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ACCELERATION OF SERIES

by

R.W. Gosper

ABSTRACT

The rate of convergence of infinite series can be accelerated by a suitable
splitting of each term into two parts and then combining the second part

of the n-th term with the first part of the (n+l)-th term to get a new series
and leaving the first part of the first term as an "orphan". Repeating this
process an infinite number of times, the series will often approach zero, and
we obtain the series of orphans, which may converge faster than the original
series. Heuristics for determining the splits are given. Various mathematical
constants, originally defined as series having a term ratio which approaches

-1, are accelerated into series having a term ratio less than 1. This is done

with the constants of Euler and Catalan. The series for pi/4 = arctan 1 is
transformed into a variety of series, among which is one having a term ratio

of 1/27 and another having a term ratio of 54/3125. A series for 1/pi is

found .which has a term ratio of 1/64 and each term of which is an integer
divided by a power of 2, thus making it easy to evaluate the sum in binary
arithmetic. We express zeta(3) in terms of pit3 and a series having a term
-ratio of 1/16. Various hypergeometric function identities are found, as well
as a series for (arcsin y)42 curiously related to a series for y arcsin y.
Convergence can also be accelerated for finite sums, as is shown for the har-
monic numbers. The sum of the reciprocals of the Fibonacci numbers has been
expressed as a series having the convergence rate of a theta function. Finally,
- it is shown that a series whose n-th term ratio is (n+p) (n+g)/(n+r) (n+s), where
P, 4, ¥, s are integers, is equal to c +4d pifz, where ¢ and d are rational.
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by the Advanced Research Projects Agency of the Department of Defense and
monitored by the Office of Naval Research under Contract Number NO00l4~70-A-
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Dedicated to the memory of Srinivasa Ramanujan Aiyangar,
Indian Summer,

1873,

Acknouledgements

Several people have contributed valuable suggestions and

questions, and have been cited throughout this paper, o

but special mention must be made of the dedicated programmer-
mathematicians of the M. I. T. MACSYMA Project, who are developing
a huge and powerful system for automated symbolic mathematics.
Without MACSYMA, the author would never have discovered most

of the formulas in this paper, let aione the techniques for finding
them. I wish to thank Or. Joei Moses, for generously letting me
use his system, and especialiy Jeff Golden, for his patient advice,
coding, and debugging while I set his programs several months of
tasks borderung on sadism,

Introduction
: Thns paper describes a way to manipulate .sums to
produce new ones which converge faster. For example, knou:ng
only that
pi/t6 = 1 -1/3 +1/5 - 1/7 + coe
we can find‘that‘

Pl 2 112 13 4 15 6

—= m e= (B - = = e (13 - - e an (2B - - oem - (27 = ...
4 15 3711 31317 318 23

‘Without even using calculus. Now the first series is a lot
simpler, but it would require billions of terms to get 18 digits
of pi, whereas the second series only needs 7 terms, snnce

each term is less than 1/27th of the previous one.
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Another example is the sum of the reciprocals of the cubes:

11

’ 1
zeta 3 = e 4 o ko L., az--.
o 3 3 3 o 3
: 1 2 3 nl n
We Will show that this slow series
s 1 11 1 22 1 33
= - (- - v { - - S (e - - (...
4 1 34 2 56 3 78
k-1
- 5 :E : {~)
2 3 2k
k>l k ()
K
where each term is less than 1/4 of the previous.
The treatment will be informal with few, if any, proofs.

The method consists of splitting each series term into two
‘pieces, then recombining the pieces of adjacent terms to

form a new series with smaller terms, and a leftover quantity
called an "orphan". This process is repeated until a formula
for the orphans is deduced, wherupon the shrinking series is
discarded in favor of the series of orphans. The simplest
case of this is an old trick known as

Euler’s Transform

Al though if is usually applied to alternating series, Euler’s
transform is more neatly derived for the general series
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where U is the averaging operator, Ua = —ecommmee
. . n 2

Thus we get the orphan term (a /2) and a new series upon which
: 8

Wwe may repeat this operation to get

a Ua z
= B + 8 + :E::U a
- ———— n

2 2 ‘ n>8
a +2a + a
2 n Cn+l n+2 .
where Ua = U (Ua) = —cmmmmmmmmee
n , n 4
[f we do this k times we will get
: o k-1
a Ua ‘U a
%] B _ 8 . k
L L, T T S + E “Ua .
2 2 v g 2 n

Now as k approaches infinity, the sum on the right approaches B
for all convergent (and many divergent) series, leaving, finally,

g a = - U a :
: ,:E:: no 2:25:: 4]
n>0 : k>8 o
B : ' | | -
(Ua =a)., The motivation for this transform should
nn . . ,
 become clear with an example. We have

Pi/h = arctan 1 =1 - 1/3 4 1/5 - 1/7 + ...

n

_ . {(-)
so that a ™ ————
n 2n+l
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n n+l n
1 (=) {~) (-)

Ua = = (=0 ¢ oo R

n 2 2n+l 2n+3 {(2n+1) (2n+3)

n n+l n
2 1 () (=) 2 ()

Ua = - (eccmmeaeen I e }om e

n 2 (2n+l) (2n+3) (2n+3) (2n+5) (2n+11 (2n+3) (2n+5)

It is easy to induce that

n
k - k! (=)
U a I e R
n {(2n+l} ... (2n+2k+1)
‘Setting n to B, we find

: ‘ n .

pi Z (-} lzl 23 Kk :
A 2n+l 2 357 2k+1
n>p . k>B

The left hand sum has as a ratio of consecutive terms

2n+l1 S .
- —=--- , which approaches -1 as n grous large.
2n+3 ' -
To get 8 digits of pi would require about half a billion terms.

‘The right hand sum is easier to compute than it looks, since

k
its kth term is just ---- times the previous.

