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Abstract

- A computer program is described which operates on a’
subsel of plane geometry. lts performance not only compares
favorably with previous conputer programs, but within its limited
problem domain le.g. no curved lines nor introduction of new
pointal, it also invites corparison wWith the best human theorem
provers. The program employs 8 combination of forward and
backuard chaining with the foruward component playing the more
important role. This, together with a8 deeper wse of diagrammatic
information, allows the program to dispense With the diagram
filter in contrast with its central role in previous programs.

Ar important aspect of human problem soliving may be the ability
to structure a problem space so that forward chaanlng technigues
can be wsed effectively.

Lork reported herein uas conducted at the Artificial Intelligence
Laboratory, & Massachusetts Institute of Techrology research
program supported in part by the Advanced Research Projects
Apency of the Department of Deternse and monitored by the Office
of Maval Research under Contract Number NE8814-7B-A-B3EZ-BEDZ.



1. Imtroduction

The use of the diagram as a semantic model has been the
cornerstone of previous attespts to mechanize plane geometry
theorem proving [(e.g. the early pioneering work in {11 and {2}
and more recently 311, 1t also has been the object of attention
elseuhere in the literature &4F, 131, particulary since it
suggests the use of analogous models for other problem domains.

There are four benefits which humans derive from a
diagram in plane geometry. The first is snesonic. There is
growing evidence (51 that humans are saverely lTimited in short
term memory. The diagram makes it easier to remember and process
ned geometrical relationships. Second, 1t focuses attent?nn on,
line segments that appear in the initial diagram and which
therefore receive higher priority than those segments that have
ot yet been drawn, Third, the disgras contains useful and often
essential non-numerical information concerning the relative
orientation of points, Fimally, the diagram acts as a filter to
reject goals not comaistent with its numerical representation
(g.0. one would Pot attespt to prove two sides egual 1§ they
appear in the diagram to be manifestly uneguall.

Hnﬁavﬂr. which of the above four uses of a diagram are
applicable to a modern computer? The mnémnni: role does not
apply =ince the computer has ample short term memory. The
heuristic governing the use of |ine segments definitely is
applicable but this information can be obtained directiy from the
axioms Without the need of an actual diagram, as uwill be showun in

saction 2. The computer progras which will be described in this



paper employs diagrammatic information of a non-numerical nature
as «ill be shoun in section Z; but it does not use the numerical
information in the diagras and it is an open guestion whether it
has lost ®much in the ﬁru:aaa. This suggests the possibility that
the use of the filter mechanism by humans might be conditioned in
part by the mnemonic use of the diagram. Since the present
progras gperates directly from the predicates of a problem, it
does not reguire a8 human o provide it with a diagram.

There is @ close connection betwsen the prominence giwven
to the diagram filter by previous comrputer programs and the heawvy
reliance of ihaae programs on backuard chaining as a method of
inferencea. Ear]g work in artificial intelligence {81 had
emphasized the importance of backward chaining {i.e. reasoning
packuards from the goal to the axiomsl a8 opposed to forward
chaining {i.e. reasoning foruard from the axioms to the goall.

Al though most researchers admit the nes& for both forms of
inference, there has been & certain timidity about using the
foruward mode. The fear is that foruward chaining might allow the
generation of a disastrous nuuanr of irrelevant statements,
particularly when dealing with large data bases., Backuard
chaining at least guaranteess that the computational effort is
linked to the goal one is trying to prove. However, the
compariszon is not gquite that simple, The size af the data base
may be |less iwmportant than the manner by wWhich the data base is

organized and the heuristice enployed in. its management. The



addition of ned facts to the data base (as provided by forward
chaining) can be a source of great strength if these facts are
relevant to the goals of the probles solver. These facts will
stand a much greater chance of being relevant i f the search can
be confined to a ralatively small compartment specific to the
given problem domain rather than from a homogeneous pool of
knouwledge. The present use of forward chaining in plane geometry
uas made affective (1) by an efficient representation of the data
base and (2} by confining its normal use to those ﬁnints and |inea
gegments that were implicit in the statement of the problem [and
which ordinarily would appear in the initial diagraml. In the

cpinion of this author, the inability to make meaningful use of

fordard chaining is a8 sign that the problem space may not have

n_structured properly; this is a heuristic that should not be
ignored when designing future computer programs which aspire to
human| ike intelligence.

A potentially dangerous use of backuard chaining can
develop if it |leads to the generation of an ANDSOR goal tree.
Such a tree arises when the attempt to solve a goal results in an
OR bundle conaisting of several subgoals where (1) the
satisfaction of any of these subgoals would solve the goal, and

(2} at least one of these subgoals B generates an AND bundle

coensiasting of saveral additional geoals which must all be solwved
in order to satisfy B. Although some attempts have been made to
devige procedures for handling such trees (18, it is often

difficult to prevent an explosion of subgoais from taking place.

