MASSACHUSETTS INSTITUTE OF TECHWOLOGY
A. 1. LABORATORY

Artificial Intelligence
Memo No. 279 February 1973

PRETTY-PRINTING
CONVERTING LIST TO LINEAR STRUCTURE

Ira Goldstein

ABSTRACT

Pretty-printing is the conversion of 1ist structure to a readable
format. This paper outlines the computational problems encounterad
in such a task and documents the current algorithm in use.

Work reported herein was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Technology research program sup-
ported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense and monitored by the Office of Maval Research under
Contract Number NOOO14-70-A-0362-0003.

Reproduction of this document in whole or in part is permitted for
" any purpose of the United States Government.

PRETTY-FRINTING
CONVERTING LIST TO LINEAR STRUCTURE

AESTRACT

Fretty-printing is the conversicn of list structure to a
readakle Tormat. This]:E'Eer putlines the corputational rroblems
encountered in such & task and deocuments the current alporithm in
use.

IRA GCLDSTEIN
JANUARY 31, 1972

COLTENTS
I. Introduction
II. Conputational Analysis

A. The Basic Task

E. Finite Width

C. Linear Format

D. Finite Length

E. The RECURSIVE RE-PHEDICTCR, A Top-Down Approach
F. The Teble Scheme, A Bottor=Up Approach

G. Semantics

H. Commants

I. History

1II1. Decumentaticn

A. Top level functions
1. GRIND and GRINDO
2. GRINDEF
. Fermatting
. HEMGRIND
. unctions, atoms and prorerties reserved by grind.

LA D

E. Predefined formats
1. Standard formats
2. Srecial GRINDFNs
2. Inverting read BECTOS

4. System packapges

. Comments
. Eingle zeni ccmments
2. Double =eni commerts
2. Triple semi ccmments

. Grind control

- E. Defining new formats
: 1. GEINDFN=
. Vocabulary
Y. Examples
4. GRINDMACRCs

IV. Suggested future improvenents

A. Concertual
E. Inprlementation

I. INTRCODUCTICHN

Fretty-printing is a fundamertel debupring aid for LISF.
List structure presented as an unformatted linear s=tring is very
difficult for a rerscn to understand. The purrore of pretty-
rrinting i= to clarify the structure of = LISPT expressiorn. The
simplest class of rretty-rrinters accomplishes this bty the judicious
insertion of spaces end carrisge returns. Secticn I anelyzes the
conputationel complexity of such alrorithms. [See section IV for
suggestions for mere sophisticated schemes which break the code into
separate expressions.] The existence of elrcrithms which are onl
linearly more exrensive than the standard LISF printing routines is
demonstrated. Various extensions for adding =emantic kncwledre to
the pretty-printer are then considered. Section IIT documents the
rretty-print Eackags currently availsble for MACLISP. GSection IV
suggests additioral improvements to be considered for the future.

II. COMPUTATICKAL ARALYSIG

4. THE EBASIC TASKE

The LISP FRINT ing primitives print exrressicns es strings.
Their only concession to clarity is the insertion of a carriage
return each time the riFht margin is reached. This results in code
which is nmot very readable when longer than & single line. Indeed,
the carrizpe returns can even be inserted directly into the Fnddle
of a word. [The LISF reasder ignores carriage returns on inru
The folloewing example is the definition of F#ETDFTAL FRINT’ Eﬁ
LISP. The dots represent the left and ripght margins

" (DEFUN FN:TGHIAL (x) (co
HD ({= X 0) 1) (%* (FACT
ORTAL 1:1- M

Iet L ke a2 list of the following form:
(<FUNCTICH> <ARG(1)> <ARC(2)» ... <ABG(N)>)
The objective of the rreteg-rrlnter is to present L in a fashion

vhich emthasirzes its proc al role. The "standard format" for
accomplishing this is aligning the argpuments ome under the next.

(<FURCTICH> <TRETTY-TEINT .E-_HGE‘l o
<FRETTY-FLINRT ARC(Z)>

CPRETTY-TRINT ARC(N)>)

Using this fermat, the FACTCRIAL function takes on the fellowing,
mnore understendable, appeararce:

" (DEFUN FACTORI AL
%%HD I:E= ¥ 0

{(* (FACT

X100

) 1) -
rj: CRIAL (1= X))

Note that any format used by pretty-rrint must leave I re-
readable by LISP. Hence, the following structure would e illepal:

(<FUNCTICN> <FRETTY-PRINT ﬂRG}11} <FRETTY-PRINT AHGEHHE + 13}
<FRETTY-FEINT ARG(Z2)> <FRETTY-FRINT ARG(N/2 + 2)>

L -

CTRETTY-FRINT ARG(N/2)> <FRETTY-PRINT ARG(N)>)

If the only yroblem which the pretty-prirnter faced was the
insertion of extra sraces and carrispe returns, the computational
cost in excess of the stemdard LISP FPRINT would be neplipible. The
difficulty arises from the finite width of the pege. For
sufficiently large s—expressions, every sublist carmot be printed in
stanfard format. Instead, the less desirsble miser format must be
used.

{<FUNCTICK> .
{FRETTY-FPRINT ARG (1)>»

<PRETTY-PRINT ARG (N)>)

This format is minimal with respect to the irdentaticen eof the
arguments. All argurents begin cnly cne space over from the opening

parenthesis.

There are rare instances of lists thet cennot be pretty-
rrinted even in miser formet. IT the derth of the list
exceeds the width of the page, indenting one for each level

is imposcibtle. See ruppestion £=% ip sectiorn IV for a
technique for hendling exrressions of preat depth.

