MASSACHUSETTS INSTITUTE OF TECHHOLOGY
A. 1. LABORATORY

Artificial Intelligence
Memo No. 277 February 1973

A LINGUISTICS ORIENTED PROGRAMMING LANGUAGE
Yaughan R. PFratt

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for the laboratory's artificisl intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under 0ffice of Naval Research contract HOOOL&—70-A—
0362=0003.

Reproduction of this document in whole or in part is permitted for
any purpose of the United States Government.

ABSTRACT

A programming language for natursl lsnguage processing
programs 13 described. Examples of the output of programs
written usling 1t are given. The reasons for various deslgn
decisiona are discussed. An actual session with the system
is presented, in which & smell fragment of an English-to-
French translator is developed. Some of the limlitatlions af
the syestem are dlscussed, along with plans for further

development.

& Linguistice Orlented Programming Langusge

Vaughan&Pratt

l. Overview

This paper preeente some aspects of work done gt 244
intervals over the paet two yearse, Clirst 2t Stenford and
then at MIT, on a project to develop a programming language
sultable for wrilting natural language processing programs.
The relevant acronym 1ls LINGOL, for Linguistics Orlented
Language. Similar projects such as COMIT (Y¥ngve 1963),
and i1te successors METECR (Bobrow 1964) and SNOBOL (Farber 196H4)
no longer reflect the state of the art of computatlonal
linguisties; indeed, they do not rise above the remark that
computational lingulstice 18 concerned wlth processing text
strings. The issue addressed 1n these pages 1s that of the
programming technology appropriate to the syntax-semantice
interface, an artifice that arises 1in the phrase-structure
paradlgm for natural languages. A secondary lssue, to be
dealt with elsewhere, concerns the relative merlts of varlous
parsiﬁg strategles for phrase-gtructure orlented grammars,
and the development of a parsing algorithm superior to both
the Earley and Cocke-Kagami-Younger procedures. {See Aho
and Ullman (1972), p. 314).

Following Winograd's (1971) lead, we begin by glving
ﬁume examples of the output of programs written in LINGOL.
The polnt of having a programming. language is to make

programming lees painful for all concerned. The interesting

-

property of these programs 1s that two of them were written
in quite a short space of time by students with no experlence
in either LINGOL or lingulstles. Ansther program (the French
translator) was designed, written and debugged from seratch
for demonstratlon purpoees by the suthor from 3:00 a.m. to
H:00 a.m. of the morning he was acheduled to glve a tallk on
it.

The flrst program was ﬁritten in September 1970, to te=t
out the first version of LIKGCL. It was a sort of "deep
structure” analyzer which attempted to make syntactle remarks
about santences (Filgure 1). The grammar used in it served
as the baels for the next two programs.

The system languished for six months untll a graduate
student, Bill Faught, took advantage of it for a project in
an A.I. workshop. He took two weeks to wrilte an English-
to-German translator (Figure 2).

Later, Faught decided to do some serlous work on qﬁaatinn-
answering systems, and soon produced a comprehension program
(Plgure 3) that relied on a relational model of the world in

which all related concepts were represented in a graph as
vertices linked by two-way, labelled edges. Hecently he has
produced considerably more lmpressive results, but 1t 1s more
appropriate that Faught himself report on them.

The French translator (Flgurel) was written by the author
early in 1972, for demonstration purposes. The program

consisted of a page of grammar and semantics, a page of

3
MOME OF MY FRIEMDE WERE EATEM EV A LIOGH
AZZcRTION:
FALZE
FCTOR: LIOH
ACT: EAT
OFEJECT: FRIENDS
FORTIOM: ZOME
OWNER: I

THE AUTHOFS OF HOME OF THEZIE EOOKES ARE FRIEMDE OF FETER
AZZERTIOM:
FRLZE
ZUEJECT s AUTHORS
IPECIFY: THE
AUTHOREZ OF = BOOKS
FORETIOM: =OME
FLACE: HEFE
EE: FRIEMDEZ
FRIEMDEZ OF: FETEF

IF A MAM CHM ERT A DOG A HORIE CRM ERT A IMALL CAT
HEIERTION:

ACTOR ¢ HORZE
ACT = EAT
OFJECT @ CAT

IMALLHEEZZ: IMRLL
IMMEDIACY s FOTENTIAL
COMDITIOMN:

RCTOR = MAM

RCT: EAT

OEJECT: LDOG
IMMEDIACY ¢ POTENTIAL

HOW QUICKLY CAM wOU ZWIM .

RUESTIOM:
FFEED:
ACTOR = Y0OU
ACT: SWIM
IMMEDIACY = POTEMTIAL
ERT A HORZIE
COMMAMD =
RCTOR : YOU
ACT = EAT

OFJECT: HORZE

IO vOU LIKE ICECREAM .
BUEETION:

ACTOR = 5OLU
HCT: LIKE
OEJECT: ICECEEAM

Flgure 1. "Deep Structure" Analyzer.

e

THE ZLEEPZ WITH HIM EECAUIE THE LOYET WIS CAT.

ZIE ESCHLAEFT MIT IHM WEIL ZIE ZEIME KATZE LIEET

HE 1% IN THE HOUZE.

ER IST IN DEM HALUZ

HE HITZ THE EALL TO THE DOG.

ER ZCHLAEGT DAS BALL ZuU DEM HUMID

THE CRT IF IN THE TEEE EBY THE HOUZE.

DIE KRTZE I[=T IM DEM EAUM NEEEN DEM HRLIZ

THE STUDEMT WILL ZLEEFP EETTER WHEM HE UMDER:ZTAMDZ THE IDEA.

DER =TUDEMT WIRD BEIZER ZCHLRFEM WEMM ER DIE IDEE VERZTEHT

THE LITTLE OLD mMAM LOYE:T THE RED HOUZE BECAUSE HE CAN IEE THE HORZIEZ.
DER KLEIME ALTE MAHM LIEET DRS ROTE HARUS WEIL ER DIE FFERLE

SEHEN KAMNM

WHILE THE FLOWER I% OLD THE AFFLE I3 YOUNG.

WAHREMD DIE ELUME ALT IZT IZT DEE AFFEL JUNG

SHE WILL GIYE HIM A FLOWER IF HE EATS THE APPLE TODAY.

SIE WIRD IHM EINE BLUME GEEEM WEMMN ER DEM APFEL HEUTE IZET

THE HORZE THAT EATE EBAD RFFLEZ 1% A ZICK HORIE.
DRS FFERD DAS SCHLECHTE REFFEL 13T IZT EIN KRANKES FFERD

IF A HORZE CAM EAT A DHE A MANM CAM EAT A IMALL CAT.

