MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A.1. LABORATORY

Artificial Intelligence January 1374 Nemo No. 382

A Relaxation Approach To Splitting In An Automatic Theoram Prover
by

Arthur J. MNevine

Abstract

The splitting of a proolem into subproblems often
involves the same variable appearing in more than one of the
subproblems. This makes these subproblems dependent upon one
another since a solution to one may not qualify a=z a solution to
ancther. A tuo stage method of splitting is described which
first obtaine solutions by relaxing the dependency reguirement
and then attempts to reconcile solutions to different
subproblems. The method has been realized as peart of am
automatic theorem prover prograsmed in LISPF which takes advantage
of the procedural power that LISP providea. The program has had
success uith cryptaritheetic problems, problems from the blocks
Wor ld, and has been used as a subroutine in a plane geometry
theorem prover. :

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Maval Research contract NOOOD14-70-A-
0362-0003.

PAGE 2

1. Introduction

The splitting of a problem into subproblems often
involves the same variable appearing in more tham one of the
subproblems. This makes these subproblems dependent upon one
anather since a solution to one may not gualify as a uﬁ!utinn to
another. This paper describes a tuo stage method of splitting
which (1) first solves the subproblems as if they were
independent (i.e. completely relazes the dependency requirement)
and (2} then attempte to reconcile solutions to different
subproblems. The advantages of this approach lie in the sconomy
-derived from making only a single pass at finding solutiona and
in the ability to use global knowledge about the solutions
chtained In stage 1 to assist the search for & reconciliation of
these solutions in stage Z.

A possible disadvantage of this method is that it could
be difficult to decide uhen to stop :larthinﬁ for unconstralined
solutions to a subproblem in stage 1, particularly uhen the set
of such solutions might be guite large. In order tn_lnh- this
method Work for an interesting class of problems, heuristice wera
emnp loyed to prevent the search taking too long in cases where the
number of solutions is infinite or very Ia;gt, In particul ar,
evary case to a split need not be handled during the relaxation
stage; some may be postponed to the reconciliation stage where
conetraints arising from the other cases can be brought to bear.
The mathod has been realized as part of an autumatin.thu;r-u
prover programmed in LISP, The program has had success With

cryptarithmetic problems {31, problems from the blocks world

FAGE 3

(13}, and has been used as a subroutine in a plane geometry
theorem prover {81,

The reconciliation stage bears 3 resesblance to
conatraint methods such as used in [3]1. The reconciliation stage
also can be thought of as an attempt te "debug” solutiona uhich
were obtained by firset ignoring interactions betusen subproblems
gnd therefore is related to 11Z]1. The overall approach to
gplitting ie related to methods used in 12! uhers the
investigation of a subproblem resulted in the assignment of a
type to a variable appearing in that subproblem. Although the
presant procedure i8 oriented more to problems which allow for
explicit enumeration of solutions, it would not be adverse to the
addition of a type theory mechanism.

The logical formalism underiying the program is presented
in section 2 and some considerationz of a semantic nature are
discussed in section 3. The program also can make use of
procedural krnowledge as in {11, (21, 130, &0, &}, (11} and this
facility is described in section 4. The relaxation and
reconciliation stages are examined in sections 5 and &
respectively. Section 7 will provide some illustrative examples

of the prnﬁram'a per formance.

2. TIh lcal i s

The reader is referred to [181 for background material on
predicate calculus theorem provers. 1t will be assumed that the
negation of the goal is to be regarded as a true formula, all

formulas are In prenex form, and all existential wariables have

PAGE &

been replaced by skolem functiona {1B). He adopt the conwvention
that E and E* aluways represent expressions which have been made
ide-ntil:lll by the unification algorithe [18}. The theorem prover
has as its logical basis the following 11 rules of inference:
Al. & problem is solved when it has been established that both
the literals A" and ~A are true.
Rz. Replace formula ~~A by A,
R3. Replace formula A~B. by A, B.
R, Replace formula ~{AvB) by ~A, ~B
[i.e. if one wishes to prove AvB, then elther
prove & or prove Bl.
RS. Replace formula ~{A-B) by A, B
(l.e. if one wishes to prove A-8, then
assume A and prove B).
RE. (Modus ponens}l 1f it has been established that A" and
A=B are true uhere A '|.'u a literal, then add B*
to the set of true formulas.
R7. (Modus ponens} If it has been established that ~B' and
A=B are true where B is an atomic formula, then add
--'--.*.' to the set of true forsulas,
RE. (Modus ponens}l 1f it has been established that B' and
A+-B are true uhere B is an atomic formula, then
add ~A" to the set of true formulas.
R3. {(Reasoning by cases) If AB is true, then split
AvB into case A and case B. If A and B are
indupenduni {i.e. A and B have no variables in common),

then break the problem into two subproblems by first

PAGE 5

assuming A and then assuming B. The treatment then would
be the same as in {7] where an intensive effort would be made
to solwe & case before resorting to an additional case analyaia
and uhere a mechaniesm for curbing an explosion of cases is
gmp loyed. Howaver, if A and B have a variable in common, then
the case analysis is conducted as described in sections 5 and B.
Rl18. HReplace formula ~{A~B)] by ~Aw-8.
Rll. (Eguality relation] If r =t and Alr) are true where
Alr} is a literal in which the term r appears, then each
oocourrence of r in Alr) is replaced by the term t. Thisa
treatment of eguality is crude compared dith other automatic
thecrem provers (51, {7}l and most |ikely unglﬂ inhibit
the ability of the program to prove theorems in subjects |ike
group theory or number theory. However, there ia nothing
about the present program which would prevent the introduction
of the more sophisticated treatment of equality which this
author employed in (7).