The role of miser format is illustrated bty our FACTORTAL
examples. When first shown FRINTed, the rapewidth was 24 spaces,
Fowever, the papewidth was ircreaae& to ™5 in order to demonctrate
standard format. Without the extra width, it i= impeossitle to use
standard formet on the list and all of its sub-expressiors without
exceeding the rifFht-hand marrin. Hence, the rretty-rrinter is faced
with the necessity to use mizer format on sore sub-expressions if
the entire list is to fit on the pare. This rrediction represents
the tasic extra—cost above the standard IISP PRINT which the pretty-
rrinter requires. The feollowing formet for FACTCRIAL ilustretes the
cautious use of miser format until sufficient width beccomes
available to switch to standard form.

{ DEFUN
FACTCORIAL
ot

COND

=X 0) 1)
EE (FACTORTAL (1- X)
X1

L

E. FINITE WIDTH

¥hat, then, are the tasic corputationsl costs for pretty-
ITinting on a pape of finite width? If liste are descrited as
trees, then the cost of rrinting ie simpply that of wvisiting each tip
of the tree in left-to-right order. The cost of pretty-rrinting
will be anelyzed with respect to this basic "tree traversal"
overhead. Uron Tirst arriving at any non-terminal node of the tree,
the rretty-printer has no knowledge of the size of the subtree
teginning there. Hence, it cannct know vhether there is sufficient
space to vse standard format. The pretty—printer must arply a
rrediction function to the subtree to estimate the width required to
print it in standard format. If that width is mere than is
currently aveilable, riser format must be used. The additicmal cost
of pretty-printing, then, is simrly the cost of rrediction.

Cne criterion for judping different rretty—print algcorithms
is the number of times each node of the tree must be revisited. In
these terms, & minimel alporithm would perform orly two tree
traversals - one to obtain predictiorn informetion and one to
actually print the subtree.

The fnlinwing analysis will proceed 2zt a2 quelitative level.
The assurption will be that list operasticnms rerresent the major

cost, with nurerical creraticns teing chesp. The intention i= to
five the reader the flaver of this comrutsticnal protlem. Fowever,
to turn th se assertions inte thecrers wculd reguire a mere formal
attack. TFor exarrle, a trecice comperiszon of the cost of nurerical
versus list o© tions would be recersarv. Ctherwice, ore pass
through the the tree could be used to Godelize it. Subsequent
conputation coulé then be entirely mumerieal.

Is & "minimal" two—traversal alporithm possitle? The answer
is yes. [This yes assumes that the runber of lines needed tc print
the expression is ignored. The rection on "finite lenpth™ considers
this additional complexity.] OCme rass can be rade to associste with
each sublist the minimal width needed to prirt it in standard
format. This information ccompletely determines how the s—exyression
is printed. The pretty-rrinter uses the more economical miser
format from the top down, until the svailable width exceeds the
rinimum necded to use standard format. At that point, the printer
is assured of room to prinmt &ll recaining subtlists in standard
format. This is the structure which was used to print FACTORIAL in
the last example.

A single prediction rass ie sensitle providing the cost of
storing and accessing the minimum width cemruted for each piece of
rubstructure is less than the cost of recomruting the mnunmber.
Fortunately, this is the case. Tor example, a hash table accessed
bty & numerical comrutation on the pointer to the sublist takes fixed
time, regardless of the size of the li=t structure. Of course, for
sufficiently small list structures, the fixed co=t of accessing and
cleering & hesh table will not be worthwhile. Put this is
uninteresting mathematically. Indeed, even from = practical
standpoint, the hash scheme iz so fast that its overhead is not
roticed cn spall lists.

C-. LINEAE FOEMAT

Analysis of the pretty-printing task was bepun in reaction
to the uninfcrmative use of “linear format™ by the LISP primitives.
However, when a sub-exrression can fit in the space remaining on the
line, lirear format is sensikle. As wve chall see, even with this
sdditional cemplexity, two tree traversals are sufficient.

The rrediction pess must now save two pieces of data - the
linear width of the sub—expression ss well as 1ts mirimum width,
These two nunbers can be computed on the same pass through the tree.
The printing pass is extended in the obvious vay. TFirst preference
is given to linear format if sufficient width is availatle.
Ctherwise, the algorithm is as before.

L. FINITE LENGTE

Thrre is an additional elemert of corplexity in rrettv-
rrinting that has not yet been considered. Vhen LISF code ie spresd
cut over mary lines cr, worse, meEny Tages, it epepin tecores
indecipherable. Hence, a rretiy-rrirt alporithm should al=o attenmpt
to fermat s-expressicns in the least nmunbter eof lines. Teo achieve
the minimum number of lines, we rhall have te allow an ircresse in
computational cost. Nevertheless, we will yropose a scheme which
sti requires only two tree traversals and is therefore linear in
the =ize of the tree.

The predictor described sbove car compute the nunber of
lines needed to rrint an expression in ninimel width. The
difficulty, however, is that there may be extra width aveilatle.
This can allow the use of linear format to decrease the number of
lines needed to rrint the expression. TFor example, for FACTCRIAL,
the rretty-printer always prints the second srgument of ™" under
the first. FHowever, with sufficient width, & line is saved by
rrinting (* (FACTCRIAL (1- X}) X) in linear format.

