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I. INTRODUCTION

Euclidean geometry is traditionally considered an excellent subject
for introducing rigorous thinking. [t is thought to reveal clearly the nature
of axiomatic systems and logical rules of inference. However, all too often,
the student's impression is that mathematics is either too obvious (THE AXIOMS)
or too difficult (THE PROBLEMS) to be interesting.

Building a theorem prover is an exciting alternative to the usual
classroom presentation. Its most fundamental virtue is the change in emphasis

from:
What are the theorems of geometry?

to
How can geometry be used to solve problems!

Theorems become not simple declarative statements but strategies for solving
problems. Planning methods for finding a proof amidst a surfeit of geometric
knowledge are clearly brought into focus. The need for formal rigour changes
from an arbitrary demand to a natural pre-requisite for building a computer
program.

This paper presents an elementary theorem prover for a small part of
Euclidean geometry. Section II introduces basic problem solving concepts which
arise in building such a program. Section III details the scope of its
geometric knowledge. Section IV shows the performance of the program on New
York State Regents problems. Section V concludes with directions for further
research.

Mote for those familiar with Gelernter's program
Gelernter’'s geometry machine is the most well-known program for
geometry theorem proving. Hence, it is worth distinguishing the presentation
in this paper from Gelernter's work. Gelernter was primarily concerned with
“illustrating very general theorem proving ideas such as "chaining backwards"
and "syntactic symmetry”. This paper extends his work in three ways:
1. The basic approach of "chaining backwards" is sti11 used.
The difference from Gelernter®s work is the emphasis on developing
a high-level, "natural" formalism for representing mathematical
knowledge as programs. Such a representation allows the builder
to focus on mathematical rather than implementation issues. This
is made possible by the recent development of goal-oriented
languages such as PLANMER and COMNIVER. '
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2. A canonical naming scheme is developed to allow the program
to identify the many synonyms for a given geometric entity.

It provides computational efficiency and clarity by automatically
identifying all the various names of such entities as lines,
angles, and guadrilaterals.

3. A plausible move generator is discussed for guiding the search
for a proof. It is coupled with knowledge for adding constructions.
Constructiens are not randomly made between unconnected points

when all else fails, as was the case with Gelernter's program.
Instead, they are generated for the specific purpose of making a
desired strategy applicable to the current diagram. [Typical of
this is completing a triangle in order to apply the strategy of
proving segments equal via triangle congruence.]

IT. ELEMENTARY PROBLEM SOLVING CONCEPTS
1. Domain _

The first part of most elementary geometry couses develops theorems
for proving: triangles congruent
segments equal
lines paraliel

angles equoal
and quadrilaterals to be parallelograms.

This will be the domain for the theorem proving program developed in this
paﬁer. Excluded is knowledge related to inequalities, similar figures,
circles, arcs and area. However, even when restricted to this limited domain,
the theorem prover must cope with analyses of significant depth and breadth.

To develop insight into the problems that fall within this domain,
two examples are offered. The first is a simple problem. MNeither constructions
nor a proof of any great depth is reﬁuired.
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PROBLEM: Gelernter, Theorem 1 (G-1)
STATEMENT: = The angle bisector is equidistant from the rays of the angle.
HYPOTHESES: SEG DB BISECTS ANGLE ABC
SEG DA PERPENDICULAR SEG BA A
SEG DC PERPENDICULAR SEG BC

OBJECTIVE: SEG AD = SEG CD

GELEENTER PROBLEM i
PROOF: BTP ON GELERNTER, THEDREM 1

STEPS REASONS
1 SEG DB = SEG DB :by identity
2 ANGLE DBA = ANGLE DBC ;byhhypothesis
3 RIGHTAMGLE DAB :by hypothesis
4 RIGHTAWGLE DCB ;hy hypothesis
5 ANGLE DAE = AMGLE DCB ;right angles are equal
& TRIAMGLE ADE = TRIANGLE CDB by aas
7 SEG AD = SEG CD icorresponding sides of
.ﬂ congruent triangles
ED

The proof is produced by the BASIC THEDREM PROVER (BTP), and implemen-
tation in MICRO-PLANNER of the ideas presented in sections I-1 through 1-7.
The "PROBLEM:" and "STATEMENT:" specifications are entirely for the reader's
benefit. The BTP is given only the DIAGRAM, specified via the Cartesian
coordinates of the points and a 115t of connections, the HYPOTHESES and the
OBJECTIVE.
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The proof for G-1 is stated in a traditional format. The reasening

process of our theorem prover, as well as most humans, is revealed far more
clearly by examining a "goal tree".

PROOF: BTP OW GELERNTER, THEOREM 1

seq AD = seq CD

ENSEGT Corresponding sides of
congruent triangles

triangle ADB = triangle COB
EQTRIZ angle—side—ang1e

seq DB = seq DB ' angle DEA = angle DBC
(BY IDENTITY) (BY HYPOTHESIS)

angle DAB
EQANGLE1 Right angles are equal

angle DCB

riohtangle DAB rightangie DCB
(BY HYPOTHESIS) (BY HYPOTHESIS)

The nodes of the tree are goals. The labels on edoes are the
mathematical theorems used to achieve the goals., The tips are known
assertions, their justification given in parentheses,
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The following example represents the most difficult of the Five
problems given by Gelernter. It is interesting for both the complexity of
the proof and the need for a construction. A discussion of the knowledge
needed to find the construction line in an intelligent way is postponed until
Section 8. The proof presented below is given the auxiliary Tine CFK as a
hypothesis.

PROBLEM: Gelernter, Theorem 5§ (G-5)

STATEMENT: [If the segment joining the midpoints of the diagonals of a
trapezoid is extended to intersect a side of the trapezoid, it bisects that
side.

B - [

GELERNTER PROELEM 5
HYPOTHESES: LINE AD PARALLEL LINE BC

POINT E MIDPOINT SEG AC
POINT F MIDPOINT SEG BD
CONSTRUCT LINE CFK

OBJECTIVE: POINT M MIDPOINT SEG AB
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BTP OM GELERNTER, THEOREM 5 (G-5)

point M midpoint AB

MIDPOINT2

A Tine bisecting one side of a
trianole and parallel to the
base bisects the other.

trinnL1e ABD
(HYPOTHESIS)

MF parallel AD

RENAMING

point F midpoint BD
(HYPOTHESIS)

EF parallel AK

PARALLELZ

The bisector of the sides of a
triangle is parallel to the base.

triangle ACK

point F midpoint CK

point E mideooint AC

(HYPOTHESIS) (HYPOTHESIS)
MIDPOINTI Pefinition
CF = FK
Corresponding sides of congruent
EQSER] triangles are equal.
triangle CFB i triangle KFD
EQTRIZ Angle-angie-side
BF = FD angle EDF = angle CBF angle CFE = angle KFD
: ' Vertical
ENANGLEZ angles
point F midpoint BD colinear CFK
(HYPOTHESIS) colinear DFB
(HYPOTHESIS)
EQ@HELEE Alternate interior angles

of parallel Tines are equal.