The above rules are the same as in. 7] except as already noted
uith respect to A3 and RAll. The control structure governing the
ewacution of these rul&g alep is the same az in {7l. A comparison of
this system with resolution thauru; proving (18] already has been
presented in (7] and will not be repeated here.” The main objective of
the present paper is to present a better approach to splitting than was

employed in (7).

3. Some Semantic Considerations

The present use of semantice bears a resemblance to the

PACGE &

"model"™ ltl.‘allglll which have been used by resclution theorem
provers [181. It is based upon the duality that is associated
with different statements in the data base. For the statement ~A
can be regarded as asserting that ~A is true [and hence A is
false) or it can be regarded as asserting that we wish to prove
A. From the point of view of the formal logic, it makes no

di fference which interpretation you choose. But from the point
of vied of the underlying semantice it makes all the difference
in the world whether you believe A to be false or whether you
believe that you actually can prove A_. The commonliy held beliaf
that predicate calculus theorem provers reason only by
“contradiction” is rooted in the notion that the theorem prover
either does not employ semantics or else employs semantics which
do not distinguish the denial of the statement to be proved from
cther statements in tha data base.

The program divides statements into "facts™ and "goals.”
Initially, II.I axions are regarded as facts and the negation of
the statement to be proved is regarded a8 8 goal. Tuo statements
are not al lowed to interact uwith -aﬁh other [as paired inputs to
the sase inference rule] unless one ui’ the atatements is &l ther
the initial goal or a descendant of the initial goal. The
initial goal therefore comprises a set of support {14). Df
course, there is some flexibility as to what actually constitutes
the statement to be proved. For example, the set of statements
A, B, C, 0O, --E.r.nu!d.ruprunant the initial data base as well as
the set of statements A, B, ~[ICADI=E} so far as the formal logic

is concermned. Houwever, the latter representation would be

PAGE 7

preferred if semantic considerations indicated that the
hypotheses C and 0 were specifically related to the goal of
praoving E. In the latter representation, C and D would be
generated as descendants of the initial goal through the
application of rule RS followed by R3 whereas they would not be
regarded as descendants of the initial goal in the former
representation.

As a new statement is generated by a deductien rule, the
program makes a determination as to whether the statement is a
fact or a goal. In rule R3, a case is regarded as a goal if and
enly if the case has a negation sign at its front and the formula
being split is a goal. The output of rule R1@ ie regarded as a
goal if and only if the input to that rule is a goal. [f ~[A=B}
were a goal, rule AS would result in the output A treated as a
fact and tha dutput ~8 as a goal. For all the other deduction
rules, an output is regarded as a geoal if and only 1f one of the
inputs is a goal and the output has a negation sign at {tu front.
Thus, the output B' of rule AE would bBe a fact if A" were a fact
since A«B ;u the second input to RE could not possibly be a goal.
This separation into facts and goals can help to contral
interactions .in the data base. For suppose ~A and ~B are goals
and neither is an ancestor of the other; the program then
normal ly would allow ~& and =8 to interact with sach other but
vould not allow descendants of ~& to imteract with descendants of
o :

The symbol = has an important semantic role which has

been neglected by resolution theorem provers, Aside from

PACE 8

assisting in the separation of statements into facts and goals as
Has juat_d&::rihnd. its presence serves as a cue for the program,
Hamely, the progras interprets the statement A&-B in a manner
which is different from the way it reacts to the logically
equivalent statesent ~&8, The case analysis of ~AvB involves a
commi tment by the program fo prove A so that B can be concluded,
However, rule A% applied to A< does not involve any cumniihuﬁt
to prove Ap It just says that if A already has been regarded as
trﬁ-, then we can conclude B. [n particular, the program will

not conclude C+B from the tuwo statements C-A and A-B.