KWEMNH EIN PFERD EIHEM HUMD ETZEN KAMH EAMN EIN MAHM EINE

- KLEIME KATZE EZZEN

Filgae 2. The German Translator of W. Faught.

-F—

JRCK BUILT A RED HOUSE. WE LOVED FATI. MORTIMER WRS JACK <=
FAT. HE LIYED IM THE HOUIE THART JACKE FUILT.
- JILL BUILT A BLUE HOUSE, THE LOYED CATS. IFOT WRS A CAT 44O
..TE MORTIMEF. JACK HATED JILL EECALIE TFOT ATE MOFTIMEFR.

FIDD WAT R EROWN DOS. HE CHAZIED SPOT. IFIKE WAT R BLACK DOG.
HE CHASED JILL. -

WHAT IZ THE COLOR OF THE DOS THAT CHAZED THE CAT.
EROWH

FID JACK LOYE MORTIMER.
YE:

LHO ATE MORTIMER.
SFOT

EEET I3 THE COLOR OF THE HOUZE IN WHICH THE FAT THAT THE CAT ATE LIVYED.

BHY DID JRCK HATE JILL.
EECAUZE =POT EAT MORTIMER

WHO DID THE ELACK DOG CHAZE.
JILL '

DI JILL LOVE AMY AHIMALZL.
VES
TEQEH HATE EATZ. DID JILL DISLIKE MORTIMEFR.

Flgmre 3. FPaught's Question-Answering System.
I LOYE MY WIFE.
J° AIME MA. FEMME-

sHE LOYEZ ME.
ELLE M” AIME

WE HAYE ZOME EI& FED DOGT.
HOWZ AYONZ GUELRUES GRAMDEZ CHIEMZ ROUGEZ

WE LOVE OUR DOGE.
MOUZ. AIMONS HOZ CHIEHE

OuR DOGE LOVE LS.
NOZ CHIENZ MOUZ AIMENT

BIG DOG: LOVE BERUTIFUL RED THELEE.
LET GRAMDE CHIEN:E AIMEMT LET BELLEZ TARELEZ ROUGES

SMALL DDGE LIKE FPRETTY LITTLE TRELEZ.
WEZ PETITE CHIENE RIMENT LEZ JOLIES PETITES TABLES

Figure 4. Thé 5-Hour French Translator,

—6-

dictionary and & page of useful functlons for conjugating

verbs, arranging agreements of articles and adjectives,
performing liason and 8o on, so0 1t was not particularly larpe,
The point of 1t was

(1) 1t was easy to write;

(11) 1t was sufficlently succinct to be sultable for exhibition;
and

(111) 1t dealt competently with that part of English for which
1t was deflned.

It is easy to claim that, since this is a toy translator,
1t says nothlng about the real world. This 18 eertainly true
wlth respect to polysemy. However, 1t is false with respect
to extensibllity of grammatical rules; we shall later demon-
strate the striking effecte obtained on adding very simple
rules. More recently, another four hours of work gave a self-
tutoring capacity to the program {Figure.E}* Notlce how
unknown words are correctly classifled as to part of epeech
before the program regueats infcormation.

We have been basking in these examples somewhat vicariously.
It i very much like explaining the advantagee and disadvan-
tages of FORTRAN by exhiblting the output of some FORTRAN
programe. Thus the reader should only infer from these
examples the existence of LINGOL, and a lower bound on what
can be achieved with 1t; he sgshould infer 1ts guality or laclk

of 1t not from here but from the following.

THE FOLICEMAN GIVEZ THEM A TICIET.

WHAT IS "THE <OF &) FOLICEMAN™T

LE GEMDARME

WHAT IS “TO GIVE"T

DOMHER

WHAT IS “THE <OF AY TICKET™7T

LE BILLET

LE GEMDARME LEUF DOMNE UN EBILLET.
1345, MILLISECONDS,

THE LITTLE GIELZ WANT A RED FIG.

WHAT I "THE <OF R> GIFL"Y

LA FILLE '

WHAT IZ "TO WARMNT"T

YAULDIR

CONJUGATE IT

YELIX ?EUH YEUT YOULDONE: WOULEZ VEULENT

WHAT IZ "THE (OR A> FPIG"T

LE COCHOH

LES PETITET FILLES WEULENT UM COCHON ROUGE.
1981 . MILLIZECONDE.

FIGE IS FIGE.

LEZ COCHOME ZOMT DE: COCHOME.
77z« MILLIZECOMDE.

I HRYE THE FEN OF MY ALNT.

WHAT I3 "THE <OR A> PEN"T

LA FLLUME

WHAT IZ "THE (OR A> AUNT"T

" TANTE

WHAT 13 ITS GENDER <MALIC OF FEM»7T
FEM

<47 Al LA FLUME DE MA TANTE.
1157, MILLIZECDOHDE.

I WANT THE EUREAU OF MY ONCQRUIT

iHELLD)
TYFE fEHTnHrE FOLLOWED BY . ! OF 7

I WANT THE EBUREAL OF MY UMCLE.

WHAT . 12 "THE <0OR. A3 BUEREAUL"T

LE BUREAU '

WHAT IR "THE COFR RA» UMCLE"?

L OHCLE

WHAT IS ITS GENDER <MATC OF FEM»7
MAZC

JE YEUX LE BUFEAU DE MON ONCLE.
1225, MILLIZECDOMDE.

Eigxue 5. Tha Q-Hm.r French 'I'ramlat-ar-, in Ignorance mode,

2. Terminology and Ferspective
Let us set the stage preparatory to giving s=ome definitions.
We need & paradlgm for computational linguistics progrzma, and

we choose the translation paradigm as best describing the

LINGOL system. The tranelatlon paredigm characterizes natural
language processing programs as translators from the natural
source language to some natural or formal target languszge,
whether French, LISP, structural descriptions, predlcate
caleulus, conceptual dependency dilagrams or what have you.

No lose of generality 1s entalled here, for by simply making
the target language a programming language, any other paradigm
may be convenilently emulated. The obvious competitor is the

gtimulus-response paradlgm, 1in which the inhut 1s seen as a

gtimulus thet eliclts an sctlon. Agaln no loss of generalilty
can occur, since a posslble action is to emlt an utterance.
The maln advocate of thils paradigm is Narasimhan (1569),
although 1t appears to be the'implicit paradigm in many extant
programse. We prefer the former paradigm for nos very good
reason, although we do find it eaeler nnncaptuallj to manipuleste
and characterize utterances rather than actions. In particular,
in the programming methodology to be deseribed, large ltems
are gradually bullt up from smaller ones, &nd 1t 1z tricky to
cast thls in a stimulus-response format.