BC parallel AD
(HYPOTHESIS)
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Additional examples from Gelernter's articles and from the New York State
Regents are provided in 5Section IV.

For each of the important goals Tisted at the beginning of this secticn,
a student has a variety of mathematical theorems at his disposal. For example,
triangle congruence could be proved via any of the usual three methods:

side=angle-5ide
angle-side-angle
tide-side~-side.,

The New York State syllabus expects a student to know about fifty theorems
for these objectives. Moreover, this breadth of mathematical knowledge is
coupled with the fact that parallelism, congruence and equality are equivalence
relations; and therefore Justify transitivity. Hence, proof searches are far
from trivial in both their possible depth and breadth. See Section III for
an outline of the mathematical theorems in this domain.

The following sections examine procedural representations for &
variety of mathematical knowledge which together provide a foundation for a
theorem proving program.

2. Consequent Knowledge

The theorem prover marches forward by stepping backwards. Its
basic mode of operation is using geometry theorems to move from the conclusion
to the hypotheses. This provides more direction than aimless deductions
beginning from the hypotheses. The importance of this style of deduction
was Tirst emphasized by Gelernter.

To direct this analysis, geometry theorems will be given the

following procedural representation.

STRATEGY EQSEGI:
TO=-PROYE: seg XY = seg UV

ESTABLISH: triangle XYZ = triangle UVW
BEASON: correspending parts of congruent triangles

STRATEGY EQANGLET:
TO-PROVE: angle XYZI = angle UVW

ESTABLISH: 10 rightangle XYZ
20 rightangle UVW

REASON: right angles are equal

STRATEGY EQTRIZ:
TO-PROVE: triangle XYZ = triangle UVW

ESTAELISH: 10 seg YZ = seg VW
20 angle XYZ = angle UVW
30 angle YZIX = angle VWU

REASON: congruence by asa
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For the MICRO-PLANNER user, a line-oriented parser can convert these strategies
to conseguent theorems.

For a strategy to be applied, the "TO-FROVE" Tine must match the
current goal. "ESTABLISH" is followed by a 1ist of sub-goals which must be
satisfied to achieve success. The variables X, Y, Z,... are bound to the
paints in the current goal. In the event that all of the sub-goals cannot be
proved, the theorem prover automatically tries any remaining matching
strategies.

The use of goal-oriented languages such as "PLANMER" and "CONNIVER™
provide these powerful procedural tools of "chaining backwards" and "pattern
matching". They free the student to concentrate immediztely on the central
intellectual problems associated with representing geometric knowledge in
procedural terms.

3. Antecedent Knowledoe

3.1 Eliminating’ Synonyms

Antecedent programs serve two simple. roles., The first is to pre=
process problems into terms understood by the theorem prover. This is made
necessary by the many ways geometry provides for expressing the same
hypothesis. For example, in the example G-1, the hypothesis "ANGLE ABD =
ANGLE CBD" might have been stated as:

"5EG BD BISECTS ANGLE ABC.

Of course, a strategy could be added to the theorem prover for

proving angle equality by finding a bisector.

STRATEGY EQANGLE
TO-PROVE: angle XYI = angle WYZ
ESTABLISH: seq YI bisects angle XYZ
q REASON: definition

However, the problem can be converted to a preferred form before beginning
the process of applying strategies to the goal. This has the wirtue of not
overburdening the strategies with restatements of the same piece of knowledge.
Clarity and economy are achieved,

CONVERSION ANGLE-BISECTOR
GIVEN: seg DB bisects angle ABC
ASSERT: angle ABD = angle COB
FORGET: =given=

Note that the original assertion, once restated, is no longer necessary: and,
hence, forgotten. A parser can transform these conversions to PLANNER
antecedent theorems.
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Additional examples are:

CONVERSION MEDTAN
GIVEN: seg AM median-to seg BC
ASSERT: seg BM = seg MC
FORGET: =given=

CONVERSION PARALLEL

GIVEN: seg XY parallel seg UV

ASSERT: Tine XY parallel line UV

FORGET: <given=

It is alheuristic question as to whether a given term should be

eliminated as interface knowledge. The issue is not whether it is formally
reducible to other terms; but, whether it is computationally efficient to
design an expert around the concept. For example, the objective of a problem
might be to prove that a triangle is isosceles. This could be converted into
a segment equality proof. However, such a conversion would ignore the
special fact that the segments are part of a triangle. The insight for
constructing a perpendicular bisector, angle bisector or median would be lost.
Hence, it is not worthwhile to eliminate "isosceles". It is a valuable

problem solving concept.

3.2 Deriving Corollaries

The second role for antecedent programs is to assert commonly needed
corollaries of any hypotheses or objectives successfully proved in the course
of analysis.
COROLLARY EQTRI-1

GIVEN: triangle XYZ = triangle UVMW

ASSERT: seg XY = seg UV
seg ¥YZ = seg YW
seg XZ = seqg UW

CORDLLARY EQTRI-Z2
GIVEN: triangle XYZ = triangle UVW

ASSERT: angle XYZ = andle 'UVW
angle YIX = angle VWU
angle ZXY = angle WUV

COROLLARY PARALLELOGRAM-1
GIVEN: parallelogram AECD

ASSERT: seg AB = seg CD
seg AD = seg BC

Here the original assertion remains important and is not forgotten.
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The process of "chaining backwards" is initiated by the problem
being solved. The derivation of corollaries, however, takes place independent
of the particular objective of the proof. The computation is expended in
the hope that the corollaries will be useful later. However, they may be
unneeded. The costtis generally not prohibitive since such expansions occur
only at the infrequent times when a major subgoal has been achieved.
Nevertheless, it is a heuristic judgment by the programmer whether any
particular corollary should be represented as antecedent knowledge as
opposed to being rederived later if needed.

4. Experts
There are usually many strategies for each goal. For example,
triangle congruence can be proved by

EQTRIT - side-sidé-sidec
EQTRIZ - side-angle-side
EQTRI3 - angle-side-angle

For conceptual clarity and computational efficiency, strategies with a
common goal are organized into experts. For the limited pnrtinn'uf Euclidéan
geometry discussed in these pages, five major experts are sufficient.

triangle congruence
segment equality
angle equality
parallel lines
paralielograms

An expert attempts to satisfy its goal for a given set of points
as follows: '

Convert the goal into canﬁnicﬁl form.

Has the goal already been proved? YES —————3, S5UCCESS

ND
Is the goal worth trying? N ————3 failure
VES |
Does any strategy succeed? —_— NO —— failure
O YES '

Success - remember as lemma.