G, Tha= lUsep pf Procedures

Hhile the program is not intended as a new programsing
language, it does have featuras which make it a meaningful
extension of LISP. The thecres prover is a LISP function named
DERIVEX uwhich npérates upon three arguments (1) the initial list
of formulas stripped of all quantifiers, (2) a list of variables
unoae values are desired as fhe ansuer to the problem, and (3]
HIL or T depending upon whether or not the reguest is for just
ene answer of for all possible answers. [f it is desired that a
particular Inrmulé A be an initial goal, then the formula would
be coded as (GOALX Al,

Whenever a |iteral PITL,..... Tnl or a literal
~P(Tl,~....Tn) has been established as true and is ready for
processing by the deduction rules, it:.pr-ﬂi:at& letter F is
examined to see whether it is also a LISP function. Tf the

ansuer is yes, then PITl,.....Tn) is evaluated and, depending

PAGE 3

upon the output from this evaluation, there would be four
possible responses: (1) if the cuput 18 T, the case under
consideration is declared solved, (2] if the output is NIL, the
literal is rejected and therefore would not be applied to the

deduction rules, (3] if the output 0 is a formula other than

PiTl,..:+:Tn), then it replaces PITl,..... Tl and the reasulting
formula [i.e. either 0 or -0 depending upon uhether the original
literal was PIT1l,..... Tnl or ~PITL, . u... TRl would auait itz turn

for processing by the deduction rules, amd (4) otherdise, tha
deduction continues as if the predicate letter P uere not a LISP
function. [t should be noted with respect to the third
possibility that the output O does not have to be another atomic
formula like PITl,::::.Tnl; also, O is regarded as a replacement
for PITl,.....Tn]} and not ar a descendant of P(Tl,.....Tn).

Since the theores prover DERIYEX is a LIS® function, it
can be used as a tuhrﬁutinu by other LISP functions. In
particular, @ LISP function that uses it might also be a
predicate letter so that recursive applications of OERIVEX are
possible. The theorem prover Will examine function letters and
Hill execute them if they are also LISF functions. The
diffaréncﬂ betuwesn the procedural treatment of function letters
and predicate |etters is that the former are executed immediatelu
whereas the latter are executed only when appearing in a detached
literal which 18 ready for processing by the deduction rules.

The formula A=B Hnula be represented in LISP as
{IMPLIES A B). Houwever, in that form it never would be used as

an input to any of the the modus ponens rules (i.e. RE, R7 or

PAGE 18

HE!.. [f one wanted to allow fﬁr a possible application to rule
AG, then it would be coded as (IMPLIES (ROUTINEX A R} B} where R
is some LISP function whose purpose 18 to screen out undesirable
literals A" from application to rule AE. |f one wanted to E|iDH
for a possible application of &«B to all three modus ponens
rules, then it would have to be coded in the form (IMPLIES
[ROUTINEX A R1l) (ROUTIMEX B R21) where the LISP fumctions AL and
RZ would likewise help filter out unprofitable applications of
these rules. The use of ROUTINEX is at the diascretion of the
human programsmer. The filteé would e disengaged by a choice of
Al and RZ uwhich aluays evaluated as T. An exaeple of its
nontrivial use is given in section 5 together with ather

facilities for representing knowledge in the form of procedures.

5. Ihe Relaxation

Since the relaxation stage involves searching for “all®
solutions to a case, one might object on the grounds that such a
sgarch could take too leng lemd in fact might never be
completed), Houever, the search does not have to be for all
possible selutions but rather for all solutions that cam be
chiained when certain beuristics are employed. HMoreowver, this
saarch need not be conducted f;FIEHEFH case generated by the
split. as H]I] be shown below. The degree of success should
depend upon the problem domain and the individual heuristics.
The program in (7} searched for '5!!" golutions to the first case
ﬁf a Huiit.and yat performed quite creditably in domains such as

fumber theory and group theory.

FAGE 11

Suppose the program wishes to split the formula & (=)wB{=x)
into -cases. Al though all nx1:tqnt{a| variables wera removecd at
the cutset by the skolenization process, the variable x, which
appears in both cases, will be called (as in {71} an
“existential® variable since the object is tﬁtfi”ﬂ.iﬂﬂi value of
u which will permit a solution to each case. First, an attespt
is macde fo find values of x which will solve the problem uwnder
the assumption that Alx) is true. After all the successful
"walues of x are recorded, the samve procedure is applied fo Bix}
with = still treated as a variable and not constrained only to
those values that yielded solutions to the previous case A=),
Suppose that the formula Blyl=(CiylvDiyl) is part of thé data
base for case Bix). Then, the apni}cétinn of Bigl=(CiylvDiyl)
With Bix) to rule RE would match the variables = and y and
gintratt the formula CixlvDixl. The formula Cix)wD(x) would
become @ :Indiditi.fnr gplitting within tEE scope of case Bix)
and the program would not hesitate to attempt such a split
(unless a solution of Bix) could be found which did not reguire
the assignment of a specific vllut.tﬂ gome existential variable
appearing in Bixll, However, suppose that instead of
Biyl=I1ClulwDiyll, the formula Biyl=(Ciy,z)vDiy,z}} had appeared
in the data base where z is a variable ihat does not have an
existential interpretation. The application of this formula with
Bix} to rule AE would generate the formula Cix,zlvDix,z} but in
aorder to split this latter formula an aniitcntial-]nttrpretatinn
ueuld have to be created for the variable z. Experience «ith (71

and the present program has indicated that it is usually not a

FAGE 12

good idea to aliow a8 split if (1) one or more existential
variables appeared already in the hypothesis of the the case
under consideration and {(2) the new split would create one or
more additional existential variables. So we did something to
prevent this additional spl't, One method is to use the filter
mechanism of section & by coding Biwl=iCly,zhvDiy, 21} as {IMPLIES
{ﬁDUTINEH Biyl RV (DR Cly,z) Diy,z))) where routine R would
reject any formula that possessed an existential variable.