Within the translation paradigm we shall identify two
maln phases, cognitive and generative. The cognitive phase 1s
parsing, in which the input 1is preprnc&asaﬂ.until it 15 in a

foarm convenlent for operation on by the generative phase,

which then produces the translation as output. The paradigm
itself does not require that one phase run to completion
before the other can start. Indeed, Winograd's (1971) program
‘makes effective use of feedback from the partial results of
his generatlve routines im gulding the cognltive routlnes, by
attempting to bulld & semantie structure for, say, a Noun
Group, before contlnuing with the parsing.

We are now prepared for the definitione. By syntax 1s
meant all aspects of the source language involved in the
cognitive phase, 1necluding such things &s phrase structure
rules gnﬂ semantlec markers. By semantlce we refer to what is
involved in going from the source langusge (after the arntaﬁtin
preprocessing) to the target language. By pragmatice we mean
knowledge about the universe of dilscourse, and the loeal
context, that may be consulted by both the cognitive and
generative phases as they make declslons.

Each of these three concepts has been used many times in
the literature, with varying shades of meaning and preclsiosn,
g0 we are not redefining previously well-defined terms.
Rather, we see three main aspects to the programs written in
LINGOL, and found three reasonably uncommitted terms with
which to label them. (The first two definitions colnelde more
or less with those of Winograd (1971), so we are not t22 far
afield.)

{It may seem paradoxical to lnclude semantic markers 1n

syntax, but this is just the consequence of our usage of the

=1 ()=

word semantles as opposed to that of , say, Katz and Fodor
(1964). With respect to our usage, semantlc markers represent
an attempt to encode a tiny fragment of pragmatics into syntax
(or into lingulstics, to use the Katz and Fodar terminology,

and thelr equatlon SEMANTICS = LINGUISTICS - SYNTAX). We ds5 not
want to make value judgments about such an encoding; the
example simply serves to Lllustrate the perspective ifnduced

by our definition.)

—-11-

3. Deslgn Philosophy

. There 18 nat one phllosophy in LINGOL, but three, each
tuned t2 the requirements of the three concepts defined abaove.
In the current verslon of LINGOL, the phlilosaphies are

roughly as fallows.
3.1. Syntax

Although this paper 15 concerned malnly with the semantle

component of LINGOL, it behoves us to conslder syntax since
the cognitive phase's output 1a the generstive phase's input.
The central decislon to be made here 1s the choice of
rgprea;ntatian foar this sutput. It seems to be necessary to
disecover the relations between the words of the sentence, or
the phrases of the sentence, or the entlties denated by those
words or phrases. Correspondlng to each of theee posslbilities
are dependency etructures (Eays 1968, Simmons 1964), phrase
structures (almost everybody) and conceptual dependency
networks ESchanE 1370).. Actually the first two are.nﬂt
mutually exclusive, since it 1s perfectly reasonsble to
construct structures whlch cantain all the information of both
techniques. We shall use the term gyntactic structure to refer

to such a coalitlon, to distingulsh 1t from a eoneept structure.

LINGOL 1is mezsnt to be a practlical system sultable far
export and immediate use by practislng computatisnal llngulsts.
The technology [ar phrase structure ls far advanced over any
other technzlogy, and every sueccessful program for the past

eight years or £2 hag unashamedly used 1t. Also, 1t is fairly

=17=

easy t> convert a phrase structure system to a synsactle
structure system, by taggling each phrase with the corresponding
governing word together with polnters to the dependent phrases
{and hence words).

For these reasons, the declslon was made to use phrase
structure as the output of the cognitive phase, leaving the
other representations as projects to be experimented with in
the future. It 1s worth notlng st this point that. the 1des
of a concept structure 18 a very powerful one, especlally in
combination with Fillmore's (1965) notlon of case, ss suggested
by Shank (1570). The notlecn of phrase concatenatlion 1s nowhere
" near as rich as that of case-based relationg between concepts.
On the other hand, this does not make phrase-atructure a
hopeless loeger; in prinelple it 1s possible t9 construet
these relatlons during the generstive phase. However, Shank's
point 18 that the informetion 82 discovered is vitel to the
cognltive phase. More recent phrase-structure systemsa, including
those of Bobrow and Frazer (1959), Woods (1969), Winograd (1571)
gnd the system described here ma%e provialon for discovering
this sort of information while buildirz the phrase structure.
This immediately ralsee the guestion, why not build the
concept structure anyway, Since this information 13 being
diascovered? This point seems unanswerable, and 1s an excellent
aresz for more research. In the egse of LINGOL, we have a
half-gnswer, in that we have developed what we feel 18 very
nlce prngramminémethadnlngy for dealing with phrase structures

during the generative phrase. An avenue for research is

=] =
—t

to see 1f thls methodslogy carries aver to concept structures.

Glven that LINGOL is based on phrase structure, the next
isgue 18 that of the uger's language Tar describing how that
phrase-gtructure 18 ts be bullt. The two criterla here are
expresslve power and ease of use. For sur first iteratlon of
LINGOL, slnce we were more Interested in rapldly developlng
the semantlcs technology, we opted to secrifice expre=sive
power [or ease of use 1f necessary. This corresponds in a
way to Woods (1968) and Charniak (1972) assuming the existence
of some sort of parser and contlnuing from there. The
differences are firstly that both addressed pragmatiec issues
while we address sem2ntic, and secondly that whereas they made
up thelir own parsed output, LINGOL 1s eguipped with a parser,
on the philosophy that it 1s essier to type unparsed than
parsed sentences, and that no harm 18 done when the parser
ganga - agley, whiech 1n practlee oceurs satisfactorily
infrequently anyway.

The user's lengusge for the cognitive composnent was
theralore cHQSEn to be context-Tree rules, =lpnce these gre
very eaey to write. They have exactly the same expressive
capacity as Woods' (1969) transition networks. Moreover,

Just as Woods extended the capaclty of these networks by
allowing the user to specify operations on reglsters, so do _
we permlt the user to supply code to glve hints to the parser
whenever 1t 1s about to apply a rule. This code has sccess

to the part of the tree bullt so far by the parser snd

=14-

relevant to the rule in guestion, and aleza to the u=er's

data base, or pragmatics (which seems to mave semantiec markers
unnecessary as a speclal feature of LINGOL). The form af

the hint 1s & grunt of approval or disappraval, at a volume
appropriate for the particular hint, and in this repect 1=
Just like Winograd's (19T1) numerical treatment of smbigulsy.
8o far, however, none of the programs written in LINGOL have
made more than trivlial use of this festure, in sharp contrast
to the use made of the features in the szemantics stage.

With respect to the actual parser used, the syntax
philesophy L8 that the parser should be transparent to the
user, to withlin the representatlion ef the parts of the tree
to whiech the user's code has access durlng the cognitive phase.
Thie phileocsophy has enabled us to rum without alteration each
of a number of different LINGOL pragrame in conjJunction with
‘various parsing algorithms. The detalls of these parsers

and experiments are beyond the scops of thils paper.

