MASSACHUSETTS INSTITUTE OF TECHMOLOGY

A.1. LABORATORY

Artificial Imtelligence

January 1974
Memo no,. 301

A MECHANICAL ARH CONTROL SYSTEN

Richard C. Waters

ABSTRACT

This paper describes a proposed mechanical arm control svstem and
some of the lines of thought which led to this design. In particular,
the paper discusses the basic svstem reguired in order for the arm to
control its environment, and deal with error situations which arise. In
addition the paper dizcusses the swvstem needed to control the motion of
the arm using the computed torque drive method, and force Teedback.

Work reported herein was conducted at the Artificial 1Intelligence
laboratory, a Massachusetts Institute of Technology research program
supported inm part by the Advanced Research Projects Agency of the

Department of Defense and monitored by the Office of MNaval Research
under Contract Number NOOD14-70-A-03G2-0005.

Reproduction of this document, in whole or in part, is permitted for any
purpose of the United States Government.

TABLE OF CONTENTS

I. INTRODUCTION

I1. SOME IDEAS OM CONTROL + + .+ + + « .
IT.1 ‘'REGULATE" V5 °"CONTROL' b e
IT.2 'OBSERVABLES® T R
IT1.3 THE MECHANICAL ARM

I1.3.1 ARM A5 CONTROLLER+ .« .« .« .
I1.3.2 CONTROLLING THE ABM + . + + .

II1. THE BASIC CAPABILITIES OF THE ARM CONTROLLER
IIT.1 HOW "INTELLIGENT' SHOULD THE ARM CONTROL SYSTEM BE?
ITI.2 WHAT INFORMATION LINKS SHOULD THERE BEY
III.3 BS0OME EXAMPLE SCENERIOS foe e e e w e

IIT.3.1 HOVE TO POINT B s s x o s & e om
ITT.3.2 PUSH A BLOCK ASIDE .

+

II1.3.3 PUTTING A RESISTOR'S LEAHS IHTD h CIREUIT BOHHD .

IIT.3.4 TIGHTENING A NUT WITH A WREMCH

IV. THE INTERNAL STRUCTURE OF THE ARM CONTROLLER .
IV, ASBV, ACV, AND G . . + .+ .+ .+ .+ .« . .
Iv.2 TWO STAGE CONTROLLER+ . .+ .

V. THE DYNAMIC LEVEL OF THE ARM CONTROL SYSTEM .
V.1 THE DASV AND CONTROL STRATEGIES+ + « + =
V.2 THE BASIC ALGORITHH OF THE DYNAMIC LEVEL
V.3 ERROR DETECTION IN THE DYNAMIC LEVEL e e .

V1. THE PROCEDURAL LEVEL OF THE ARM CONTROL SYSTEM
VI.1 THE PROCEDURAL LEVEL IS A LISP SYSTEM _ e e
VI.2 HANDLING ERROR SITUATIONS . . N T T
¥I1.3 A DEEPER LOODK AT ERROR SITUATIDNS

I. INTRODUCTION

The M.I1.T. A.I. laboratory is in the process of producing a small
robot manipulation system, the "mini-rebot'. The overall structure of
this system is dominated by a division into three parts:

a) A high power remote computer which 'thinks'. That is, the
computer decides on a course of action based on the information
available to it.

b) A small local computer which controls a vision system. This
system 1s the basic sensor of the mini-robot, and is used to gather
information about the environment. This_infnrmatiun is then sent to the
hﬁgh level system. |

c) A small local computer which controls a mechanical arm. The
arm 1s the mini-robot's output device, and performs "actions', effecting
changes in the environment. Though it can also be used as a sense organ
{for forces), its abilities in this régard are very primitive.

It should be stressed that the high power :ﬁnpyter probably will be
physically removed from the local cnmpu£arﬂsﬁ. Further it is one of the
basic design criteria that the bandwidth needed to communicate between
the two computer s¥ystems be as small as possible.

This paper is concerned with the local software assocliated with the
mechanical arm. This being the case, the high leval and vision systems
are only ﬁentiunad in passing. However, the reader should keep their
existance in mind.

Eimce the mechanical arm i3 basically just an output device, its

control system minimally could be wvery simple and deveid of

ARM CONTROL SYSTEHM PAGE 2

"{fntelligence’. ALl of the intelligence could be isolatod in the high
laval system. On the other hand., a lot of information and intelligence
dealing with 'actions' could be placed in the arm control system so Lthat
the high level system could operate at a more syvmbolic lewvel, This 1is
the approach taken here., It is intended that the requests for action by
the high level system will be concise orders Tor complote actions like
"miek up the ball", or "throw the ball®.

The paper is organized as follows: Section II Tirst makes some
" general comments about control which motivate the design decisions made
in the rest of ihﬂ paper. It then .trias to indicate what the arm
controller is :npnhlu of doing on its own.

Section III specifically states the behaviour it was decided that
the arm controller should exhibit. It also attempts to explain why
particular design decisions were made. Finally, scenerios of four
typical arm ‘actions are given in order to make the discussion more
concrete. Electronic circuit board construction has been chosen as a
prototypical task for the mini-robot, and all of the examples in this
paper are taken from this domain.

sections IV-V] describe a proposed mechanical urﬁ control system
which exhibits the required héhuviuur. This is the.mqat of the paper in
that 1t contains the specific details of the proposed system. However

the reasons behind the proposed system are vitally important as well.

ARM CONTROL SYSTEM PAGE 3
II. SOME IDEAS ON CONTROL

II.1 'REGULATE' V5 'COMTROL'

In this paper, 'regulate' and 'control"' are used in 4 special sense
to express two ends of a spectrum of the degree of ‘'goodness' of
control. If A regulates B then the control A has over B is so complete
absolute and immediate that it is not thought of as being fallible or as
baing a process, though it probably is. If A regglatas B them B is said
to be a "direct effect’ of A.

For example, a person 'regulates' the position of the thermostat in
A room. In contrast, by means of this thermostat, he 'controls' the
temperature of the roos. This is true even though the processes which
allow a person to regulate the position of the thermostat are infinitely
more complex than the process which allows the thermostat to control the
temperature. It i% not the complexity of the control process, but its
effectiveness that is important hera.

As a second example, the thermostat mechanism E&gulntns the |
position of & switch. This switch in turn regulates the on/off state of
the furnace. Finally, the on/off state of the furnace affects the
temperature (with a large time delay). Through this sequence of
effects; the thermostat is able to loosely control the temperature.
This illustrates the interesting phenocmenon that as you look into a
control mechéniim. the direct effects become more primitive and farther

removed from the goals of the mechanism.