In plane geometry, (1] the attempt to prove something . by



congruent triangles could generate an OR bundle (i.e. any of
geveral different methods or different pairs of triangles might
be sufficient to prove the goall, and (2] the attespt to prove a
pair of triangles congruent by a particular method {e.g. side-
angle-angle] could generate an AND bundle. The reason the
diagram filter was so vital to previous plane geometry theorem
provera ia that it helped to contain this explosion by rejecting
thnaa.uubunala that were false in the diagram. By contrast, the
present program does not need a diagram filter because its
limited wse of backward chaining does not generate an AND/DR goal
tree. In particular, 1t eliminates the AND aspect of the tree by
regquiring that no subgoal of an AND bundle be attempted unless
all the other subgoals of that bundle appear already as
statements in the data base. The reason the program can afford
to be so stringent in its use of backward chaining is that it
relies heavily on forward chaining to add new statements to the
data base. .

The success of the program rests in part upon its
representation of the problem domain and this is described in
section 2. The organization of the program is covered in
sections 3 and 4; section 3 focuses on forward chaining and
section & on backward chaining. The technigues in sections 3 and
4 make important and extensive use of paradigms; these paradigms
{each based upon a mental picture of soma possible situation from
the plane geometry uorld]l provide the motivation for different
LISP routines used in the program.

The main limitations of the program are [ts neglect of



curved lines and the introduction of new points. Nevertheless,
the problem domain is far from trivial as should be evident from
examples of the program’s performance presented in section 5.

Some suggestions for future work are discussed in section B.

2. Ihe representation of lines, angles, and equalities

The program regards a straight line as an ordered
sequence of points. Thus, if it ie toid that (AB C D) is a.
straight line, it assumes that (1} B lies on this line betusen A
and C and (Z) C lies on this line betueen B and D. A line is
represented by the longest |inme known to pass through the given
set of points {i.e. the set of points {A.E C) would mot be
regarded as a distinct line but rather as 8 subset of the line (A
BC D). The ordering of points en the line is primarily to
determine what (if any) points lie betueen any two given points
on the |ine rather than to determine whether one point comes
before another. The enly time when actual precedence matters is
when one is dealing with parallel lines since paralliel lines in a
diagram reflect an iﬁpli:{t assumption concerning the ordering of

points on these lines. Thus, in the follewing diagram

A B (4 D

E F G
line ABCD can be represented either as (AB C D) or as (0 C B A)y

however, the former representation would reguire line EFG to be

represented as (E F G) uwhereas the representation (0 C B A) would



reguire that line EFG be represented as (G F E). This is to
inform the program about the relative orientation of the tuo
parallel lines since the alternate interior angles BAF and AFE
would be egual in the orientation shoun in the above diagram but

Wwould not be equal in the ‘ollouing opposite orientation:

A B c D

G F E

The program recognizes six predicates LN, PR, PRP, RT, ES
and EA which will be described in this section. The statement
LN K} says that the list K is a straight line. The statement
(PR K L} says that line K is parallel to line L and defines a
relative orientation of the nuint; in K with those in L as
described above. The statement [PAP K L) says that line K is
possibly parallel to line L. This is to give the program the
@bility to conclude for itself that line K is nirallal to line L
by providing it with the proper relative orientation of K and L
as this is Information that would be present in the diagram.
Thus, if the problem had a diagram which shoued tue |irmes K and L
that looked as if they conceivably could be parallel, the program
would be told (PAP K L). The statement (AT A B C) says that ABC
is a right angle. The statement (ES A B C D) says that side AB =
side CD whereas the statement (EA ABC D E F) saus that angle
ABC = angle DEF.

The pHFfﬂPmanﬁﬂ of & theorem prover can be affected

greatly by the way it handles the eguality relation., The success



of {6} in domainsg such as group theory and number theory
certainly 4as due in part to its treatment of equality and this
included built in knowledge about associative and commutative
operators. In plane geometry, even 8 simple statement |ike side
AB = side CD has & eguivalent representations (i.e. (ES A B C D),
(E5EABDC), (ESBACDO, (ESBADC), (ESCDAB), [ESDCA
B, (ESCDBA) and (ES0CH AN}, If one adds the statement
side CO = side EF, the transitivity of egual 1ty would cause the
number of statements to grow to 24 (i.e. & variations of AB = CD
plus & variations of C0 = EF plus & variations of AB = EF}). The
use of forward chaining might not be such a good idea if |t were
coupled with a representation that generated a host of rtdunaﬂnt
statementa for each new statement added to the data base.

The present program uses the function ALPHALESSP
avallable in LISP at H.1.T. to create an unambiguous
representation for the expression "side AB." [t does this by
providing an alphanumeric ordering on pointe in the diagram.