2.2. 3emantics

In programming hls semantica, the user should be able to
work without the distracting detall of pareing, tree represen-
tation, and amblgulty. The polint of 1dentifying the cognitive
and generatlve phases 1s to laslate these lssues logleally in
order to achleve this division of labor. Whether writing an
English-toFrench tranelation program or a question-answering
system, there are many detalls to worry about that have abao-

lutely no relevance to the cognitive phase; the myriad

-15-

ldissynerasles of French grammar and style, the varisus
searching algorlithms and inference rules that are tightly
coupled 1n a QA system to the surface struecture infaormation,
and so0 on. Without zome method in this large-scale madness,
progress 18 bound to be slow.

Furthermore, we bellieve that a high level of performance
will be forthcoming from the cognitive phase of, say, machine
transletlon programs, long before a similarly impressive level
1s attalned by the generative phase. This 1s partly beczuse
comparatively little work is being done on generative aspects
of MT, but more because 1t 1a Inherently harder to say some-
thing with good grammar and style than it 1s slmply to under-
gstand what 1s being saild (2t lsaet explieitly!). The
cognltive phase can ignore most deteils of style, and
many detalls of grammar. In every program written so far with
LINGOL, the generative component has hﬁen sbout thrae times
the size of the cognitive component, and our prediction is
that this ratio will increase as each phase is lmproved.

In taking this point of view, we are following a
ﬁiffErent philosophy from that of Winograd (1971), who makes
use of strong Iinteraction between the syntax and semantlcs
components, which is one of the more notable features of his
program. However, the result has been to produce a program
whoee detalls are laet in the richnees of thias Interaction,
and I have heard Wincgrsd mutter when looWlng at a part of

the program for "BE", "I don't remember writing that”.

==

For the moment we are willing to sacrifice whatever
additionsl power thls approach has to offer faor the sake of
being able to wrlte clean, modular, transparent semantic code.
However, we €2 not belleve that in order to restore this power
we need to restore thls lnteraction. Instead, we plan to rely
eventually on strong lnteractlon between syntax and pragmaties,
leavinglaemantius a8 the cognltion-independent arena. This 1=
not Just paessing the buck; slnce we see semantlcs as belng more
complex than syntax, we are trying to divlde the work-load
more evenly to keep all modules reasonable small. - How syntax
1s to consult pragmatics 1s material for future research. Our
polnt 1e that the bulk of semantice 18 1rrelevant to syntax.

The iszesue now is simply, how does cne write programs
that operate on trees (the output of LINGOL's cognitive
phase)? Thils lssue hes been addressed by computer sclentists
in connectlion with complling for the past ten years, and the
discipline of syntax dilrected translation has gradually
emerged. An early syntax directed translatar i1s that of
Warshall and Shapirs (1964). They used the tree-wallk paradigm,
in whiﬁh the semantlce consists of programs that tell a polinter
 to move up, down or across the tree and occaslonally output

information. Floyd (conversation) has commented thest the
technlque was much too clumsy for practlcel spplications when
compared with technlgues that tled the semantice to the syntax
rather than to the output of the syntax. It 1s alarming to
_find winﬁgrad using this approaech 1n hls program, which we
sonjecture would be made more transparent by adopting a more

rule-afiented gnd legs tree-sriented approach.

=17~

Some theoretlcal work has been done on syntax-directed
translatlon, notably by Lewls and Stesrns (1%9568), Xnuth (1968),
and Aho and Ullman (1972). EKnuth'e paper is of interest in
that it deals with the problem of passing informetion up and
down a tree, using the notione of inherited (from abave) and
synthesized (from below) attributes. All of these studles
guffer, from the computational lingulst's polnt of view, 1in
that they deal with the mierocosm of computer source snd target
lenguages, in which the former can be made z compromlse between
the user's needs and the syntax-directed technology, and the
latter is a relatively well-defined, reference-poor language
when compsred wlth, say, French.

Knuth's inherited and synthesized attributes come eclosest
to meeting osur needs. The problem with these attributes lies
with his mechanlsm for moving them around a tree. Every node
through whiech information 1s passed must make explicit.prcviainn
for forwarding it, even 1f 1t 1s irrelevant to that node.

For axamp}e, conslder:

No mother of such twins has time to relax.
The mother of no such twins has time to relax.
The mother of such twins doeg not have time to relax.
The mother of such twins has no time to relax.
(The seecond sentence is insplired by a study of negatlon by
Klima (19€4). It should be =aid in a tone of horror, with the

emphasis on "n>", before 1t sounds carrect.)

~18-

In each cass,what 1s belng negated is ths whole sentence,
yet the negation marker can be almoest gnywhere in the sentence.
This impliee that a large number of rules will have ts make
provision for passing up & negation marker.

Thls problem can be clrecumvented by using global variables
instead of Knuth's attributes. MNow all that is needed is for
the negatlcn marker to set a negation varlable, and for the
semanﬁice at the syntactle clause level to read 1it.

However, consider the following:

The mother who has no twins has time to relax.

This sentence mskee a positive elaim (as distinet from
the negative one of the previous example) in that 1t says that
there actu&ily are people who do have time to relsx, namely
those mothers who have no twinas. (Moreover, 1t does not
explicltly say what happens to mothers of twins.) This seems
to be a sltuation where synthesized zttributes outperform
global variables, slnce the rule at the relative clasuse level
can eimply refuse to pass on the negation marker,

Negation 18 not the only such troublemaker. Arranglng
sub ject-verb, adjective-nuﬁn and determlner-noun agreement
aleo requlree passing lnformatlon around the tree, especlally
when translating into French, where word-for-word translation
does not nacesﬁarily result in correct agreement. Again, having
more than cne clause makes difficult the use of global
varlables, particular when & plural relative clause 1s szparating

g singular subject from ites verb. Conslder the five

-15-

subject-verb agreements in:
As I walked into the ssloon, the three men whom

Jim talked to after I left him yesterday got up

and slowly walked towards me.

411 of these problems are "marker” type problema. Even
worse 18 passing stylistle information from a word at the
bottom of a tree to a8 elsuse node ﬁighgr up, where this
information 1= t2 be used to alter the whole structure of the
tranalated clause. Agaln 1t 1s lmp2rtant that the approprilate
clause get this informatlon.