Since this term ratio approaches 1/2 as k grows, only 38 terms
are needed for 3 digits (38 bits). This convergence rate of
1 bit/term is typical of Euler transformed series.

Note, however, that if by ugly coincidence some

different series happened to match our pi/4 series for the

- first 38 terms {(and then, for instance, became all zeros), the
first 38 orphans would have the same numerical

values, albeit from a different formula, in which

case few, if any, of the 9 digits would be right.

" Moral: virtualiy nothing is certain until you have the formula
for the kth orphan. :



Ceneralization of the Euler Transforn

Unfortunately, if the original series converges more rapidiy
than 1 bit/term (term ratio < 1/2), the transformed series
may converge less rapidly, as we shall see. This is a symptom
of the fact that Euler's transform is most effective when
consecutive terms are of neariy equal magnitude and opposite
sign, SO that their averages will be very small, leaving most
of the sum’s value in the orphan (More orphan than not).

What we need is an unsymmetrical, weighted averaging operator
to achieve this near telescopy in series where each term is
significantly smalier than its predecessor. We are indebted
to Rich Schroeppel for suggesting the weights 1/(1-r) and
r/(r-1} be used when the series has a limiting term ratio r.
This will actually split the terms of non-alternating series
{(positive r) into pieces with opposite sign. It was an easy
step from this to realize that the weights need not be the
same for each term.

Thus we will denote a pair of weights bg s and 1 - s,
n n

and call s a splitting function.
n

We generalize Euler's transform as follows:

= 5 a + (1 -s) éA + s a.
8 8 J 0 n - n+tl ne+l

n>8

uhlch specializes to the f:rst step of Euler’'s transform uhen
8 m 1/2. S = B leaves the series alone, while s =1
n : n . n

translates the series by one ternm, the zeroth bhecoming the
orphan, Ne Wwish to choose s , the splitting functlon. SO
. n .

as to make the

summand both small and snmpie' small S0 that upon repeated
applications of this operation, the value of the sums will
accrue rapidiy in the orphans, and simple so that these
orphans have a general fornula easy to discover and compute.

PAGE 5
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For examplies, let s = s, a constant. Transforming
_ n

the geometric series:

1 n | n n+1
_—— = z X .= 5 + E {1-8) x + s x
1~x : )
n>8 n>0 ‘ ‘
. -
= 8 + (I -85 4+ 5 x) E x
n>8
: 2
= s+ {l-s+sx)s+{l-s5+sx) s5+...

S + 8 X)

1 - (i -8 + 8

n
0]
—
=
1
=
[
[}
X
~—

k>8

an identity, except-the interval of convergence has moved
from -1 < x <1 to 1 -2/s<x<1 or 1<x<1l-2/s,
depending on the sign of s. ’

If we choose s so that 1 - s + s x = B, all of the terms of this last
sum vanish except the first, leaving s which is indeed 1/(1-x).

We note that if s = 1/2 (Euler's transform) and

-1/3 < x < 1/2, the transformed series converges more

" slouwly than the original geometric series.

Integrating these series from & to x:

: n- - ko K
o , x (1 -5+ s x) {1 - s)
- in {1l = x) =, E —— = E -----------------------
‘ o n , K K
: n>1 k>1
= In (s -8 x) -ins

Here, Pfowe agafn choose s = 1/(1-x)



ar -In {1 -x} = In (1 - ———cc )
: x -1

If x = -1/2, ue can compute In (3/2) with an asymptotic
term ratio of 1/3 using the transformed series, versus -1/2
for the original.

I[f we had chosen s = 2/(2-x) instead of 1/{1-x), then
"l -5+ 5 x = - {1 -5s), that is, alternate terms in the

sum for In (s - s x) - Ins will cancel, leaving
n x 2k +1
X {-—m- )
E - = 2 E 2 - x
n L e
n>1 k>8 2k +1
. : 1 4+y X
or - in{l - x}) = In-—a--— Hith y = ~——=-
1 -y 2 - %

Here, if x = -1, the term ratio approaches 1/9, yielding in 2
With almost 1 decimal digit/term instead of 1 bit/term, as
Wwith Euler’s transform.

The formulas we have seen up to nouw have been known for a

iong time. Before we get into the more interesting goodies,

I want to replace the summation notation with one that stresses
term ratios, and reformulate the series transform accordingly.

R Notation -

Let R r - stand for the series whose first term is 1, second
' n>m n '

term is r and whose ratic of r+lst to nth term is r
m - ‘ ' . .n

*

i.e., 1+ r (1 +> r (1 + ...

" Thus

a + a + ... = a3 R _n+l

PAGE 7
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Note that m need not be an integer:

pi 2n+ 1 ’ n
- = R = e = R - oo

4 _ n>8 2n+3 1 n+ 1

Other examples of R notation:

n

x v x x
e = ; -~ = R -
L 17! n>1l n

n>B8

{——— )
In (1 +x) = 2 E 2 + x

el (n+a) ! (n+b)! n
Fla+l,b+l;c+l;2) = ————— E ------------- z

(F is the hypergeometric function. Unfortunately, a. b, and ¢ are
offset by 1, apparently to accomodate the Gamma notation for the _
factorial function. The author finds this unnatural and pecantic.)

As it stands.‘this notation cannot express a series starting
Wwith 8. Also, the (2 k + 1)/(2 k + 3) in the logarithm
formula is aukuard--suggesting the foliowing generalization:

Let b R r stand for the series
nnB n - y
b+ r (b + r (b +... =
8 g 1 - 1 2

b +r b + E rob +rorr b+,
B g 1 8 1 2 B 1 2 3



i.e. b R . ---=-r . Another way to say it is that

nn>m n n
where S satisfies the first order, linear recurrence relation

S - b +r §
m m m  m+l

Then our logarithm formula becomes

Now our notation is no longer uniquely determined by
the series-~in fact one could cop out and write

a + a + ... = a R 1,
m m+l n on>m

The intended convention, however, is that oniy factors of

the nth, but not the n+lst term appear to the left of the R.
(And, of course, the necessary scale factor to make the first
term come out right.}) This will prevent factors of the form
Ak + al/{k + a + 1) or its reciprocal from neediessly
complicating the expression to the right of the R, whose
primary purpose is to get rid of nth pokers and factorials.