" (LEFUN F%:‘IGHIAL

cOFD ((= X 0) 1)
EE* (FACTORTAL (1- X)) ¥))))

- L

For functions with many arguments such as (FIUS 1 22 4 5 6 7), the
use of linesr format over standard forrat can meke a significant
difference in the murber of lines and, conseguently, the
rerdability. Thus, rererbering a sirgle datium corresponding to the
nuzber of lines needed to ¥riﬂt a given sub—exrressicn in minimsl
width is not sufficient information. At firet blush, it would
appear necessary to reexamine each sub—exrrecsion every time the
availatble width changes.

E. THE RECURSIVE FE-FREDICICR, A TOP-DOWN ALCORITEM

Let us bepin by examining aprroaches that do reexamine
sublists many times. One obvicus alporithm is te consider =11
rossible format cheoices at each node, computing the resulting number
cf lines required. Py brute search, this aprroach is pusranteed to
Iind the sequence of formats that yields the mininum number of
lines. However, the exponentiel cost is certainly prohititive. A
%Egglggggrful tut less costly alternative is the RECURSIVE RF-

The KECURSIVE RE-FRETICTCE wcrks in the following way. Upon
arriving at a given ncde, the elporithm lmows N, the remeining

gvailable width. Lirear fornmzt is used if N is sufficiently larpe,
Otherwise, it estimates how meny lines it would tske to rrimt the

arguments

in width EH - 1) corresyonding to the vse of miser format
and in width (N - <lipear width of the function>) corresronding
to standard format.

The estimete i= made by puescing thet all subklists are printed in
the following way:

linear format if sufficient width;
else standard forzat.

This scheme is not puaranteed to find the sequence of format choices
that results in the minicum nunber of lires. It dees not consider
all possible sequences. When insufficent spece cecurs, it prints
the toplevel expressicn in miser format. It ipnores the possibility
of printing the toplevel expression in standard format while :
rrinting the sublists in miser form.

Comyutaticnally, the RECURSIVE RE=-FREDICTOR can reexamine a
Fiven suttree many times. Thus, the cost i= still exponentizsl in
the worst case. Nevertheless, for various reasons, this approach is
possible:

1. Li=ts begimming with non-atomic elements such as LAMELDA
expressions can alweys be printed in miser format. This
avoids prediction ceosts for these sublists.

2. There is no longer any gﬂint to remembering the minimum
vidih needed for standard formst. Since the tredicter must
reecxamine each sublist for the mumber of lines, it cen at
the zame time check that the list fits in the given width.

Z. A hash table can =till used tc remerber the lineser width.

4. Empirically, much LISF code is broad tut not deep.
FROG s are typicol examples. After Tredicting ard printing
the first level cr two, it is often the case that the
remaininge elements slrost 211 fit in linear formet. Thus,
little recursive re-rrediction is needed.

This RECURSIVE RE-PRELDICTCR is the current pretty—print
alporithm in use. Empirical ckbservations indicate that it i= only
some four to five times slower thanm FRINT. Thus, it is of practical
use. The next section describes an alporithm that iz theoreticzlly
linear in the size of the list., Tt has nct vet been implemented,
end, in rractice, may not be worth implerenting. The use of tables
&nd numerical operaticns is required. The overhead of these
computations might be prchibitive for handling the average LISP

expression. Alse, such rumerical operations are nore efficient
hand—coded in LAF than writter directly in TLISP. In any case, the
finael verdict must await implementation.

F. TEE TAELE ALGCERITFE, A BOTTCH=UF AFFROACH

_ A bettom—up attack ecan yield a predictor which is linear in
the size of the tree. OUne predicticr pess is used. The triecl will
te tc remember more than just the minimel width ard correspording
length. Instead, a step functien must be built for each nede which
rovides the ninimal number of lines resultirpg fer different widths.

or examrle,

(FLUS 2 2 4) |
VIDTH # CF LINES PORMAT
O—d impessitle
E=T 4 riser
E=11 3 =tandard
12=-LIKEVWILTH 1 linegr

Such tables sre finite. The number of intervals is limited by the
finiteness of LINEVWIDTH. The tatles for all of the daughters of a
Fiven node determine the table for the parent. TFefore giving more
details of this tatble scheme, notice that the cost is only a linear
increase in the tasic "tree traversal" computation. This assumes
that the cost of mumerical COWFARE s needed to merge tables is
roughly cemraratle to moving up end down levels in the tree.]

The table for the parent is built by werging the tables for
the caughters, creating their "refinement™. TFor exarple, the table
for (PLUS 2 * 4) given sbove is tuilt from the tsbles for the atoms
-FLUS, "2", "I" and "4". TFor each yossible width, the tatble entry is
the minimum rumber of lires to prettv—print the given subtree. This
is determined by checking the number of lires resulting from sach
Tormat. The number of lines to print a piven tree in & given format
iz completely determined b{ the choice of format and the tables for
the caughters. £ piven initizl width and 2 given format irply a
specific width for each daughter. The predictor, then, locks up the
number of lines that the daurhter requires for that width. The
total number of lines is obtained by summing over all the daurhters.

The format used to obtzin the minimum numker of lines is
recorded as well. Ultimately, this bottom—ur aprroach yields a
table for the torlevel list. The entry for the total LIKEWILTH
gives the mumber of lines to print the exrressior as well as the
trograp for doing it.

Some savings in cost is yessitle. This cean be deone ty
detercining l?mlts_fbr the widths that a Fivenm tekle rust cornsider.
The mexirum width is:

LINEVIDTE - DEPTE.