The mechanism we want here is that of the loeal variable,

whose scope is the clause with which 1t 1s assoclated. With
many clauses we will assosclate many more local variables
garresponding to the various markers and other messages that
each elause may want. Similarly, we will assoclate other
local variables with noun phrases, to achleve adjectlve-noun
and determiner-noun agreement. In the case of the subject,
some of these markers (person and number, but not gendex)
must be shared with the clruse as well, %o ensure subject-
verb agreement, but we do not went the clause to share the
object's variables. Also, a relative clause such as "who
sleepe” needs the same informatlion from 1ts govenor as does
the principal clause. Moreover, we will want to pass ncot only
markers, but slso word-specific programs written at the
dictionary level but intended for use at the slauss or ather

level. (Winog-ad makes use of this technique for putting

=20-

the right programs in thz right places.) The impiementation
of local varlables must be able to hendle these combinations.

The first verslon of LINGOL implemented 2ll of this in
an unimaginapive end not very general way. Eventuslly, we
saw the 1light and came up wilth the pragram paradigm far
syntax-directed translationm.

The program paradigm saye that the surface structure
tree 1a a program. At sach node of the tree there 1s 2
function, and the subtreees of that node are the arguments of

that function. For example, 1f we have a tree labelled

print
4—"Hﬂ# xi&n‘*_
S\ /N
d b I d

a

this corresponds to the program "print (a + blx{(-c)-d)".
Since LISP has a mechanlsm for local varlables (twa,in

fact - PROG wvarlables and LAMBDA varlablee), by adopting

the program paradigm we automatleally get local variables.

Moreover, because we can wrilte the code far =ach function

separately, we attaln & very high level of modularity, which

we have found pays off handsomely when one trilesz to add new

rules to an already operational LINGOL program.

=31~

The mechanlsm we use for running these pragrams differs
gelightly from LISF's usual EVAL operatar. The maln difference
ig that 1t evaluates the functlon at each node first, glving
the funectlon the reeponslbllity for evaluating subtrees at
1ts lelsure, and controlling the scopes of variasble= foar
different subtrees.

To 1llustrate all of this, we shall develoap a small
Franch translator. Imegine we are seated at a computer
console. The following session has all typlng errors and
stupld mistakes edited out, sinee they rapldly become boring
and obscure the maln 1lssues.

Firat we load the system.
Ltk

| LISP E229CKH
| ALLOCY

| RERADY-TO-FREAD-GEAMMAE :
We are now talking to LISP. To get to talk to LINGOL,

type (HELLO).

tHELLO?
FIRST EMTER YOUR GEAMMAR. THEM ZAY HELLO AGARIN.

|
i TOFP-LEYEL *

S0 LINGOL 1is not yet educated. We could tell LISF to
read in our dictionary znd grammar from a flle, but since we
don't have such a file we will eimply type 1t in at the
termipal.

Firet, let us give LISP a few words.

CDICTIOMARY »

¢THE DET 0 “<LEX>
D05 HOUM 0 “<CHIEM»?
¢TER HOUM 0 “C(MER>» -
¢LOVE VERE 0 “<(AIM:2
2

DICTIOMARY-IHM

a5

Each entry has four ltems, a word, 1ts part of speech, the
cognitive program and the generative program.

The cognltive part is a LISP s-expression (or prozram)
that should evaluste to 3 number to 1ndiecate ta LINCOL our
gatlsfoction or otherwlse with this cholice of interpretation
for this word. It 1s relevant only when a2 glven woard has two
dictlonary entries corresponding to two parts of spesch.
Under these clrcumstances, we might write a program far each
entry to lnapect the environment to see how reasonable the
eorresponding Interpretation ia. These programs would be
executed 1f and when both interpretations were found to male
sense given the context to the left, e.g., 1t would be
executed 1n "the scout flies..." but not in "the big flies...",
where "flies" 1s listed as both a noun and a verb. This compo-
nent of the entry need not conecern us further here; we will
remain neutrzl by wrlting 0 everywhere, unless we happen to
dislike the entry 1ltself, in which ¢ase-we will write -1, or
=2 if we are in s bad mnnd..

The generative part 18 a functilon destined to be tacked
onto the surface structure. 3lnce words are at the leaves
af the tree, they have no arguments. In the case of "the",

when the tree is evaluated, the corresponding lesf will return

e

a 1list of aone element (LE) as its value. The symbol 18 a

guotation mark, and means "literally”, so s LINGOL will not
think (LE) 1= a program to be executed. The other aniriles

are all similarly structured. The reazan we. use a list of

-23-

one word rather than the word itself is that we are going
to APFEND these llsts together to form longer lists.

Now wa want a grammar to make esense sut of the woardes in

cambination.

L ERAMMAR)

{WIENTENCE (HP PRED> 0 <REPLY (AFFEND IL IR> CHRRE)>

HF CDET MFPY 0 CRAFPFEND . YL IR

CHF MOUH 0 iD>

CPEED. C(VERE MF)» 0 CAFFEND IL !R)D

_ L B) . d
| GRAMMAR-IN) Satie bkl

—_—

Eazch rule is of the form (LEFT RIGHT COG CEN). The firet

two Ltems should be lnterpreted ag a context-free rule

LEFT - RIGHT, where RIGHT is either one category or a list
of them 1f more are needed. At present LINGOL only permlts
RIGHT to have at moat two categorles; to get more, one should
usa extra names and ruleg In the standard way.

The item COG 13 exactly as for the correspording
dictionary 1tem, except that 1t may be invoked for more complex
types of amblgulty, usually structural. As with the dlctisnary,
we shall write no non-trivial programs here, although we may
ogcasionglly use a negatlve number when we write a rule which
we do not expect to9 need very aften.

The 1item &EN 1s a morée complex iltem than 1ts dictlionary
counterpart, since 1t can take arguments, which are wrltten
'D (down) 1f RIGHT 1s a syntactlc category, and !L (left) or
IR (right) 1f RIGHT is a list of two categorles. These are
not variables but programs which run the program for the '

correspanding subtree.

=l

The first rule takes the translatlion of the NP and the
PRED and appends them 1In%to 2 single list. For example, 1f the
NP were (LE CHIEN) and the PRED were (AIME LE MER), then
(APPEND !L !R) would produce (LE CHIEN AIME LE MER). The
function (REPLY L T) 1s s LINGOL function which allsws the
generative phase to type out on the console the worde in L,
followed by the value a2f T. The variable CHAR 1es s LINGOL
varlable whileh makes avallsble to the generatlve phase the
character used to termlnate the input string. (In the near
future we shall glve thils to the cognitlive phase instead,
where i1t belongs.) In thils case, we 2imply echo CHAR back ta
the console.

The other rules gre gimilar, but wlthaut the EEPLY.
Hopefully they are al; self-explanatory.
Let us try aéain to start LINGOL.

CHELLO>
*TYFE ZEMTEMCE FOLLDOWED EY . ! OF 7

So far so good. Now for some santences,
DOs LOVE EER.” T
CHIEM AINM MER.
242. MILLIZECOMDE.

THE DO LOYE THE ZEA.
LE CHIEWN AIM LE MER.
391. MILLISECDHDZ.

