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The intensity at & point In an image is the product of the
raflectance at the corresponding object point and the intensity of
illumination at that point. We are able to perceive |ightness, a
guantity closaly correlated with reflectance. How then do we al iminate
the component due to illumination from the image on our retina? The two
componenta of image Intensity differ in their spatial distribution. A
mathod is pressnted herea Which takes advantage of this to compute
lightness from image intensity in a layered, parallel fashion.

The mathod ies developed for a restricted class of images firat used
by Land in presenting his retinex theory of color. In this theory the
problem of color perception is reduced to one of judging black and white
lightness on three images taken in different parts of the visual
spectrum. The method described here fills the nead for a lightneess
judging processa.

The theory has implications for potential special purpose harduare
in image senaing devicea. [t should also be of intereat to cognitive
peuychologists since it can explain certain affects cbeerved in the human
visual systes as Well as predict new ones. Further, the theory provides
neuro-physiologists uith suggestions asbout the function of certain
structures in the primats retina,
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LIGHTNESS: Definition

The relative degres to which an object reflects |ight.

The Random House Dictionary

The attribute of object colore by which the object appears to reflect or
tranemit more or less of the incident |ight.

Webester's Seventh New Collegiate Qictionary

Preavieu

Part 1 is a revied of the relevant information relating to color
vision and lightness. This Includes a discussion of the Land retinex
medal in a form suitable for the developments of the next part.

In part 2, Land's one-dimensional operation will be extended to
tuo-dimensional images. The method depends on a layered, parallel
computation suggestive of both biological and artificial
implementations.

In part 3 scme of the implications are explored and the information
on the ned image processing technigue is summarized.
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1. Review.

1.1 Theories of Color Perception.

Thera has aluays been great interest in how We perceive colors and
numerous explanations have been foruarded [Newton 1784, Goethe 1818,
Young 1828, Maxwel| 1856, Helmholtz 1867, Hering 18751. The human
perceptual apparatus 1s remarkably succesful in coping with large
variations in the illumination. The colors We perceive are closely
correlated with the surface colours of the objects viewed, despite large
temporal and spatial differences in color and intensity of the incident
light. This ia surprising since we cannot sense reflectance directiy.

The light inteneity at a point in the image is the product of the
raflactance at the corresponding object point and the intensity of
illumination at that point - aside from a constant factor that depends
on the optical arrangment. There must then be some difference betueen
these two componente of image inteneity which allowe us to discount the
effect of one. The two components differ In their spatial dietribution.
Incident light inteneity will usually vary smoothly, uith no
discontinuities, while reflectance will have sharp diecontinuities at
adges uhere objects adjoin. The reflectance being relatively constant

betuaen such edges.
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1.1.1 Tri=-Stimulus Theory.

Some facts about how wWe see color are fairly uwell established. It
appaars that we have three kinde of sensore operating in bright
illumination, with peak sensitivities in different parte of the visible
spectrum. This is why it takes exactly three colors in additive
misxture to match an unknoun color. MWhile 1t ja a bit tricky to measure
the sensitivity curves of tha three sensore directiy, a |inear transform
of these curves has been knoun accurately for some time [Brindley 1968} .
These curves, called the standard cbserver curves, are sufficient to
al-luu orne to predict color matches made by subjects with normal colour
viaion {Hardy 133B].

The simplest theory of color perception then amounts to locally
comparing the outpute of thres such sensors and assigning colour on this
basis (Young 1828, Helmholtz 18E71. This howesver totally falls to
explain the observed color contancy. Percelved color does not depand
directiy on the relative amounta of light measured by the three sensors

fLand 1359, Lettvin 13&87].
1.1.2 Color Conversaion.

A number of attempts have bean made to patch up this theory under
the rubrics of “"discounting of the Illuminant”, “contrast effect
adjustment" and "adaptation“. The more complicated theories are based

on modele with large numbers of parameters which are adjusted according
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to empirical data [Helson 13938 & 1948, Judd 1948 & 1352, Richards 1371].
Thase theories are at least partially effective in predicting human,
color parception when applied to simple arrangemants of stimuli asimilar
to thoes used in determining the parameters,

Tha parameters depeand strongly on the data and slight experimental
variations Will produce large fluctuations in tham. This is a phenomena
familiar to numerical analysts fitting curves to data when the number of
parameters is large. These theories are lacking in parsimony and
convincing physioclogical counter-parts. Lettvin has demonstrated the
hope|essnass of trying to find fixed tranaformations from locally

compared output of sensors to percelved color ILettvin 13671.

1.2 Land"e Retinex Theory.

Another theory of color perception is embodied in Land"'s retinex
mode| {Land 1953, 1964 & 1971). Land proposes that the three sets of
sesnsora area not connectad locally, but instead are treated as 1 f they
reprasent points on thres separate images. Processing is performed on
sach such image sesparately to remove the component of intensity dues to
illumination gradient. Such processing is not merely an added frill but
is indispensible to color perception in the face of the variability of

thea illumination.
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1.2.1 Lightness Judging.

In essence a judge of |ightness processes sach image. Lightnese ie
the perceptual guantity closely correlated uith surface reflectance.
Only after this procese can the three images be compared to reliably
determine colors locally. It remains to mechanize this process.

[t would appeal te intuition if this process could be carried out
in a parallel fashion that does not depend on previous knodledge of the
scene viewed. This ls because colors are so immediate, and seldon
depend on one's interpretation of the scena. Colors will be seen even
uwhan the picture makes no sensa in terms of previous experience. Also,

color is seen at every point in an image.

