and only if:
wh ke 2
C C [ fflpldp - felpldp)™ =0
N B B
Ko Ka
Therefore:
¥ f and g = £l sf{pl)dp - .rp;{p}clpllg £ l:.rl-
are translates ] B
Ko Ko

F{ Mlelpidp - 2 ffglp)dp + Sfeglpldp) € i-J-l
This is a perceptron of order 6. MNotice the abszolute wvalue of the
coefficlients of any predicate in the sum is less than or equal to two.
iven a confipuration C, let E be the conflguration gotten by refleckt=
ing C through the line separating A and B. Glven two figures, fin Aand g
in E'.-‘F iz a reflection of ﬂ tihrough the line separating A and B, up £o trans-

lation, if and only 1f:



1o

ff(pyip = Jfglp)dp for all C.

B
g r

The equality i1s clear if £ 18 & reflection of g. Coversly, if [ is not
a reflection of ¢ then the flpmre § which is g reflected through the line
separating A and B translated back Into B 1 not & translate of . It is
cbvioue that : S glp)dp = f Eip)p o,
fe e
But, sinee f and ¥ are not translates:
i'f(piltls: ¥ J‘gﬂiulldu for some C.

Ko Ko
So fi{p}d.ﬂ # .IE':PJ'-'-]F' for some C.
Ko K
Trus: ¥ = I_E{ ff{pldp - .I'E:{p'.lu:l;:u}z £ EI-I
fisa C LA B
reflection c Fem
of g

This idea can be used in another situation. For the moment ne longer
think of the retina as divided. For an ordientation r, and a configuration C,
let C be the sonlipratlon gotten by reflecting C through a lime of orienta=
tion r. Let £ be 5 fipure, Then [ has a lire of symmetry of ordentation r 17
re{p)dp = rf(p)dp for all C.

ke | B¢

le. W = E{ Sflpdp - _n"I'I:,:":-,'h:l]:n]l2 & -:;I-l
Trere exlsekbs a o HC EE
Line of symetry
aof arlentation

Sumz of this type for different orlentatlions may be combined to deter-

mine whather or not £ has multilateral symmetry.



We note that the same scheme, essentially squaring the results of the
predicate computation, applies In the cbvlous manner to discrete perceptrons.

Trus symmetry and translation ecan easily be computed in the discrete case.

We can only conjecture about computling ¥ atdem because az of yet we
hawve been unable fto prove the following: figures are determined, up to rotat-
ion, by their 3-point spectra (i.e. non-ordented J-vector spectral. Given

this fact, ¥ 1s quite simple. Let f amd g be flpores in 4 and B re-

rotatblon

gpectlively. Iet Hc be the space obfained by operating on K., with the group

C
of rotations. In other words, H{; conslsts of all predicates whose supports

are rotations and translatlions of the predicates 1n K Then, in our nota-

o

LLlory, "0lpowres are ckobermlooed, up Lo eolutlon, Ly Lhelis 3 poli. spectra’

locks 1lke E(HR(p) - g(p}ljz =) Aif arnd only if [ is a rotate {and translate)
C

of g. Clearly,isthit case:

Yrotation = ré[ {Eip} -_{g{p}g < ol

While we cannot prove the above, we can prove a weaker result that de-

pends on the order of the group of rotaticns. It will be shown that Y rotation

can be determined with order less than or equal to 2{ |R| + 2) where |R|is

1= the order of the group of rotations, K, This means that ¥ can be

rotation
dore in order 12 on the discrete (2quare) retina sinee the larpest rotation
group that can be considered in the dlscrete case 1s R = {0, 90, 180, 270} ,
The proof 1s as follows:
Iet H be & findte group of rotatlons of order n with generator r. Let
fbeaflgpoe In A and g be a flgure in B, We will show that if  is not a
rotate (i1.e. R rotate) of g, there exists a configuration of order n + 2 that

fits in f, but doss not £it In g under any rotation.



Thus suppose that © and g are not RB=rotates. We may
suppose that the lengths of masdmal vectors appearding in 0 and
g are the zame, =ay D. Plek a maximal vectar?ﬁ in . We may
assume that for at least ore B=-rotaticn of g there 13 2 maximal
veotor parallel tc::-ﬁ singe otherwlse there 1s chviously a thres
podnt conflguration that flts Into £ but not inte g under any
R=rofabion. Por each 1 such that rig has a maximal vector, Tﬁi,
parallel tu::_fl we may place r‘i_g onn top of © so that T'-i a.'r::i_'_? codn=
clde and we may assume that I”urigfja'. For such 1 let iy be an
intertor point of f-rg. Pick d»0 such that & d-ball sbout X
HMes antirely in firig'when they sre lined up as abowve, for all 1.
Flok e£d such that E{DEM ard such that there are two Interdor
pointe of £, ¥ and =, separated by & distance D=2 and lylng on a
1line eegment parallel to D. Let C be the confipuraticn of n+2 points
or less conelsting of the xi's, v oand 2. By construction and the
lemma about trapeszolds no .H-mtate of ¢ fits into g. Let.c- be the

set of all confiperations having n+2 points or less. Then:

= 1
Yot [—Ci%( %‘F‘*F - Si‘{”’?) <ol