THE ZEA LOVE DO&Y
LE MER AIM CHIEMY
217 . MILLIZECONDE.

L

There 1s nathing %2 say here except to comment 2n the

timing. This includes reading in the sentence and perfarming

morphemic analysie (& feature to be dzscribed later),
regulring about 30 milliseconds per word, sr more 1if 1t 1=
nat in the dietlonary. Parsing taes f»am 52 to 100 msecs
per word depending on the complexity of the surface structure
pelng praduced, rather than on the slze of the grammar.
Farsing speed ls essentlally linear in the number af woards
In the rentence, glven & reessonably Intelllgently written
grammar of English. The timing of the generatlve_phase varles
Enﬂrmﬂuglj, as a functlon of the complexity of the user's
eemantic programa. In these examples we sre ﬁrﬂﬁably spanding
about 10 mllliseconds per word. The slowness 18 dus to LINGOL's
betng written in LISP. |

It would be nice If we could inspset the tree an which
we are operating. We can do thils by telling LISF to set the
flag TREE. To get LINGOL to pass 2n & message to LISP,

precede 1% wlth a slash.

i

<CSETE TREE T2
T
THE DOG LOYE THE ZEA.

THE - A
Dos HOUMN = HF MF

LOYE YEEE
THE - DET _\‘-\'_‘\

=EA - HOLIM MHF HF FRED——SENTENCE

(H& have f1lled in the linss tn show the eunneetiﬁns)

. This device 18 one 20 seversl debugglng alds. It 1s =l=s2

D

possible to monitor the activity of the parser as it dlscovers
phrasaes, to see why 1t Is nat finding the right cnes. The
start and end pogltione of each discovered phrase arse Elven,

along with the rule used to discover [t.

SACZETO SHOWFOUMD T
T

THE

1. 1. DET THE

noG

2. 2. HOuUN DOG

2. 2. MHP HOUM

1. . HP <DET . HFP2

LOVE
3. 3. YERE LOVE

THE .

4. 4. DET THE

SER

5. 5. NOUM SEA

S. S. HP HOUN

4. 5. MP CDET . NP}

3. 5. PRED <YEFE . NP}

1. 5. SENTENCE ¢NF . FRED)

LE CHIEM RARIM LE MEE.
Z2. MILLIZECOMDE.

=
L=

We can also watch the EVAL mechsnism for the semsnties
(ealled 3EVAL) returning values up the tree, with the help
of the LISF debugging ald TRACE:

-27-

<(TERCE CZEVAL YALUE}>
L EEVYARL 2
THE DOs LOYE THE ZEA.

1. ENTER ZEYALDX

‘2. ENTER ZEVYAL>

3. EMTERE ZEWVALD>

3. EXIT TEVAL CLEXD

2. EMTER ZEVYALZ

4. ENTER ZEYAL>

4. EWIT ZEVAL CCHIEMX»
3. ERIT ZEYAL CCHIEMX)
‘2. EXIT ZEVAL (LE CHIEMN:>X
2. ENTER ZEVYAL>

<3. ENTER ZEYALZ

(3. EXIT ZEYAL <RAIM>>

3. EMTER ZEVALX

(4, EMTER ZEVAL>

i4,. EXIT.ZEVAL CLE»>

4, EMTER ZEVALM

(5. EMTER ZEVYAL>

(5. EXIT ZEVAL CMER>>

(4., EXIT ZEVAL <MER>>

(3. EXIT ZEYAL <LE MER>)

i (2. EXIT ZEVAL <AIM LE MER>>» LE CHIEN RIM LE MEE.
g, EXIT SEVAL MILD

| 925. MILLIZECONDS.

The numbers ‘ndicate the depth in the parse tree

(g.v. abbve}+ This routine is extremely helpful far verifying
that all functlone gre produclng the correct output, and alao
for discovering where in the tree SEVAL runs 1nto trouble.

We are not yet ready to translate the Canadlan Hansard.
Let ue put 1in a varlasble to denste gender. The appropriate
scope for the variagble 1s an KP, slnce gender does not. affect
the verb. We need to tell LISP to change the grammsr (our
grammar 1s not yet elaborate snough to get LINGOL to do thils

for us).

] -

¢ GRAMMAR)

(NP CDET NP3 0 CCLAMEDA <GENDY <APFEMD 'L IE33 M3 o
L]

GRAMMAR-TH

LISF wlll now have replaced sur 214 rule wlth the new

one. (Only the components LEFT and RIGHT are used to 1dentify
and delete the 214 rule.)

We have used LAM3DA rather than PROG to declaps AU REeW

varlable. Had we used PROG we would have said
I
| <PROG C(GEMDY (SETO GEND ‘MY (RETURN (APPEMD IL IR335

By uslng LAMBDA we save a SETQ and n RETURN. This is handy

when there are a 1ot of varisbles t2> be SETQ'd.

The seope of GEND 1= just the NF, 1.e., those functions
which are czlled directly or indlrectly by !L and !R here.
GEND 18 set to "M" (masculine) as the default value (to enable
us to ellminate specifylng 1t in the dictionary), and will
retaln this value throughout its BCOope ﬁnlesa saome functiosn

lower on the tree changes 1t, which we ArPENEE NOW.

#¢DICTIONARY foo-

| CZER MOUM 0 (PROG2 ¢IETO GEMD ‘F3 ¢ (MER) >
L)

DICTIONARY=IN

PROGZ evaluates esch of its arguments, but only returns

the value »f the =mocand.

We s8till have n3 way of using thls information. Suppose

we want determiner-noun agreement.

SACDICTIONAREY 2

CTHE DET 0 <CDR (AZEZOC GEMD “<<M LEMCF LA 32D
2

DICTIOMARY=-IN

ASS0C 1e a LISP table-lso'up funectlon, and CDE delotes
the indlcator ln the discovered table entry (recall that we
went (LE), not LE).

Hopefully we willl find that the sea 1s LA MER.

THE DO LOYE THE ZEA.
{ LE CHIEM AIM LE MEF.
¢ 298, MILLISECOMDE.

There 1s a problem here wilth timing - we sre trylng to
test GEND before 1t 1s set. The fault can be corrected from
the NP rule, by doing 'R before !L, on tha grounds thst the
noun will never have t9 consult the determiner. This can be
done by firsf agsslgning !R to R. (Por eclarity, we revert ta

a PROG.)

< CERAMMAR
{HF . (DET HP» 0 <PEOG CGEHD E2
' CEETO GEMD "M
| CZETD R OIRZ
| - CRETURM <APFEMD IL EI2 3D

(3 _
GRAMMAR=IM
| i - I .

| Lo e e e o e e e

Now we can try again.

THE DO LOYE THE ZEA.
LE CHIEHW AIM LA MER.