Thus, Ramanujan's amazing pi formula reads

4 21462 n + 1123 C bn+1) 2n+l) e

128 21 (n + 1)

{(Collected Papers, #6, .eq 29).

PAGE 9
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The advantages of this notation are:

One can tell at a glance the first term

and term ratio, which immediately indicates

the required computation effort and convergence

rate. The number of digits/term is just

-tog Lim Ir | as n grow large, where the base
n n :

of the log is the radix of the digits,

The notation is usual iy more concise, since term
ratios are usually simpler than terms. This often
makes it easier to notice when a series is equal
to, or a special case of, another.

It suggests a generally more efficient method of
numerical ly evaluating n terms of a sum—-
instead of computing the terms and adding them up,
take r , add b , multiply by r

n n n-1

add b, - multiply by r, and finally add b .
n-1 8 g

[t has suggested tuwo "spigot" methods of

evaluating sums to unlimited accuracy without multiplying

or dividing very long numbers. A "spigot method" is

one that produces digits on demand, computing

only as much as necessary, yet able to. supply subsequent digits
upon subsequent demand, without, in effect, starting over.

It is immediately rewritabie as a continued fraction}

p _

‘b R n = b +p
nnxB ¢q 8 8

n g +q

Although it isn't quite as manipulable as summation
‘notation, uWe can do things Iike i
d a b ‘a-l b
-~ x R r x = (kb+a) x R r x
dx k>8 k- ’ : k>8 Kk

Finally, it sinplifies the forthcoming discussion of series
transformations. :
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Oerivation of the Transform

After applying k-1 splitting funétions, therebg‘extracting k-1
orphans, we are ready to apply the kth splitting function s

k,n
to the remaining series, whose nth term we denote a , so that
: ' ' k,n
a = a , the nth term of the driginal series. Also,
g,n n : ' :
a
K, n+l1
r = e
S kyn a
k,n

the nth term ratio of the ktuply accelerated series. Then,

a = a s " +1<-35 )
kyn K,n k,n k,n -
n>m -  n>m : : :

- s a + E : {1l -5 ) a + 5 a
: K,m k,m -~ kyn o k,n Kyn+l k,n+l

n>m
- s a + N {l-85 45 r ) a
Kym  Kk,m k,n k,n+l k,n  k,n
and now if we define u = l-s 4 p s
- k,n Kyn kyn  k,n+l
Ea = s a + u a
K,n kKym K,m Kyn k,n.
r>m . n>m '
"so s a is the kth orphan, and the nth term of our neuw series is
- kym k,m ' o :
u a Which we define to be a . Tius
K,n kyn - k+l,n

' a = s a + a '
» k,n kK,m Kk,m kK+l,n

n>m - nem
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As before, we iterate on k indefinitely, choosing s 50
- K,Nn
~ that the u and thus the a and thus their sums tend to
‘ : K,n k,n
B with k as rapidly as possible. Then nothing will remain of

the original sum but the aggregate of the orphans., If k is
“initially j, . ,

n>m
= s a + s u a + 5 u u a + oeen
Jemojym JHlim jym jume j+2,m j+l,m j,m jem
because a =y a by definition,

k+l,m " k,n k,n
In R notation, this tast eduatipn reduces to

a R P = a s R u .
j.m  n>m jen o j.mokem k>j k,m

Note that we have nouhere used the fact that j is initially B, or
even an integer, so that we are free to choose any convenient

value to denote our original series.

We nou'repeét this whole derivation in R notation, skipping fewer
steps. The reader is advised to understand it, since the main
results in this paper depend heavily on it. ' )

For convenience, we assume that the original series
has been scaled so that a =1, Then :
) vj'm .

n>m
= (1 -3 ) R r + s r
“jyn n>m jan jon n>m jsn
« (1 - s ) r + s + r s R r



r
jsn
1 -5 ) R r + s +. r s - R r -——
j»n  n>m j.n jam jam  j,n+l  r>m jon+l r
. J-'n
r
Jan
{1-s ) R r + 8 + r -—-~5 R r
jan n>m jyn jom jom r jyn+l meme LN
Jam
= (1 -5 ) R r + B + r s r
jsn n>m j,n jem jon  jyn+l. n>m jsn
- 5 + 1l -5 +r s ) r
jem jyn jon j.on+l n>m jsn
= 35 + u. R r
Jam j+n n>m jin
u
jon+l
- 3 + U - R e or
j.m Iym one>moou ~Jwn
Jn '
- 8 + u R r
jam “Jemoon>m -j+l,n
u .
K, n+l ) .
{r = -~--=—r  because a = u a )
k+l,n - u - " k,n k+l,n ken k,n
kyn
= s+ U0 (s + u R r }
jym jem j+l,m j*l,m n>m o j,n42
= s + u (s + u s + e
jom Cj,m j+l,m j+l,m j+2,m



Finally, we have the

Series Acceleration Formuia

R r = 5 R wu
n>m jan Ky Kk>j K,y m

Our problem then boils dowun to finding a pair of functions

s and r which satssfg the recurrence
k,n K, n
u
k, n+l
r ERE T T— r
k+l,n u k,n
K,n
with  u = 1 -5 +r . s
‘ K, N . k,n k,n k,n+l
Wwhile for some j, r - equals the term ratjo of the series
j'n .

ne wish to accelerate.