Al ternatively, there is a global variable which is zero or one
depending upon whether or not a case analusis is being conducted
that already has generated existential variables; therefore, the
routine R might reject @ formula if this global varianle had the
value zero. The program also would reject such a split
automatically if there were nested above it a previous split
Which violated the above principle regarding the introduction of
existential variables (i.e. even 1f the filter allowed the
program to attempt the split of Cix,z)wl(ix,z) in order to solve
one of the cases of Alx)lvBix), it would never attempt a split of
gay EluwlwFlu) involving another new existential wariable u if
this latter formula were generated from elther case Cix,z} or
case Dix,:]l-

A LISP function called RECURSIVEX enables the Human user to
infarm the program that & particular case should be postponed
wuntil after the rest of the split has been uﬁlven; When this case
finally is ﬁttumptud. it is with values that are known to satisfy
the other cases of the split. Thus, a split of the Fn;mula

Al wRECURSIVEX (B (=) 1vC (%) would result in formulas BIKLD,

FAGE 12

BIKZ) ,554++:BIKn) being added to the data base where Kl,
KZ2,4:...KEn represent the different solutions for = thét LEr @
autaiﬁad from splitting AlxlwCixl. These forsulas
BiKL),sss+:Bikn) then would be available for use in an attempt to
split some other formula DiylwE [yl.

The motivation behingd the use of RECURSIVEX is that thare
might be semantic reasons for believing that a particular formula
Bix) might be either (1) too "expansive” if cne of its
Euiaténtial variables x is allowed to be unconstrained li.e. the
hypothesis Efy] might generate too many formulas if = is
unrestricted) or (2) Bix) might lend iteelf to recursive use in a
mannar that would make the above heuristic governing the
introduction of new existential variables appear too severe a
restriction. [f either of these conditions prevailed, 1t uould
be more appropriate to code Bix] as HE;UHEJHEH!Eix]}.

dnother LIE# function called TESTH postpones action on a
case until the rucnntiliat}nn stage [(as opposed to RECURSIVENX
dwhich postpones action until| after the reconciliation stage ia

cnmplatad}.. By cﬁding Bix] as TESTHIBI(=x]) the human user informs
the ﬁrugrau that Bix) is to be gwecuted as a LISF function
‘whenever a value is assigned to any existential varianle x
appearing in Bix)l: the assignment af such a value & to ; would be
rejected if the execution of Bilcl returned a value of MIL. TESTK
means the case {E to be used to test rather than generate new
assignments to existential variables. For example, x > 8 |
nnruallﬁ would be coded as TESTH(x » B) since we do not wish to

generate all the positive integers as values for = but only to

FAGE 14

test whether a particular value 18 a positive integer.

E.] econciliation

Throughout this section the word “"variable" will refer to
existential variable. The inmput to the reconciliation stage
consista of a liet of alternative solutions for each case. Each
alternative solution to @ case is represented as a |ist of
attribute-value paires where each attribute is either a variable,
the symbol RECURSIVEXL or the symbol TESTEL. [f the atiribute is
a variable, then the value to which it is paired is its
assigrnment for this particular solution. [f the attribute is .
gither RECURSIVEXL or TESTHL, then it is paired with the .
hypothesis of a case still to be soived as it corresponds to the
application of RECURSIVEX or TESTX respectively as described in
section G.

For each variable x, the program first constructs a
constraint set of values :nnaiatuﬁt.uith the results of the
relaxation stage. This constraint set is defined as the
intersection of Ulx,c} taken over all cases c where Ulx.c}l is the
set of possible values for = as determined from the various
solutions to case c. Thué, if a splution to case ¢ did not
impose any restriction on the variable =, then Ulx,c) would be
the universal set consisting of all elements. Also, Ulx,c) would
be taken as the universal set if a solution n? » for case o
dependead upnn.anuthar existential variable y le.g. x = flyl uwhere
f is & skolem function)l. Otherwise, Ulx,c) is just the union of

all values of x obtained from all the solutions to case c. By

. PAGE 15

computing the constraint set tor each variable, the program is in
a position to (1} abandon the reconciliation search if the
conetraint set for some variable is empty and (2] reject a newly
computed value of a variable it this value is not consistent with
at least one value from the constraint set of that variable.
Mext, the program makes a determinmation as to the order
in which cases are to be reconciled. First priority is given to
cases With the fewest nurber of alternative solutions. In the
event of @ tie, the case ie selected which involves the feuwest
number of "unbound" variables uhere a variaole is said to be
*bound" if its constraint set consists of only a single element.
Once a case is selected, its first aEtErnativé solution
lconsisting of a list of attribute-value pairs) is examined.
Each attribute-value pair is processed in turn. Any variable
appearing Iin the list structure formed by the attribute-value
pair is replaced by its assigned value if asuch an assignsent
already Fad been sade from some previous case. Let {A Bl be the
resulting attribute=-value pair after these replacements (if anyl
have been made. If A is the :Quhnl TESTHL, then the expression B
Wwould be evaluated and the :urrtﬁt solution rejected should the
evaluation return NIL. 1f A is neither the symbol TESTKL nor
RECURSIVEX] and either (1) A is a variable which appears as a
subelement of B, (2] B is a variable which appears as a
subelement of A, or (3] neither A nor B are variables, then the
theorem prover Qnuld attempt to prove A =B and would reject
the current solution to th; case if it failed in the attempt. If