ARM CONTROL SYSTEM PAGE 4

I1.2 ‘'OBSERVADLES'

For A to control B, A must regulate something which, through a
chain of effects, eventually affects B. In addition, -unless & is the
only. factor affecting B, A must be able to observe B, or at least
something related to B.

Here again, the thermostat is a good example. It was designed with
the realization that many Factors affect the temperature, .and therefore
was designed to measure the temperature. However, in other parts of the
control loop the designers were not so careful. They assumed that the
pn/off switch has complete control ;vur the furnace and therefore thea
thermostat was not designed to monitor the fufna:e- Thus when the
burner blows out, or the oil runs out, a thermostat looses control of
the temperature.

On a higher level the thermostat is only partially effective,
bﬁ:uusa what a person really wants cqntrnllnd.if--his comfaort, not the
temperature. His comfort iz only tenuously related to the temperature
near him, which, ?n turn, is only loosely related to the témperature
near the thermostat. .The thermostat is only partially effective because
it cannot nhgarvu what a person really wants it to comtrol. It has to

settle for something only very indirectly related.

ARN CONTROL SYSTEM PAGE 5

Direct Effects = = = = = = R » Observables
{af A) {by A)

Fig. 1 Schematic of a control situation.

The three key factors of a control situntiun arae shown in - figure
1. The more tenucous the chain of affects which link thom, the weakar

the controal.

11.3 THE MECHANICAL ARM

Let us consider the mechanical arm control problem in the light of
the above ideas. The first thing to notice is that there are really two
control problems:

a) How is the arm going te control things inm its environment? For
example how will the arm assemble a circult board?

bl How will the arm controller control the arm? For example how

will it make the arm move from point X to point Y7

I1.3.1 ARM AS CONTROLLER

Looking at the first problea, it 1is not usually thought of as a
'control' problem. This is because the connections in Fig. 1 are so
tenuous. Firstly, the direct effects of the arm are forces applied to
objects din its environment and the motion of the arm through the
anvirunp&nt {possibly moving something). These effects have almost no
bearing on the state of completion of a circuit board.- Only through a

vary complex procedure can they cause the assembly of a circuit board.

ARM CONTROL SVSTEM PAGE 6

Secondly, the arm can only cbserve forces applied to it, such as
contact with other objects, and its own position. This does not enable
the arm to draw hardly any conclusions about its environment. In the
prototype problem of circult board construction, the general inability
of the arm to observe its environment is overshadowed by the great
difficulty in observing the state of completion of & circuit board by
any means.

What does "observe the state of completion of a circuit board®
mean T Clearly wision is required to find owut where all of the
components and other bits and pieces on thg WoTrk hencﬁ are, However
this 1list of where each thing i3 15 not a measure of the state of
completion. There must also be a statement of what a completed circult
board is like. From these two things, a list of all the differences .
between the observed circuit board, and a :nmniatéd one can be created.
This difference list seems to describe the sitwation, but it is still
somewhat unaqtisfacturf- Mot only is it cumbersome, it does not answer
the question “what should be done next®. The order in which the
components are assembled is often not obvious but important. Feople
constructing eircuit boards usually follow an explicit procedure which
sa¥s what to do when. They oauge the stata' of completion by huk. far
they have gotten in the procedure.

We see that the closest thing there 1% to a measure of state of
cqmplatiun is the point in the construection procadure the builder has
reached. Unfortunately this 1s not & very good measure. It allows the

builder to talk about and deal with the states of completion that the

ARM CONTROL SYSTEM PAGE 7

procedure causes the circuit board to pass through. However, i the
normal course of events is disturbed and the circuit board is not in one
af the expected states then this measure cannot even describe the
situation let alone indicate what should be done about it.

The great strength of the thermostat on the other hand is that it
is prepared to deal (perhaps crudely) with any possible wvalue of the
temperature.

In order to be 'intelligent', the mini-robot as a whole must have
the ability to deal with almost any eventuality. It must have a
dascription good enough to describe all situations, amd be able to Tind
a way out of any trouble. However, as discussed in section II below,
the arm controller probably should not have this kind of power. To the
extent that it is only executing plans of action, it cannot be said to
be im control of its environment, because it is helpless except im wery
simple error situations.

Logking at the individual steps in a circuit h?ard construction
procedura, things lLook much more like & cﬂntﬁni problem. Take a
relgtivelr complex step like "move the 4K resistor now at point A to
point X", Here, dues to the greater inherent simplicity,.the arm can
observe the relevant state of the world (i.e. arm pu?itiun]. No matter
what happens, 1t can simply continue to reduce the diﬁtance between the
hand and the resistor {if it is not holding the resistor) or between the
hand and point X (if it is hqlding the résistari, It can deal with
avarything that cam happen, because not very much can happen. MNote that

if the arm drops the resistor, insurmpuntable problems arise. Without

ARM CONTROL S5YSTEM PAGE B

vision the arm cannot find the resistor in reasonable time, or be sure
it has rnund.it and not the 10K resistor. -

It 1is still executing a procedure [(HOVE_TO A) (PICE_UP) (MOVE_TO
XY (RELEASE)), and the position in this procedure i5 being used as a
mEasure. However, there iz a key difference. The praceduré is simple,
but more importantly, it is such that any state of the system cam be
deseribed as a point in the (parameterized) procedure. Thus the
controller always knows what to do (i.e. Finish the procedural.

This paper is entitled A MECHANICAL ARM CONTROL SYSTEM". This is
really rather ambiguous. Tts meaning dopends on whether the arm is seen
as controller or controlled. The discussion above centers on its use as
a controller, which is the area of greatest interest. (It should be
noted that the rest of this paper :ﬂnéentrates on control corresponding
to single steps in a procedure, rather than on the high level control of
the environment, which 1is accomplished through the production bf.
appropriate pruceﬁures from the single step building blocks). Having
said this, it must still be recognized that the arm cannot be a

tuntrniler if it iz not comtrolled.

I1.3.2 CONTROLLING THE ARM

A mechanism which is trylng-tn control the arm can regulate the
torgue délivered by the motors at the arm"s joints. What the mechanism
is trying to control is the arm's positionm, velocity, and the force 1£
exerts on external objects. Fortunately the control mechanism can more

or less directly observe the position and force, which makos onme of the

ARM CONTROL SVSTEM PAGE 9

links in Fig. 1 wery short. Unfortunately the motor torques, though
functiomally related to the position etc., have a very complex relation
to -them. This makes it wery hard (imn the sense of mathematically
complex, not logically difficult) for a control mechanism te calculate
how to change the torques in order to counteract an observed error.