This is true =ince each level of the tree costs a2t least one unit of
width in erder to Erint the opening varentheris. Alternatively, it
can be viewed as the width corresponding to veing only miser Tormat.
4 lower bound con the table is obtained by considering the use of
enly standard format. This results in meximel indentation. For
each use of standard format, the svailable width decreases by

1 ;for the cpening rarenthersis
+ FLAT swhere FLAT equals the linear width of the first element
+ 1 ;for the space between the first and =econd elements,

These uprer and lower bounds are computed as the predictor travels
down the tree. The tables are comnputed on the return trip back up.
Thus no extre tree traversing is necessary. £&n 2dditienal bound on
the minisum width that need be considered for a Fpiven tatble is
obtained by the left—to-right anaslysis of the daurhters of each
node. Suppose the table for daughter(1) asserts that it is
impossible to pretty-print this subtree in less width than MIN.
Then, it is unnecessary to consider widths less than MIN for the
remgining daughters.

Fowever, it is clear that svch =avings, though useful from a
rractical standpeint, still leave the zlporithm linear in the size
of the tree. Indeed, the tatle alporithm i= essentially minimal in
its cost. This can te illustrated by a worst ce=e anslysis,
curpoese that an internediate width W in a2 table for the sublist 1T is
not computed. Otiaining the minimum number of lines can be made to
?inge on just this piece of information. A sketch of the arpument

52)

Construct a supertree for L for vhich 8 sequence of miser—
standard choices could be made resulting in width ¥ teing
rossible.

Construct the sisters of L such that they pretty-print
cptimally in this width.

Then, if L behaves well for width W, it should be chesen.
Eut if the mumber of lines to print L in width W is large,
then it is not worth choosing.

Hence, the cheoice of format deperds con how L behaves in this
width.

G. SFMANTICS
So far, we have introduced only three forrats for lirte:

standsrd forost
niser format
linear format

Knowledpe of the semantics of variocus tyres of s-exrressions leads
to additional forms. For example, arpument lists for PROG = and
LAMEDA s are preferatly rresented as blocks.

[PH{}[} E-!—u*-u—u EHEEE RN K E AR
F A R i—*-lHe-I-]-

TAG itags are unindented.

L |
& &
* & W
[
LI
L

)
Similarly, the preferred format for SETQ should be:

(SETQ HAHEE1§ <FRETTY-FRINT CF VﬁLUEE1 >
NAME(2) <FEETTY-FRINT CF VALUE(Z)>

)

This additional versatility can te achieved ty extending the pretty-—
rrint alperithm. In the current PRETTY-FRINT pecksge, srecial
formats have been desigmed for many LISP primitives. [This includes
inferming the rredictor of the special wey such functions as PROG
and EZETQ are handled.] If sufficient space is aveilable, these
forpats are rreferred over standard or mirer format. See section
IIT for details.

H. COMMENTS

The importance of docurerting code carmmot be under—
estimated. Fence, the pretty-printer, when aprlied to files,
formats senmi-cclen comments. g=e compents cen he inserted in the
code or trinted on the rifFht-hand helf of the page. Again see
section III for detsils.

I. HISTORY

Eill Gos develored one of the earliest rretty—print
alporithes for LISP. It used the recursive re-rrediction scheme to
minimize the number of lines. Eupene Charnisk medified the rrogranm
to process semi-colon comeents. Ira Goldstein extended the comment
formats, made the pretty-printer proprampable with respect to adding .

rew formats for srecial Tunctions, added a hesh schere fer linear
width and dexrelo{ed the table alporithm discussed above. Carl
Hewitt, Guy Steele, John Vthite, Cerry Susemen, Terry Wincerad, Fruce
Fobert=s, and Stavres Macrakis previded many helpful suppestions.

TII. Documentaticn

The new grind package differs frorm esrlier ones in providing
a larger number of formats in which s-exrressions and corments can
te ground. A variety of predefired formets exist which can te
associated with any LISP ction. TFor unusuel formats, the user
can design his own precedures to contrel prinding.

The grind package is autcmatically leaded inte LISP upon
executing GRIND or GRINDET. Alternstively, the user can cbtein the
file viz:

(FASLOAD F GRIND COM)

The FEM feature can subsequently be used to eliminate unwanted code
(see section A-4). Send supgesticns and bups to TRA.

A. Top level functions
1. GRIND amd GRINDD - fexprs

GRIND and GHiﬂDD convert files to rretty-printed form. Their
input format is that of the LISP file maripulatirng functions like
UREAD and UWRITE.

(GRIND <filenamel? <filenanel> <device> <uname)
UFILE s & prétty—pqinted form of the Tile under the same nare. The
usual LISF conventions for defeult device, user =nd file names are
used. To avoeid rossible disasters, use "2" as yvour rsecond file
nape. CRINDO does not UFILE. Hence, it is useful for filing the
rretty-printed file under a different name. For exanple,
- (GRINDC GFC > DSK IRA) (UFILE CEQ FRIRT)

results in the rretty-printed version being filed as CEO PRINT.

"2« GRINDEF - fexrr

GRINDEF tzkes ztoms as arpuments. It then pretty—prints
their EXPR, FEXPR, MACRC and VALUE properties. TFor exanrtle,

_ (GRINDEF PROCRAM1 FROCRAMZ)
rretty-prints these two LISP functions.

' The defsult preperties rretty-printed by GRINDEF can be
medified in two ways. :

(CRINDEF <LIST CF ADDITICHAL FROFESTIES> <ATOM1> <ATOME> ...)

apperds the additicnal prorerties to the list of defeult prorerties
for the duratien of the current cz=l1l to GRINIEF. A permanent chanre
to the default properties rretty-printed bty CRINTEF is made Ty
setting the atem "“GHINDCTRCFERTIES"™ to a rnew list of properties.