it succeeds in this attempt, it would return any values it might

PAGE 1B

have found for the variables in guestion and then would continue
Wwith the next attribute-value pair of the current sclution, |
Suppose A were a variable which Las mot a subelement of
B. If B = Bixl depended upon exactly ore variable = and the
cunﬁtraiﬁt set of w were finite, then eackh value k from the
constraint set of = would be tested to ses whather Bik) belonged
to the conastraint set of A. If no value Bik) so belonged, then
the current solution would be rejected since it would be
impossible for A to egual B, 1f exactly ome Bilk] belonged tu.the
cnégtraint get of A, then this (x k) would hé.treated s -a neu
attribute=value pair {i.e. this k would be assigned aE.thE value
of variable ;li The program then would proceed as if B did not
depend upon just ome variable. In particular, all previously
processed attribute-value pairs would be examined to see whether
they contained occurrences of the variable A. All such
pocurrences of A would be replaced by B and any pairs so 5n;n|v-d
Woulbd once again become candidates ¥nr processing in.th- Sang
manner aé has just been described. .
if all the attribute-value pairs were processed

successful ly, then another case would be generated for
reconciliation. A solution to the gplit would be cotained if no
more cases remained to be reconciled., 1f (1) this split had only
a single solution as its objective and (2) the solution that was
Jjust found did not necessitate the esecution of anocther formula
By virtue of a postponement thruuﬁh the use of RECURSIVEX, then
an exit would be made from the reconciliation stage; otherwise,

' the program would record this solution {even if it includes a

FaGE 17

formula whose execution has been deferredl and then would
Backtrack im a search for additional soluticns.

Wrern @ solution to a case has been abandoned, the nes=t
alternative solution would be examined. [f thers are no more
alternative solutions to a case, the program would backirack to
the previcus case and examine its next alternative soclution. An
exit would be made from the reconciliation stage uhen the first

case has mo more altermative solutions to be examined.

7. L] | eakiv wamp |

Thia section will prtiint an in depth description of tuo
examples {run on a POP=18 computer) which should illustrate many
of the features of the progranm. Although tﬁu program has had
success With other problems, such as provided by the M.1.T.
blocks world (e.g. Im 8 satter of seconds 1t cam find the largest
red cube or all arches on the table from situations as complex as
those considered in {131), their description would not shed much
more |ight on the way the program operates. Also, since the
present programs represents an 1mprnugnent aof an earlier theorem
prover (7] which uas successful in group theory and nusber
theory, tharﬁ is reason to believe that the present program wou ld
have aﬁ ﬁunh suUccess in these same domains if given 8 comparable
equal ity rule to work wWith,

First, a feuw LISP functions that are used in these
ufamn{ei Hill be explained. IHIHUEE.-PLUSH. and TIMESY are
arithmetic funstions which corrFespond to subtraction, addition,

and multiplication respectively. HINUSK is a functien of two

FAGE 18

arguments defined by (ANINUSK = yl eguals (PLUSK = (TIRESXK -1 wll.
FLUSK and TINESK are functioms of an indefinite number of
arguments whose purpose ia to carry out addition and
multiplication in the presence of variables to which numerical
values may not yet have hEEﬁ assigned. Thus, (PLUSK 3 -2 4]
returns the value 5 but [PLUSK 3 x &) would return the value
(PLUSK = 7} if no numerical value had been assigned to x. The
EXpression
(TIMESX 3 (PLUSX (TIMESK 2 =) y & (MINUSK z (TIMESK 2 =x11)} when
evaluated would return [PLUSK (TIFESK 3 y) (TIMESK 3 20 12). GEX
is @ function of two arguments. [(CEX = y) returns (CEX = yl if
gither = or y does not have a numerical value. Otherdisze, [GEX =
yl returns T or NIL depending upon whether or not = is as large a
AUmbar as Y.
7.1 Hissionaries and Cannibals

This task 131 has three missionaries and three cannibals
uwho wish to cross a river from ihu left to the right side. Their .
cnly means of conveuance is 8 boat which has a capacity of two
people. * Any of the missionaries or cannibals is capable of
cperating the boat either alone or With somecne else. The
problem is {o determineg & way by which all the missiconaries and
cannibals can be transported to the right side without ever
dllowing the cannibals te cutnumber the missionaries on any one
side since nthnr-ui“ the missionaries on that side would be
eaten. -

Let (LEFT cx my) represent the assertion that it is

possible to transport all cannibals and missionaries to the right

2.