It 1is ipteresting to note that there are many ways the control
problems could be simplified by improving the direct effects or
observables available to the controller. For applying a force with the
unmoving arm, the situation 1s already optimal. The arm controller
observes the fu?ne, and directly effects the torques. For motions of
the arm, the analogous optimal situn;iun would be for the controller to
observe. both the position and the wvelocity and directly effect the
accelaration (instead of the torques). Note that if this was the only
mode of control then the control mechanism would be unable to control
the force exerted by the arm on external- objects. Ideally the
controller should be able to switch between these two methods of
control. The situation would be almost as good if the controller could
nhservp the acceleration, because instead of using huge equations, it
could take advantage of the fact that the torque at a joint is
monotonically related to the acceleration at ‘that joint. Howaver it
might still want to be able %o use the predictive power of the

equations.

IIL.

ITI.1 HOW °"INTELLIGENT'

The first guestion
‘intelligent’
this context the
actions which tha sysitem
of errors and unexpected

Thus there ars two

have. First the system

which canm be initiated

systems. This knowledge

The other type

situations. What should

basically, what is it

information it receives and itz abilities.

deal with situatiens it canmot effect or cannot detect.

the direct affects, and

should it be?

question can be rephrased

ARM CONTROL SYSTEM PAGE 10

THE BASIC CAPABILITIES OF THE ARM CONTROLLER

SHOULD THE ARM CONTROL SYATEM BE?
to be asked about the arm control system is how

Intelligent is a hard word to define. In

as: how complex are the

can

reliably control, despite the possibility

Bvants,
major kinds of "intelligence' the system should

should have knowledge of many complex -actions

with concise commands from the higher level
can best be stored as procedures.
of deals with

"intaelligence' extraordinary

the system do whon something goes wromg? More
passibla for the system tﬁ dp based on the
The arm controller cannot
Thus looking at

the observables available to the local system

indicates how much 'intalliﬂan:a‘ iz possible.

Through its direct

affects, the arm can move an object to an

arbitrary point and orientation im its working volume, and then apply a

forca.
construction.

The observables are

does not glive it moch information.

This should allow the arm to perfors tasks such as ecircuit board

4 different matter. The arm's sense of touch

It must - look te the rest of the

ARN CONTROL SYVSTEM PAGE 11

mini=robot system for most of the Key information it nesds.

I11.2 WHAT INFORMATION LINES SHOULD THERE BE?

HIGH LEVEL ROBOT SYSTEM

{ Model of environment)

Lo

rl

“.,‘(Model of system activity) /

1

¥
I

Arm system

Fig. 2 Diagram of the commumication links in the

Mimi-Robot 501id lines indicate

definite

Fig. 2 shows

savaral possible

-
-
-

prvey SRR

system,
communication
lines indicate possible additional

ENVIRONHENT

J

Vision system

Tinks.

inTormation

Dotited
Tinks.

links the arm system

could have with other components of the mini-robot system. Which ones

should be implemented?

The answer to this question is dominated by the fact that simce the

arm controller may Ee physically removad from the raeast of the svstem,

high speed communication may

not be

possible.

Furthar, the

simplificatien gained by reducing the interaction with the rest of the

system is certainly desirable, if the degradation inm the arm's abilities

is not too great.

system should be concise.

AL any rate, all communication with the rest of the

With regard to the information needed to deal with an error

Situation, errors seem to be divided into two classes.

The first class

ARM CONTROL SVSETEM PAGE 12

might be termed 'local' errors. These are errors that are readily
detected by the arm alone ({error in position, etc.) and that can be
corFected without regard to the rest of the environment, or the purposé
of the action. A local error can be corrected by making provisions 1n
the control procedures.

& good example of a local error is a drift imn position arising
during a motion of the arm From point A t£o point B. While performing
the motlion the arm has wandered off of its intended course, but Lt has
not hit anything. To correct the error the controller necd omly plot a
new course to point B. Dealing with drift and similar problems is
clearly a minimal requirement of the system.

The more interasting class of errors, Hhich might be termed
'global' errors, 1is typified by the following, seemingly simple,
examplea. The arm strikes an obstacle. This error cannot be fixed
without more glebal considerations. The obstacle cannot be removed
unless the arm :ln. determine that the obstacle is not né;ch where it
is. The arm cannot just go around it, because the uhsﬁ;cla may have
been damaged. The arm cannet even tell this without the vision system.
If the obstacle was damaged, it must be Fixed.

In general if the arm system 15 going to be pbla ~to deal with
global errors, it must be able to decide on a course of corrective
ﬁntiﬂn based on the information available to it. It is clear that if
thﬁ arm s}st&m iz going to make intelligent dacisinns to correct such
problems, &fan in the simple case above, iﬁ must have access to a

complate model of the environment, and to & model of ﬁhat the overall

ARM CONTROL SVSTEM PAGE 13

system is trying to achieve. Im addition it needs to be able to use the
vision system for inspection of the environment.

It is also clear that the arm system cannot maintain sither of
these models alone. They require inputs mainly from the other parts of
the robot system. Thus very high speed communication would be needed on
all of the links suggested in Fig Z.

Further, since at a higher level there must already be a program
capable of such intelligence, why not use it? Why not take advantage of
the wide gulf between the two error classes and not implement ény of the
dotted communication links in Fi.u. Z7 It Has. decided that the most
-intelligent thing the local arm system could do when it encounters an
unanticipated error is te call for help, trying to be specific about the
error that happened, and about what it was tryving to do at the time, and

to request further instructions from abowve.

I11.3 SOME EXAMPLE SCENERIOS

In order to further clarify the above issues, scenerios of four
typical arm actions are given. For esach scenerio tha_paper indicates:

1) What information is nesded to 1nittgtu_ﬁﬁéﬁgﬁtiun.

2) What additional information must ﬁé. developed by the arm
controller in order to perform the action.

3) Some of the local errors the arm controller can correct itself.

4) Some of the errors it is not expected to handle.