"(GRINDEF)" will repest the l==t ecall te GRINDEF. This
saves tyring vhen rereatedly CRINDEF “ing the =ame furcticonms.

Z. Formatting
The rretty-printer can be frograrmed in the following wayse:

g. (<grird-control-fn> <arpuments>) executes the grird-contrcl-
fn on the given arguments. A tyrical prind control function is
FROGRAMSFPACE. (FROGRAMSFACE 80) sets the width sveilable for

rretty-printing code to 80. Ceorrlete documerntation follows in
ITI-C.

t. (<GRINDFN or GRINDMACRC> <function> <grind-format>) assigns
the grind-format to the fumction o= either a CRINDFN or
CGRIRDMACRC. thenever the pretty-printer encounters the fumetion
as the first element of a EiFt, the list is printed using the
=special format. The grird—format can either be the nane of a
function of no irputs or the bedy of a lanbda definition. A
variety of predefined formats such as PROG=FURM are described in
the next section. The mechanism for building new formats is
rresented in section ITI-E.

c. (UNFCRMAT <function>) removes zny special CRINDFN or
CRINDMACRO propertie=s of the function.

For all of the above srecifications, <furction> can te replaced by
<list of functions>. The grind specification is then applied to
each function in the list.

Typically, fcormat statements ere either placed in a "GRIND
(INIT)" file read by the grind packare when loaded; or inserted
directly into the user”s file as

::*{ORINDFN THFROG FROG-FCEM) (PROGCRAMSPACE B0) <cor>.
Comments beginning with Y ;;*" cause the rretty-printer to evaluate
the remainder of the line. If the line consists of only a =ingle s-
expression, the toplevel parentheses =re optional.

5 3*GEINDIN THFROG PROG-FCRM

The normal LIST READ-EVAT-FRINT loop ifncres =enmi—colon comments.
Hence, ;3;* ccEments cnly have effect when the file i= pround.

4. FEKGRIND - fexyr

[EEFGHIHP] removes all of the prind rackeres furcticons from
a user’s LISF. Alternatively, the u=er cen more rselective in
rruning the space occuried by the prind rackare ty erasirg only
thoze festures he does not need. This is done e follows: -

(REMGRIND FILE)- erases GRIND and GEIFDO. Useful when only
CRINCEF is needed.

(REMCRIND UCONTRCL) - erases the formestting functions. Tt
does not erase those specizl formats already defined by the
user. EBut it prevents him from defining any more. Useful
after the user has created his =special formats.

(REMGRIND FORMAT) = era=es both the formetting functions as
well as any all specizl formats.

(REMGRIND SEMI) — erases specisl Tuncticns fer handling
semi-colon commerts.

. Functions, atoms and properties reserved by grind.

The functions and atonrs reserved by grind can be found in
the DECLARE statement in the grind file. The grind package zlso
uses the indicators "GRINDFN™ and "GRINDMACRC™ fer specifying
srecial grind formats.

E. Predefined formats

1. Standard Tformats

The Tollowing forpats are used by the pretty—printer in the
absence cf any special formatting instructions. Cheice deperds on
the avaliatbtle width and the ceost in number of lires. The alporithm
is deseribed in section II.

a. LINEAR-FCRM - The expression is primted with no extra inserticn
cf carriasge-returns and spaces. this is the foreat used by the LISP
rrinting rrimitives. It is used GRIND only when there is
sufficient width remaining on the line.

b. STANDARD=FOEM = This is the ferred foreat for lists beginning
with atemic functions. It is also used on other lists if fewer
lines are needed to print the code this way.

(<function> <pretty-rrint of arEET >
<pretty-print of arg(2)>

{rre%ty—print of are(2)>)

c. MISER=FORM - This forrmat conservers the srsce reraining on the
line. Vhen in width troutle, furcticn lists are printed this wav.

{<pretiy-rrint of elerent(1)>

<rretity-print of element(Z2)>

{pretty-print of elerent{n)>)
d. FUNRY-FORM — Occasionzly, this formet decreases the number of
lines needed to yrint an exypression. It is used whenever this is
the case. If PREDICT is NIL, comrutation is saved by ignoring it.

(<EILEMENT(1)> <FLEKFNT(2)> ... <PRETTY-FRINT OF TLEMENT(N)>)

2. Specizl GRINDFIs

Each of the following grind-formsts can be assirned to any
function by:

(GRINDFN <function® <grind-Tormat>)
2. BLOCK-FCRM - the entire expression is ground as *ext vhere the

left margin follows the opening parenthesis of the expression. For
examrle, : :

(ABCDETFG
HIJELMUN
OPORSTU
VY XYZ)

Typically, arpument lists and planner patterns are ground as blocks.

b. DEF=-FCRM = Def-form is the standard format for rrinding
definitions. The "defun", functicr-rame, indiestors and arpurent

list are =2lwu=z urd on the first line. The arpupent list is
grourd as a tleck. The remaining elements of the definition are
ground as a ™ "s i. e. derending on their size, they are ground

one under the other in :
i. either the space rerpaining on the line, e. g.

(DEFUN FENAME <ARCLIST GRCUND AS FLOCEY> ##axx
. ' R

-h**hr#}

ii. in stendard feorm=t, i. e. 2lifFred under the function

name @

(DEFUN FERAME INDICATCR <ARGLIST GRCUND AS FIOCHE>
R
R RE
- FREE :|

iii. or in miser format, i. e. alipned under the defun:

(DEFUN FINAME INDICATCR <ARCLIST CROUND AS FLOCE>

T ==
A
-]l--H—H—I—i:-}

c. LAMEDA-FCEM - the LAMFDA and its sarplist ocre pround on the first
line. The argli=t i=s pround 2= 2 bleck. The reraning elements of

the LAMBDA zre ground 2= a2 "tody" i. e. derending on their size, and
in order of yreference,:

i. in either the =pace rermeiring on the line, e. g.