Constant Spllttung Functions

Since Iog and arctan are parttcularlg useful, we uwill honor
them with yet another example of a new way to
.get an old resuit;

, . n
- In{l -x}) = x R ——u x_
' ) n>1 n+l
. n+1/2 2
arctan x = x R a-—e__. ex )
- n»8 n o+ 372

These are just special cases of the hgpergeometrlc functlon
With 2nd argument =1, .

Fla,lic12) = R —oeee z.

PAGE 14
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Here m = 8 and again, our asymptotic term ratio is z. so |f

. #e continue to restrict s to be a constant, 1/(1-z) is still
K, N
our best guess to minimize u . This follows from setting
‘ k,n
s and s . to s, r to z, and u to B
k,n Ck,n+l k,n : k,n '
in the definition of u .
k,n
We choose j = B8 and have
n <+ a
r .- ——— z
g,n n+c¢
_ 1 1 n+ a
u = ] - e + e e pa
B8,n 1-2z 1-zn+c¢
c - a z
n+c z-1
s0
_ n+ a
r e e -
i,n n+c¢+1
Since this is just r With c+l replacing c, and c is arbitrary,
: 8,n S
Wwe can immediately conclude that -
c+ k -3 2
u = el - .
K,N nN+c+k z-1
Finaltly,
‘ n+a 1 k+c-a z
_____ 2 ® e ———mmr——e —m———



or more symmetrically,

(Wwith d for c-a), a result usually found by analytic
methods (See Abramowitz and Stegun, Handbook of
Mathematical Functions, Formula 15.3.5),

(Note that_the same transform on this new series yields the

old one again, so that for every z for which convergence was

improved, there uas the point z/(z-1) for which it was
degraded, and vice versa.)

In particular, we have
arctan x = m——een R e ¢ m————

the interval of convergehbe having expanded from +1 to

, . : 2 2 2
+ infinity. Settingy = x /{x + 1) we get
, 2k +1
arcsiny - : k 2 y _
——————————— = y R ey = E—--———--—--
2172 k>l k + 1/2° k +1/2
(1 -y) k>B ( )
k
Where
i 3! j
() = cmemee o = ()
3 k! (j-k)! j=k

. k!
so'that_

2 n ‘2 k
( ) )

n-1/2 2 k k

{ ) .
K n K
() &

PAGE 16
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Integrating the arcsin equation:

2 - 2k +2 :
arcsin y E Ty
2 ka2
: k28 (2 k +2) ( )
' K
2 2
y k 2

e
2 k k>l k + 172
This result, although known, is'peculiar in the light of

k-1/2 2k +1
( ,

Yy
arcsin y = E k -

‘ R
2k +1 kB k+1
wherein the coefficients arebneatlg the reciprocals

of those in the previous sum. The relationship
is even more striking if we write

arcsiny = «—~ R oeooo_.

uhich-sags»thatvif We offset the index of summation by

2

-1/2 in the formula for arcsin Y, We get y arcsin y.



Other Splitting Functions

Actualty, for all but the simplest term ratios, most splitting

functions, constant or otheruise, will lead to prohibitively
complicated u "s after just a few k.
k,n
So the main problem is to find an s such that u
: kKyn K,m
~stays simple. The easiest uay
to do this seems to be to start with r and choose the s
8,n - 8,n
which results in the simplest r you can find. Then repeat
. . 1’n ’
the procedure for r , seeking the s leading to the simplest
l,n - 1,n
possible r .« MWith some skill and luck, you find a
2,n o ‘

sequence s ° , s + +e«. Which produces a sequence of u’'s
8,n 1,n

whose general formula is discernable. .

For example, let us attack

: 2
1 1 1 n
zeta 2 = oo 4 o b m w2 R el .
2 2 2 n>1 2
1 2 3 S (n+1)
It will prove convenient to choose j = 1 in the Acceleration

Formula, and so define

We certainly can't try s = Lim 1/(l-r ), since the asymptotic
' ‘ 1,n n , n - .

term ratio is 1, so let us try a vefg simple function of n

S ’ = an+.b
I,n '

With a and b to be determined so as to simplify

PAGE 18



A good heuristic is to reduce the degree of u, which we
can do twice by choosing a =1, b a 1/2, so that

1
u e —— .
1,n 2
2 (n+ 1)
Then
2
n
r - e .
2,n 2
{(n +:2)

Trying the same form again,

S - = ans+hb,

2,n
we have

2 _
{1-3a) n + (4-ba-4b) n + 4-4b

n + 2)

4
u ™ e .
2,n 2
3 tn+ 2)
Then
2 .
n
r = e
3,n ' 2
{n +-3)
which suggests
2
. n
r B me—m——— - "
K, n ' 2

PAGE 18



Sticking with

S = an+ b,
kK, n
2 2
(1-a(2k-1)) n + (2k-ak -2bk) n + {l-blk
u = e — —  ———— e e
k,n 2
{(n + k)
which says
1 3k -2
a4 = ee———— . b = e
2k -1 2 {2k -1)
3
K
‘u B e et - = o —— ——
k,n 2

2
n
r W e ———— ———
k+l,n 2
(n +k + 1)
So finally,’
2n+3k -2
S M e —— e v —— -
K,n 2 2k -1)
and -
3;
3k [
zeta 2 = eemmmeeo R emmmmmm
2 (2 k-1) k>l
' 2 (2 k= 1Y (k + 1)
3 K 1
N B

2k kel (k +1/2) 4

) uith a convergence rate of 2 bits/ternm.

PAGE 28



2
But this is just a special case of our arcsin. formula
with y = 1/2, so that

' 2
38 21 pi
zeta 2 = -~ - arcsin - = --- ,

22 2 6

(I am indebted to Dr. John W. Wrench, Jr. of the Naval Ship
Research and Development Center for pointing out that this
zeta 2 formula is derived as a Markov transformation in
Section 158 of Knopp's Theory and Application of Infinite.