ARM CONTROL SYSTEM PAGE 14

III.3.1 HMOVE TO POIKT B

This first action is perhaps the most basic arm motion., The arﬁ is
at point A, and it is asked to move along @& smooth path to poinmt B
without hitting anvything. Only point B necds to be specified in order
to start the action. The arm controller has to do a lot of work:

a) It has to decide on an exact path from A to B that the arm is
capable of following without any high acceleration which would make the
motion jerky.

b} The system should also have some basic ifdeas about object
avoidance. For instance, if A and B are hoth on the table, and fTar
apart, then the arm controller could plan a path that comes up off of
the- table im an arc, not a path that skims over the table. Here is a
place that a model of the environment would be very useful, but how much
model is enough and how hard would it be to keep accurate? The problem
can be avolded if the higher level programs have a ﬁuud model of the.
arm, and how the arm :nntrnller_ulans trajectories. If the higher lével
concludes that a (MOVE_TO B) command would cause the arm tﬁ hit
something then it just needs to break the move into two parts (MOVE_TO
C) (HOVE_TO B) Hhicﬁ avoid the obstacle. It seems that the simple
heuristic of mmviﬁu up in am arc on 4 motion will avoid most collisions.

Turning to error situations, the main error the controller is
expected to be ahl.& to deal with is the drift discussed above. In short
unless the arm strikes suméthing. the controller will get it to B one
way or another. Note that if position B is not a pessible configuration

of the arm, the controller will detect this through its model of the

ARM CONTROL SYSTEM PAGE 15

actual arm, and complain to the higher level.

The arm controller is not expected to handle the problem of
striking .something on, the way to B. In general it has to appeal to
higher authority in order to determine if the arm has done any ramapge.
It could have a criterion, such that il a collisiom was solt enough it
would assume that the object was undamaged, and then try to avoid 1t and
continue on as though nothing had happened

In this case the controller must be careful that 1t does mot go
into an infinite motiom trying to avoid an object. A particularly

pathalogical case occurs if point B is in an object.

III.3.2 PUSH A BLOCK ASIDE

Here is another rather basic motion. A block with dimensions D is
at Dnsifiun_ﬁ and the arm is asked te push it a distance d in dirFection
R. The request must specify A, d, R, and at least some information
about D, in order to start the actiom.

The arm controller is going to have to figure out:

aj How the hand is to approach the block. In general, it should
be moving along R towards the center of mass of the bleck {point A} with
the lnng&5¥ axis of the hand perpendicular to the motion (so Lﬁat the
block will not rotate when contact is made with the hand, and will move
in direction R)}.

b) It must alse decide how much force to applf to the block.
Again the local aérnrs the controller caon deal with are drift-lika;

a) There iz drift in the motions.

ARM CONTROL SYSTEM PAGE 16

b In addition several problems can arise which are very similar
to drift. For instance if the block sticks, the arm tries a little more
force, 1f the block skates along it tries a little less force. Mora
interesting, if the block slides off of the hand, and looses contact,
then the arm must back up a little move over and try again (as long as
tha arm does not move too lar afield). The arm controller can deal with
gach of these problems by simply doing what it was doing before with
some parameters updated.

The kind of global errors the controller cannot handle are typified
by:

a) The arm hits something.

b} The block hits something and stops moving {therg is a sudden
large rise in force).

c) Whnen the arm gets to A it does not Tind - any block, (the arm

controller must be careful not to push the wrong thing).

I11.3.3 PUTTING A RESISTOR'S LEADS INTO A CIRCUIT BOARD
| This is a much more complex action. Let us assume that the leads
are already bent and cut. The arm i asked to pick up a resistor and
insert the two leads into the proper two holes. Here the position {and
orientation) of the resistor, and the positions of the holes need to be
specified.

This is a task requiring considerable prﬁfiainn of the arm system.
_ First it must pick up the resistor very a:éuratly so that it will hawve a

reasnnahla idea of the position of the ends of the leads. Then it must

ARM CONTROL SYETEM PAGE 17

move the end of one lead to the [irst hole and insert it. Finally it
must get the other lead in the other hole. -.hll through this the arm
controller must decide how fast t9 move, how hard to push.

Some of the errors the arm can handle in this action are so
expected, they will probably always happen. In particular, the arm 1s

probably not so precise that it can just put a lead in a hole. However,

the arm should be able to get the lead near the hole, (17 it does not,
the lead may end up in the wrong hole.) The arm must drag the lead over

the beard trying to find the hole. It should not do this for too long,
since the hole might be missing, or plugged. In either case tho ﬁrm
must ask for help from above. It cannot even tell what went wrong; is
the hole missing or did the arm miss it?

This whole procedure could be sinplified if the arm system could
ask specific questions of the vision system (such as: “where is the end
of the lﬂ#d?"] and get a quick amswar. This is the one place where it
appears that a small increment in communication could yield important
gainal in the power of the arm system. For most problems, total
communication is needed and partial communication is nmot helpful.

‘Here are a couple of other errors the arm system could not handle
without extensive communication: -

a) If the arm drops the resistor it is probably net geing to be
able to find it. It might pick up the wrong thing.

b) While trying to locate the hole, one of the leads might bﬁnﬂ.
The arm system probably would not even detect this, except through

finding itself unable to get the ieads in the board.

ARM CONTREOL SVSTEM PAGE 18

This points up the important Tact that while the arm system is
working, the rest of the robot svstem should be looking on, even if
there 15 no direct feedback, so that it canm detect errors the arm would
miss. Also the eye must check that things were done correctly after the

arm is finished.

II1.3.4 TIGHTENING A NUT WITH A WRENCH

It is possible that if the arm was strong enough it would not need
to use a wrench to tightem a nut, but let us assume it did need one.
There 1is a wrench at location A, and a bolt at location B with a nut
already started and partly tightened with the hand (this is another
difficult task). The action 1% a repeated cvycle of putting the wrench
on the nut (this is the hard part), swinging the wrench through an arc,
and taking the wrench off the nut.. The action stops when the nut is
tight. :

To start the action the reguest must specify the position of the
nut and belt and of the wrench. An interesting variation would be for
the request to specily the size of the nut, and have the arm controller
remember where the tools are. This view looks at the tools as part of
the arm. .

As always the arm system must develop specific trajectories for all
of the motiens invelved. Here are some points of particﬁ]nr intarest in
thizs action:

ai When the arm picks up the wrench 1t nust_pick_lt Up in a wvary

precise manner, so that it will know where the end of the wrench is. In

ARM CONTROL SYSTEM PAGE 19

gﬂnerul the arm system should have & good model of the arm wrench
combination, so that it can perform taskes like putting the wrench on
the nut sasily.

b) . The next difficult peiat 4is putting the wrench on the nut.
Feople often do this wilth two hands. In order to do it with one, the
arm will have to be able to accurately rotate the mouth of the wrench
about the center of the nut, waiting Tor the wrench te slip on.