1.2.2 Ninl-uwor ld of Mandeians.

In developing and axplaining his theory Land needed to postpona
dealing with the full complaxity of arbltrary scenss. He selected a
particular class of objects as Inpute, modalled after the paintings of
the turn-of-the-century Dutch artist Piater Cornells Mondrian. Thase
scenas are flat areas divided into sub-regions of uniform matte color.
Probleme such as those occasioned by shadous and specular reflection are
avolded In this way. One also avoids shading; that ise, the variation in
raflactance ulth the orlentation of the surface in respect to the sensor
and the |ight-source. For Mondriane, lightness is considered to be a

function of reflactance.
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Mondrians are usually made of polygonal regions with straight sides
= for the development here however the edges may be curved. In the
world of Mondrians one finds that the reflectance has sharp
discontinuities wherever regions meet, being constant inside each

ragion. The illumination, on the other hand, varies smoothly over the

i mage .

1.3 Why Study the One-dimensional Case?

Images are two-dimensiocnal and usually sampled at discrete points,
For historic reasons and Intultive simplicity the results will firet be
daveloped in one dimension, that is with functions of one variable.
Similarly, continous functions Will be used at firet since they allow a
cleaner separation of the tuo components of image intenaity and
illugtrate more clearly the concepte involved,

Use will be made of analogies betusen the one-dimensional and two-
dimensional cases as well as the continous and diecrete ones. The final
process discussed for processing image intensities Is two-dimensional
and discrete. A number of physical implementations for this scheme are
sugges ted.

The process will be looked at from a number of points of view:
partial differential sguations, linear systams, fourier transforms and
convolutions, difference egquations, iterative solutions, fead-back

achemas and physical models.
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1.3.1 Notation.

The following notation will be used:

8" Intensity of incident illumination at a point on the object.
r' Reflectance at a point of the object.

p' Intensity at an image point. Product of 8" and r*.

g; r; p: Logarithms of 8", r* and p* respectively.

d Result of applying foruward or differencing ocperator to p.
t Result of applying threshold operator to d.

| Result of applying Inverse or summing operator to t.

0O Simple derivative operator in one dimension.

T Continous threshoeld operator, discards finite part.

I Simple integration operator in one dimension.
Laplacian operator - sum of second partial derivatives.

Inveree of the Laplacian, convelution with (1/2 » ) log (1/r).
D+, T#, Iw, Lo and Gw: Discrate analogues of O, T, I, L and G.
Tha output |, Will not be called |ightness since there e probably

not yet a generally acceptable definition of this ters. It is houwever

intended to be monotonically related to lightness. MNote that | is
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ralated to the logarithm of reflectance, while the perceptual guantity

s perhaps more closaly related to the sguare-root of raflectance.

1.4 One=0imeansional Fethod = Continous Casa.

Land invented a simple mathod for separating the image components
in one dimension. Firet one takes logarithms to convert the product
into @ sum. This is folloued by differentiation. The derivative will
ba the sum of the derivatives of the tuwo components. The edges will
produce sharp pulses of area proportional to tha intensity steps betuesn
regions = whils the spatial variation of 1llumination will produce only
finite valuass averywhera. MNou if ons diecarde all finite values, one is
left with the pulses and hence the derivative of |ightness. Finally ona

undoes the differentiation by eimple integration.

1.4.]1 One-Dimenesional Continous Mathod: Oetaila.

He have the follouwing: Let r'ix) be the reflactance of the object
at the point corrasponding to the image point x. Let 8" ix) ba the
intansity at thies object point. Leat p'ix) be thair product, that is,
the intensity recorded in tha image at point x. Note that s' (x) and

r* (k] are poaitive.

pfix) = 8" (x] & r*ix)



p(x)

H(x)

FIGURE 1: Processing steps in the one-dimensional continous case.
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Nou lat pix) be tha logarithm of p" (x] and o oni

plx) = alx) + rix)

Nota that alx) is continous and that rix)} has some finlte

discontinuities, Lat 0 represant differentiation uith respect to x.
dix) = Diplx)) = Dislx)) + Dirixd)

MNow, Disix)) will be finite everywhera, while Diri{x}) will be zero aside
from a8 number of pulses - which carry all the information. Each pulse
Will correspond to an edge between regions and have area proportional to
the intensity step. If now one “thresholde” and discarda all finite

parts, ona gata:

tix) = TiD{p(x}}} = DOirix})

To obtain rix) one only has to invert the differentiation, that is,

=l
integrate. Let 1 represent integration With respect to x, then (I) -

0 and:

I{x}) = I(TID(pix))) = rix] + ¢

One can give a convolutional interpretation to the above, since

differentiation corresponds to convelution wWwith a pulese-pair, one
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negative and one positive, each of unit area. Integration corresponds

to convolution with the unit ltﬂ:l.ﬂ.mtiﬂﬂ-
1.4.2 Mormalization.

The result s not unigue because of the constant introduced by the
integration, The zero (spatial) frequency term has been lost in the
di fferentiation, =o cannot be reconstructed. This is related to the
fact that one does not know the overall level of illumination and hence
cannot tell whather an object appears dark because it ie grey or because
the level of illumination is lou.

One can normalize the result if one assumes that there are no |ight
sources in the field of view and no flourescent colore or specular
raflections. Thia is certainly the case for the Mondrians. Perhaps
the best uway of normalising the result is to simply assume that the
highest value of |ightnese corresponds to white, or total reflectance in
the Lambertian sense. This normalization will lead one astray if the
image does not contain & region corresponding to a8 white patch in the
scena, but this ie the best one can do. Other normalization technigues
might involve adjusting uaightad local averages, but this would then no

longer amount to reconatruction of reflectance.
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1.5 One-Dimensional Method = Discrete Casa.

So far we have assumed that the image intensity wae a continous
function. In retinas found in animale or artificial ones constructed
out of discrete components, Images are only saspled at discrete points,
S50 ona has to find discrete analogues for the operations we have bean
using. Perhaps the simplest are first differences and summation as
analogues of differentiation and integration respectively. This is not
to say that other approximations could not be used egqually well.