Derive cJ?nIlaries,
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Previous sections have explored the representation of theorems as conseguent
programs [strategies] for proving goals and as antecedent programs for
deriving corollaries. The next section will examine the need for a
canonical naming scheme. This is followed by an analysis of how computation
can be cnntrnlleﬁ by various filters and a plausible move generator.

5. MNaming

5.1 Canonical Names

The theorem prover has a collection of known facts about the problem.
Initially, these are simply the hypotheses and diagram. Each time an expert
succeeds, the result is remembered as a lemma. This set of assertions is
called the "database™. An E#pert begins its analysis by checking whether
itz goal is already in the database via:

DATABASE? <PATTERN=

Unfortunately, some case must be given as to the form in which
hypotheses and Tesmmas are remembered. In G-1, for example, the goal is to
prove “SEG AD = SEG CD". Suppose the theorem prover is given the hypothesis
"SEG DA = SEG CD". A human mathematician would not see the problem as he
implicitly identifies AD and DA as two names for the same Tine seament.

The program, however, must be given such knowledge explicitly.

One solution is for the expert to check all possible names. For
segment equality, this would require the database inquiry to be made for
seven additional variants of the basic pattern.

seg XY = seg UV seg UY = seqg XY
seqg YX = seq UY seg UV = seqg YX
seg XY = seg VU seg YU = seq XY
seg YX = seg VU seg VU = seqg YX

Such a solution has obvious combinatorial problems. For triangle congruence,
there would be 72 variations. '

An alternative scheme 15 to convert hypotheses and goals to a
preferred or "canonical™ format. Of course, if this approach is to be
computationally less costly, the conversion function must be efficient.

The following paragraphs describe one way to associate a unique form to
each of the geometric statements which the theorem prover must -understand.
The technique will be to build an ordering for the various names for each
geometric entity. Then the camonical name cam be chosen as the first in
the resulting seguence.
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Geometric statements describe relations between points. The points
can be ordered by their position in the diagram. [An alphabetic ordering
based on the names for the points might also be used.]

B<B if xcor{A)<xcor(B) or xcor(A)=xcor(B) and ycor(A)<ycor{B)

where xcor(f)

% coordinate in the diagram of point A
and ycor(A)

y coordinate in the diagram of point A

Note that an nrderiné on sets of points can be built from thizs ordering on
points in the same fashion as this ordering on points was built from a
numerical ordering on numbers,

These orderings on points and sets of points plus some additional
Cartesian knowledge can be used to define a canonical format for geometric
statements. The predicate “CF" is true if its input is im canonical format.

CF (SEG AB) <=» A < B
CF (SEG AB = SEG CD) <=> CF (SEG AB) & CF (SEG CD) & {A,B} < {C,D}
CF [TRIAMGLE ARC) «== A = MIN {A,B,C} & A,B,C in clockwise nrqer

CF (TRIANGLE ABC=TRIANGLE DEF)
«<=> A = MIN {A,B,C,D,E,F} & CF {TRIANGLE ABC)

CF [SQUARE ABCD) <=xA = MIN {A,B,C,D} & A,B,C,D in clockwise order
CF [LINE AB) «#=>h<B & A,B endpoints of line
CF (ANGLE ABC) <=» A,C endpoints of rays originating at B

These criteria imply procedures for converting any geometric
statement involving these terms to canonical format. This is the first
step taken by an expert. 3Subsequent database inguiries, applications of
strategies and the final assertion are all performed on the preferred form
of the pattern.

5.2 Cycling
There 1s another dimension to the naming probiem not handled by
canonical names. Proving two triangles congruent by angle-side-angle is not
completely implemented by EQTRIZ as described earlier. The strategy should
be: e e

b ¥



STRATEGY EQTRI3
TO-PROYE: triangle XYI = triangle UVW

ESTABLISH:
(or
fand ;first pair of angles
seg YZI = seg VW
angle XYZ = angle UVW
angle YZX = angle VWU)

land ;second pair of angles
seg XZ = seg LW
angle YZX = angle VWU
angle ZXY = angle WUV)

(and ;third pair of angles

seg XY = seg UV

angle ZXY = angle WUV

angle XY = angle UVW})
The extension of EQTRI3 represents the fact that there are three possible
applications of angle-side-angle for any given pair of triangles. For
clarity, it is desirable to separate this need to cycle through possible
applications from the basic geometric theorem. EQTRIZ can be left in its
original form, providing the triangle-congruence expert is given explicit
advice with respect to the need for multiple applications of the congruence
theorems. 5imilar cycling advice must be given to the other experts for
gach of their strategies.

One form that this advice can take is that of a special strategy
whi;h applies its brethren to the appropriate cycles of the basic pattern.
For example, for EQTRIT (535), EQTRIZ {SAS), and EQTRI3 (ASA), EQTRIOD, the
cycling strategy, becomes:

STRATEGY EQTRID '
TO-PROVE: triangle XYZ = triangle UVH
ESTABLISH: triangle YIX = triangle VWU using EQTRIZ, EQTRI3
triangle ZIXY = triangle WUV using EQTRIZ, EQTRI3
Note that EQTRIT (533) need not be applied more than once.

There are several disadvantages to a separate cycling strateqgy
that takes effect after all of the other strategies have been applied. It
has the disadvﬁntage of repeating computation common to all cycles of a
given strategy on a given set of points. For example, cycling is used to
apply PARALLELZ, [parallel lines via egqual corresponding angles], to all
four pairs of corresponding angles. Choosing a particular transversal is
common to all cycles and 15 unnecessarily repeated four times. A better
solution is to have each basic strategy try all cycles at the time it is
applied. This approach results in EQTRI3 having the fu]]uwing_representatinnf
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STRATEGY EQTRI3
TO-PROVE: triangle XYZ = triangle UVW

ESTABLISH: 10 seg YZ = seg VW
20 angle XYI = angle. UVW
30 angle YIX = angle VWU

REASON: congruence by ASA
CYCLE: triangle YIX = triangle VWU
triangle ZXY = triangle WUV
6. Controlling Computation

6.1 Diagram Filter

There are a variety of methods for preventing the theorem prover
from pursuing dead ends. The most important is using the diagram to reject
false goals. This was an important contribution of Gelernter. In human
- terms, it amounts to the advice: "If it looks wrong in the picture, don't
bother."

Cartesian and Euclidean geometry provide different formalism for
describing the same facts. The points of the diagram must be chosen so0
that the Euclidean hypotheses are satisfied. If so, then any goal false in
the diagram is not provable. Thus, no valuable 1ines of inguiry are ruled
out by the diagram filter.

0f course, using the diagram filter would be pointless if it were
very costly in computation time. However, Cartesian predicates are very
efficient, requiring only simple numerical computations.

The diagram filter takes the knowledge of the theorem prover out of
a purely Euclidean world. The combination of Cartesian geometry, Euclidean
geometry and, as we shall see later, planning meta-knowledge is an important
virtue of this procedural approach. It mirrors the way in which human
mathematical reasoning in built upon an interplay of many Tevels of knowledge.