- Series, Later, houever, we will improve this to a B bits/tern
formula, which has a better chance of being undiscovered. )

This example has nicely illustrated the actual practice of the
method: : :
‘Acceleration Recipe

1} Write the term ratio.r
g,n .

2) Guess a form for a splitting function s -, cunnfnglg
- 8,n

including some undeterminéd coefficients. It probably should
be asymptotic to 1/(1-r . :
: ' B,n

3} Choose these coefficients to simplifly

u = 1 -3 +s r
8,n - 8,n 8,n+l 8,n
u
o L 8, n+l
4) Urite r - T
: “1,n U B,n
8,n
B} Guess r so that it agrees with r  and r .
k,n : ' 8,n 1,n
y
o : k,n+l
- B8) Write r R - and determine the
: k+l,n u k,n
k,n
coefficients in s to achieve agreement with r .

K,n . ) kK, n

PAGE 21
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This all boils doun to searching for rational solutions to
the recurrence relations defining u and r ,
‘ K,n k,n .

and there may be much to gain from exploring the |iterature of
nonlinear difference equations, which | have as yet neglected.

Now let’s try harmonic numbers.

o) | 1 2 3 p n>l n+l

We .have not equipped our tramsform for finite series-~it
would evidently produce a sum of tuwo series of orphans, one
from the left and one from the right. We can, houwever, use
the transform to see what the one on the left will be.

I[f we again try

s = an+b
1,n
with
n
r WM mam———
1,n n o+ 1
we find
n->b+1
u R T e
1,n n+1
and
. n .
r 2 e —m——
2,n n+ 1

independent of a and b! This means that we can extract
an arbitrary series of orphans from the left without
affecting the term ratio at all. .

Other choices of splitting functions are equal ly
unenlightening. So it wants an infinite series? We
give it an infinite series. :



1 1 1
h ] -+ -+ -+,
p 1 2 3
111
- ( ——— 4 = + == 4+ L.

p+l p+2  p+3

A slightiy less dubious way to get thiélis to let m approach
infinity in the cute identity

m p
Frue A D
:E: n (n + p) n {n + m
n=l n=l -

but thisvéeems to rely on ﬁ being an integer--a restriction
which we Will profitably waive in order to conquer the digamma
(Psi) function while we are at this: .

B .
h = Z --------- - = Psi(l + p) + enigma
p- heed 1 N+ p) . A

PAGE 23

where enigma is Euler’s cénstant = .5772156649... and is usual ly

spelied gamma. We have

n (n + p) )
r ® e —,
1,n n+1) (n+p+1)
‘Uéing godd~qid. »
: s v = an+b,

We get
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S 1l,n ‘ n+1) (n+p+ 1)

which suggests

: - p+1
a=1 and b= ———-q
2
so that
: p-1) (p+1)
u = R e e e = a - — —— e ——— - ———
1,n 2 n+1) n+p+1)
and
n (n+ p)
r e e EE L
2,n (n+2) (n+p+ 2)

Let us leap to the conclusion that

n {n-+ p)
" W e - . ——— .
k,yn {n+ k) (n+p+ k)
Then
v 2 5
(1-(2k-1)a) n + (p-”kb-(k +jk- p)a+2k) n+ (1~ b)k(p+k}»
t T T T e e e e e
k,n - :_  n+1) ln+p+1)
so that if
1 Sk+p-2
A & —————eo and b = wcmeemme o
2 k =1 4k -2
- giving
2n+3K+p-2
5 B e ———— —————
k,n 2 (2 k - 1)
then
‘ kK (k +p) (k - p)
u W e e ——— - ——————— — ———— —

K,n 2 @2k-1)in+K (h+k+p



and lo and behold

v n (n + p)
r e .
k+l,n n+k+1) n+p+k+1)
Finally
p n n+op
A om e——ee =
o) P+1 nl n+l n+p+1
p R
.- e R r = o s R wu
p+1 n>i i,n p +-1 k,1 k>l k, 1
p Sk +p K (K + p) (k - p)
= e ——— " —— R ———————————————————————————————

- As a consisténég check, we can divide through by p,- then
let p approach. B, yielding the zeta 2 eguation we got earlier.

Note that if p is an integer > B,»the~k¥p’1h the numeﬁator
of the ratio wifl terminate this series on the jth term,
We have our finite series back,- only it converges faster!

For instance,

1 1 1 1 1 1 1 781
S A I S VIR & me- =
2 3 4 5 B 7 8 238

44 49 238 5 . 48 13 2% 1

T A v '

9 15 165 12 585 1386 45845 51488

PAGE 25



PAGE 26

Now if we are computing harmenic numbers as exact rationals,
it is easier to add up the first series than the second.
But if we want big ones, this becomes impractical,

(h involves 83 digits.) If ue resort to decimal approximations,
99 : '

we can still sum the harmonic serjes using approximate reciprocals,
but even this grows impractical as P gets to be a few hundred.
There is a divergent series involving log p, Euler’s constant,
and Bernoulli numbers, but even with an abundance of digits of
these, you cannot extract many more than 2 pi p/in 18 digits.
The formula we have just derived seens K

to solve our problem to the tune of 2 bits/term, but on closer
inspection, we see that the pouwer of p in the numerator

of the term ratio is one greater thanm in the denominator,

so that if p is large, the series will not start to converge
until k reaches (p - 2)/5, :

To get the most out of this formuia, we should notice a degree
of freedom in the series transform that we have not yet _
exploited--namely, that setting n tom in the s and u of

, ‘ k,n k,n

the transformed series corresponds to starting the original
series at the mth term. (We must also remember to scale both
series so that the mth term of the original series is of the
desired size.) Thus we have .