To usa the ned operators one goea through easentially the same
process as bafore, except that now all values in the differenced image
are finite. This has the effect of forcing one to choose a threshold
far the thresholding function. Both components of image intensity
produce finite values after the differencing operation. The component
dua to the edges in the reflectance |s hopefully gquite large compared to
that due to illumination gradient. Ona has to find a level that will
suppress the illumination gradient inside regions, while permitting the

effects due to edges to remain.
1.5.1 One-Dimensional Discrete Method: Details.

Let r: be the raflectance of the object at the point corresponding
to the image point 1. Let e% be the incident light intensity at this
object point. Let p'.l ba their product, that is the Intensity in the

. image at point 1.



e

FIGURE 2: Processing steps in the one-dimensional discrete case.
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Now let p, be the log of p} and so on. Let Dw and I% be the cperatore
corrasponding to taking first differances and summation l'llpll:'“\"llu;

Note that (1%}~ = D,
P,= 81+ ry
d,= P~ P; {d = O#ipl)

t,=d; it 4 <o elsed

I = E . (1 = Iwit))

=g

1.5.2 Selecting the Thrashold.

Hhat detarmines the threshold? [t must be emal ler than the
emal lest intensity step between ragions. It must on the other hand be
larger than values produced by firet differencing the maximum
illumination gradients. Real images are noisy and the threshold should
be large enough to aliminata this noise inside reglons.

The spacing of the sensor cells must aleo be taken into account.
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As this spacing becomes smaller, the contribution due to illumination
gradients decreases, while the component due to the edges remains
conatant. A limit is reached when the component due to illumination
gradients falls belod that due to noise or when the optical properties
of the imaging system begin tﬂ.hﬂ‘-’ﬂ a deliterious effect. In all
imaging systems an edge ie spread over a finite distance due to
diffraction and uncorrected abberations. The epacing of sensors should
r-ut be much smaller than thie distance to avoid reducing the component
due to edges in the differenced image.

Let u be the radius of the point-spread-function of the optical
system and h the spacing of the sensor celle. Let g" be the emallest

step in the logarithe of reflectance in the scene. Then define the

effective minimum atep as;
g =g" % mini(l, h/2u)

Let a be the largest slope due to illumination gradient and ¢ the root-
mean-square nolse-amplitude. The noise will exceed a value 3 ¢ only .3%

of the time. Choosa tha threshold e as fol lows:

@ <g
8> awh

e > 32 o
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1.5.3 Accuracy of the Reconstruction.

In the continous case one can exactly reconstruct the reflectance,
aside from a constant. ke are not so fortunate here, even if we select
a4 threshold according to the above criteria. This is bacause the values
at tha edges contain small contributicons dua to 1llumination gradient
and noiee. A elight inmaccuracy in the reconstruction will result. This
error ie minimlzed by making the sensor call spacing very fine,
cptimally of a size commensurate with the optical resclution of the
davice. Tha affect of noise can aleo be minimized by Integrating over
time.

Note that the reconstruction ie more accurate when there are few
edges, since It is at the edges that the error effects appear. Hith

many edges the 1llumination gradient begine to "show through®.

1.5.4 Genaral izatlions.

So far we have dealt uith constant sensor spacing. Clearly as long
as the same spacing |ls used for both the differencing and the summing,
the cell spacing can be arbitrary and has little effect on the
reconstruction since it does not enter inte the equations.

L Similarly we have chosen first differences as the discrete analogue
for differentiation. He could have chosen somea other ueighted
differsnce and developesd & suitable Inverse for 1t. This Inverses of

course Would ne lenger be summation but can bs readlly obtained using
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techniques developed for dealing With differsnce equationa (Richtmayer

1357, Garabedien 1984i.

 1.5.5 Physical Models of the One-Dimensional Discrete Process.

One can invent a number of physical models of the above operations.
A simple resistive network will do for the summation process for
example. Land has implemented a small circular "retina” wlith about 16
sensors. Thie model employs electronic components to perform the
operations of taking logarithms, d.fferencing, thresholding and summing.

Land has tried to extend his one-dimensional method to Images, by
covering the Image with paths produced by a random walk procedurs and
applying methods |ike the above to each of these pathe. While this
produces results, |t seems unsatisfactory from the point of view of
suggesting possible neuro-physiclogical structures: nelther does 1t
land itsalf to efficient implementation.

Methods depending on non=|inear processing of the gradient along
paths in the image fail to smoothly generalize to tuo dimensiona, and
cannot predict the appearance of images in which different paths result

in different |ightnessas.
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2. Lightness in Tuo Dimensional [mages.
2.1 Two-Dimensional Method - Continous Cass,

He need to extend our ideas to tuo dimensions In order to deal with
actual images. There are a number of waye of arriving at the procese to
be described here, we shall follow the simplest [Horn 1368]. He need to
find tuo-dimensional analogues to differentiation and Integration. The
first partial derivatives are directional and thus unsuitable since they
Hill for axample completely aliminate evidence of edges running In a8
diruntiﬂn parallel to their direction of differentiation. Exploring the
partial derivatives and their |inear combinations ona finde that tha
Laplacian operator ia tha louest order combination that le isotropic, or
rotationally symmetric. The Laplacian operator ies of course tha aum of

the second partial derivatives.