An example of the usefulness of this filter can be found in G-1.
The thecrem prover might have attempted proving AD=CD by establishing
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TRIANGLE ADB = TRIANGLE DCB

. EXPLODED DIAGRAM FOR G-1

I
| INCORRECT VERTEX

PAIRING

-—- — . _, B

This pairing of the vertices, however, is bound to fail. The diagram filter
rejects this false path since for the points chosen: '
SEG DB # SEG CB.

The diagram filter cannot replace the theorem prover. [t is possible
for too moch to be true in the diagram. Fortuitously chosen points could
result in ANGLE ABD = ANGLE ADE in G-1. This 15 not a necessary conseguence
of the hypotheses. Thus, a proof is reguired to substantiate the claims
of the diagram.

6.2 Unigueness Filter

Another heuristic for Timiting fruitTess search is:

Do not try an unsuccessful goal a second time.

The assumption is that the theorem prover applied all of 1ts skill to the
goal the first time. A second attempt would simply result in repeated
failure. MNote that the prohibition is not against using the same strategy
more than once. Rather it enly restricts using the same strateay on
exactly the same points twice.

Without 2 unigueness restriction, the side-side-side strategy for
triangle congruence could result in the following Toop in G-1.
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seg AD = seq OC ¢

triangle ADE = triangle CDB

rl .
- L

seg DB = seq DB seq AB L zeq CB

Remembering past goals to avoid repetition is costly in terms of
space. However, endless looping 15 disastrous and makes a uniqueness

filter necessary.

7. Failure

Even with its computational filters, it is possible for the theorem
prover to reach a dead end. For example, in G-1, the side-side-side strategy
would fail if used to prove congruence. Goal-oriented languages such as
PLANNER and CONMIYER provide the ability to back-up and try alternative
strategies when a failure occurs.

seq AD = seq CD

. LLEQSEG] Corresponding sides of - =
congruent triangles

triangle ADE = triangle CDB

EQTRIT 555 EQTRIZ SES EQTRI3 aas

" S

failure faf¥ure : SUCCRSS

Back-up is simplified by the structure of the experts. If successful,
an expert summarizes itz computation with an assertion. This lemma is
remembered even if the larger objective for which the expert was needed fails,
The justification is that the proof of the lemma remains valid regardless of
the failure of the larger strategy. It is possible that the sub-goal may
never be needed in the final proof. However, the heuristic is that the slight
cost in space 15 worthwhile to avoid possible time consuming re-derivations.
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If unsuccessful, the unigueness filter prevents the expert from ever
attempting the same goal again. Thus, in both cases, the details of the
analysis need not be remembered. The cost of back-up is therefore minimized.

. PFlanning

A.1 Depth-First Search
The basic operation of the theorem prover consists of:

goal —= expert —¥ strategies —¥ sub-goals —% ... — hypotheses

With failure back-up, this simple pattern-directed reasoning is adequate to
solve many simple proofs. However, more intelligent planning is needed as
the problems become more complex.

Consider the problem G-5 presented in Section 1. The proof is
reasonably short. However, a theorem prover built of experts with failure
back-up requires 50 pages of analysis to find this proof.

: This number is obtained from a trace of the BTP, & MICROD-PLANNER
program embodying all of the ideas discussed so far in this
paper. This includes a diagram and a unigueness filter., The
excessive search it represents is due to indirect strategies
such as transitivity and angle eguality via equal supplements.

Such computationm is far too tedious to be illuminating.

8.2 Plausible Move Generation
A solution is the introduction of a “plausible move genmerator”.
Each expert could have a PMG whose job would be to choose which strategies
to apply first,
& move inm the geometry game is the application of a particular
strategy for & particular choice of points.
There iz & variety of knowledge that a2 PM5 would need. For example,
evidence for a strategy, independent of the choice of points might include:
Context - The location of the strategy and problem in the syllabus
can be useful. The page number of a problem is given. The
computer has the page numbers for every strategy. Plausibility
15 the strategy whose page number first precedes the problem.’
The theory behind this heuristic is that authors generally have
some rationale for their organization of a text. This can
include an unspoken theory of the relevance of various theorems
to problems, At the very least, a problem is usually not



assigned unless it can be solved from material already presented
in the text. [Careful examination of this heuristic should
eventually lead to more subtle interconnections between knowledge
and classes of problems than the linear structure of a text.]

Repetition - Negative weight is given for repetitive use of any
strategy on the current proof path. This can be used as a
restriction on the number of times a given strategy can recurse.

Directness - Transitivity and arithmetic are indirect strategies
in that they shift the focus of attention to another pair of
angles, segments, etc. MNegative weight should be charged for
such indirectness.

A fully specified move includes the choice of points to which the strategy
will be applied. As we have already seen, the points chosen must make all
of the goals of the strategy true in the diagram. In addition, evidence
for a particular choice of points might include:

The number of sub-goals of the strategy that have already

proved or asserted.

The number of other assertions in which these points oaccur.

8.3 Incomplete Bindings and Constructions

Inlits consideration of the next “move”, a PMG must handle
"constructive” strategies. These are theorems that reguire additional
points and line segments beyond those mentioned in the basic goal pattern.
For example, EQTRIT (S555) is not constructive. The existence of two
triangles implies the existence of the angles and line segments which make
up the triangles. But proving that two line segments are equal because
they are corresponding parts of congruent triangles is :nnsﬁruct1ve. The
theorem prover must find the additional points needed to form the triangles.

An example of a constructive strategy used to prove G-5 is:

STRATEGY MIDPOINTZ
TO-PROVE: point M midpoint seg AB

ESTABLISH: 10 .point C sth—that triangle ABC
20 point F such=that Tine BFC
30 and (prove: point F midpoint seg BC)
prove: line MF parallel Tine AC)

REASON: A Tine bisecting one side of a triangle and parallel to
the base bisects the other. :
[f the additicnal points and/or 1ine segments do not exist in the
diagram, the theorem prover is faced with the "construction" problem.
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Should additional points and/or Tines be added; and if so, where?
The particular strategy involved plus knowledge of those points which do
exist constitute constraints as to where additional points can be created.
Sometimes these constraints are sufficient to determine the new point or
Tine.

For example, consider G-5. Proving "LINE MF PARALLEL LINE AD"
requires a construction. PARALLELI is the theorem that a line bisecting
two sides of a triangle is parallel to the base. This strategy is very
specific in 1ts needs. 3egment AC is the obvious candidate for one side
of this triangle. This leads to two constructions:

B« c

GELERNTER PROBLEM 5-

1. Construct CFE
or 2. Extend MEF through F to CD.

The first construction is preferred since it is a transversal between two
Tines known to be parallel. This illustrates the way in which strategies
direct the construction process.