{LANFDA <ARCT.IST CROUND AS FLOCED> *#»=ss

o
-!--!—I--H:--I—I:—}

ii. in stendard format:

(LAVFDA <ARGLIST GROUND AS ELOCK>
R T

R -I-*-H'—li--!—l-}

iii. or in niser format:

(LAFEDA <ARGLIST GROUND AS ELOCKE>

B R
- -!--.H-H-.H-}

d. PROG=FCRM = This format used for FROG s is sipilar to LAMEDA-
FORM, except that tars are unindented.

e. MEM=FOEM = The Tirst argument i= pround a= code. The remginder
=

are alsc ground as code unless quoted, in which cese, they are
fFround as & btlock. For examrle,

Fy default, MEMQ, MEMEER, the MAT furctioms, and the ASSCC functions
are ground in this format.

f. CCHMENT-FCRM - The CDRE of the expressicn is pround as a blocl.
For example,
(COMMENT THIS IS A VERY LONG

COMMENT THAT TAEES

SEVERAL LINES)
CCMMENT, REMCE and *FEXFR, *ENFR, *LFXFR, **ARRAY, SPECI/L and
UNSPECIAL clauses of DECLARE s zre pround in this format.
F. SETC-FORM = Space permitting, variables and velues are ground as
rairs. For examrle,

(SETQ A (FLUS 1 1)
E Q)
IT there is insuffcient space, standard or miser format is used.

*. Irverting read macros
CUCTF-tyre read mecros can be inverted when rretty-printed.

reader Frind
<char> <expr> - - -» (function <expr®) = = =» <char>» <expr>

This is accorplished via the READMACEQ instruvction:
(EEADMACRC <functicm> <mascro character or characters>)

The macrc character is PRINC ed and then the <expr> is pretty-
rrinted. Two examples are:

(READMACRC QUCTE /°) & (READMACRO TEV /$/7)

4. Systen packapes

A ;Eqkqfe of special formats currently exirts for MICRO-
FINR. Teo utilize them, rlace either (PLKR) in ycur CRIND (IKIT)

file Dr';;*FLﬁH directly in »eur micro-rlnr filer,

C. Commerts

Seni=-colon commerts are defired as & semi-colon followed by
text and concluded by & carriaspe return. These corrments csn be
inserted anyvhere in &n s-exrrescion or appesr alone at the top
level. ThE{ are comTletely ignored h{ the LISP resder. The prind
rackage rretty-prints these comments in =everal formets depernding on
whether the comment btegins with 1, 2 or ¥ remi-cclone.

1. Single semi’s

Comments begimming with & single semi-colon are printed to
the right of the ccde. BSeguences of sinfle-reni’s are mereed. The
code is normelly ground in the first 70 speces of the line :
(PROCRAMSFACE) while the single semi’s are pround in the finsl 49
spaces (COMSFACE). GAP = 1 is the syece between code and comments.

Frofranspact——— —fuar— COME TR E e
70 1 49

ragewidth = 12C

Th~se wvalues can be altered; fer exarple, by inserting the fellowing
comment inte a file:

s3* (PACEVIDTH 120 89 1 20)

This results in PROGRAMSPACE beccming 89, GAP 1 &nd COMSTACE 30.

For code that contains no single =emi’s, a PROCRAMSPACE of
80. 1s preferable. - _
Z. Double sepi’s

These cqﬁmEnts are printed as t of the code with the
Froper indentation. GSequences of double semi”s sre nerged. =at the
top level, TOFWIDTH = PACEWIDTH is used. Inside code, dcuble seri’s
are limited to FROGRAMSEFACE. Te alter TOPWIDTH, execute:

(TOPWIDTH <newvalue>)

3. Triple semi’s

Meee oo are similar to ";;..." with resrect to iﬁdeﬂtatjﬂn.
However, they are otherwise not medified by rrind. Sraces are not.

filled and sequences of comments are never rerred. They are thus
useful when the user desires his comment to te rrinted exactly as

cr rinally tyred.

D. CGrind control

Th~se functions cet various switches and variables for the
rretty=-printer.

1. FIIL causes multirle sraces arrearing in sinfle ard double =eni’s
to be merped. Periods ending sertences zre followed by twe spaces,
This is the default case.

2. NOFIIL causes multiple spaces to be treamted as such. Triple
semi’s are always NOFILL ed.

%« MERCE causes double seni’s to be merped, if sufficient COMSPACE
remains on the line.

4. NOMERGE csuses double =emi®=s not to bte merged. This is the
panpner in which triple seri’s are handled. The full papewidth is
used.

o« PACE ceuses the cuiput of a formfeed.

6. FF caures grind to incert formfeeds arrroximately every 60 lines.
Formfeeds are conly inserted at the toplevel, never arpearing within
s-gxrressions. This is the default case.

T. HCFF limits the insertion of formfeeds to explicit calls of PAGE.
E. PFAGE causes grind to preserve originel raging of user®s Tile.
O, NCFREDICT - This switch makes the grind dumber but faster. The
alporithm no longer consider as meny alternatives for prinding each
expression. For FROG=FCEM and DEF-FCORM, format 1 i= no 1GHEE§

mb mode

considered. G&imilarly, FUNNY-FORMAT is never corsidered.
iz the default state.