3.

PAGE 13

1.;'-11-: given that the boat is on the left side together with c=
cannibals and my missionaries. Let [RIGHT cx =y} represent the
assertion that it is possible to transport all missionaries and
cannibals to the right side given that the boat is on tha-righi
side together with cx cannibals and my missionaries. The initial
data base for this problem consists of the following three
formulas where = and y should be interpreted as referring to the
number of cannibals and mizsionaries respectively being aent
across in the boat:

1, (GOALX (NOT (LEFT 3 31)) which is the initial geal of proving
(LEFT 3 3). |

{IMPLIES (AND (TESTK (GEX cx xI)
(TESTK (GEX my y))
(0OR {EOUALS = 8) [EOUALS = 1) (EOUALS = Z1})
(OR- (EQUALS y 8) (EQUALS y 1) (EQUALS y 2))
(OR (EOUALS = IMINUSK 1 y)) (EQUALS = (MINUSK 2 u)))
(OR (AND (EQUALS cx =] (EQUALS my u))
(AND (0OR [EOQUALS = [PLUSK cx [HINUSK uy mylll
(EQUALS my y!
(EQUALS y (MINUSX my 3111
(RECURSIVEX (RIGHT (MIMUSX 3 (MINUSX ex =)}
(RINUSK 3 (RINUSK my u))
(ROUTIMEX (LEFT ex mul TRUEX)]

(IMPLIES (AND (TESTX (CEX ox =)
(TESTH (GEX my yh}
(OR (EQUALS = @) (EOUALS = L) (EQUALS = 21)
{OR (EQUALS y @) (EOQUALS y L} (EQUALS y 211}
(OR (EQUALS = (MINUSK 1 yl) (EQUALS = (RMINUSK 2 yll)
(OR (EQOUALSK - -(PLUSK ex (MINUSK y myll)
[EQUALS my o)
(EQUALS y (MINUSX my 2)1)
(RECURSIVEX (LEFT [HINUSK 3 (MINUSX ex x]]
(HINUSK 3 (AINUSX my yl}}l)
(ROUTINEK (RIGHT ex my) TRUEX))

TRUEX is a function of one argument which aluays returns
@ value of Ty ite purpose 18 to disengage the modus ponens

filter. The statement (GEX cx x) says that the number of

FPACE Z@

cannibals to be sent in the boat cannot exceed the Ausiber
available on that side of the river; however, by coding this
statement as [(TESTH [GEX cx x}] the human programmer has directly
infarmad the PFDGFEQ that (GEX ex x) is to be under the control
of TESTK as described in section 5. The statement (OR (EQUALS =
(MINUSK 1 yb) (EQUALS = (MINUSX 2 yll) says that the combined
number of cannibals and missionaries to be sent in the boat must
be either 1 or 2. The satisfaction of (AND (EQUALS cx x) [(EOQUALS
my yl) in formula Z means that the problem would be solved since
“all remaining missionaries and cannibals would be in the boat and
on thelr Wway to the right aide of the river. The statement {(OR
(EQUALS = (PLUSK cx (MINUSK y myl)) (EOQUALS my y) ({EQUALS y
(MINUSK my 3110 says that either an equal number of cannibals amd
missionaries must be left behind on shore after the boat departs
(isme Cx = x = my = yl or the number of miﬂﬂiﬂﬂa;iﬂﬁ being left
behind {i.e. my = y! is either @ or 3; this expresses the
Piquirintﬁt that missionaries cannot be in the presence of a
greater number of cannibals. The statement (RIGHT (MINUSK 3
. AMINUSK ex =1} (HINUSY 3 (MINUSK my yll) says that the problem
now must be solved from a starting point which has the boat
together With 3 = {gx = =) cannibals and 3 - imy - ul
misssionaries on the right side of the river; by coding this
statement with RECUASIVEX, the human programmer has directly
informed the program that the statement is to be under the
centrel of RECUREIVEX as described in EEEtiDA.E.

. The program initially pairs fornulas 1 and 2 to rule R7

for cx = my = 3 and then, after applying the ocutput te rule R1E,

PAGE 21

it attempis to split the resulting formula. This aplit results
in the generation of the three additiomal formulas (NOT (RIGHT 1
g1, (WNOT (RIGHT 2 80}, and (NOT {RIGHT 1 1})} which in turn
become candidates for application to the deduction rules. The
processing of (NOT (RIGHT 1 8)) generates (NOT (LEFT 3 32})} which
iz rejected since it is an instance of & previous formula. The
processing of (NOT (RIGHT 2 8)) generates [NDT ILEFT 3 31} (uhich
again is rejected) and also generates (NOT (LEFT 2 3}). The
program continues in this manner and obtainsg a proof in three
mirnutes. In evaluating this performance, it is well to kesp in
mind that the missionaries and cannibals problem lends itself
more to 8 representation based upon GPS type operators (3] rather
than upon the predicates of automatic theorem provers.
7.2 Cryptarithmetic

This task (31, 131 involves the assignment of a decimal
digit to esach of the letters of three words so that the sum of
the first two words eguals the third word, MNo digit may be
assigned to more tham one letter and mo word may have zero
assigned to Tts first letter.