At other times, there is still some freedom with respect to the
new points. The constructor can generate its own constraints. For example,
this would include choosing a new point such that the line segment formed is

parallel or perpendicular or a median

to an important existing line segment. This represents an effort to maximize
the return in the form of additional properties of a given construction.
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The constructor can return the additional points andfor line segments
needed to complete the binding as well as an estimate of the plausibility of
the construction. This evidence is used by the PMG. This can be added into
the plausibility of the total binding. '

This does not represent a complete solution to the construction
problem. It does not invelve any global planning. For example, no effort
would be made to put in & line because of symmetry. [See Wong.] Constructions
are tied to particular strategies. However, it is an important part of
construction knowledge. Witness the comparison with Gelernter's original
approach to new line segments - when all else fails, connect any two points.

8.4 The Use of "Contexts"

Constructions for a plausible move might not pay off. The particular
path could fail. In such a case, since the constructions were done for a
particular purposes they should be undone; unless interesting lemmas werse
proved along the way. CONNIVER with its ability to define sub-contexts,
provides a powerful tool for undeing constructions.

The number of moves for a given goal may be very large. This would
make it prohibitively expensive to generate all possible moves and order
them by their plausibility. This is especially fodlish since plausibility
is only a qualitative distinction between great, good, fair and poor. The
alternative would be te try good-great possibilities immediately. This
requires that the generation of moves "hang", resuming later if necessary.
This switch between depth-first and breadth-first exploration again requires
the ability to move between contexts.

The PTP, andextension of the BTP to include a plausible move genera-
tor has been simulated, but not yet implemented. The BTF is weitten in
MICRD-PLANKER. The need for contexts and hanging suggests that the PTP
should be implemented in CONNIVER.

8.5 Example

Hand simulation of the PTP results in great efficiency and directness.
For example, for G-5, analysis requires only a fraction of the ETP's cost,
even though the construction line CFK iz not given with the hypotheses.
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II1I. KNOWLEDGE

Section II introduced the basic procedural orgamization for our
glementary Euclidean geometry theorem prover. This section provides an
outline of the mathematical knowledge included in the program. - For each
gxpert, the geometric theorems behind the strategies are stated. Any
special characteristics or problems in converting a theorem to program
format are mentioned.

This section does not include a discussion of the Cartesian knowledoe
used by the diagram filter and the orderings used to gensrate canonical
names. The implementation of both of these functions is straightforward.

1. Triangle Congruence Expert

A. Theorems

EQTRIT - two triangles are congruent if the three sides of one are equal
to their counterparts in the other.

EQTRIZ - two triamgles are congruent if two sides and the included angle
of one are egual respectively to two sides and the included angle
of the other.

EQTRI3Z - two triangles are congruent if any two angles and a side of one
are egual to their counterparts in the other.

EQTRI4 - two right triangles are congruent if the hypotenuse and a leg of

pne are equal to the hypotenuse and & leg of the other.
EQTRI-PARALLELOGRAM - a diagonal divides a parallelogram into two
congruent triangles.
EQTRI-TRANSIVITY - two triangles are congruent if they are congruent to
a third.
B. Fine Points
a. Triangle congruence refers to a particular identification of the
vertices of the two tr1angies. Thus ,
TRIANGLE ABC = TRIANGLE DEF
tﬂrrespﬂnﬁs to A paired with D, B paired with E, and C paired with F.
Proving triangle BAC congruent to triapgle DEF is a separate problem.
b. The theorem "the hypotenuse and a leg of one right triangle are equal
to the hypotenuse and a leg of another" reguires a construction. . The
triangles are placed back-to-back.
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- e

COINCIDENT SIDE COMSTRUCTION

This seems to be a relatively specialized type of construction. Hence, the
theorem is repeesented explicitly. The constructor of the PMS does not
translate figures in this fashion. Further research is necessary to see
whether translation is a technigue that the constructor should consider.

¢, EOTRIZ is used to represent both angle-side-angle and angle-angle-side.
It proves congruence if two angles and any side of one triangle are equal
to the corresponding parts in the other. This is mentioned to emphasize
that the theorem prover is not simply a copy of the standard axiomitization
for Euclidean geometry. Rather, the objective iz to find the most powerful
representation for doing actual problem solving. As such, we are free to
use whatever geometric knowledge we may need to justify the inclusion of
some particular strategy. However, we must face such issues as

time versus space tradeoffs
explicit versus implicit representation
heuristic versus algorithmic strategies

that a formal mathematical representation ignores.
d. The information that triangle congruence is an equivalence relation is
represented in several ways. The canonical-name transformation ddentifies

reflexive variations. Identity and tramsitivity are implemented by strategies
for =",
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2. Segment Equality Expert

A. Theorems
EQSEG] - corresponding sides of congruent triangles are equal.

EQSEGZ - the midpoint of a line segment divides it into two equal segments.
EQSEG3 - sums, differences and doubles of equal line segments are equal.
EQSEGY - halves of egual Tine segments are equal.

EQSEGS - sides of a triangle opposite equal base angles are equal.

EQSEG-TRARSIVITY - 1ine segments equal to a third are equal to each other.

B. Fine Points .

&. The pattern for EQSEGZ fs "SEG AM = S5EG MB". Observe that this performs

limited filtering in its own right. It only matches two segments if they

cshare a common endpoint. '
Ordinarily, one might expect to try EQSEGZ for all four cycles of

the segment equality pattern "SEG XY = SEG UV". The use, however, of a

Cartesian lexical ordering has an interesting side benefit. The pattern

in canonical form guarantees that any midpoint M be such that Y =M =10

since XMY are colinear and consequently X<¥Y = U<V,

U v
X Y

b. Surprisingly, all three of the following theorems for the algebra of
segments can be represented by the same strategy:

i. Sums of equal Tine segments are equal.
ii. Differences of equal Tine seoments are equal.
ifi. Doubles of equal line segments are equal.

Note that summation for Euclidean geometry 15 defined as AB + BC = AC if
and only if ABC are colinear.

STRATEGY EQSEG3 .
TO-PROVE: =eg AB = seg DE

ESTABLISH: 10 thamong C (LIME AE{
20 thamong F (LINE DE

30 seq CA = seg FD
40 seq CE = seq FE
There are three regions from which the point C might be chnﬁeﬁ:

cl B C3
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Region C2 corresponds to AC + CB = AE whereas regions C1 and C3 correspond
to BC - AC = AB and AC = BC = AB respectively. This encompasses sums and
differences of equals being equal. Doubles of equals being egual is
covered by point C being chosen as the midpoint of AB. For this case,

CA = FD must stil11 be proved., However,

CB = CA by midpoint exper
CA = FD Temma :
FD = FE by midpoint expert.

c. EQSEGH, that "sides opposite equal angles of a triangle are equal", is
often proved by dropping a perpendicular to the base and demonstrating
triangle congruence via angle-angle-zide. This generalizes to a useful
heuristic for the constructor.
To equate parts of a given triangle, construct a perpendicular,
angle bisector or median and prove congruence. The particular
choice depends on what else is known about the triangle.
Another proof for EQSEGS called the “pons asinorum” s illustrated in
Section IV, Regents problem 32, June 69. This proof is amusing as it
involves proving the triangle "congruent to itself".