A special tool like a socket wrench or a nut driver would simplify
the scenerio because the arm would -only have to put the wrench on the
nut once,

€) MNext force feedback is used to tighten the nut by swinging the
wrench. The arc the wrench can be swung through will usually be
constrained by obstacles, leaving a pie shaped region in which the
wrench can operate. This region must be at least G0 degrees in size for
a typical wrench, and should be specified in the initial request.

d} An interesting case of local error which arises in this task is
when the wrench pops uff.uf the nut. The arm just puts it back on and
continues.

e) It is interesting to note that the arm cannot tell whether it
was successful in tightening & nut, or whether the bolt is cross

threaded.

In all these tasks, the arm comtroller can enly correct local
errors which do not interact with anything else it is trying to de,

unless the arm has access to accurate models of what is going on.

ARM CONTROL SVSTEM DPAGE 20

1V. THE INTERMAL STRUCTURE OF THE ARM CONTROLLER

Section Il gave a basic idea of what the arm controller is expected
to do. The next three sectiens will describe how these results can be
obtained. To begin with let us summarize what the inputs and outputs of

the arm hardware are.

A) Inputs fros arm conktroller {(direct effects of controller)
1} Motor torgues (at each joint (G))
2) Joint lockers (at each joint (6))
3) Hanmd contrel fnputs {(open close)
B) OQutput to controlier [observables)
- 1) Imternal sensors
a) Joint positions (at each joint (&))
b} Joint velocities (maybe)
2) External sensors
a) Force sensors in wrist
b} Touch sensors on hand
C) OQuputs to the environmant (direct effects of arm)
1} Motion throwgh enviroament
2) Forces applied to objects in the .environment
D) Inputs from environment (external sensation)
1) Due to contact with objects in the environment
a) Force sensation
b} Touch sensacion

Fig. 3 Imputfoutput description of the arm hardware

IV.1 ASV, ACV, AND G

What the arm controller is trying to control is the output to the
environment (see Fig. 3). Due to the decision to isolate the arm
system, the only way the controller has of monitorimg this output is
through the arm's own sensors (apart from some possible hand-eye
coordination).

Fortunately the arm's sensors are often sufficient for observing

- the outputs to the environment. However, there is one important point

ARM CONTROL SYSTEM PAGE 21

which cannot be igpurad. That is the question of slop and inaccuracy in
the arm. The arm :nntrnllar's. model of the arm and its abilities is
only approximate, and the sensors have limited accuracy. This is the
major cause of drift in the arm's actions. This drift can be corrected,
but only within certain limits. Thera iz 4 definite upper limit to the
precision of control possible.

Returning to the main discussion, as a notational convenience, the
ARM STATE VECTOR (ASV) formed mainly of the sensor outputs from the arm
to the controller {(i.s. the observables) is.intruﬂuced.

ASV = (position, welocity, force, touch, hand, leckers; time)

This wvector contains all of the information that the arm controller has
about the state of the arm without getting additional information from
the rest of the robet system. The information in the ASV is dirHCilY a5
it comes from the sensors. It is in the generalized coordinates
appropriate to the arm (i.e. the joint angles and.velucitiﬂs}.

Similarly the ARM CONTROL VECTOR (ACY) which gathers together the
control inputs to the arm (i.e. the direct EffE:ts of the controller on
the arm) is introduced.

ACV = {torques, joint lockers, hand control; time)

Note that these two vectors are not unrelated.

ASV(T+dT) = FIASVIT), ACV(T), ENV(T))

That is, the new state is a function of the old state, the control
ihputé. and the environment. In order tn. control the arm, the
controller attempts an inversion of this relation.

ACV(T) = GLASV(T). ASV{T+dT), ENV(T})

ARM CONTROL SYSTEM PAGE 22

Unfortunately this inversion can only be partial for several reasons:

a) As mentioned above, the controller has very little knowledge nr_
the environment (ENV(T}}. Therelfore it continually runs the risk of '
encountering unexpected difficulties. Each command to perform an action
gives the minimal description of the environment that is necessary for
the execution of the action, but no more.

b} A less important problem iz that & is not single valued. The
controller must often choose between soveral ways of making a state
transition.

c) Hore unfortunately, G is not a total function. Many (im Tact
most) state transitions are not possible at all. Intuitively this is
clear becawse while the ASV has 1B independently wvarving ma jor
Eﬂﬁpanents {6 positions, & velocities and 6 forces), the ACV has only G
independently varying major components (the 6 torques). Thus in general
the controller can only control a ©-dimensional subspace of the ASV in
ong time interval.

d} Lastly, even when G is computable, ‘it can be computed only
approximately due to the great nathﬁmﬁti:nl complexity. This is another.

major source of drift in the arm's actions.

Stepping back a moment, consider that the input to the controller
from the robot system is a high level command such ﬁs.tmﬂvE_Tﬂ BE). while
the input to the arm is sumharizéd in ACV(T). This suggests a two stage
controller, with one stage that transforms the high level command into

ASV(T+dT) and the other that computes ACV{T) by using G.

ARN CONTROL SYVSTCH PAGE Z3

IV.2 TWo STAGE CONTROLLER

HIGH LEVEL ROBOT SYSTEM

fY
| I
concise] I concise descriptions
high lTeval | | of arm state and
command | | activity
| I
Vi

Procedural Level of
ARH CONTROLLER

LAY
| |
desired | | actual ASV(T) and
ASV(T+dT) | | other information
| | about errors
| |
NS
Dynamic Level of
ARH CONTROLLER
(R
| |
I |
ACV(T) [I AEV(T)
| i
| i
M
hrm Hardwarae
LR
| N
| I
motion and | | contact
force | | sensations
| |
K
ENVIRONMENT

Fig. 4 A diagram of the two stage arm controller
showing. the information -communicated
between levels. '

The belief that having a two stage controller will be very |

ARM CONTROL SYVSTEM PAGE 24

convenient 1s based on the following assumptions on the interactions of
the two stages depicted im Fig. 4.

a) . First, it is assumed that the procedural level which translorms
a high level command into a series of states of the arm dons not need to
know how the state transitions can be realized.

bl Second, it is assumed that when the dynamic level is evaluating
G, in order to calculate how to get from state A to stnte 0, it does not
nead to Know why¥ the procedural level wants to make the state transition
or where the arm is going next.