Az 3 sample problem, consider DONALD + GERALD = ROBERT
1EE+ Al though the program solved this problem without hints, 1%
Will be more illustrative to examine hou the program attacked
thizs problem uhen provided with the sasme hint of 0 = § that had
been given elsewhere (31 to human subjects. This problem is
represented by the follodwing formula where K1 through KS are the
"carries” from one column to the next which the program must

determing.

PAGE 22

1. (GOALX [NDT (AND
(0R (AND (EQUALS (PLUSK
(AND (EQUALS (PLUSK

O D} T) (BEQUALS ES B)) -
0 D) {PLUSK 18 T}} (EQUALS K5 1))}
(0R (AND (EQUALS (PLUSK L L ES) R) (EOQUALS K& B))

{AND {EQUALS (PLUSX L L KS) (PLUSX 1B R)}) (EOQUALS K& 111})
(DR (AND (EOUALS (FLUSX A A E&4) E) [EQUALS K3 81)

{AND [(EQUALS [PLUSKX A A K4) (PLUSX 1B E)) {EQUALS K3 1)1)})
{DR {AND [EOQUALS (PLUSX N R K3} B) (EQUALS K2 8]} '
N R K3} (PLUX 18 Bi)) (EOUALS K2 1))}
0 E K2} 01 (EQUALS K1 @1}
0 E K2} {PLUSK 18 0)) {EQUALS K1 111))

(AND (EQUALS (PLUSK
{OR (AND (EOUALS (PLUSK

{(AND (EOUALS (PLUSX
(EOUALS (PLUSKX DO G K1} R

(EQUALS D &)

(CENERATORX A 8 3)
(GENERATORX B @ 3)
(GEMERATORX O 1 3]
IGENERATORX E @ 3)
(GEMNERATORX G 1 3)
(GEMERATORX L 8 3)
(GENERATORX N 2 3)
(GEMERATORX O 2 9)
(GENERATORX R 1 3)
(CENERATORX T B 3)

(TESTK (DISTINCTX ABODEGLNORTIIIND

The statement (DISTINCTK ABDEGLNORT) in formula
1l reflects the reguirement that distinct digits must be assigned
to distinct letters (i.e. DISTINCTY is & fumction of an -
indefinite number of arguments which returns a value of NIL or T
depending upon whether or not two of ite arguments have identical
valuesl. The ability to handie |inear equations (by solving for
pre variaole in terms of the others] was built inte the predicate
EOUALS. Also, the expressions of the form [(GENERATORY = u =)
serve to generate alternative solutions to a8 case by assigning
integer values to variable x with the values ranging from y to =.
The LISP function GENERATORX was used only to make the problem
‘atatement more compact. The problem was solved at about the same
speed uhen statements |ike (GENERATORX A @ 3) were replaced by
{OR (EOUALS A @) (EOUALS A 11 (EOUALS A 311,

The program is asked to find values for the variables A,

PAGE Z3

B, O, E. G, L, N, 0, R and T that will result in the attainment
af the goal. It begins by applying formula 1 to rule AL and
then attempts fo split the resulting formula. After completing
the relaxation stage (i.e. solving the different cases
independentiyl, it constructs & constraint set for each variable
and determines an order in Wwhich the different cases are to be
reconciled. The following description of the program’s attempt
to reconcile the different solutions invites comparison With
human protocols recorded in {3). A<hough some amount of brute
force is intrinsic to the probles, the program is able to use its
knowledge about the nature of these solutions (e.g. they are
distinct integers constrained by the results of the rela=ation
Etaga] to guide the search in an effective manner.

First, It concludes D = 5 and R = 0 + G + KL since thase
were the only solutions generated by their respective cases.
Therefore, R = 5 + G + Kl. It then selects the case that had
gernerated the two alternative solutions (1) T = 2#0, K5 = 8 and
(2) T = 2=l - 1B, K5 = 1. The first alternative solution T =
24, Kb = B is rejected since it would imply T = 245 = 18 which
doas not fall within the constraint set for T {i.e. one of the
integers B through 31, Therefore, K5 = 1 and T = 2x0 = 1B = Z2x5
= 18 = B, The next case selectied had generated the two
alternative solutions (1) Kl = B, E = K2 and [é! Kl = 1, E = 18
- K2, It first assumes K1 = @, E = -K2 and notices that E is
expressed in terms of 8 single variable K2. [t therefore looks
at the constraint set of K2 which consists of only the values B

and 1. Houwsver, it rejects the value K2 = 1 since that would

PAGE 24

imply E = =1 which falls ou*side the constraint set for E. It
therefore concludes that KZ = 8, But this too is quickly
rejected aince it uuﬁid implu E = @ = T which violates the
condition (activated by the LISP function DISTINCTX] that no tuo
letters may have the same decimal digits., Therefore, Kl = 1, E =
18 - K2 and hence R = 5 + G + Kl « G # 6. 0Once again, it |looks
at the constraint set for K2 and rejects the value K2 = @ since
it would imply E = 18 - K2 = 1B which falls outside the
censtraint set for E. Therefere, KZ = 1 and hence E = 18 - K2 =
3.