2.1.1 Applying the Laplacian to & Mondrian.

Bafore investigating the invertibility of this operator, |at us ses
uwhat happens uwhen one applies it to the image of a Mondrian, I[naide any
raglion one Will obtaln a finlte value due to the variation In
THlumination Intenslty. At sach sdge one will get & pulees palr, one
positive and ones nagative. The area of sach pulse Will be sgqual to the

intensity satep.
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FIGURE 3: Applying the laplacian operator to the image of a
Mondrian figure.
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Thie can best be seean by considering the first derivative of a
etap, namely a single pules. [f this is differentiated again ona
obtaine a doubled pulee as described. 5Since this pulee Will extend
aleng the adges, one may think of it a8 a8 pulee-uall. So sach edge
separating regions Will produce & doubled pulee wall. It ie clear that.
ong can once again separate the component due to reflectance and

illumination simpliy by dliecarding all finite parts.
2.1.2 Inverse of the Laplacian Operator.

To complete the task a8t hand one then has to find a process for
undoing the affect of applying the Laplacian. Again there are a number
of approachas to this problem, we will use the shorteat [Horn 19681. In
sssence one has to solve for pix,y) in a partial differential eguation
of tha form:

Liplu,yl) = dix,y)

Thie is Poisson’e sgquation and it is usually solved inside a boundad

region uasing Green's function (Garabedien 1364}

plx,y) = jfﬁ[ﬁ,‘qi Moyl dlE.?} ) df dy
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The form of Gresen's function G, depends on the shape of the region
boundary. Mou if the retina ie infinite all pointe are treated
similarly and Green's function depends only on tuwo parameters, [E - x)
and (% - y). Thie positional independence implies that the above
integral aimply becomes a convelution. It can be shoun that Green's

function for this case 18
GtE.n s %y = (1/2 ) log (1/r)

Hhere re (g - 5 (n - §,||illr

So pix,yl -ff (1/2=) luutilf‘rl * :llE_.li' ] r.I'.',-, dr

Thus the Inverse of the Laplacian operators is simply convelution with

(1/2=) ln-glll.i'rll. To be precise one has:

L L
-+ var-'l ff (1/2 =) log (1/r) % d(E,q) dE,dri = dix,y)
ax ar t

Thies is the tuwo-dimensicnal analogue of:
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fit) dt = fFix)

o B
x|

2:1.3 Hhy one can use the Convolutional Inveras.

If the retina is considered infinite onea can axprass tha in\nll"ll_i as
a simple convolution, If the retina is finita on the other hand onas has
to use tha morse complicated Green's function formulation.

Mow consider a scens on a uniform background whose image e totally
contalned on the retina. The result of applying the foruward tranaform
and thrasholding will be zero In the area of the unifore background.

The convolutional inverse Will therafors receive no contribution from
outside the retina. As a result ona can use the convelutional form of

the inverse provided the Image of the scene e totally contained within

the ratina.

2.1.4 Normal ization.

Once again ona finds that the reconstructsd reflsctance is not
un i qua. That is, any non-singular solution of Liplx,yl) = B can be
added to the input Without affecting the result. On the infinite plane
guch solutions have the form plx,y) = (aax + by + cl. [f the scens
only occupies a finita region of space it can be further shoun that the

solution will be unigue up to 8 constant and that ons does not have to
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worry about possible slopes. To be specific: the background around the
sceng Wil| be conatant in the reconetruction. So one has hera exactliy
the same normalization problem as In the one-dimensional case.

Asaigning white to the reglon With higheet numerical value In thea

reconstructed output appears to be & reasonable method.
2.1.56 Tuo-Dimensional Continous Method: Detalls.

Let r'"ix,y)l be the reflectance of the object at the polint
corresponding to the image point (x,y). Let 8'i(x,y) be the source
intensity at that object point. Let p"ix,y) be thair product, that is
the intensity at the image point (x,y)l. MNote that r"(x,y) and &' (x,y)
ara poeitive,

PP ix,y) = 8" [, y) o r" (x,y)
Let pix,y) be the logarithm of p"ix,y) and so on.
plx,y) = alx,yl + rix,yl
Now assume that alx,yl and 1ts first partial derivatives are continous -

a reasonable assusption to make for the distribution of illumination on

the object. Let L be the Laplacian operator.
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dix,y) = Lipix,yl)] = Lislx,yl) + Lirix,yl)
Mow Lis(x,y})} will be finlte everywhere, while Liri{x,y}) will be zero
except at sach edge separating regions, where one will find a double
pulee wall as described. MNow discard all finite parte:

tix,yl = TiL{pix,ydl) = Lirix,yll

Let G be the operator corresponding to convolution by (1/2=) log (1/r).

Note that (G) = L.
T, y) = GITILIp(x,yl)}} = rix,y} + €
2.2 Tuo-Dimensional Method - Discrate Casa.

Once again we turn from & continmous image to one sampled at
discrete points. First we Will have to decide on a tesselation of the
imaga plana.

2.2.1 Tessalation of tha Image Plane.

For regular tessslations the choice is betwsen triangular, sguare

and haxagonal unit calla. In much past Wwork on image processing, esquare

tesselations have been used for the cbvious reasona. This particular

tessalation of tha image has a number of disadvantages. Each cell has
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tho kinds of neighbore, four adjoining the sides, four on the cornera.
Thie results In a number of asymmetries. [t makes it difficult to find
convenient difference schemes approximating the Laplacian operator with
low error term.

Triangular unit cells are even worse in that they have three kinde
of neighbors, compounded these drawbacke. MNote also that near-clrcular
ocbjects pack tightest in a pattern with hexagonal celis. For these
reasons we Will uee a hexagonal unit cell. It should be kept in mind
howaver that it is sasy to develop eguivalent results using different

teaselations.
2.2.2 Discrete Analogue of the Laplacian.

Having decided on the tessalation we nead now to find a discrete
analogue of the Laplacian operator. Convolution with @ central positive
value and a rotationally symmetric negative surround of agual weight 1s
one possibility. Aside from a negative nl::.Elln factor, thie will approach
application of the Laplacian in the limit as the caell aize tends to
Zero.