435, MILLIZECOND:.

THE ZEA LOYE THE DOG.
LA MER AIM LE CHIEM.
4356, MILLIZECONDE.

S0 1t now seema toc work. Had both the DET and the NOUN
depended on one other for various festures, lnstead of dolng

- orne befosre the other we would have lgnared the order and done

the approprlste table laoskup higher up *n “he tree - the
dictionary would simply have passed the whale table up lnstead
of dolng the lookup 1taelf. This would wark bzeause the
table lookup would be csrried out with "complete infarmatlon”,
i.e., after both I!L and !R hed terminated exeecutlon.

Verb conjugatlon zeems t2 be next.

< CBRAMMAR 2

CZENTEMCE <MNF FEED» 0
CCLAMEBEDA (FERZON HOX .

CREPLY CAFFEHD I!L IR CHAR:»

3 EIMGH:

Lo

| ERAMMAR-IHN _

L .- .

Ihe default vazlue for PERSON i1s 3, and far NO 1t is SING.

T2 use these varliables we need some diectlonary entrles.

cPLUR AIMOME AIMEZ AIMENT > 22

FPERSOMI 32
‘T MOUM 0 ¢PROG2 (ZET® PERION 13 “<JEHXDD
¢yOu MOUW 0 CFROGE CIETE PERSOM 2> “CTUI.D

0 i
DICTIONARY-IH : o

(COUNT L N) yields the Nth element of L.

This now glves:

THE D06 LOYE THE SEA.
; LE CHIEM AIME LA MER.

C 445, MILLISECONDS.
TOU LOYE THE ZER.

TU AIMEE LA MER.
| - 363, WILLISECONDZ.

It seems s1lly to have to write so . much in a dectlonary

entry for a regulsar verb. Why not Just have a function REG

=-31-

which adds the rlght ending t2 the stem? We will define 1t

by using DEFUN.
| #¢DEFUN REG ¢STEM)
LeLIST ¢CAT STEM CCOUNT <CDR <ATZOC ™NO
| “CLTING E ET ED
R <PLUR OHS EZ EMT3333
b FERSOND 330
REG

EEAT concatenatea Lwo rlrings.)

Now we can make most effective use af 1t.

SCDICTIOMARY
(LOVE YERE 0 (REG “AIM»>
CHUNT YERE 0O <REG “CHAZZ))
CHIT YERE 0 (REG “FRAFF:»)>
| CCLIME YERE 0 (REG “MONT)X
L
[DICTIOMARRY-=IHN

We gan 8tlll enter lrregular verbs the nld way, oar better,
we gan define another function whose BEix erguments arse the
8ix conJugstlions. [We resiat the temptation.)

It would be nice to be able to distingulsh singular
and plural. This ralses the marph2logical problem 20 detectling
an "s" at the end of plural words. One saslutisn is to mave

a dletionary entry for each plural word. But we csn do Lhetter
than thils. LINGOL allawe the usar to ldentify suffixes by

sayving
|

#CDEFPROP S T SUFFIX)
-

| A

This says that 1t ‘1s True that 5 18 a SUFFIX. The same
can be done for PREFIX. If LINGOL fails to find a word in

the dietionary, 1t tries to remove a suffix. If 1t succeeds,

-

1t looks 1n the diletlionary for the stem. For as long as it
keeps failing to find anything in the dietionary 1t keeps

removing suffixes, and after that prefixee. When 1t is done

the effect 18 as If the origlnal word had been made several
words, €.g., UNKINDNESSES becomea UN KIND NESS ES 1f UN 18 s
prefix and NESS and ES are suffixes. All informstion that
these words were once one word is dlscarded, which eould

concelvably ereate unwanted amblguities, although 1t seems

unlikely for most affixes.
The word 18 eventuslly reassembled by the user's grammar,
B.f.y

- ¢ GRAMMAR >
CHOUN ¢HOUM T3 0 <PROGZ <SETG MO “PLURY ¢LIZT €CAT <CAR L3> “Sii:
o
GRAMMAR=TN__
ACDICTIOMARY S
ST 2 o0 0

0 P
DICTIONARY-IN

THE DO=E LOYE THE ZEA.
LE CHIENE RIMENT LA MER.
712. MILLIZECONDSE .

[T ———

Aih, the determiner rule 1s no longer valld.

#¢DICTIONARY) . ‘

¢THE DET 0 (COMD ¢<EQ ND “PLUR» “(LEI}> L
¢¢CDR ¢ASIOC GEMD “<CM LEXCF LAY> 22300

¢

DICTIONARYT-IN

THE DOGE LOVE THE SEA.
LES CHIEMT RIMENT LET MER.

| - =215, MILLIZECONDE .

-33=

Alec we need a new PERSON and NO for the object, although

GENDER is all right becauae'it 1s in the NF rule.

#CBRAMMAR)

CFRED C(VWERE MP) 0 ¢APFEMD L <<{LAMEDA <FERSON HO) 18> 2 *SINGH 33
o
GRAMMAR—TN

THE DO&Z LOYE THE ZEA.
LES CHIENE RIMENT LA MER.
S61. MILLIZECOHDE.

The reason we keep finding errors 1s because we are writing
the program as though we were beginners. With a 1ittle
experience, the user can learn to anticipate most of these
problems at the start.

This scheme has the advantage that the user is not
constrained to any one morphosloglecal system, but ecan write his
own 1n the same langusge as he writes his semantics. Tt has
enother advantage in that morphalsgleal processing can be
interleaved with semantle processing. For example, when LINGOL
gives up on a word altogether, 1t sssigns 1t the category
UNENOWN and supplies the word in the generative phase. If
we want to implement Thorne's (1968) closed-clase dietionary,

: iﬁyhich unknown wnrﬁs are parsed as nouns, verbe or adjectives
dependlng on which interpretation makes the best syntactic

- #ense, then we could write rules such as

| < CGRAMMAR

|7 CMOUN UMKHOWN 0 ¢LIST 1055
| (VERE UMKNOWN 0 (REG D))
() .
GRAMMAR=TH

mm——— — —_—

THE DOSS PREFER THE CATS.
LESZ CHIENS FPREFERENT LEZ CATZ.
FEF. MILLISECOMDS.

—3l

Notice how the lssue of deeiding what part of speech
the word is 18 dealt with independently of, e.g., making
"CAT" plural. Also notice that the parser correctly guessed
the parte of speech, and went on to conjugate "correctly" the
unknown verb. However, "eate" 18 a bit of an Anglicism. Our
program 18 starting to look qulte clever alresdy wilithout sur
naving done very much to 1t yet. We have only seven grammar
rules, one function (REG) and a few dictisnary entries.

In the example of Figure 5 (=ection 1}, the rules involving
UNENOWN have for thelr generatlve component a program that
guerlies the user about the translatiun.