Thug, side AB would be represented as AB rather than BA since A
appears before B In the alphabet. The representation for the
equal ity of tuo sides is determined from a lexicographic ordering
bazsed upon the function ALPHALESSP; first, representations = and
y are determined for each side and then the lexicographic
ordering is applied to the lists = and y to determine which is to
be regarded as the first side (i.e. the first elements of = and y
are compared and whichever has the |ouer value based upon
ALPHALESSP determines the choice betussn x and ys in case of &

tie the second slements of = and y are comparedl. For sxample,



the statement (ES B C D A) would be replaced by (ES A O B C)
since (1] side BC is represented as B CY, (2) aide DA is
represented as (A D) and (3) (A D) comes before (B.C) in the
lexicographic order as the first element of (& 0) comes before
the first element of (B C). Similarly, (ESDB B C)} uould be
replaced by (ES B C B D).

The transitivity of equality is effected simply by
groupging together all sides (or angles] knoun to be equal. Thus,
the statements (ESC ADB) and (ES B D F E) would be replaced by
(ESACBD] and (ESBDE F) respectively and then gathered
together as ({ACl, (B D), (EF)) and inserted in the list that
keepa track of all equal side relationships.

The representation of angles involves a complication nnt.
present in the representation of sides. Whereas there were only
tuo possible ways to represent 3 side (depending upon which end
point is listed first), there can be many possible ways to

represent an angle. Thus, the following angle

B A

D E

cen be represented as ACD, DCA, ACE, ECA, BCD, OCB, BCE, or ECB.
The program adopts the convention of selecting those points which
lie closest to the vertex of the angle. In the above angle this
would narrow the choice to BCO or OCE with the final selection
determined from the alphanumeric ordering of the nonvertex points
(i.e. BCO would be chosen over DCB since B appears before O In

the alphabet). Otheruise, the representation of equal angle



relationships is analogous to the treatment of egual sides.

The program gathers together homogeneous data. Thusa,
separate lists are constructed for (1) straight lines, (2) pairs
of parallel lines, (3) pairs of potentially parallel lines, (&)
right angles, (5} groups of egual sides, and (EB) groups of egual
angles. Suppose for example that the program suddenly discovers
that angles DEF amd GHI are equal. It first would determine the
groups in which these angles appeared and then would merge the
tuo groups. Thus, if the tus groups were (ABC, DEF) and (GHI,
JKL) (i.e. it having been determined previousliy that ABC = DEF
and GHI = JKL), the neu group would ke (ABC, DEF, GHI, L},
Mext, the program would explore consequences of this new equal ity
grouping using methods described in section 3.4. [t not enly
would explore consequences of DEF = GHI, it also would explore
consequences of DEF = UKL, ABC = GHI, amd ABC = JKL.

Furthermore, if (ABC, OEF) had been the right angle group, the
conseguences of the new discovery that GHI and JKL must be right
angles would be explored using methods described in section 3.5.

The lines that appear in the initial diagran have
heuristic value in that they are likely to be involved in the
pruﬁf of the theorem. We alrsady have seen hou the program is
told about [ines from tﬁu predicates LM, FH_anu PRP. It aleo
learns about lines from the predicates ES, RT and EA. Thus, (ES
ABCDO tells the program that both AB and CD are lines lunless
of course they are subsets of other lines)., The statement (RT A
B C) telis the program that AB and BC are |ines, but it uould not

conclude from this that AC is a line since such an angle would be



draun 43 -I'h-
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Similarly, (EAABCDEF) tells the program that AB, BC, DE and
EF are lines. The program normally would not introduce any
additional |ines during the forward search {an exception to this
rule is described in example 1 of section 5}, but would leave
such constructions to the backward search. For example, suppose

AB were parallel to CD in the following diagram:

A B

C D

The program would conclude during the forward search that BAD =

ADC since there is a transversal running through & and D hqt it
would not conclude ABC = BCD since there is no transversal
running through B and C; the conclusion ABC = BCO would have to
auait the backward search uhurg it might be made in order to help

prove some goal.

3. Foruard chaining

Each time a nes statement is added to the data base, the
program asks dwhethar it is identical to the gﬁai it e trying to
prove. [f the answer is yes, the program terminates immediately
Hith 8 successful proof. [f the ansuer is no, the progras would
explore conseguences of this new statement as described in

sections 3.2 through 3.5.



The program first finds all the vertical angles and then
examines sach of the initial axioms applying the routines of
gections 3.2 through 3.5 whichever asection is relevant. If this
faile to produce a proof, the program would proceed doun the list
of egual side groupings in a8 manner to be described in uﬂﬁtiaﬂ
3.1 If an exit is made from the executive of section 3.1 and a
proof still has not been found, the program would go directiy to
the backward search described in section & which if succeasful
would solve the problem. Hhenever the backward search ends in
failure, the program asks uwhether any new facts had been added to
the data base by the previous execution of section 3.1. 1f the
answer is no, the program would terminate ite search in failure.
1f the ansuwer is yes, the program would loop back to ancther
execution of section 3.1.