3. Midpoint Expert

A. Theorems

MIDPOINTT - M is the midpoint of segment AB 1f AM = MB,

MIDPOINTZ - a 1ine bisecting one side of a triangle and parallel to the
base bisects the other side.

E. Fine Points

Assertions about midpoints are not eliminated via a "conversion" to
statements about segment equality. This is because AM = ME is not
equivalent to M being the midpoint of AB. The difference is that segment
equality does not imply that M is colinear with AB.

4. Angle Equality Expert

A. Theorems

EQANGLE] - strajaht angles are equal.

EQANGLE22- vertical angles are equal.

EQANGLE3 - right angles .are equal.

EQANGLE4 - corresponding angles of congruent triangles are equal.
EQANGLES = alternate interior angles of parallel lines are egual.
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EQANGLEE - corresponding angles of parallel lines are equal.
EQANGLET - sums, differences and doubles of equal angles are egual,
EQANGLES - havles of equal angles are equal.

EQANGLES - base angles of an isosceles triangle are equal.

EQANGLE-TRANSIVITITY - angles equal to the same angle are egual to each other.
RIGHTANGLE] - perpendicular Tines form right angles.

B. Fine Points
&. Proving that two angles are vertical angles is made computatiomally
efficient by relying completely on the diagram. Strictly speaking, a
theorem prover that uses such a strategy is not producing a rigorous
Euclidean proof. However, such a strategy is in consonance with the basic
goal of producing a reasonable model of human problem solving., Indeed, in
any area of mathematics, certain Temmas are accepted without tedious formal
proof. Thus, the combinatorics for establishing colinearity in terms of
Euclidean predicates is not an interesting issue in developing a real-time
performance model for this area of mathematics.
b. The calling pattern for EQANGLEZ, the vertical angle strategy is:
ANGLE ABC = ANGLE DBF.

MNotice that this pattern matches only pairs of angles that have a common
vertex. Whether or not the angles actually are vertical, this information
is sufficient to eliminate the alternate interior angle strategy. Alternate
interior angles cannot share & vertex. This fact is implemented by erasing
EQANGLEZ for the duration of the geoal.

The erasing of another strategy is osefuiufor computational

control. The cost of the alternate interior angle strategy

is avoided even if EQANGLEZ, the vertical angle strategy,

fails. Such a careful consideration of when discoveries in

one strategy allow the theorem prover to prune subsequent

computation is important 1f our model is to be capable of

supporting real problem solving.

5. Parallel Line Expert

A. Theorems _

PARALLELT - alternate interior angles form parallel lines.

PARALLELZ - equal corresponding angles form parallel lines.

PARALLEL3 - the bisector of the sides of a triangle is parallel to the base.
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PARALLEL-TRANSITIVITY - two lines parallel to a third are parallel to each
other.

B. Fine Points

a. Given PARALLELY, the alternate interior angle strategy, another program
using the knowledge that Tines are parallel if corresponding angles are
equal is not strictly necessary.

; /i

L? Z

A proof using the alternate interior angle strategy is ordinarily possible.
' line L1 parallel Tine L2
PARALLEL 1 Alternate interdor angles

angle 2 = angle 3
TRANSITIVITY

angle 3 = angle 1 angle 2 = angle 3
(VERTICAL ANGLES) (LEMMA)

However, it is possible that angle 3 does not exist in the diagram. L1 and
LZ may not extend beyond the transversal.

L1 f’gﬁ

Lz z

In such & case, the lack of an explicit "corresponding angle”
strategy necessitates the construction of extending L1 and L2, Thiz trick
must be given to the constructor.
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f. Parallelogram Expert

A. Theorems

CORDLLARIES - the following corollaries are always derived whenever a
quadrilateral is asserted to be a parallelogram [by either a hypothesis
or a lemma, ]

Both pairs of opposite sides are parallel
Both pairs of opposite sides are eagual
Two opposite sides are equal and parallel
The diagonals bisect each other

Both pairs of opposite angles are eqgual.

LR B L g —

PGRAM] - prove congruence of the triangles formed by a diagonal. If
necessary, construct the diagonal. Give preference to the diagomal
that creates the pair of triangles about which the most is
already known.

B. Fine Points

Each of the corollaries listed above is an equivalence. Hence, they
could also be used as strategies to prove that a gquadrilateral i5 a
parallelogram. Examining the proofs for these equivalences indicates that
constructing one or both diagonals is the basic technique. The construction
of diagonals is generally needed when deriving one of the above properties
from another for some quadrilateral as a lesma in a larger problem. Hence,
for economy andlctnrity, only the core strategy of proving the congruence
of the triangles formed by the diagonals is represented.

IV. PROBLEMS AND PROOFS .

"~ The theorem prover developed in Section II is capable of proving
a1l five examples given by Gelernter in his articles im COMPUTERS AMND
THOUGHT. The program finds the same proofs given by Gelernter. Its
analysis is improved in that constructions are far more motivated. Rather
than repeating these problems here, this section provides additional
examplas taken from the New York State Regents.

PFﬂqu are again represented graphi:&]iy as trees. The nodes are
goals. The edges are labeled with the name and justification of the
strategy that satisfied the goal. The top.level objective of the problem
is represented as the top of the tree. The theorem proving process
proceeds basically in a top-down fashion.
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PROBLEM: 32, January 64 Regents

STATEMENT: In gquadrilateral ABCD, AB=AD and BC=DC. Diagonal AC is extended
through C to E and Tines BE and DE are drawn. Prove that BE=DE.

DIAGRAM: The program does not

process pictures. The diagram

is specified by giving Cartesian
coordinates for the points and B
a list of the line semments. For th

. the illustrative purposes of this
section, only the resulting picture .1
will be shown.

HYPOTHESES: SEG AB = SEG AD
SEG BC = SEG DC

PROVE: SEG BE = 5EG DE

E
PROBLEM 32, JAN 64

COMMENTS: This problem is no more complex than G-1. The difference is only
a recursive application of the triangle congruence expert.
Repetitive application of a given line of attack does not confuse
a machine. The program is an excellent bookkeeper. Far more

serious are problems that reouire gualitatively different
approaches.
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BE = DE

Corresponding sides of
EQSEE] congruent triangles

triangle EBA = triangle EDA
EQTRIZ Side-anale-side

BA = DA angle BAE = angle DAE AE = AE
(HYPOTHESIS) (IDENTITY)
rresponding anaoles of
EAJANGLES E@nngruent triangles
triangle BAC = trianale DAC
EOTRI Side-zide-side
BA = DA BC = OC AC = AC
(HYPOTHESIS) {HYPOTHESIS) {IDENTITY)
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PROBLEM: 32, June 69 Regents
STATEMENT: Given seament MPON with MP=0N and angle KPQ = angle KOP as shown

in the accompanying figure. Prove that trianocle EMN s an
izosceles triangle.