These examples could go on Indefinitely. To see what can
be achieved with a few more hours work, refer back to Figure 5.
That example 3tl1ll has very little grammar - approximately
twenty rules. However, 1t has a page of LISPF functions for
dolng liason, varlous sgreements, and handling tricky things
1ik¢_LE$ vergug DEE in the obJect position.

These examples bring thiQ sgction to an end. There 1s
‘no section 3.3 on Pragmatiee - this 1s entirely the user's
prnﬁlem. Figure 3 (sectlon 1) glves examples from a LINGOL
program in which the user successfully 1ﬁt&rraGEd his
seemantice to quite non-trivial pragmatice. It 18 not yet

clear whether LINGOL should ever address pragmatic lssues.

35

4. Conclusions

H&_hava described a programming langusge for natural
language processing programs. We discussed the reagons for egch
of the majJor design decislons. We presented a session with the
system in which we developed a trivial fragment of an English-
to-French translator. With adeqguate imagination, the reader
should be able to project at least some of the potentlal af
LINGOL. What may be more difflcult to see are the preszent
limitations of the system.

We have already suggested that our separation of eemantics
from the eyntax does not present serious problems. Whether
this 1s true we leave to further experiments with LINGOL. It
should be noted that LINGOL 1s still in 1ts 1nfancy; 82 far
the suthor hag invested approxlimately three months' work in it,
over the two and a half years of its exlstence.

At present, conjunction 1s not handled at all by LINGOL,
except 1n so far as one may supply context-free rules for each
syntactie cetegory to be conjoined (which is most). This is
tedious at best, and is not even always possible. One wanta
to deal not only with "The Chinese have short names and the
Japanese long" but with "He eloped with and married the
farmer's deughter. Neither of these are st all well hendled
by context-free grammare, regardlese of what we write in the
cognitive component of our rules. Winograd's system deals

with these sorts of problems simply by being more procedure-

oriented. Thls provides the necessary flexibility to deal

with pathologlegl cases.

Another diffieult area 1s that of adverbs, which may
appear ln many places in a sentence, but which always modify
the verb of the clause they appear in (unless they modify
an adjective). It should not be necessary to give rules for
each of the places an adverb may appear. It suffices to rely
malnly on semantlc connectlione to establish the role of the
adverb, and thies 1is one place where concept structures
(Shank 1570) are of value.

Both of these problems willl be studied in the near future,
to see how best to change LINGOL to deal with them without
loging the attractive programming convenlence afforded by
context-free rules in conjunction with LISP semantiecs. In
the mesntime, the system as 1t stands at preeent is available
from the author for experimentasl use. A LISP environment is
required, with at least éCIK words of memory. » An cbvlcous
application for LINGIL i1s &= a pedagegleal tool in a cormutational
Yirguistios course, for intrndun.::j_tjg students painlessly to one method
of writing actual programs that do something useful with English other
than parg.in.g it for the sake of the parse tree. We have used it for
thi=s purpose duritg the Independent Activitles Perdiod at MIT this
Jaruary. One student wrote an English-to-unpointed-Hebrew translator]
we ask only that users keep us up-to-date with the uses to which they
put LINGOL.

Bibliography

Aho, A.V. and J. Ullman, 1972, The Theory of Parsing, Translation and
Compiling, Vol. 1, Prentice-Hall, Inc., New Jersey.

Bobrow, D.G., 1964. "METEOR - A LIST Interpreter for String Transformations,®
in Berkeley, E.D. and D.G. Bobrow (eds.) The Programming Language LISP:
Its Operation and Application, Information International, Imc. Cambridge,
Massachusetts.

Bobrow, D.G. and J. B. Frazer, 1969. "“An Augmented 5State Transition Metwork
Analysis Procedure," Proceedings of [JCAL, 196%, 557-568.

Charniak, E.C., 1972. "Toward a Model of Children's Story Comprehension,"
Al TR=26&, MIT, Cambridge, Massachusetts.

Farber, D.J., R.E. Griswold and I.P. Polonsky, 1964. "SNOBOL, A String
Manipulation Language,” Journal of the ACM, 11, 2, 21-30.

Fillmore, C.J., 1968, "The Case for Case," in Bach and Harms (eds.)
Universals in Linguistic Theory, HoTt, Rinehart & Winston, 1-80.

Green, P.F., A.K. Wolf, C. Chomsky and K. Laugherty, 1961. "BASEBALL: An
Automatic Question Answerer,” in Feigenbaum and Feldman (eds.) Computers
And Thought, 207-216.

Hays, D.G., 1964. "Dependency Theory: A Formalism and some Observations,"
Language, 40, 4, 511-525.

Katz, J.J. and J. A. Fodor, 1964. "The Structure of a Semantic Theory," in
Fodor and Katz {eds.), The Structure of Language, 479-518.

Klima, E., 1964. "Negation in English." in Fodor and Katz (eds.) The
Structure of Language, 246-323.

knuth, D.E., 1968. "Semantics of Context-Free Languages," Math Systems
Theory, 2, 127-145.

Lewis P.M. and R. E. Stearns, 1968. "Syntax-directed Transduction,”
Journal of the ACM, 15, 3, 465-4BE.

Maracimhan, R., 1969. "Computer Simulation of Matural Language Behavior,"
Invited paper, Conference on Picture.Proc. Mach., Canberra, Australia.

Schank, R., L. Tesler and 5. Weber, 1970. “Spinoza II - Conceptual Case

Based Matural Lanmguage Analysis,” AI-109, Stanford University, Stanford,
California.

Simmons, R.F., 5. Klein and K. McConlogue, 1964. "Indexing and Dependency
Logic for Answering English Questions, Amer. Doc., 15, 3, 195,

Thorne, J., P. Bratley and H. Dewar, 1968. "The Syntactic Analysis of
English by Machine,”™ in Michie, B. {ed.) Machine Intelligence 3.

Warshall, 5. and R. M. Shapiro, 1964. A general purpose table driven
compiler," Proc. AFIPS SJCC, 25, 59-65. Spartan, New York.

Winograd, T., 1971. "Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language," Project MAC TR-B4, MIT,
Cambridge, Massachusettis.

Woods, W.A., 1967. "Semantics for a Question-Answering System," Report
no. CRSF-14,the NSF, Aiken Computation Laboratory, Harvard University,

LambrCambridge, Massachusetts.

Woods, W.Ad,,196593. "Rlgemiptediidmansiiionnietworks Fom,NatuBaloLahguage
Analysis," Report Mo. C5-1 to the NSF, Aiken Computation Laboratory,
Harvard University, Cambridge, Massachusetts.

Yngue, V.H., 1963. "COMIT," Communications of the ACM, 6, 3, B3-B4.