3:1 The egual side executive

The program looks at the first group of equal sides and
within this group 1t looks at each pair of sides such as XI and
LM, It attempts to find new congruent triangles based wupon the
known equality of X2 and UM, Each attempt is based wpon a2
di fferent paradign. The first such paradign is reflected by the

following diagram

AN S VR S

G
x < W



and has this explanation. The program has searched the equal
angle groupings and found & pair of egual angles AMB and CLD
where (1) point A lies along line XZ but X does not lie betueen A
and £ and (2) C lies aleng line UM but U does not lie betwsen C
and _U-' It then continued ite search among the equal angle
groupings and found a pair of egual angles EZF and CUH where (1)
E lies along line XZ but Z does not lie betusen E and X and (21 G
lies along line UMW but U does not lie betueen G and U, Finally,
the progras found that lines MB and ZF intersected at point ¥ and
lines UD and HH intersected at point ¥V where (1} ¥ doss not lie
betueen B and ¥, (2) I does not lie between F and ¥, (3) U does
not lie betueen D and ¥V, and (4) W does not lie betueen H and V.
The program nod is in a_puu1tiun to conclude that triangle XYZ is
congruent to triangle UYW by angle-side-angle. I[f the program
had not declared these tuo triangles congruent on some previous
occasion, it then would conmclude from their corresponding parts
that side XY = side UV, angle KYZ = angle UVW, and side ZY = side
WY. Each of these statements {if neu) would be added to the data
I:l-EISI.l and consequences of this addition would be explored using
the routines from either sectionz 3.3 or 3.4 depending upon
whether the new eguality involved equal sides or equal angles.
Although this paradigs was based upon a fairly simple mental
picture, there $till vere 3 number of constraintes that had to be
satisfied in order for it to be realized. Behind sach such
paradigm is a LISP routine whose job is to satisfy the conditions
that are implicit in the mental picture generated by the

paradigm. This paper will describe (in varying degrees of



detall) the paradigms used by the program,
The next paradigm is invoked |f the egual sides ¥Z and UH
share a common endpoint (say X and U} as shoun in the following

diagras. =
A

cix

W

The program first found the closest point A to X along line XZ
such that (1) A and X are distinct pointe and (2] ¥ does not lie
betueen A and Z. [t likewise found a similar point B along line
KH. 1t then searched for an equal angle group which contained
AXY and BXY for some point ¥ (i.e. angle AXY = angle BXY). After
finding such a poinmt ¥, it would conclude (for any point P
distinct from X and situated on |ine XY] that triangle ZXP s
congruent to triangle HXKF by uidu—ar.ng'lua-u ide. As aluays,
wheneaver tuwo triangles are found to be congruent, the eguality of
corresponding parts (if new) pet added to the data base and til'mil-
conseguences axplored.

If the equal sides XI and l:l-l are subsets of lines A and S
that_ﬂru kriown to be parallel where ¥ comes "before” £ onm R and U
"before® W on 5, the program would look for lines K and L that
potential ly are parallel and where U comes "before" K on K and H

"before” Z on L as shown belou.

',{.__ .




-The program would declare UXZIU to be a parallelogram and would
explore its consequences (i.e, lines K and L being parallel and
the opposite angles and sides of the parallelogram being equall.
For each pair of equal aides XY and UV, the program
ggarches the equal side groupings for another egqual pair ¥Z and

Vi x U

The program never attempts to prove tuo triangles congruent if it

is hnnunl that all three vertices of one of these "triangles™ lie
along the same line. On the other hand, if in addition to XY =
U¥ and YZ = VW the program can find two lines K and L such that
(1) X ¥ Z) ie & subset of K, (2] (UVY W) ie a subset of L, and
(2] ¥ is betuween X and Z on line K and V is betwsen U and W on
lime L, then it would conclude that XZ = UU since sums of equal
sides are egqual; it would reach this same conclusion if it found
that ¥ was not betueen X and Z on line K and ¥V was not betueen U
and W on line L since differences of egual sides are equal.

However, in the absence of any known collinearity, the
triangles XYZ and UVH stand a good chance of being congruent
since two of their sides already are knoun to be egual (1.e. XY =
UV and YZ « VW), First, the program asks whether XZ and UMW

appear in the same equal side group and |f the answer is yes, it



would conclude that the twe triangles are congruent by side-side-=
side. Failing im this, thc program examines the data base to see
vhether angle XYZ = angle UVH {i.e. it asks uwkether the unigue
representations for these angles appear in in the same agual
angle groupl, and 1f the ansuer is yes, it concludes that the two
trianglies are congruent by side-angle-side. Otherwise, 1t asks
whether the unigue representations for either (1) angles YXI and
YU or (2) angles YZIX and VWU appear in the group which consists
orly of right angles, and if the ansuer is yes, it would declare
the tuo triangles congruent by hypotenuse-arm. [§ all the above
gtteepts fail, It would try to establish X2 = UM as the sum (or
dl tferencal of sides known already to be eqgual so that it cou | d
cons | uds :qnéruenca by side-side-side. [tz final attempt would
be to establish angle XYZ = angle UVW as the sum lor difference)
of angles known already to be egual.