The next case selected had generated the twe alternative
solutions (1) K3 = B, E = 2#A + K& and (2) K3 =1, E = 2=A + K& -
1B, [t first assumes K3 = @, E = Z#A + K& and hence Z=A + K& = 3
gince E = 83, The theorem prover then proves 2#b + K4 = 3 by
solving this linear eguation for the variable A, It gets A = 4.5
- .o#K4 which suggests that it examine the constraint set of K&
since A is expressed in tnrn; of the single variable K&. The
value K& = B is rejected since & = 4.5 then would fall outside
the constraint set for A, Therefore, K& = 1 and hence A = &, It
rext selects the case that had yielded the two solutions (1) K& =
B, R = 2%l + Kb and {2) K& = 1, R = 28l + EE <1B and rejects the
first alternative since It contradicts K& = 1. Therefore, R =
2= + K5 -18. ﬁnthur, since it already has deduced KG -~ 1 and R
=G +6, it concludes G + B = 22l - 3 which when solved for L
givea L = 7.5 + .Bal, It then selects the case that had yielded
the tuo solutions (1) Hﬁ =3, B=MN+R4+K3and (2) K2 =1, B =

M+ R+ K3 =18 and rejects the first alternative since it

PACE <%

contradicts K2 = 1. Therefore, B =« N + A + K3 - 1B, Houaver,
since it already believes K3 = 8@ and A = 0 + 6, it gets B = N + G
- 4. HMe=t, the program examines the case that had produced the
integers 1 through 9 as possible values for R, The value R = 3 .
]:_rajentsa since this value already was assigned to E. The
value R = 8§ is quickly rejected since it results inG =« R -6 = 2
and hence L = 7.5 + .54G = 8.5 which falls cutside the constraint
sat of L. However, the choice R = 7 is accepted a:-it results in
G --1. LeZ andB=aHN+0G=-4%=N-3, The program continuss
in this manner and eventually finds 0 = 2, W = B, and B = 3 which
solves the problem, The total elapsed time was 48 seconds. 1t
took the-prugran five minutes to complete the more difficult

probles of finding the solution Without the hint of 0 = &,

References

l: Bledsoe, H.H., Eplrttnnu and reduction heuristics in
automatic theorem proving, Artificial [ntgllugg_;g, Vol. 2,
{Eprlng 1371}, pp. B5-77.

2: Bledsoe, H.H., Boyer, R.5., and Henneman, H.H., Computer
proofs of limit theorems, Artificial Intelligence, Vol. 3,
[(Spring 1372), pp. 27-B8.

3. Fikes, R.E.. FREF-AAF: F system *nr solving problems stated
as procedures, Artificial Intelligence, Yol. 1, (Spring 1578},
pp. 27=128,

&, Hewitt, C., Planner: A language for proving theorems in
robotes, Pros. Int. im af. om Arblfle] boi
Hashington, D0.C., 1383, pp. 295-381.

%. Huet, G.P., Experiments uith an intaréctiva program for lagic

With eguality, Report No. 1188, Jemnings Computing Center, Case
Lestern Reserve University, 1371.

E. HcbDermott, 0.V. and Sussean, G.J., The Conniver reference
manualy A.l. Meme Mo, 253, Nassachusettis Institute of Iuchnnlﬁgg.
May lﬂ?Ei

PAGE Z&

7. HNevins, A.J., A human oriented logic for automatic theorem
proving, J. Assoc. Computing Nachinary (forthcomingl .

B. Nevins, A.J., Plane geometry theorem proving using foruward
chaining, A.l. Memo No. 383, Massachusetts Institute of
Tachnology, January 1374,

=

5. MNewell, &. and Simon, H.A. Human Problem Solving, Prentice=
Hall, Inc., Englewood CIiffs, New Jersey, 1372.

18. Nilsson, N.J.,

Problem Solving Methods_in Artificial Intelligence, Mceraw Hill,
New York Clty, N.Y., 1971,

1l1. Morton, L.H. Experiments with a heuristic theorem-proving

program, Actificial Intelligence, Yol. 2, (Hinter 1371}, pp. Z&l-
285, ' -

12. Sussman, G.J. A _Computational! Model| of Skill Acguisition.
Ph.0. thesis, NMassachusetts Institute of Technology, August 1373.

13. Winograd, T. Understanding WNatural |l anguags, Academic Press,
. Wew York City, N.Y., 1372,

14. Hos, L., Robinson, G.A., and Carson, 0. F.. Efficiency and
cospleteness in the set of support strategy in theorem proving,
o Assoc. Computing Machinery, Vel. 12, No. &, (Dctober 13851,

- :pp. 536-541