1 1 1
h- - -+‘---+_—-+COI
m,p m-o om+l me2
11 1
- ( --——+ ----- + _____ +.'c

Z:n n+p »Zn(n-e-p)

n>m n>m
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p Bk+2m+p-2) kK (k + p) (k - p)

P BKk+2m+p-2) - k (k + p) (k - p) 1
m» mm——— ——— e e R ———— e ————————
2m {m + p) k>l (k + 1/2) (k +m) (k + m + p) &4

k28 2m (m+p) 2k+1) ( ) () ¢ )
- Kk k. 3

Now if m is about as large as p, we see that this neu term ratio
~ is about 1/8, so that we have an almost 1 digit/term method

for summing the reciprocals betueen half a trillion and a triltion,
for instance. But we can use this same trick for those between a
quarter trillion and half a triilion, etc., so we really

can accurately compute very large harmonic numbers subject to
a cost factor of log p.
: .2

‘This example shouws that once we successful ly accelerate a series,

we have a handy way to sum finite but large intervals of that
series, since the starting vaiue of the summation index is merely

a parameter in the new series. In fact, it need not be an integer:

We knou
- 1 2z
cot 2 - -- + | ee—e—ec——————
z :E:: 2 2- 2
k>l z - k pi
 then o
’ pi zcotpiz = -zh -1
. -z,2z2

g - @Bk +1) ¢ ) Y
- - - , k- 3 .
. ‘ k+2z k-2 2k
k>8 (2 k + 1) ) O ) )
o N K K ok
_ 2 2
L : K (k -4 z)
= -1+ {3k -2} R e
. : T kel 2 2

bk +2) (k -2)



a 2 bits/term cotangent formula,

Similarly for Catalan’s constant:

1 1 1 1
e o TPt
2 2 2 2
1 3 5 7
1 1 1
= 2 (- % - & - 4 .
2 2 2
1 5 9
1 1 1
= -~ + — & <~ 4+ ...
2 2 2
1 3 5
_ h h
: 1/4,p 1/72,p
= Lim —ec—aa - mm———-
p->8 16 p 4 p
. » 2
3 1 pi
2 :E:: 2 8
k>8 k +1/4 2k
‘ | ) )
ok k
. .3 2
3 : (k + 1) pi
- - R ———————————————————— - -
2 k>B 2. _ - 8
(6 k + 2)

(k + 5/4)

Later on, when We accelerate eta 2, we will get a singie

series formula for Cataian’s constant.

"The next exampie Will emphasize a very important point. Ue
Tecall that our originai goal was to accelerate the particular
series . ‘ ’

1 (1 +p 2 (2+p) 33+ p)

" PAGE 28
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Wi th
r ‘ - »——-————-——-——~—v—-—-
l,n n+1) n+p+1)
but in the process, Qe acceferated the mdre general form
r ™ e - ———— 3

k,n (n+ k) (h+p + k)

This means that if we wish to accelerate some other series, and
its term ratio is expressible as

r
a,n+b

for some a and b, then we can use the transform we already found,
summing from k = a instead of 1, and setting m (the initial value
of n in the original series) -to b+l instead of 1, Thus if we
wish to accelerate the apparently very different series

4 2 12 <112 21132 -113¢52

R T e T T T Ty GRS S S S
pi 2 2 4 2 48 2468

(Jolley’s Summation of Series, formula #274)

- S : 2n-12
He find the term ratio = [—ee—eeo ) .
: Zn + 2
But this is just r Wwith p = 8:
’ . I 3/2,n-172 .
2n-12 n
| S (R ) = R e
n8 2n+ 2 n>-1/2 : 2
(n + 3/72)
3
3k -3 3
- el R ccmmmeemee
2 2k ~-1) 3 3
’ k>- (2 k - 1)
© 2
3
32k =1) 2k +1)
B oo =
8 k>1- 2
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SO

o212 Zi___'__b_‘_ ___________ :
- e

@ formula which has among its oddities the property of speeding

up, rather than siowing douwn, to its eventual convergence rate of

2 bits/term. This is the only pi series I can recall whose terms
(and partial sums) are al| finite decimal fractions, being integers
over powers of 2 {a fact obscured, in this case, by R notation}. '

Many thanks are due Dr. Richard Pavelle of Perceptfon Technology
Inc., who first suggested tfansforming the harmonic series.

Let us now return to- » v
Pi/h = arctan 1 = 1 - 1/3 4 1/5 - 1/7 4 ..,

to see how wWe can improve on Euler's transform. We have

8,n - 2n+3
which approaches -1, suggesting a splitting function approximating‘

172. A very simple non constant such function is apparentiy

s I
8,n Z2n+b

2 .
+Sb-4ab~Ba

Reducing the degree of the numerator as before, we Jet
b=2a-=-1. Then v :

.y ‘ ‘- T e e e e e e e .‘
A B,n. (2‘h + 3) (2 n + 2a-1) 2n+2a+1)

_fnsteadvof simply taking_the obvious choice of a = 1,
Ietvus proceed directly to
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J

<

2n+5 2n+2a+3 . 2
- , 2a-2)n+2a -2a-1

to see which choices of a allou at least one of the denominator
terms to cancel a numerator term. For each pairing of :
a term from the denominator with one from the numerator, we
scale them so that the coefficients of n are equal, then solve
for the a which makes the whole terms equal. UWhen using
MACSYMA, the very powerful symbolic math program at MIT,

one can perform this operation succinctly by invoking

the RESULTANT function, whose existence and usefulness

were revealed to me by Professor Hal Abelson. The resulftant of
the numerator and denominator of the above expression is -

18 2 2 2 - '

-2 a f{a-1) (a-2) (a-3 fa+1) (2a-1) (2a-23)
and in general, the resultant of tuo polynomials , » g
is a polynomial in their coefficients which is B when they have a
common factor or their leading coefficients simultaneously
vanish., They are painful to compute, but will no doubt come

back into popularity now that machines will do them for us.