If the progras has been unable to prove the theorem after
having examined all such couplings XY = UV and ¥Z = VU, it would
exit from the foruward search and enter the backuard l;-ﬁfl:l'l
described in section 4.

3.2 Conseguences of new parallel lines

Once the program has determined that tuwo limes are

parallel, it looks for transversals that cut these lines. There

are three possible situations as shown in the following diagram:




The first is the normal situation where the program can determine
. the sequality of alternate infericr angles. [n the second
§ituation, the transversal has cut both |ines at the "beginning"
of each linme and therefore the program must determine the

equal ity of corresponding angles. The third situation is the

same as the second except that there are no points on the

trangvarsal axcept those that |ie aither on or betueen the tus
paral lel lines; houwever, since the transversal cuts one of the
paral lel lines at a right angle, the program can conclude that

the other also must be cut at & right angle. MNext the program
attempte to employ the theorem that a |ine which bBisects ane side
of a triangle and is parallal to the base Bust bisect aléﬁ the
cther side. It does this by finding sides MY = Y7 where (1) ¥
lies betueen X and £ on line X2, (2] X lies on ane of the

parallel lines K, and (3} Y lies an the nthaE Tine L.

vl
L'd
/Z‘/\{ L
» ) K

For each point ¥ (except Y) on line L, the program finds the |ine

through Z and ¥ and if this line intersects line K at point U, it
:ﬁﬂ:lud&& that side UY = gside YZ. This last theorem actually is
an instance of a more general theorem involving propertienal |ine
segments; the more general theorem could not be emplousd since
the program had no predicate expressing the concept of
"proportionality,” a ﬂifi:iuncu houwever uwhich could be corrected

Without too much difficul ty.



3.3 Conseguences of new equal sides

This section describes immediate action taken by the
program when it learns that two sides are equal. Later action
taken by the progras has been described already in section 3.1.

Suppose the program has just learned that side ¥MZ = side
Ud. Firat, the program searches the egual side groupings for an
XY = ¥Z for which ¥ lies betusen X and Z on line XZ (i.a. the
line which passes through X amd 71, [t then looks at points ¥
that lie betueen U and H on lime UM, 14 UY and YU appear in the
same equal side group, the program would conclude that side XY =
side UY since halves of egual sides are equal. [f either UY or
¥ appears in the same equal side group with XY, it would
conclude that UW = YH since differences of egual sides are egual.

Suppose KZ = UM where Z and U are distinct points which
lie betueen X and W on line ¥d. It then would conclude XU = ZU
since elther (1} XU =« ¥Z + ZU = ZU + Ud =« ZU if Z lies betueen X
and U or (2) XU =« K2 - UZ =« U - UZ = ZH if U lies h-tuunﬂa.m:l
Z.

| If it learns that sides XY and YZ are egual, then {unless

it knows that ¥ lies on line XZJ it would concliude that angle YXI
= angle YZ¥ since base angles of an isoceles triangle are equal.
However, suppose it knows that Y |ies betueen ¥ and Z on line XZ.
First, it examines the group of right angles for & right angle
IWH where (1) X lies on lime UY, (2} 2 lies on line YW, and (3} ¥

does not lie either betuesn U and ¥ or betueen W and Z.

A

Y
b




"It then would conclude that XY = YV since the median to the
hypotenuse of @ right triangle is equal to one half of the
hypu;rtunuiu. Second, it would look at the equal side group of XZ
in order to find equal sides AC (i.e. KZ = AC) for which there
exists at -least one point B betusen A and C on line AC; it then
wou ld rpalm another attempt to apply the theorems that halves (and
differences! of equal sides are egual. Third, it would examine
the known parallel lines in another attespt to employ the theorem
that @ |ine which bisects one side of a triangle and ie parallal
to the base must bisect also the other side. Finally, it ur;uld
look for potentially parallel lines such as K and L where K
passes through X and L passes through Y and where there is a
point ¥ {other than ¥Y) on line L for which (1} line ZY intersects
line K at a point U and (2) 2V and YU belong to the same equal

aide group [l.e. aide ZV = side YU). -

1f these conditions are satisfied, it would conclude that linme L

iz paralliel to line K since a line which bisects both sides of a
trigngle must be parallel to the base.
3.4 Conseguences of ned equal angles
Throughout this section it will be assumed that the

program has just learned that angle XYZ = angle l!'ﬂ-.l.. If first



uwould conclude that the supplements of these angles also must be
agqual .

Suppose Y and ¥ were diastinct points. The program would
gxamine all potentially parallel lines K and L wvhere ¥ appears in
K and ¥V appears inL. It would attempt to shouw that K and L are

parallel by means of the transversal through ¥ and ¥. Thus, If

{as in the +nl]uuing diagram)
—YB/—L——R‘.‘
‘:’}}’ L

(1) ¥ appears "before” Z on line K, (2) ¥ appears "after”™ U on

line L, and {3) ¥ appears between X and ¥ on the transversal,
then in order for the program to conclude from ¥YZ = UWH that
lines K and L are parallel it would be necessary that (4] ¥
appear between H and Y on the transversal [unless UVH were known
to be a right angle in which case W could appear anuwhere on the
transversall.