[f one were to use complicated surrounds, the trade-offs betueen
accuracy and resclution Wwould suggest using & negative surround that.
decreases rapidly outward. For the sake of simplicity we Will choosa
convalution |-|1tlh a central cell of weight 1, surrounded by aix calls of
weight -1/8. This function is convenient, aymmetric and has a smal |

srror term. It Ie equal to - ( h/& L + h/B& L*) plus sixth and higher



FIGURE 4a: A discrete analogue of

Figure 4b: Delta function minys
the laplacian operator.

this discrete dnalogue,
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order derivatives (Richtmeyer 13571. It should again be pointed out

that similar resulte can ba developed for different functions.
2:2.3 Inverse of the Discrete Operator.

The foruard differencing operator has tha form:

iy = Py 'E "‘: weigley Py

Where Py ia tha logariths of images intensity, Wij are Hwaights, Which in
our casa are 1/6, and the sum s taken over the six Immediate neighbora.
He now have to determine the inverse ocperation that recovers pfi

from “13* Onea approach is to try and solve the difference egquation of

the form:

L, = E M, . - d .
P"J- 'Il'.-ll_'l-_ilpm '-1

Or in matrix form: W p = dy Nota that W is sparss, having 1°s on the
diagonal and -1/6"'es scattered around. For a finite retina with n sansor
cells one has to introduce boundary conditions to snsure that one has as

many equatione as there are unknowne: 0One then simply inverts the
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matrix W and gets: p = " d.

This is entirely analogous to the solution in the continous case
for a finite reting. H" corrasponds to the Green's function. Much as
Green's function has & large "support", that is, is non-zero over a

large area, so W™ is not sparse. This implies that a lot of

computation is nesded to perform the inverse operation.
2.2.4 Computational Effort and Simplification,

Solving the difference equationa for a given image by simple Gauss-
Jordan &limination requires of the order of HE’J'E arithmetic operationsa.
Anocther approach is to invert W once and for all for a given retina.

For mach image then one needs only about n° arithmetic operations. MNote
that the other operations, such as forward differencing, reguire only
about Bén arithmetic operations.

Hhat in effect is happening iz that each point in the output
depends on each point in the differenced image. Both have n pointas, so
n* operations are invalved., Not only does one have to do a lot of
:u;putatiun. but must also store wup the matrix Ui1nf size n*. This is
guite prohibitive for even a small retina.

Thia latter problem can be avoided if one remembers the
aimplification attendant to the use of an infinite retina in the
continous case. There we found that the integeal awith Green’s function
simplified into a convalution., Similarly, if one assumes an infinite

retinag here, one finds that W and its inverse becoms very ragular. The
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rous in W are then all the same and the same s true of H‘H+ Each value
in the output then depends in the same way on the neighboring points in
the differenced image. 0One need only store up the dependence of ane
point on its neighbors for this simple convolutional operation.

The only remaining difficulty is that W ie now infinite and one can
no longer invert 1t numerically - one has to find an analytical
exprassion for the inverae. [ have not been able to #find this inverse
axactly. A good first approximation is Ing‘lrnfrl - except for r = B,
when one uses 1 + iugﬁiru}. Here r is the distance from the origin and
Fre I8 arbitrary. The resainder left over when one applies the forward
di fference scheme to this approximation |ies betueen Iug‘{l + r %) and
Ingﬁtl - "8}, Thie error term iz of the order of r=&,

In practice one does not have an infinite retina, but as has been
explained for the continous case one cam use the convolutional method
described above for a finite retina, provided that the image of the
scene is wholly contained inside the boundaries of the retina. It is

possible to find an accurate Inverse af this kind valid for a |imited

retinal size by numerical means.
2.2.5 Tuo-Dimensional Discrete Method: Details.

Let rﬁ be the reflectance at the object point corresponding to the
image point (1,j). Let s, be the intensity of the incident light at
this object point. Lat nh be the intenalty in the image at point

ti,j).
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Let Pij ba tha logarithm of :.'-",‘i and 8o on. Let L# be the ocperator that
corresponds to convolution with the analogue of the Laplacian. Let Gw

bha its Inverasa.

n:lFjl - Pl.j -E I-I.‘_U_:-Iﬂ Pyl {d = Lwlp) )

The weigthe w.. are 1/6 in thie case, and the sum is taken over the six

3
Immedlate naighbors.

tij. - d-lj ”Idljﬂ’ e, olse @

E-lj - E "K-i_,\jtki {1 = Gael ) )

Hare the sum esxtends over the whole retina and vi‘-’ ia the convolutional

Inverea found rnumerically as axplalned abova.
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2.2.6 Simplicity of the Inversa.

The foruard transform, Invelving only & simple subtraction of
Immediate neighbors, ie clearly a rapid, local operation. Tha invarsa
on the other hand is glebal, since each point in the output depends on
sach point in the differenced image. Computationally this makea the
inverse slou. The inverse ie eimple in one sense houever: The
di fference equations being solved by the Inverse have the same form as
the eguations used for the foruard transform and are thus local. The
problem is that the output here feeds back into the system and affects
can propagate acroas the retina. The apparent global nature of the
inversa is thus of a rather special kind and, as we will ses later,
givea riss to very simple implemsentations invelving only local

connactiona.