It seems that in general these assumptions are walid. There are
several Elear advantages to the two stage design.

aj The computation of O 1z wvery cooplex, and elaborate
approximations must be used. Thus it is very important to isolate the
calculation of G in one place where it can be done with the greatest
possible efficiency.

b) The division also makes the system claarur_gnd more tractable.
The dynamic level can be looked at as an emulator which makes the arm
hardware look like it takes desired ASVs as inputs instead of ACVs.
Thus from the point of view of the procedural level; the direct effects
have been improved. It never has to deal with.the complex mathematics
in G. Nor does it ever have to deal with the generalized arm
coordinates. It can work in ceordinates suited to the action, not the
darf@.

c). Another important point dinvolves the "intelligence’ of the

mini-robot as a whole. In order to ‘'understand' what it is doing, it

ARM CONTROL SYSTEM PAGE 25

must have some way of illucidating the inner structure of its actions.
But how far should this decomposition be allowed to progress?

With the two - -stage controller, the answer is_plear. The dynamic
level operates as a black box, the complex mathematical knowledge in 1t
forever hidden from the rest of the system. The procedural level on the
other hand has all of 1ts knowledge swymbolically represonted in
procedures which are composed of mamed primitive procaduras.

Thus the mini-robot can introspect down to the level of these
primitive procedures, and ne farther, This closely parallels the human
situation. A person can introspect about his motions down to a certain
level, but no lfarther. For example, most people think of wiggling their
gars as a primitive actiom ([even though it is produced by the combined
action of many. muscles), because they are powerless to control these
muscles below a certain level. Host people canm wiggle hoth sars, but
very few can wiggle just one, even though there are seperate groups of
muscles on sach side. This is because they Ennnnt decoemnpose the action.

They have no 'names' for its constituents. Mo way to get a hold on

them.
d) A final point 4is that some time inm the future, the entire
dynamic level could be implemented in hardware, increasing its spead by

switching to analog aethods of computing G.

ARM CONTROL SYVSTEM PAGE 26
V. THE DYNAMIC LEVEL OF THE ARM CONTROL SYSTEM

A} Qutputs to the arm hardware

1} ACV({T) the control inputs
BY Inputs from the arm hardearo

1}y ASWT) the current state of the arm
C) Inputs from the procedural Jewvel

1} The desired -ASYV (DASW) at the next time interval
DASV({ T+dT) .

D)} OQutputs to the procedural Tewval

1) ASV(T)

2) DELTA(T} this is a concise statement of the
difference between ASVIT) and DASV(T). It s
expected that they w111 not be the same because the
dynamic Tevel's evaluation of G 15 only nppruxamata.
and 1t has almost no knowledge of ENV(T).

3) When an error condition arises

&) The procedural lewel is interrupted and

bl Passed a concise description of the error.
{Hote that this exactly parallels the
interaction of the arm controller as a whole
with the rest of the mini-robot system.)

Fig. 5 input/output description of the dynamic Tevel.

V.1 THE DASV AND CONTROL STRATEGIES

As mentioned aboeve, the dynamic level cannot control all of the
variables in the ASV at once. In re:ﬂgnitiﬁn of tﬁis. the fnfﬁat af
DASV(T) is designed so that the procedural lavel can -1ndicutn which
components of the ASV it is really interested in controlling. The DASV
has the same components as the ASV, but esach one can be either:

a}) A specific number, which indigutas that this component is to be
explicitly controlled.

b} A list (NOMINAL_VALUE, - EAHGE]. which indicates that an errur.

" should be signaled if the component gets outside of the interval

(NOMINAL_VALUE +- RANGE).

ARM CONTROL SYSTEM PAGE 27

c) NIL, this imdicates that the prn:edurnl-lcuu% i% not concerned
with the value of this component.

Based on the form of the DASY, the dynamic level uses one of the
following basic strategies to compute G.

aj If the DASV indicates that position andfor welocity is to be
controlled, then the equations of motion for the arm (actually an
approximation to them) are used to compute the ACV.

b) If the DASV indicates that force is te be controlled, thon
direct feedback is used to control it. How the motor torques effect the
forces sensed must also be calculated. This depends on the arm position
and the point of contact.

c) If less than a 6 dimensional set of components is specified for
control (in particular if none are specified), then the extra freedom of
choice for ACV(T) is used to keep components of DASV(T) specified as
intervals closer to their nominal values. An example of this is in
pushing a block aside. The DASVs have no specific components. Befure
the hand touches the block, it moves at the nominal velocity. After
contact, 1f the force rises above the nominal v&lun, then the wvelocity
will drop.

d) The preceding was an example of a situation where contol
strategies a) and b) had to be mixed. ~“This is done by applving both,
and wusing the extra freedom of choilce in each one to make the two
solutions fit. For example if 4 positions were specified tﬁan. this
Hﬂﬂid fix 4 joints. If in additien 2 forces were specified, then the 2

remaining joints would have to be wused to create the forces. If this

ARM CONTROL SYSTLM PAGE 28

could not be done, the dynamic lewvel would complain.

e .Hnte that no attempt is made to control the touch sensations.
Their state depends on ENV(T} which 15 uwnknown to this level. There is
no way that the sensors can be made to turn on in a short time dT. The
dynamic level just reports their value, and can be set Lo cause Aan
interrupt when they change state.

f} At the opposite extreme, the dynamic level regulates the state
of the joint lockers and hand. Thus an eérror in these is never

detectad.

V.2 THE BASIC ALGORITHM OF THE DYNAMIC LEVEL
The dynamic level is activated at a discrete set of times Ti, in
order to produce a step function approximation ACV(TL) to the actual
ACV(T) which would produce the desired action. The Ti are specified in
the time component of the DASVs. The cleser together they are, the
better the approximation is. How good am approximation i; neaded
depends on the prncis1nq of the action,
At sach time interval the dvnamic level executes the following
algorithm:
1} Obtain ASV(Ti) from the arm sensors.
2} Compute DELTA(TL) from ASV(Ti) aﬁﬁ DASV(TL) as Tollows:
| for each element of DASV(Ti) one of three cases applies
a) component absent, DELTA{TL) = ASV(TL)
b} compaonent an interwval, DELTA(TL) = ASVI(TL) -

(NOMINAL_VALUE(DASV(Ti})). In addition, if ASV(Ti) is

ARM CONTROL SVSTEM PAGE 29

putside of the allowed dinterval thenm interrept the
procedural léval and inform it of the error.

c) component a number. DELTA{TL) = ASV(Ti) - DASVI{TL)
(note that the probability is near zero that
DELTA({Ti}=0, even though this is the goal. However,
the dynamic level takes no action here no matter what
DELTAITL) is. Rather it waits uptil step 4). That
is, no matter how bad it did last interval, it will go
on if it thinks that it can get to where it should be
at the next time interval. In any case, it cam usa
DELTA({Ti) to improve its approximation to G.)