The series in question is so easy to acceierate that any of these
choices of a will lead to a ratio which is in turn easy to split,
etc., and in this way we can generate dozens of pi formulas of
varying convergence rate; Perhaps the most interesting; yet easily
found formula lies along the path indicated by choosing a = 3/2.
Then . i S .

2n+2) 2n+3)
7i,n : @2 n+5 2n4+8)
‘The simpiest guess of r consistent
" S k,n
Hith k = B.and 1 is appérentlgi v
| o (2 n+k + lj’(Z n+k + 2)
N - e

which is;-in fact, supported by



2n+5k+3

n+a . ‘
ins = ----——- 0 that r conforms to our conjectured
K,n 2n+b k+l,n .
formula for r ). Then
K, n :
k +1) 2k +1) 2n+k+ 1)
u T e e e e e e
K,n 2n+3Kk+2) 2n+3k+ 3) 2n+ 3Kk + 4)
so that
opi 5k + 3 (k +1/2) (k + 1) 2
— . m—eeee R e .

k;p 2 (3 k +2)t

at better than 1 decimal digit/term. Interestingly, this
series can be simplified by rerunning the transform just
one step on this new series, with '

5k +8) (k +1/2) (k +1) 2
r - e e ——— e
Bk (5k+3) (k+4/3) (k+5/3) 27

and

which happens to be the reciproca! of the old s .

_ k,8
Then

. B,k 3 Bk +4) Bk +2
so '

PAGE 32
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(k + 1/2) (k + 3) 2A

r‘ M e e - - —
1,k (k +5/3) (k +7/3) 27
and thus '
pi - B (k +1/2) (x +3) 2
A T - T
4 24 k>8  (k + 5/3) (k + 7/3) 27
. , . .
5
pi = 4 - 2 : ---------------------- .
o Kk 3k +4

But this formula is just what we would have gotten had ue
~accelerated the series '

pi - 11 1

_——'—l..——-}--*‘-“‘{"oo'-
4 3 5 7 3

and then restored the initial 1; which is to say that

s R -u can be simplified further than s R u .
k,1 k2B k,1 ' ' K.8 k>B k,8

This suggests that when we get an acceleration formula, we
should check to see if -there are any preferable starting

values of the summation index which differ by an integer

~from the the one initially intended., The brute force way to de
this is to rewrite ’ . ’

s "R u a8s 8§ = R ace——w y
k,m k>8 k,m = g,m k>8 s K, m

and then take the resultant with respect to k of the numerator
and denominator of the expression on the right to determine
the values of m for uhich it reduces. '

‘Actually, the fact that there were tuo ways to find that

“ simplification in the foregoing pi/4 formula was no coincidence,

but rather a manifestation of a beautiful duality betueen a
series and its transform: : : '
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If s splits the séries whose ratio is r to make the series
' k,n ‘ kK,n -
s
» ‘ k+l,n S

Wwith ratio r - e u -, thens = 1/s splits

: n, K - s . k,n. ‘N, K k,n '

k,n

r  back tor . (Note the switching subscripts.)

n, Kk v K,n

‘This can be verified diréctlg from the recurrences defining
r . andu . ' ‘
k,n k,n

Thus that extfa split by the reciprocal of s that we performed
k,D

on the téansformed series was equivalent to the orphaning of .
the first term of the original series via the dual transforn,.

Just to make sure the reader understands this duality, an example:
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As we will fater show,
n+3k+1
s M e
k,n 2n+ 4k +1
splits
, 2n-1
r = - e s —
k,n 2n+ 4k +1
to make
2 k +1 2k +2
u‘ S e et i e i r ————— e —_— - ———
k,n - 2n+4k+1 2n+64&k+ 3
so that the transformed series will have ratio
3KkK+n+4 2k +1 2k + 2
r B e mmeere e nme e res mEm—————————— —
n,k 3k +n+1 4 Kk+2n+3 44k+2n+5

By duality then,

S L Ittt T pp——
k,n 3 n+k+1
splits.
3n+k +4 2n+ 1 2n 4+ 2
r B e cme—m— | me e m e e —— - ———— o ——
k,n 3n+k + 1 4 Nn+2k+3 4n+2k+ 5
“to maké
. 3n+k+2 2k -1
u . - R - —— o ——— ——— ——
Kyno 3n+k+1 4n+2k+3
" with the ratio
2 k -1
r m e .

n,k 2k +b4n+1
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Zeta 3

zeta 3 = - + —— 4 = 4+ ,,, -Z —
. : 3 3 3 3
1 2 3 n>l n
_ k-1
S {(-)
| 2.Z 3 2k
k>1 k ()
K

the improvemeént being asymptotically 2 bits/term versus @
"bits/term. To be honest, I first got this formuia from a ,
Kummer transform (omitted for brevity), so it is probably known.
We have. ' ‘

If we choose s =2an+b, we find that a must be 1/2 to

8,n
make the degree of the ndmeratpr ofbd iess than the dégree of
. . R . a'n .
the denominator. ‘But then ue-uill find that there is. no value of
b for which r  is again ' : ‘ :
: I,n

a ratio of cubics, and experience indicates that the larger

the degree of the term ratio, the harder it is to find a splitting
function which keeps the degree from increasing yet further.

The next simplest splitting function asymptotic to n/2 is a

- quadratic divided by a linear polynomial, which will ,

contain 3 coefficients to be determined. Now we could begin a

massive search through all values of these coefficients for which

r .simplifies, but first, let me suggest two heuristics useful
l.n B .

for limiting such searches--
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1) Choose the denominator of the spiitting function s to have

factors in common with the dqnominator of the term ratio.