2.2.7 Iterative Methods of Solution.

There are of course other methods for solving large sats of
aguations. Tha fact that W is sparses and has large diagonal alements,
suggests trying something |ike Gauss-Seidel iteration. Each lteration

takes about Bwn arithmetic ocperations. For effects to propagate across

the retina one requires at least \flfmﬂ‘ - 11/3 iterations. This is
because a hexagonal retina of width m has (3em™ + 1)1/4 celle. The above
suggests that one might be able to get away with less than n® arithmetic

operations. In practice 1t les found that effects propagate very elouly
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and many more |terations are needed to stabilize the solution. One does
not have to store H, since It 18 esslly generated as one goss along.
Iterative schames correspond to adding 8 time-derivative to the
Poisson equation and 8o turning it into 8 heat-eguation. As ona
continues to |terate the steady-state solution is approached. This

intuitive model gives some insight inte houw the process will converge.
2.2.8 Convergenca of [terative and Feed-back Schames.

It 18 not immediately clear that iterative schemes of solving the
di ffarence eaguations Will converga. [f they do, they will converge to
the correct solution. Lat & be the dalta function, that is, one at the
origin, zero elseuhere. [t can be shoun that if the forward
convolutional operator is W, the convergence of |terative achemes
depends on the behaviour of the error term, (6 - w)" , as n becomes
largs. Raieing a convolutional operater to an integer pousr |8
Iintendad to signify convolution with 1teslf.

In our case, w I8 one at the origin, With six values of -1/6 around
it. So (4= w will be zero at the origin with six values of 1/6 around
it: MNouw while [ 5= u]-n Will aluways have a total area of one, it does
spread cut and Its valus tends to zero at every point as n tende to
infinity. So thie iterative scheme converges: similar resulte could be

darived for other negative surrounds.
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2:2:3 Setting the Threshold.

In the discrete case & finite threshold muet be selected. As
befora, lat g' ba the smallest step in the logarithm of reflectance jn
the scene, h the sensor spacing and u the radius of the point-spread
function of the optical syetem. Then we define the effective minimum

step as:

g=g" % minil, hW/2ul

Thara are soma minor differences In what follows depending on whather
ona considers the sensor outputs to be intensity samples at cell-centers
or averages over the cell area. The emallest ocutput dues to an adge will
be about g/8. This is produced when the edge ie oriented to cover just
one cell of the neighborhood of six. Let 3 be the maximum of the

intenaity gradient = that ie the Laplacian of intenaity In thls cass.

Choose the threshold & as fol louws:

& < g’k
& > % h*

& > 3B T
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2.2.18 Soma Notes on This MHathod.

Motice that an illumination gradient that varies as some poder of
distance across the image becomes a |inear alopes after taking |ogarithms
and thus produces no component after the differencing operations. Such
simple gradients are suppressed sven Without the thresholding operation.

In practice the parameters usad in choosing tha threshold may not
be known or may be variable. In this case one can look at a histogram
of the differenced image. [t will contain values both positive and
negative corresponding to edges and aleo a |large numb!r of values
clustered around zero due to illumination gradients, nolse and a0 on.
The threshold can be conveniently choosen to contain this central blob.

Moise and illumination gradients have an affect aimilar to that in
the one-dimensional casa. Hith finite cell spacing one cannot precisely
separate the two components of the Image intensity and at each edge the
information will be corrupted elightly by nolee and 11 lumination
gradient. Aes the density of edges per cell area goes up the effect of
this becomes more apparent. In highly textured scenes the illumination
gradient e hard to aliminate.

Once agaln one has to decide on & normalization scheme. The best
method probably ie to let the highest numerical values In the

reconstructed output correspond to white.
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2.2.11 Dynamic Range Reduction.

Applying the retinex operation to an image considerable reduces the
range of values. This is becausa the output, being related to
reflectance, will only have a range of one to two orders of magnitude,
while the input will aleo have illumination gradients. This will make

such proceseing useful for picture recording and tranemiesion {Horn
1368} .

2.2.12 A Freguency Domain Interpretation.

It may be of interest to look at thie method from yet another point
of vlew:. Hhat one does le to exentuate the high-frequency components,
threshold and then attenuate the high-freguency componenta. To ses
this, conaider first the foruard operation. The fourier transform of
the convolutional operator corresponding to differentiation is | &,
Similarly the tuo-dimenaional fourier transform of the convolutional
operator corresponding to the Laplacian is - o, Here p ie the radius
in a polar coordinate system of the two-dimensional frequency epace. In
@ither case one is multiplying the fourier transform by some function
that increases With freguency. MNow consider the reverse operation. The
fouriar transform of the convolutional cperation corresponding to
integration is 1/iw. Simlilarly the fourier transform of (1/2=) log,
{1/r) is -1/p™. So in the inverse step one undoes exactiy the emphasis

given to high frequancy components in the foruard operation.
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In both the one-dimensicnal and the tuo-dimensional case one |oaes
the zero frequency component. Thie ls why the result has to be

normalized.

2.3 Physical Modals.

There are numerous contlnous physical modales to illustrate the
inversa traneformation. Anything that satisfies Polsson's equation will
do. Such physical models help one visual ize what the inverse of a given
function might be. Examples in two dimensions arae: perfect fluld=FflowM,
steady diffusion, steady heat=flouw, deformation of an slastic membrane,
alectro-statics nn-ﬂ: currant flow in a resistive shest. In tha last
mode| for example, the input is the distribution of current flowing Inta
the resistive shest normal to 1ts surface, the output ies the
distribution of eslectrical potential over the surface.

In addition to helping one visualize solutions, these continous
mocdels also suggeat discrete modela. Thesa can be arrived at simply by
cutting up the tuwo-dimenaional espace in a pattern corresponding to the
intarconnaction of naighboring calls: That l1a, the remalining parts form
a pattern dual to that of the sensor cell pattern. We will diescuse only

one asuch discrete model.



ON LIGHTNESS 38

2.3.1 A Discreta Physical Model.

Considar the resistive shest described, cut up in the dual pattern
of the hexagonal unit cell pattern. Hhat will be left is an
interconnection of resistors in a triangular pattern. The inputs to
thies system will be currents injected at the nodes, the potential at the
nodesa being the output. This then provides a very eimple analog
implementation of the tedious inverse computation.