3) get DASV(Ti+l). = The procedural level communicates with
the dynamic level through a queue of DASVS. If this gueue
is empty, the dynamic level interrupts the procedural leval
and requests a DASV. The arm must be continually
controlled. Until the dynamic lewvel gets a DASY it will
continue the current ACYV with possibly bad results.

How close tha coupling betwsen the two levels is
depends on the length of the gquewe. The procedural level
" can take complete control by supplying the Dﬂﬁv§ aone at a
time . Alternately the procedural level can leave the
dynamic level alone indefinitely by putting a loop in the
queus .
4 Calculate ACV(Ti) and apply 1t to the arm, To do Lhis,.

the dynamic level must first check to see that DASV(Ti+l)

ARM CONTROL SYSTEM PAGE 30

is achievabla. If not, it interrupts the procedural leval
and requests a HEH.DHEVETi] which is achievable. Also note
that some subcomputations (such as evaluation of the
equations of motion) are very time consuming amid will have
to be spread over several time interwvals.

5) Wait until Ti+l and then go to 1). It is wvery important
that the dynamic level begin its computations at time Ti+l;
it cannot wait for anything. Also the entire computation
must be short compared with the length of the time
interval, or the control will deteriocrate. To this end, it
is clear that the arm svstem as & whole will have to rum as

a zet of asynchronous tasks sharing the CPU time.

V.3 ERROR DETECTION IN THE DYMAMIC LEVEL

Let us take a final look at the 'error dafectiun' the dynamic level
is doing. It is of two types:

al The dynamic level complains because it.cnnnnt make a requested
state transition (step 4). The problem could have been caused by one of
two things:

1) An impossible sequence of DASVs was issued. This should -
not occur if the procedural level has a good enough model of the arm's
abilities.

2) Inaccuracies 4in the computation uf_ G and im the arm
hardware caused the dynamic level to wander too far rrum-thu requested

trajectory for it to recover.

ARM CONTROL SYSTEM PAGE 31

b) The dynamic level complained because some element of DASV(TL)
{expressed by a range) was not consistent with ABV(Ti). Essentially
these range elements in the DASV - are used to hold predictions of tha
corresponding elements in the ASY. The dynmamic level simply informs the
procedural leval whenever the procedural level's prediction is
incorrect. ({This basic method of error detection was used by Ernst).

Since the dynamic level knows nothing about the 'purpose' of its
actions, or about ENV(T), it really does not know what is happening. It
knows that situations of type "a" (above] are errors. Howeveor, it does
not know what the 'meaning' of a type "b" situation is. The interrupt
mechanism is just wused so that the procedural level can request the
dynamic level to bring key points of 1nfnrmntiﬁn to the attention of the
procedural level. The procedural level nuﬁt decide what the information
'means'.

For example the information that a touch sensor has changed state
could mean "the hand just crashed into the table® or it could mean "the
hand just found the capacitor®. It all depends on what iz being done.

The above mechanism is probably net sufficient for all error
ﬂEFEEtiDﬁ. In addition there will probably be ‘demons' in the
procedural level that monitor more complex functions of the ASV or other
indicators in order to detect error situations. The interrupt mechanism
meraly institutionalizes the most commen kind of monitoring.

hlsu one element Ls aﬂdéd te the DASYV not fﬁund in the ASV. This
element simply causes an interrupt whenever it is present. This is used

to synchronize the actions of the dynamic and prncedﬁrﬂl levels., In

ARM CONTROL SYSTEM PAGE 32

particular it would be used to inform the procedural level ‘that a
particular phase of on action was completed.

In sumﬁnry then, the dynamic level is seon to be quite simple,
except for the ma;hamarical cﬁnnlaxity nesdad to carry out the control

(i.e. computing G}.

ARM CONTROL SVSTEM PAGE 33
VI. THE PROCEDURAL LEVEL OF THE ARM CONTROL SYSTEM

A) Output to the dynamic Tewval
1] DASY(Ti) the desired ASY (communicated through a
queue)
B Inputs from the dynamic level
17 ASV(Ti) the current state of the arm
2) DELT&(Ti) the summary of differences between
ASW(T1) and DASV{TH) '
3) Interrupts signalling errors and key information
daetailed in DELTA(TH)
C) Inputs from the high level robot system
1) High level commands in the form of LISP programs
£) Interrupts signalling error conditions or key
information detected by other elemonts of the
mini-robot system {for exomple the vision systom)
D) Outputs to the high level robot system
1} Signals indicating the completion of an action
2y Asv(Ti) (in some high level coordinates) 1T
requested
4) Interrupts signalling error situations
4) A description of any error (see V.3 below)

Fig. 6 Input/output description of the procedural level

VI.1 THE PROCEDURAL LEVEL IS A LISP SYSTEM

The procedural level is a LISP system with a large ﬁndy ef built-in
functions. These functions can be divided inln.thtaa-classﬂsi |

a) The first class consists of the basic LISP functions (PROG,
LAMBDA, COND, etc.) plus a set of functions to iﬁpleﬁent the multiple
asynchronous control paths necessitated by the real-time demands on the
system. These 1include functions for synchronizing communication
between, :rcutiﬂﬁ. ;nd deleting control paths.

In addition there are functions for qrﬂﬁting and fielding
interrun£5 {;nn V.2 helow).

b) The second group of functions embody mathematical information

ARM COMNTROL SYSTEM PAGE 34

about the arm and its .capabilities, These imclude fTunctioms for
transforming betweecn coordinate systems, plannimg trajectories, etc.
The dynamic lewvel can Dbe thought of as one of thesa programs. Thesne

programs are implemented in machine code for afficiency.

ol The last class is the most interasting. It is the set of
procedures for performing actions. These programs are kept as lists,
and are available for inspection by the higher levels. The commands

sent by the high level system are either direct calls on these
procedures, or @ore complex procedures buwilt out of the functions
already in the svstem. Procedures can be added, deleted or alterod by
the higher level system in order to suit its needs. Some examples of
basic procedures are:

1y MNOVE_TO B.

2) HALT arm where it is.

3) APPLY_FORCE F to point A.

4) HOVE_IN DIRECTION R from point A uptil contact is made with an
object, then halt.

5) _GHASF the object between the hand's fingers (some rﬁutinﬂ
called by this routine must calculate the change in the inertial.
description of the arm when it picks up the object].

Some. examples of more complex procedures that. might be in the
system if it were wﬂrkinﬁ in the environment of circuit board
construction are:

1) INSERT_RESISTOR at A in holes at B.

2) START_NUT at A on bolt at B.

ARM CONTROL SVSTEM PAGE 35

3) SOLDER_LEAD in hole at A.