The equality of X¥Z and UVH for distinct ¥ and ¥ also
would producs -an attempt to generate a new paral lelogram AYBY
from known parallel lines R and § by using a paradigm which

attempts to satisfy the conditions implicit in the following

ﬁ/ Xe v/ R

w
r

diagram.,

=]

m / 5




The following very pouwerful paradigm (uhich does not
regquire that ¥ and ¥V be distinct points) ia illustrated in the
following diagram and is based on the theorem that the sum of the

angles of a triangle is the same for all triangles.

H

The program has searched the equal angle groupings and found a

pair of equal angles ABC and EFG for which {1} A and B lie on
lime YX but B is not betusen A and ¥ and ¥ is not betueen X and B
and (2} E and F lie on line YU but F is not betueen E and ¥ and ¥
is not between U and F. Lines BC and ¥YZ intersect at p&iﬂt D
where B does not |ie between C and 0 and Y is not between £ and
D. Lines FG and VW intersect at point H where F does not lie
betuwsen G and H and V is not betueen W and H. The program then
would conclude that triangle YBD is similar to triangle VFH since
tuo pairs of equal angles must imply a third pair (i.e. angle BOY
must equal éngla FHY). 1f in addition a pair of corresponding
sides are coincident, it would declare these triangles congruent
by side-angle-angle; it does not attempt to establish congruence
by an appeal to the egual side groupings since this eventually
would be pursued in section 3.1, .

Finally, the program would conclude that triangle BYY is
Tgogceles §|f the conditions implicit Im the following diagram arse

gatisfied.



Y = - V

3.5 Consequences of new right angles

I[f the program discovers that UVH is a right angte; than
the group of egual angles to Hhich.it belongs would be merged
With the group of right angles and the conseguences of any ned
equal angles to result from this merger would be explored by the
methods described in section 3.4.

The program keeps a special list of all egual sides XY =
¥Z for which Y lies betueen X and Z on line XZ. Hhen it
discovers that UYH is a right angle, it searches this list in
another attempt to apply the theorem that the median to the
hgﬁatanusa of a right triangle is equal to one half the
hypo tenuse.

Finmally, the program |looks for a supplement to the right

angle UVH and (if found) declares it to be a right angle.

&, kLiar [Tall

The attempt to prove tuo Ilnal'parallll for that a given
angle is a right anglel ia left entirely to the forward search.
The backward chaining attempt to prove two sides egual (or two '
angles equal)l depends primarily upon the ability to generate
pairs of triangles that stand a good chance of being either
congruent or at at least similar. |

4,1 Proof of equal sides



In attempting to prove that side XZ = side UM, the
program first asks whether the unigue representatiocons for these
sides appear in the same egual aide gﬁﬂup aor alae whether thease
two sides can be expressed as a sum {or differencel of sides
known to be eguall.

I[f this fails, it would try to generate the follouwing

trianglies

E .75
X g S

Y

and then attempt to prove them congruent. This paradigms
generates the pair of triangles in exactly the same manner as the
paradigm in section 3.1. Houever, uhereas in section 3.1 sides
AL and UW were known to be egual (so that the immediate
conclusion could be reached that these tuwo triangles were
congruent by angle-side-anglel, in this section it is the

eqgual ity of sides X2 and UH that we wizh to establish. 0On the
other hand, if the goal ¥Z = UM is capable of fulfillment, then
these two triangles will indaaﬁ be congruent. The program would
attempt to establish this congruence by proving either XY = UY or
ZY = WY,

The next paradigm [assuming failure of the previous onel
searches the egual side groupings in order to find points Y and ¥
such that the distance betueen ¥ and an end point of side XZ (say
K} ie egual to the distance between ¥V and an endpoint of side UM

{say Ul. This results in the pair of triangles XYZ and UVH



Y v

where KY = UV¥; the program would like to prove these tuwo
triangles congruent so that it can conclude X2 = UM. First, the
program asks uhether the unigue representations for angles XYZ
and UVH appear in the same equal angle group. [f the ansuer s
yes, then it need only establiish either (1) ¥Z = WH, (2} XIY =
LY, or (3] YXI = YUH in order to prove congruence. Before
attempting to prove any of the above three statements li.e. by
generating a ned subgoall the program checks to see whether any
can be demonstratad .fl'l'.'ll'l an inspection of the data base; if none
appear in the data baze, it attempts the proof of each in turn.
If it fails on all three subgoals, then it would abandon the
attnnpt'at proving the tuo triangles congruent. However, if the
representations for angles XYZ and UVH had not appeared in the
game agual angle group, the progras would have asked the same
guestion for angles XZ¥ and UWY. An affirmative ansuver to this
last question would mean that the establishment of any of the
following three goals (1) YXZ « YUH, (2] XZY :pp-arl_l}riaﬁu in
the right angle group and Y& « YU, or (3] ¥YZ = UVH would prove
congruence. The general approach to proving two triangles
cengruent by now should be ciear. The idea is to defer
generating ned subgoals until their selection can be narrowed
down on the basis of information already present in the data