HYPOTHESES: 5SEG MP = SEG ON K
ANGLE KPQ = ANGLE KOQP

PROVE: TRIANGLE KMN IS5 ISOSCELES

. P a N
PROBLEM 32, JUNE 69

COMMENTS: For this problem, explicit knowledge about the propertiez of
isosceles triangles has been erased. This forces the program to
prove that equal base angles imply equal sides. It does this via
the amusing route of proving the triangle congruent to itself
under certain pairing of vertices. This attack is called the
“pons asinorum”.

Such a proof, involving the artifice of proving a triangle
congruent to itself, is in fact more easily accomplished by a
dumb theorem prover than & person. A theory for why this is so
is that a person considers a triangle to be the same under all
of the permutations of its name [a valuable heuristic); whereas
the computer is not bright enough to realize that the two permu-
tations are related. It will probably be the case that as
programs acquire more insight, they will less easily derive th15
style of proof.

This proof also fnvolves the first example. of an indirect
ctrategy, EOSEG3 is used to prove segment equality on the basis
of differences of equal Tine segments being equal.
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(HYPOTHESIS)

PROOF: BY ETP
triangle KMN is isosceles
Conversion Definition
KM = EN
Corresponding sides of
EQSEGT congruent triangles
triangle KMD = triangle NKP
EQTRIZ Side-angle-side
MO = PN KQ T KP
EQSEG3 Arithmetic
* 1
PO = QP MP 4 QN
fIDENTIT?l (HYPOTHESIS)
LﬁEEE]EQSEEI Corresponding sides of ...

triangle KOP =

congruent triangles

triangle KPOQ

EQTRIZ Angle-analezside
angle OQKP l angle PKQ PQ = QP angle KPQ j angle KOP
[tDEHTITT? ' (IDENTITY) (HYPOTHESIS)

angle KPN = anale KM
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PROBLEM: 32, June 68 Regents

STATEMENT: In quadrilateral TURS, UR = TS and angle R = angle 5.
Prove that angle U = angle T.

CONSTRUCTION LINES R -
GENERATED BY PTP - .

PROBLEM 32, JUNE 68

HYPOTHESES: 5SEG UR = SEG TS
AMGLE R = ANGLE 5

PROVE: ANGLE U = ANGLE T

COMMENTS: Just as for parallelograms, an important strategy for relating
parts of a guadrilateral is to prove congruence of the trianagles
formed by one or both diabgenals. The difference for quadrilaterals
is that the constructor must be more cautious. Corroborative
evidence supporting the addition of new lines should be present.
For this problem the fact that two hypotheses relate corresponding
parts of the created triangles is ample justification for the
constructions .



PRODF: BY PTP (SIMULATION)

anale U

= angle T

B ———————————— ————— ]

plausible construction
create diagonals
Corresponding anales of
EQANGLE4 congruent triangles
triangle RUT = triangle STU
EOTRIT Side-side-side
UR = ST RT = US Ur = Tu
{HYPOTHESIS) (IDENTITY)
Corresponding sides of
EQANGLET congruent triangles
triangle USR = triangle TRS
EQTRIZ side-angle-side
RS = 3R a~angle R = angle 5 UR = 5T

(IDENTITY) (HYPOTHESIS) (IDENTITY)
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PROBLEM: 34, January 65 Regents

STATEMENT: Given parallelogram ABCD with E the midpoint of AB and F the

midpoint of CD. Lines DE and FB are drawn. Prove that DEBF
iz a parallelogram.

-

HYPOTHESES: PARALLELOGRAM ABCD PROBLEM 34, JAN 65

POINT E MIDPOINT SEG AB
POINT F MIDPOINT SEG CD

PROVE:: PARALLELOGRAM DEEBF

COMMENTS: This problem illustrates the uwse of antecedent theorems. Various
corollaries of ABCD being a parallelogram are deduced immediately
upon reading this hypothesis. The fact that the deduction®from
corollary to hypothesis s not part of the basic process of

chaining backwards is indicated by a dotted 1ine being used to
connect the twa.

As pointed out in Section III, the basic tool for proving a
guadrilateral to be a parallelogram is to construct the diagonal
and use trianagle congruence, This plausible comstruction is
done immediately.



PROOF:

BY PEP (SIMULATION)

parallelogram DEBF

|
plausible construction
create diagonal DB

Congruence of triangles
across diagonal

PGRAMI
triangle DEB ¥ triangle DBF

EQTRIT Side-side-side
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DB = DB
(IDENTITY)

EB = DF

EQSEGS Halves of equals

AB = CD
[cﬂﬂugLAHw}

point F midpoint CD
(HYPOTHESIS)

para]]e1n&ram ABCD

(HYPOTHESIS)

point E midpoint AB
(HYPOTHESIS)

ED

triangle EDA =

trianale FBC

EQTRI 2 Side-angle-side

AE l FC
(CORDLLARY OF)

angle A = angle C
(COROLLARY )

|

AD = BC
{EﬂRﬂELAHT}

(EQSEGY & EB = DF)

_ para11elﬁgram ABCD
(HYPOTHESIS)

FB
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FPROBLEM: 32, January 68 Regents

STATEMENT: In the accompanying plane figure, AREDC is a rectangle and ABE=BEC.
If BE and ED are drawn, prove that angle BED = angle BDE.

B
HYPOTHESES: RECTANGLE AEDC
SEG AB = SEG BC
PROVE: ANGLE BED = AMGLE BDE
A c
Ll |
E .
D

PROBLEM 32, JAN 68



PROOF: BY BTP

angle BED =
EQANGLED
triangle BED
[SOSCELEST
BE

EQSEG]
triangle EAB 7

page 39

angle BDE
Isosceles triangle
1s isosceles
Definition
ED

Corresponding sides of
congruent triangles are equal

triangle DCE

EQTRIZ Side-angle-side
AE = CD angle EAE = angle DCB AE = BC
(COROLLARY) EQANGLE7 | Arithmetic (HYPOTHESIS)
et
angle EAC = angle DCA angle BAC = angle BCA

EQANGLEZ | Right angles

right angle EAC right angle DCA
(COROLLARY ) COROLLARY )

T [ |

rectan§1e AEDC
H(HYPOTHESIS).