10. FREDICT = All of the forrats discussed in the previous pepes are
considered.

11. FAGEWIDTH <pagewidth> <{programepsce> <{par> <commentsrace>

12. FROGEAMSTACE <value> = resets the value of the PFROOEAMSPACE.
Enlarging PROCRAMSPACE shrinks CCMSPACE.

12. COMSEACE <value’ resets the width used for single seml commerts.
The tradeoff is sgain with the FRCGRAKSFACE.

14. TCRWIDTE <value> - resets the width used for toplevel douvtle
senl comments.)

E. Defining new formats

The user may wish to po beyond the rredefined formate
discussed in section ITI-BE. To do this, CRINDFN can be used to
define srecial iﬁind functions [8C0F°s] of his own desipm. The
syntax is as follows:

(GRINDFN <atom or list of ateme> <prind-format>)

where the definition i=s either the mame of C—intut procedure or the
body of a LAMEDA expression.

CRINDFNs are processed as follows: arsume the atom 11 has a
SCF associated with it. Then, whenever exrressions ef the form (11
«ss LN} are encountered, gprind rrint=s "(" and then transfers control
to the definition of the S0F. Uron entering the 5GF, the fellowing
free variables are relevant:

Il {_ |:I|1 & o I_I'-I} k
N <—— CERCT = remairing line width, following the "(v.

A 30F penerally rrocesses some initisl segment of L, COR ing
L in the process. Necte that the S5CF must at least process L1. Upon
comrletion, if L has been set to NIL, frind simply prints the

closing parenthesis ")". If, on the other hand, L has been rebound
to scme terminal segment of itself,

L =(Li ... In}

then grind prints the remainder of L as the tody of a DEF-FORM, i.
e. the eleme~ts of L are printed ome under the other in either

a. the srace remeining on the lire

b. zligred under L2
or ¢. elipgmed under L1.

2. Veocabulary
The following vecebulery is useful for defining SCF s:

1. [EEHEEGI} - Expr'— This function processes any ; comments that
cecur as initial elements of' L, COR"ing L in the process.

2. (FFRIN 8 F) = expr — § is printed in the format specified hy T
where F can be:

‘LINE - equivalert to PRINT
ELOCK — ELOCE-FORM

“LIST - CCHMELT-FCRM
‘C0E - arnlies rretty-printer te 5.

FPRIN should not te piven ; comments as input. (REMEEMI) is
renerally used to aveid this. TIRIN does net print a spece
following 3.

%. (FORM F) - exrr = This furction i= desipned to relieve the user
of an exrlicit concern for ccommerts. It elso frees him from
rrinting spaces btetween elements of I, Tts defiriticn ie:

FEMSEMI)
EPTFIR (CAR L% F)
AND (SETQ L {CDR L)) (PRINC °/))

Its action is to first apply RENZEMI, removing any initial ccomments
from L. It then rretty-rrints {CAR L) in the specified formast F.
Finally it CIR"s L and prints a space if there is still rore to go.

4. (TURPRI) = exyr - ﬂ-ﬁarriage return is printed. TERPRI should
not te used. - : .

5. (INDENT-TC N) — expr - This function cavees CHECT to be =et to I
bty printing a carriage return if necessary (N > CHRCT) and sraces.
Neote thet CHRCT is the current width. This rnumber is equal to the
indentation subtracted from the tetal line width. A common bug is
to treat N as the indentztion.

E. (INDENT M) — expr — M sraces are rrinted. An errcr results if M
exceeds the space remaining on the line. :

7. (FOFL) — expr — L is =et to (CDR 1). Then REMSEMT is applied.
The net rE;ult iz to CDR L until its CAR i=s rnot 2 comrent. '

8 a. (TESTL) = lexpr = returns the first element of L that IS HOT
a ";¥ comment. -

b..ETEETL j) returrs the jth element of L that is not a comment.

‘c. (TESTL J t) returns the entire remeinder of I teginning WITE
the jth elerment.

9. (SEMI? K) = expr = returne T only if ¥ is a semi-colon comment.

Z. EXAMPLES

Follewing are scme exanples of SGF s. LAMEDA'S are pround
bty default in DEF-FORM. The user could echieve the seme effect by
defining the following SGF:

1 . (GRINDFN LAMEDA iFGHM “LINE)
2 FORM “FLOCE))

(FORM “LINE) in line 1 prints LAMFDA =nd tops L. (FCRM "FIOCK) in
line 2 prints the arqument li=t of the LAFMFDA in FLOCKE=FCEM end
again rops L. Ceontrel is then returred to prind end the remsinder
cf the LEHBDA is printed es s body.

fnother examrle might be where the urer wiches to prind sll
expressions of the form:

(CEFPEOF <ATOM> <DEFINITICE> <EXFR, FEXFR CR MACRO>)
zs DEFUN"s. This would te done ty:
1 (GRINDFN DEFFPECF

2 (COND EEHFHQ (TESTL 4) “(FXPE FEXPR MACRO))
3 SETO L
2 (AFFEND ELIET “LEFUN (TFSTL 2))
5 COND ((FO (TESTL &) *EXPR)
6 NIL

T ((LIST (TESTL 41)))
a (COR (TESTL 3)))) '
q IFF-FORM)
10 ({FORM LINE))))

The MEMQ of line 2 checks for whether the indiecator is a functionm
rroperty. If so, L is redefined zs the appropriste DEFUL:

(CADR 1) = furction rnzme

The cond of line 5 puts fexpr/macro into the DETUN
CIR (CALLR L}} i= the arpument list of the function
CIODR (CADDR L)) is the body of the function

and then ground in DEF-FCEM. If not, DEFPROF is printed and control
is returﬂeﬂ to grind. '

Finally, consider a function called CMEANS whose arguments
are rroperty lists. It is to bte ground =5 follows:

(CMEANS
(<IND=11> <GRIND TROP—11>

<IND-1N> <CRIND FROP-111>)

(<IND-M1>" <CRIND PROP-11>
| <IND-MN> <GRIND FROP-MN>)) |
Suppese the additional subtlety is desired that rroperties with

indicater FOU are pround ss tlecks while 211 other properties sre
fground ordinarily as code. The following SGF achirves this format.