|f the previous paradigm fails to prove X2 = UMW, the
program asks whether these tuwo sides have a common end point. [f
the ansuer is no, it abandons the attempt at proving this goal.
However, supposs the answer s yes where say X and U are

identical. Firat, it emplous the following paradigm

z
H1

X
LY
B
* W
described in section 2.1 in order to generate pairs of triangles

¥ZP, UJP. The only difference is that the eguality of ¥Z and LW
Was given data in section 3.1 uhereas ue nouw uwish to establish
this equality by proving triangle ¥ZIP congruent to trlangli LR,

The next paradigm is based upon the following picture

where one attespte to prove that triangles HZIY and XMWY are
congruent. The final attespt to prove XI = LM -.HH would be to
prove that the base anglea of triangle XIW are equal (i.e. prove
angle XZIH = angle XHI).
4.2 Proof of equal angles

In attempting to prove angle XYZ = Angle UVH, tha program
first asks whether the unigue representations for these angles
 appear in thﬁ game equal angle group or else whether these two

angles can be expressed as a sum [or differencel of angles known



to be equal.
If this fails, it would employ the similar triangle

generator described in section 3.4,

v ) H

The only difference is that nouw we uwish to prove that angle XYZ =
angle UVYH, Consequently, the program would attespt to prove that
angle BOY = Angle FHY since if successful it then could conclude
that triangles BYD and FVH were similar and hence Angle XYZI =
UVW. Failing in this, it would attempt to prove triangles BYD
and FYH congruent by & narrouwing doun process analogous to that
described in section &.1.

Failure of the previous paradigm would be followed by the

following five paradigms:

1. Prova triangle AYB congruent to triamgle CVO.

A c
Y —3 8 v e D

2. Prove triangle AYE congruent to Triangle CVD.

A <
v Ly gy 0
= W )




3. Prove triangle AYV congruent to triangle BVY.

4. Prove triangle AYD congruent to triangle BYC.

A

",

<=

¥

5. Prove side AY = side AVY.

G. i | experien

The program was uritten in LISP with the aid of a
previocus theorem proving program 171. 1t hiu golved numerous
plane geomatry probolems on the POP-1B computer at M.1.7. It
proved all the problems reported by Gelernter (11, [Z} and none
of these took longer than five seconds. It also proved all thea
problems reported by Goldatein (3} and only one took more than
about five seconds. HWong (11} described a more subtle set of
geometry problems but did not present an actual program which
s0lved these problems as his interest was in devising heuristicse

for introducing ned points into a diagram. WHhen provided With



the necessary additional peoints, the present program proved all
the examples in 111} except those which depended upon algebraic
facilities not possessed by the program, as in proving
inequalities., Examples 18 and 38 from {11} took 85 and 48
seconds respectively. MNone of the other problems took more ‘than
about 2B seconds. The following five examples should provide
some illustration of the prograsm’s capabilities. The reader
should refer to section 2 for the meaning of the predicates LM,
PR, PRP, AT, E5, and EA since the problems are presented to the
program in terms of these predicates. The attendant diagrams are
]m:.!un:lgr,} solely for the benafit of the reader.

| Example 1
GIVEN: (ESACCB), (ESCBBA}, (ESABEM, (ESBRAN
D), (RTCFON, (LNICBFI), (LN (ABRDI
PROVE: (RT C A F)

A




The following is a paraphrased version of the actual
printout generated by the program during the course of obtaining
a proof to example 1. [t should be emphasized that this printout
represents all the steps (8t a certain level of detail) produced
by the computer rather than juat those steps that wers used in
the proof.

1. angle ABF = angle CBH. Vertical angles are equal.

2. angle ABC = angle FBH. Vertical angles are equal.

3. side AC = side BC. GIVEN,

&, gngle ABC = angle BAC. Base angles of an isoceles triangle
are egual.

5. side BC = side AB. GIVEN.

BE. angle ACE = angle ABC. From steps 3 and 5 the program
realizes that AC = AB and therefore concludes step B since base
angles of an isosceles trianglie are eqgual.

7. side AB = side BM. GIVEN.

8. side BM = side OM. GIVEN.

3. side AM = side BO. Sums of egual sides are esgual.

18. right angle BFO. GIVENM.

11. side BM = side FM. The median to the hypotenuse of a right
triangle is equal to one half of the hypotenuse. The
construction of medians such as FH is an exception to the rule
that does not allow the introduction of ned |ine segments during
the forward search. It i justified on the grounds that such a
median (whose length can be linked to an already existing line
segment} is relatively rare and therefore worth pursuing.

12. angle FON = angle DFH. The program has realized immediately



from step 11 that FH and DM are both part of the same egual side
group consisting of AC, BC, AB, BA, OM, FM and therefore
concludes that base angles of an isoceles triangle are equal.