EQANGLES Isosceles triangle

triangle BAC is isosceles

I1S05CELEST Definition

AE = BC
{HYPOTHESIS)



PROBLEM: 3

STATEMENT:

HYPOTHESES:
SQU
POI
POI

POINT G MIDPOINT SEG CD

POI

PROYE: TRI

COMMENTS
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2, January 69 Regents

Given sguare ABCD with E, F, G, and H the midpoints of AB, BC,
O, and DA respectively. Prove:
a4, Triangle EFG = Triangle EGH
b, If A8 = &, find the
1. Length of EF
2. Area of triangle EFG.

ARE AELD
NT E MIDPOINT SEG AB
NT F MIDPOINT 3EG BC

NT H MIDPOINT SEG AD

ANGLE EFG = TRIANGLE EHG

A .
E B

The thecrem prover does not attempt questions on area,. However,
its diagram filter embodies a fairly substantial model for
Cartesian geometry.

Gelernter used the phrase "syntactic symmetry” to refer to goals
that are identical to previously established lemmas under some
permutation of the points of the problem. He used a test for such
equivalences to avoid repeating symmetric proofs. The theorem
prover developed in this paper does not check for syntactic
symmetry for several reasons:

d. There iz no increase in power. The theorem prover is
certainly capable of repeating a given line of attack onm
the symmetric goal. Indeed, the proof tree given iz anm
abbreviation of the actual onme generated. The skeleton of
the subtree for the first segment equality (HG = GF) would
be duplicated for the second (HE = FE).

b. The test for syntactic symmetry is costly, and therefore
not worth the expense.

c. It is too syntactic. A more semantic approach is the
observance of various geometric symmetries such as reflections
across lines and points. These symmetries can be ased to

help plan the proof. [Eubank].
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HE = FE
[syntactic symmetry]

PROOF: BY BTP
triangle EFG & triangle EHG
EQTRIT Side-side-side
EG l EG HG = GF
[ IDENTITY)
EOSEG] Corresponding sides of

triangle HOG

congruent triangles

l triangle FGC

EQTRIZ Side-angle-side
angle D = angle C OH = CF DG = GC
{CDRD&LAHT]
! EQSEG 2 | Definition
1 .
5quaré ABCD point G midpoint CD
(HYPOTHESIS) {HYPOTHESIS)
EQSEGS Halves of eguals

AD = BC
{COROLLARY)

square ABCD
(HYPOTHESIS)

point F midpoint BC
(HYPOTHESIS)

point H midpoint AD
[HYPOTHESIS)
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V. DIRECTIONS FOR FURTHER RESEARCH

The procedural model for geometry presented in the preceding pages
is only a first step in understanding the reasoning and knowledge of
mathematics. There is much more to do. The following paragraphs describe
various directions that future research might pursue.

1. Global Planning

Planning, plausible moves and constructions as presented in the
glementary model all have a local nature. They are tied to knowledge
about particular strategies. An alternative approach would be to plan a
1ine of attack from global considerations. This might include adding
construoctions on the basis of symmetry considerations [Wong] and considering
different proof skeletons as, for example, proof by comtradiction,
hypotheticals, symmetry or inequalities.

Better global planning could use more sophisticated models for
relevance, cost and provability. This might include using the diagram to
help plan the proof. A model based on the diagram as & physical structure
might be useful. For example, would the fact that the hypotheses imply a
mechanical linkage between parts of the diagram be evidence for a geometric
relationship being provable of those parts?

2. Diagram Generation

The diagram is an important computational filter. Accidentally
choosing Cartesian coordinates that allow non-essential properties in the
diagram weakens this filtering. A diagram generator that creates a general
instance would prevent this. However, such a generator cannot be built in
fsolation from the basic theorem prover. There must be an interactive
relationship between a generator and prover [Price]. Expinfing this
interaction should resuTt in a more intelligent program.

3. Quantitative Inﬁrease in Mathematical Enowledge

How far can the basic technigques discussed so far be extended?
Can the same basic structure, for example, be used to represent Euclidean
knowledge abﬁut circles? What new issues arise when the amount of knowledge
in the theorem prover grows large? Must it resort to a big switch structure
or can all of its consequent theorems be active at the same time by virtue
of the difference in their calling patterns? Is the knowledge grouped into
a tree of mini-worlds with well-defined entry conditions?
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4. Qualitative Increase in Mathematical Knowledge

Can the basic structure used so far be extended to other areas of
mathematics, such as three dimensional geometry, topology, non-fuclidean
gepmetry, and compass and straight-edge constructions? '

5. Learning

It iz only possible to consider the problem of learning after a
variety of representations for the end product of such a process have been
considered. Having constructed a model for geometry, we are only now in
a position to consider the processes by which it was built. '

One type of learning is met when the theorem prover finds a proof.
The question that then arises {s whether the new theorem should be added
explicitly. Moreover, should it be added as an antecedent or consequent
theorem?

6. English
It should be straightforward to extend Winograd's language system
to process English statements of geometry problems.

7. 100% on Regents
What would it take for the theorem prover to be able to get 100%
on the New York State Regent's exam? The syllabus contains such diverse

topics as: Euclidean knowledge of
angle and segment equalities
circles
area’
requiar polygons
similar triangles
fnequalities

Cartesian knowledge

right triangle trigonometry

loci

censtructions

logic '

algebraic manipulation

“8. Alternative Approaches to HathematicaT Reasoning .
some approaches to theorem proving such as "resolution® do not

provide much mathematical insight. Essentially combinatorial, they take

advantage of the speed of 2 digital computer and sacrifice deep understanding

of the mathematical domain. The procedural model built in the preceding

pages has the characteristic of being a natural ocne in the sense that it is
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easily understood by anyone familiar with geometry. Its naturalness should
make it amenable to sophisticated planning, thereby becoming more powerful
than the standard combinatorial programs. However, this has yet to be
pruﬁed!

9. Psychology of Human Problem Solving

The program constructed, because of its "reasonable" nature, is a
candidate for a model of human problem solvwing. Being explicit, it offers
far more precision for psychological analyses than traditional introspective
or discursive techniques. Witness such vague analyses as those of Poincare
and Hadamard., It might be interesting to attempt a Newell-5imon style of
psychological research into mathematical creativity using the model
presented in this paper as opposed to a production system.

10. Education

A procedurally oriented study of mathematics provides an alternative
approach to learning Euclidean geometry.

Theorem proving approaches mathematics as something to do.
It provides a model of problem solving for the student.
The student, himself, develops this model.

4. The basic constraint is not the teacher's whim but the
actual performance of the program.

Ly P =

For a student, building & procedural model is Tike creating a
scientific theory. The l@dlviduai looks for basic pieces of knowledge
that can support actual problem solving. Considerations of logical
gonsistency or completeness aré secondary. The first task is to construct
a model that begins to womk on some interesting set of problems. '

The particular knowledge chosen is a personal choice. &n
individual begins with that knowledge with which he is most comfortable.
Arbitrary claims that a given set of axioms capture the essence of
geometry are rejected.
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