It is perhapa at first surprising to see that sach cell is not
connected to every other in & direct fashion. One would expect this
from the form of the computational inverse. Each cell in the output
does of course have a8 connection via the other cells to each of the
Inputa. Patha are shared howaver in a way that makes the result both
gimple and planar.

Consider for the moment just one node. The potential at the node
is the average of the potential of the six nodee connected to it plus
the current injected times A/E, where R is the resistance of each
resistor. The economy of connection ies due to the fact that the
outpute of thies system are fed back into it. [t aleo illustrates that
thies model locally solves axactly the same difference equation as that
usad in the foruward transform, only nod in Feverae.

This immediately suggests an important property of this model: By
simply changing the interconnecticns one can make an inverse for other
forward tranaforme. Simplest of all are other image plane teassslations,

both regular and irregular: One simply connecte the resistors in the



FIGURE 5:

Resistive model of the inverse computation.
The inputs are the currents injected at the nodes.
The outputs are the potentials at the nodes.
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same pattern as are the calls in the input.
More complicated weighted surrounds can be handled by using
resistors wlth resistances inversely proportional to the uweights. The

netuork of resistors Will then no longer be planar.

2.3.2 A Feed-back Scheme for the Inverse.

Both the comment about outputs feeding back into the resistive
mode!| and the eaarlier notes about iterative schemes suggest yet another
interesting model for the inverse using |inear summing devices.
Operational amplifiers can serve this purpose. One simply connects the
summing element so that they solve the difference equation implied by
the foruward transform. Once again it is clear that such a scheme can be
generalized to arbitrary tesselations and weighted negative surrounds
simply by changing the interconnectione and atternuations on each input.
Enhu questions of stability arise With esoteric interconnections. For
the simple ones atability is assured.

A little thought will show that the resistive model described
earlier is in fact a more economical implementation of just this scheme
Hith the difference that there the inputs are currents, while here thay

are potential .
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2.4 Limitations of the Simple Scheme Presented.

The method presented here will not correctly calculate reflectance
i f used unmodified on genaral scenes. [t may however calculate
lightnu'“ fairiy wall. As the method stande now for example, a sharp
ehadow edge will not be disetinguishad from a real edge In the scene and
the two regions so formed will produce different outpute, while their
raf|ectances are the same. It may be that this is reasonable
navertheless, since ue perceive a difference in apparent |lightness.

Smooth gradations of reflectance on a surface due either to shading
or variations in surface reflectance will be eliminated by the
thresholding operationa ewxcept as far as they affect the intensity at
the borders of the region. This may Imply that we need additional
channels In our visual system to complement the onas carrying the
ratinexed informatlon since We do utilize shading as a depth=-cue.

The simple normal izatlon scheme described will aleo be sensitive to
specular reflections, flourescent painte and light-sources in the field
of view. Large depth-discontinuities present another problam. One
cannot assume that the illumination is egual on both sides of the
obscuring adge. In thie case the illuminating component doas not vary

smoothly ovar the retina, having instead soma sharp sdges.
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2.5 Computer Simulation of the Olscrete Method.

A computer program Was used to simulate the retinex process
described on a small retina with both artificial and real 'images sesen
through an image dissector cemera. The hexagonal unit cell ie used in
this program and the retina itself is also hexagonal. The retina
contains 1B27 cells in a pattern 36 cells across. This is a compromise
dictated by the nead to limit the numbar of arlthmatlc operations in the
inverse transform. In thie cese one needs about a million and thie
takes about a minute of central processor time on our PDP-18.

Both tha artificlial and the real Mondrlans conslet of regions
bounded by curved outlines to emphasize that this method doss not
require straight-Iine sdges or boundary extraction and description.
Yarious distributions of incident 1llumination can be selected for tha
artificial scenss. In sach case the processing satisfactorlly removes
the gradient.

For the real scenes 1t is hard to produce really large illumination
gradiente by positioning the |ight-sources. The reconstruction does
e@liminate the gradient waell, but often minor flawe will appear In the
output due to noise in the input and a nusber of problems With this kKind
of input davice such as a very considerable scatter. [t is not easy to
predict what affecta such imaging device defects will have.

The output is displayed on a DEC 348 display which has a mere elight
grey-levels., [t would be interesting to experiment wlith larger retinas

and better Image Input- and ocutput-devices.
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2:5.1 Fora of Inverse used in the Computer Simulation.

The convolutional form of the inverse uas used for speed and |ow
storage requirement. This neccesitated solving the difference equations
once, given a8 pulse as input. Tha symmetry of the hexagonal pattern
allous cne to identify symmetrically placed cells and only 324 unknouns
neaded to ba found for a convolutional inverse sufficient for the size
of ratina described. As mentioned before, this function ie closely
approximated by Iugnir;fr} for large r. This can be used to establish

boundary conditions.



FIGURE 8: The method applied to an FIGURE 9: The method applied to a
artificial image. real image

FIGURE 10: The method applied to FIGURE 11: Apparent lightness predicted
Craik's figure. for incomplete Tigure.

The subfigures in the above have the following interpretation:

A Input = Togarithm of image intensity p

]
B Differenced image di:
C Thresholded difference tij
0 Output - computed lightness Eij
FE I1lumination distribution (p,.-1,.) 55

iJ i



ON LIGHTNESS &7

d. Implications and Conclusions.

3.1 Parallel Image Processing Harduare.

The methods described here for forward transforming, thresholding
and inverse tranaforming immediately tempt one to think in terms of
electronic componente arranged in parallel layere. Enocugh has been sald
dabout different modale to make 1t clear how one might connect such
componentse. Large scale integrated circuit technology may be useful,
provided the aignale are either converted from analog. to digital form or
batter still, good linear circulte are available in thles form.