(GRIKDFN CMEANS (FRCG NIL

1 FOEM *I.IHE}

z SETO ¥ (*DIF N 4.))

= EHE‘]".SEIH]I

4 A (LAMEDA (1)

£ PROG NIL

& INDENT-TC (ADZD1 N))
7 FRINC “/()

B E FEMEFMT

g INDENT-TC N)

10 CONT ((EQ (CAR L) "TCC)
11 FORM “LINE)
12 FORM “ELOCK))
13 {FGRH ‘LINFE
14 TORM “COILE
15 AND (TESTL) (GO B
16 PRINC -]}

17 REMGEMT

18 (CAR Lg]

19 (conp ((FOPL) (CO A)))))

Line 1 prints "CMEANSY, Line 2 establishes the indentation of the
argunents of CMEANS. Line 3 processes ary comments preceding the
first argumert. Line 4 btinds the srecisl free veriskle 1 te the
current argument of CMEANS for ure by FOFM and REM. Line 6 indents
Tor the current arpument. Line E g:rmesse:s any initizl comments
embedded in the arpument. The cond of line 10 forks depending on
whether or not the indieater is "FOO". In line 15, TESTL returns
HIL if L contains no more indicator-yroperty yairs. Line 16 prints
the clnsinﬁ rarenthesis. 17 processes any remairing comments, PE
line 19, the current arpument of CHEANS hes been ground. Hence,
isrmppgd. If there are no more arguments, PCPL returns NIL and the
SCGF 1s done.

4. GRINDMACROs

b GHINDMACRC differs from the above prindfunctions in that
the grind package tekes nothing for granted. Tt deoe= not
automati ¥ print the cpening rarenthesis, the belance of 1T and
the closing parenthesis. If the GRINDMACRO function returns T, then
the Ere%ﬁ-ﬁminter dees nothing more on L. The assurption is that
the GRINDMACRC has done all the work. This would be the case for a
GRINDMACRC for "CQUOTE"Y:

(GRINDMACRC QUOTE (FRINC "é"'_l
%’PET.H {CADR L) "CODE)
T :

Alternatively, if the CRTNDMACRO returne FIL, the rretty-printer
rints I as 'hourh nothing had hatrered. This mede is useful for =
RINDMACEC used to print "index"™ infermation oe compents rrecadine
the s—exrres=ssicon.

CGRINDMACKECs can te defined similerly te CRINI'FN=s.
(CRINDMACRO <ATOM or LIST OF ATOMS» <rrird-format>)

Apain the definition can be either the bedy of a LAMFDA or a
function of O inputs.

VI. Fossitle future imprcvements

A. CCHCEFTUAL

1. The languzpge for srecifyirp forrates should te expended. £
rattern-criernted or tenrlete approach mirht Te preferable.

2. The tsble scheme would allow the rrettyv-rrinter to consider
indentaticns for the arpuerernts of a functior, irterrediate tetween
miser and standard fermat. The elporithe couvld choore the prestest
indentaticn that deoer net couse extra lires to he printed.

e Pretty-printers could do more than just irsert speces and
carriage returns. TFor example, FACTCRIAL could te rrinted as
fellows:

(DEFUN FACTORTAL (¥) (cOND ((= X ©) 1) (=>)))
{(* (FACTCRIAL (1- ¥} X)

"=—2" ig interpreted by the resder to mesn that the next expression
FEAD should te inserted khere. This sugpestion is due to MINSKY.

4. The fact that comments are not read in as part of the list
structure presents 8 =erious obstacle to interactive debugping. The
user must return to & text editing lanpuape to malke corrections in
-his code. Ctherwise, he loses ary commentary. COne ressible
solution would be for corments to be resident. Taring could be used
to store 211 commernts on the =ame mape. This would sllow ther to be
swapred cut during runtime. The evalustor would have to be modified
to ifnore pointers tec a comeent page. These modificetions are
rrobably well worth the effoert. The user would be abtle to move
continuously betwveen defining, ruvnning and editing rrograms.

E. IMFLEMENTATICN

1. Grind should sccert a wider variety of TJE"like srecifications.
for examrle,

$¥DASH —>» Line of dacshes

31*CENTER <text> —> Centers text in comment

2. The current scheme for ; comments leads teo encormous list
structures since every commernt is exranded to a list, one 1etter per
nede. . Altermatives to this s ach are:
A« TYI rather than readch.
E. Pack sscii characters intc rnemres or errav.
C. Use read to peck by turning off svhtﬂx of parentheses,
Pericds, commas.

7. GEIND rhould use its own ctarrey ond rendteble to minimize

e

interference with the vser s world.

4. Srecial grind formats can check for the correct number of inputs.

5. Grind could print pare nurbers

6. The grind file should be troken into 2 files. the firset ecentsins
the tasic grind. The second contains the fne for the umer te define
his own formats. This decresres the initial load on free stcrare
when reading in the tasic prind.

7. Special formats should be created for DO, CNVE and LAF code.