1) hTTAcH_TEST_pnnEE to lead at A.

Any actionm can be encoded as a procedure as long as it can .prncend
by dead reckoning without feedback fru@ the rest of the systoem. WYWhether
proceduras like l-4 above will be done with or without visual feedback

depends on the taste of the users, and the speed of visual processing.

VI.2 HANDLING ERROR SITUATIONS -

It is clear how everything works as long as no errors arise.
However, 1t is the error situations that are the most intarastiﬁg,

Information about errors is brought to the attantiun.uf procadures
able to deal with them through interrupts lssued by other procedures
which have gotten into trouble. The interrupt facility is basically a
simple pattern=directed invocation Tacility with two key differences.

'a} It is assumed that only one procedure will be appropriate at a -
time. This assumptinp does not seem unreasonmable inm light of the simple
'tinﬁ: ﬁf errors with which the arm control system is trying to deal.

b) Control is almost pever returned to the routine issuing the
© interrupt. The issuer is usually 5unp1qﬁtad by an updated approach to
the problem facing the arm nuntrnl.systen--

The interrupt mechanism is implemented by two functions:

a) . (SIGNAL INT ADDED_INFORMATION) Where INT is an atom (the
pattern for pattern-directed invocation}, and ADDED_INFGREATIDﬁ iz
anything .thut the signallaﬁ feels will be u;eful to the inﬁnkad

procedure.

ARM CONTROL SYVSTENH PAGE 36

b) (ON INT PRED ACTION) Wicn an ON is oxecuted, it enters tﬂa
triple ({INT PRED ACTION) on a stack. The triple iz removed from the
stack when the PROG the ON was executed in is exited.

When an dinterrupt is signalled, the stack is searched for an
appropriate triple. A triple is appropriate if INT is the same as the
one signalled, and PRED is true. When an appropriate triple is found,
ACTION is evaluated in the environmeant of the PROG in which the ON was
E}LEFutHd.

Here is'; simple example of an action procedure using these ideas.

' (DEFUN MOVE_TO (B)

(PROG ()

(ON COMPLETION T (RETURN))

(ON UNABLE_TO_CONTINUE_MOTION T (GO RETRY))
RETRY (SETQ DASVQ (MAKE_TRAJECTORY B))

{ SUSPEND) 1)

In the above, DASVQ is the queue of DASVs used to communicate with
the dynamic lewvel. COMPLETION is the interrupt that is generated by the
additional . alement of the last DAEF in the queus .
UNAEBLE_TO_CONTINUE_MOTION is the interrupt signalle.d by step 4) of the
algorithm running in the dynamie level. HAKE_TRAJECTORY 1is a
mathematical routine that plans a trajectory from the present Jlocation
ﬁn the point B. The returned gueue of DASVs is tﬁrminated by -one set to
siungl COMPLETION, and one that points to itselfl to .hccp the arm
. stationary and waiting at point B. SUSPEND is_a function that stops

gxegcution in a control path. Execution can be reéﬂﬁgﬂ by the action of

ARN CONTROL SYSTEM PAGE 37

another control path.

The structure of this program is.typinal. A procadure usually sots
up a series of alternatives for futwre action, computes some number of
onsYs, and then suspends itself. It will later be recxcited by am

interrupt from the dynamic level.

V.3 A DEEPER LOOK AT ERROR SITUATIONS

The interrupt facility is intended to give the procedural level the
ability to deal with simple local errors, that is the errors described
in section II as being easy enough for the arm control system to deal
with alone.)

But what about difficult errors? How are ther detected and what
does the procedural level do about them? The only way the procedural
level has of observing errors 1s through the ASY, As lonmg as it
contains values consistent with there being no errors, then no error can
be detected by the pfu:addrul level., As soon as the ASV fails tﬁ agree
‘with the prediction uf the procedural level (or a %ﬂtthiﬂﬂ demon sees
something wrong) an interrupt is issued. At this time, the ON stack is
searched for an approriate tfiplu. If one is found, Tine. If ome is
not found, then the procedural level concludes that it cannot deal with
the error. At this point, the high level system is interrupted. Also
sinﬁg it may be a long time before the high level system responds, the
arm is told to halt where it is, and the whole arm control system waits
for a command from the high level system.

Mote that the interrupt might mot hKave originated din the arm

ARM CONTROL SYSTEM PAGE 38

control system, but rather in some other component of the mini-robot
systom. For instance, the visiun system might have deteocted something
which it wished to report directly te the arm controeller rathor than to
the high level system. If the arm cnntrnll&r doas not know what to qu
about it, 1t will Just reflect the interrupt up to the high level
system.

In summary, from the point of wiew of the procedural. level, a
difficult error is an interrupt for which no specific ON has been
executed. Whenever a difficult error occurs, the procedural lewvel asks
for help and waits.

Now the important gquestion is: how 1is the high level system is
going to raspnna to an error interrupt? There are two main ways for it
to proceed.

#) The clean slate approach: Hera the high level system decidas
not to try and salvage anything of the curremt state of the arm control
system. Rather it just looks (with vision etc.) at the current state of
the environment, and on the basis of high level goals creates an
entirely new procedure to send to the arm control system, in order
correct the error and continue on.

b) The patch up approach: HqEn the high level _systnm tries to
patch up the partially executed pracedu}as in. the arm controller im
order to correct the error, and then has them continue on. This has the
nﬂ?antnga that partial computations are not lost. Also there is a good
chance that simiiar patches cam be - given to sihil#r BFEFars even.when

they occur in the context of wvery different actions. The biggest

ARM CONTROL SYSTEM PAGE 39

disadvantage of this appracch is that the high level systom must know a.
great deal ﬁr infurmatinﬁ about the arm control s¥ysteom in goenoral, ani
about the specific comtrol paths currently being exocuted, in order to
make a good patch.

Also note that the second approach is nmot able to do anvthing that
cannot Dbe done with the First method. The second method is just morc
convenient. Further, the gain 1s greatest if the ongoing process is
complex. If it is simple then the high leval system might Just as wéll
start over.

When thg procedural level gets an error intarruﬁt from the dynamic
lavui; it could also use either the clean slate or patch up approach.
Haimly because a-queue of DASVs does not really contain that much
information, the first approach is usually used, & whole mew gueue of
DASVs is creatad.

In the imitial arm control system the high level systeom will use
‘the clean slntu.npprnnch. At a later date however, it will be of great
-inf&rﬂst to implement constructs that will illnw the high level system

to talk with the procedural leval about its internal state of Exedutipn.