13. angle FBM = angle BFH. Base angles of an isosceles triangle
are equal.

14, angle BAC = angle BIF. Triangles BAC and BHF must be similar
since angle ABC = FBM and angle BFM = FBH = ABC = angle ACB.

15, side BF = side BH. A triangle with eqgual base angles is
iao=zcalas.

16. angle BAF = angle AFB: Since BF = BN = AB, it concludes that
base angles of an isoceles triangle are egual,

17. angle AFH = angle CAF. Triangles AFH and CAF must be simllar
since angle BMF = BAC = ABC = angle ACB and angle BAF = AFB.

18. triangle AFM congruent to triangle CAF by side-angle-angle.
Side AF is opposite both angles BAF and ACB.

13; side A = side CF. Corresponding parts of congruent
triangles are equal.

ZB8. angle CBH = angle OMF. CBH ie the supplement of ABC and OMF
is the supplement of BMF = BAC = ABC.

2ls triangle BAC congruent to triangle BFF by angle-side-angle.
Angle ABC = angle FBH, side AB = side BM, angle BAC = angle BHMF.
EE-‘Tfianglu ABF congruent to triangle OMF by side-angle-side.
Side AB = BM = FM, angle ABF « CBH - DHMF, side BF = BM = OM.

23; pide AF = pide OF:. Corresponding parts of congruent
triangles are equal.

24, angle BAF = angle FON. Base angles of an iscsceles triangle

are egqual.



25. angle CAF = angle BFO. Triangles CAF and BFD must be similar
since angle AFB = BAF = FOM and angle ACB = ABC = FBH.

Z6. CAF is @ right angle, which completes the proof. CAF had
just been identified with 8 knoun right angle BFD.

The elapsed time for the proof of example 1| was 13
seconds. One cannot help but obeserve the extremely high density
of relevant statements generated by the progras in the course of
proving this theorem. High densities are characteriatic of the
progras’ s performance and are probably representative of most
human problem salving as well.

Example 2
GIVEN: (PR (DC) (ABJ}, (PR ICOPB) (DA, (LN (NP A))
(PR (DR QN (5B}, (PR (NB) (CRS AN, (RT NR A,
PROVE: (ES P O P Bl.

N

It should be noted that the point defined by the

intersection aof linas (N P A) and (5 B} ie not needed in the



proof. The computer produced proof of example Z took Z1 seconds.
Examplie 3

GIVEN: (ESBECDO), (EADBFFBCI, (EAECFFCB), IEA

ODBEGOC), (ESECCG), (LN (BFEI), (LN (DFCH, I(PAP

(8 O (CGYy, (PRP (DEG) (BC).

PROYE: {(ES5 B C D Gl.

b E

B c
The proof of example 3 took 5 seconds.
Example 4
GIVEN: [[ESBEED, (ESBDODC), (ESABOC), (LNBED

Chl, LN IBMA), (PRIMND (ACH, (LN {ANEI.
PROVE: (EAEADDATC.

A

B E D c

The proof of example & took 3 seconds.



Examplie 5
GIVEN: (RTBCDO), (PRIBPHA ICDI}, (PR IBC) (ANDNI,
(LN (BFKDV, (LN ICFPH, (PR (BC) (MK}, {PRP (MK} (A
NDY, (ESBRMAI, (PRIKN) (BPHAN, (PRP (KN} (C D)),
(ESANBC), (ESBPFPH.,
PROVE: (RT B F CI.

B P ™ A
i:
N
b
c D

The proof of example 5 took ;E seconds.

&. Sugngestions for future work

One possibility would be to introduce new predicates so as
to provide the program with 8 richer representation of knouledge.
[t should not ba too difficult to represent proporticnal (as
opposed to egual) |ine segments but curved |ines would be a more
formidable task.

Houever, perhaps the most fundamental qulltinn-nnncurnl
the introduction of new points into the diagram. Most of the
paradigms described in this paper do in fact find points,
although these points already were present in the diagram.
Nevertheless, the significant thing about these paradigms is that
they find pn]nt:-bu a4 process of deduction [l.e. by ruaﬂqning .

from facts in the data base to points that appesar relevant to the



gatiafaction of a particular goall. Thig would suggest that
gimilar paradigas might be constructed which deduce points that
had not been present in the initial diagram.

Az an illustration, point 5 was not essential to the
gtatement of exanpie 2 in section 5 but was utilized in the
proof. MNevertheless, the construction of point 5 could have been
arrived at by a paradigm which noticed that since vertical angles
NP and APEB are egual, the goal of proving PO = PB could be
expreased as corresponding parts of (potentially) congruent
triangles found by drading a line L through B that is parallel to
line DROM: The reason for drading a line L in thies manner is
that its intersection with line NPFA at a point M would mean that
angle ONP = angle BHP so that triangles ONP and BHF are similar
{and also congruent if the goal PO = PE is true)l. The
construction of point 5 then would be obtained merely by

extending line L until it intersected |ine CRA.
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