Construction of such devices would be premature until further
exper imentation is performed to decide on optimal teseelations, optimal
negative surrounds, thresholding operations and normal ization schemas.

These decisions are best guided by computer simulation.

3.2 Cognitive Peychology.

One of the artificial scenes was created to illustrate Craik’s
illusion [Brindley 1368, Corneswest 13781. Here a sharp edge is borderad
by second-order gradients. As one might expact the smooth grediente are
loet in the thresholding and reconstruction produces two reglons sach of
uniform brightness. The differance in brightness betusen the reglions s
sgual to the original intensity step at the sdge.

Tha fact that the process presented here falls prey to this
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illusion is of courss no proof that humans use the same mechanism. [t
is interesting that this technigue allows one to predict for example the
appaarance of pictures containing incompletaly closed curves With

sacond-order gradients on either side.

3:3 Neuro-physiology.

The method described here for obtaining |ightness from image
intenaity suggests functions for a number of structures in the primate
retina. The horizontal cells appear to be involved In the forward
tranaformation, while some of the amacrines may be Involved In the
inverse transformation. For detaile see the paper by David Marr {Harr

1974}, in which hea uses this hypothesle to explain an astonlshing number

af facte about the ratina.

2.4 Conclusion.

A simple layered, parallel technigue for computing |ightness from
image intensity has been presented. The method does not Involve an
ability to describe or understand the scene, relying instead on the
epatial differences in the distribution of reflectance En# il luminatian.
The forward step involves accentuating the edges betueen reglons. The
output of this step ie then thresholded to remove illumination gradiesnts
and nolse. The inverse step merely undoes the accentuation of the

sdges.
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Physical modele have been given uhich can perform this computation
efficiently in parallel layere of simple netuworks. The method has been
simulated and applied to a number of images. The method grew out of an
attempt to extend Land's method to two dimensione and fille the need for
@ lightness judging process in his retinex theory of color perception.

The possibility of processing an image in such a parallsl, aimplis
fashion without higher-level understanding of the scene reinforces my
belief that such lou-level processing ie of importance In dealing Wwith a
number of features of images. Amongst these are shading, stereo
disparity, focus, edge detection, scenes segmentation and motion
parallax. Some of this kind of processing may actually anpln in ths
primate ratina and visual cortex. The implications for image analysis
are that 1t may wall be that a number of such pre-processing oparations
should be performed automatically for the whole image to accentuate or
extract certain attributes before one bringe to bear the more powerful,

but tedious and slow segquential goal-directed methods.



ON LIGHTMESS 58

Bibl iography.
Brindley, G.S. (1968) "Physiclogy of tha Retina and Visual Pathuay."

{Monograph No.& of the Phyeiological Society), London: Eduward
Armold Ltd.

Cornsuest, T. (1378) "Visual Perception.” New York: Academic Press.

Garabedian, O.R. (1964) "Partial Dlfferential Equations." Mew York: John
Wiley.

Goathe, J.W. von. (1818) “Zur Farbenlehre." Tusbingen.

Hardy, A.C. (Ed.) (1938) "The Handbook of Colorimetry.” Cambridge, Mass:
n-[.T. FI"I:II..

Halmhol tz, H.L.F. (1887) "Handbuch der Physiologischen Optik." Leipzig:
Yoas. Aleso translated: Southall, J.P.C.5. "Handbook of
Physiological Optice." New York: Dover Publications.

Halson, H. (1338} "Fundamental Probleme in Color Yiaion [." Journal of -
Exper imental Psychology, Z3.

Helson, H. (1348) "Fundamental Problems in Color Yision I1." Journal of
Experimental Paychology., 26.

Hering, E. (1875) "Zur Lehre vom Lichtsinne - Grunzuege einer Theorie
des Farbsinnes.® SBK. Akad. Hiss. Hien Math. Maturwiss. K.7B.

Horn, B.K.P. (13B8) "The Application of Fourier Transform Methods to
Image Processing." S.H. Thesle, E.E. Department, M.1.T. pp. 81-87 &
pps 33-84%.

Judd, D.B. (1948) "Hue, Saturation and Lightness of Surface Colors with
Chromatic [llumination ." Journal of the Optical Society of
America, 38.

Judd, D.B. (1982) "Color in Business, Science and Industry.” New York: -
John Wi ley.

Land, E.H. (1953) "Experiments in Color Yision." Sclentific American.
Land, E.H. (13984) "The Retinax." American Scientist, 52.

Land, E.H. & MeCann, J.J. (1971) "Lightness Theory." Journal of the
Optical Society, El.

Lettvin, J.¥. (1967} *The Color of Colored Things." Quarterly Progress
Report, B7, Ressarch Laboratory for Elsctronics, M.I1.T.



ON LIGHTNESS 51

Marr, O. (1974) "An Analysis of the Primate Retina." A.Il. Memo. 236,
Artificial Intelligence Laboratory, MH.1.T.

Maxual |, J.C. (l858) "On the Unegqual Sensitivity of the Foramen Centrale
to Light of Different Colours." Rep. Brit. Assoc.

Meuton, Sir Isaac. (1784) "Dpticks." London: Samuel Smith & Benjamin
Hal fard. Also New York: Dover Publications.

ﬁlchlrdl. H: (1371) "One-atage Model for Color Conversion." Journal of
tha Optical Society, B2.

Richtmeyer, R.D. & Morton, K.W. (1957) *Difference Methods for Initial
Value Problems." New York: John Hilay.

Young, T. (1828) "On tha Theory of Light and Colour.™ Philosophical
Transactions. Aleo in: Tesvan, R.C. & Birnay, R.C. (Ed.} (1361)
"Color Yieion," Yan Nostrand. '