2) .Choose the numerator of 1 - s to have factors in common uwith
the numerator of the term ratio.

. While these heuristics are not foolproof, a glance at the formula
defining u Wwill show why they tend to produce simple u’s,
. k'n ’ .

If we use these heuristics tolelim]nate all three bugger
factors, we get '

2
n
s R B
8,n 2 (n+ 1)
which rewards us with
2
_ n {n+ 1)
r- W e - ———
-1,n 2
' (n + 2) fn + 3)
suggesting ‘
2,
n (n + k)
r B e .
~ k,n .2 -
m+k+1) n+2k+1)
But there is no reasoh to believe thaf sv » shoﬁld be asymptotic

K,n- -
to n/2 for all k. To find out what it should be, ue
temporarily set s to an and find that a should be
. , ko0 . o :

1/(2 k + 2} in order to reduce the degree of u . Now the
’ K,n-

factors of the numerator and denominator of r are not all the
same, so Which do we choose for s5? We need another heuristic:

3) Choose the largest factors.

-This dictates



which is indeed the winner among the eight candidates. Then

2 2
k +1) {n + k)
u L - e e - ——— ot o
K,n : ' 2
n+2k+2) n+k+1) (n+2k+1)
and since s = 5/4,
: Tk, 1 '
5 -k .
zeta 3 = -—-~-- R e

2 k>l 2 (2 k 4 1)
A

Which is the R way of saying

. . 2 _
Again we notice a similarity to the arcsin formula, this time
With y = i/2, but with with an extra factor of 1/k in each
term, which we can explain by dividing by y and integrating:

o 2
. ‘ % (asinh y)
zeta 3 = 18/ -------- - dy
' - 0 ,

where asinh is inverse hyperbolic sine.
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In an effort to rewrite this as the usual integral definition of .

zeta 3, I tried substituting

Use ~ coth /2 = 1 4+ e e



and
' e ‘ . | o oo ’
/ fix) dx. -,-/ fi{x) dx -/ f (x+a) dx
and
‘ n-1
. 1 v x t
zetalnyx} = ——ecoeo_ ————e dt
: (n - 1)! t
e - x
where v
K .
. - y
zetalnix) = Z’ -,
n
: k>l Kk

the generating function of the -nth pouers. (zeta(n:l) = zeta n
and zetaf{l;x) = - log (1 - x)}. Then expanding the numerator
into 3 terms and using.

2 . .
1 pi 2
zeta(2; --) = -~ - ((nd)
2 1c
@ .
{see J. Edwards’ Treatise on Integra!l Calculus, p, 285+),
one winds up with =~ : L

5 ' 1 pi -8 3
zeta 3 = -~ zetal(3: -=) + -~ log & -~ - (log ®)
A ' 4 2 B 6
gy
where & is the golden ratjo
o 2 asinh 1/2
-=1.618... = & -1 = & .

Surprisingly, this formula appears in problem XXVII 41 iii
‘of Edwards, credited to the ingenious manipulations of Landen.

PAGE 39

Landen and Ramanujan independently found the analogous relation:

o v v > o
: 8 B | 2 pi o 1 ' 3
zeta 3 = - zetal(l3; -) + ———u log 2 - ---{log 2} ,
’ 7 2 84 42
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Wwhich suggests fhat there is at least one more of these identi{ies.

2 : 3
mith ¢ instead of & or 2. Perhaps this is what was garbied to
produce the obviousiy false equation in problem 41 iv.

Clausen, in Crellie's Journal, vol. 5, (1838), p38, gives

, pi no 3 n
zeta 3 = ~=—- R e - ===~ R emmm o
2 1 2@2n+1) 2 nxl- 2 2n+1)
8 n n>- 8 n
2

Noting that these R's are integrals of (arcsin y)/y and

2 , .
(arcsin y) /y respectively, we can perform the analogous
manipulations (starting with y = sin t/2i) to get

n -3 ’
-y . 5pi 13 zeta 3
i B e—m————— + eweem————

Z' A 3 8/2 36

n>8 (3 n+l) 23
and '

n 3 ‘ ,
(=) 5 pi 13 zeta 3

Z 3 9/2 36

n>8 (3 n+2) - 23

by separate consideratioh of the real and imaginary ‘parts.
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Returning to the zeta 3 acceleration formula, we note that setting
n to 1/4 instead of 1 gives us a formula for C-

T 1 11

-— o+ - 4 - 4 e
o3 -3 3 3
1 5 9 . 13
1 1 1 1
e (i, .
2 c3 3 3
1 3 5
1 1 1
+ e - - 4 e -,
3 3 3
1 3 5
o 3
1 _ zeta 3 pi
= - {(zeta 3 - e 4 -—)
2 8 32
so
: 3 o2 , o ’ 2
7 zeta 3 pi 88 k + 112 k + 41 - 16 (k + 1)
e ——— + Rad o d g B e - — R --------------------

48 (k + 1) 4k + 1)
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Sinttinnguncticn Addition Formula

Sometimes it is desurabie or even necessarg to choose a sequence
of spltttsng functions whose formulas alternate between two different
. forms. The most useful special case of this is when

every other .s is identicaliy 1. This has the effect of orphdnlng the
first term of each partialily accelerated series, replacing n by n + 1
~in -the term ratio. As we shall see, this is useful for increasing
convergence rates, but more important, it allows us to use
acceleration formulas which would otherwise invoive division by 8.

Consider again the probiem of accelerating zeta 3, with

Before finding better heuristics, | found bg analogg With the
Kummer transform,

2
n
S = —
8,n 2 (n - 1)
giv}ng
| - 1
u - - ——————--a-——-—f—
g,n -1 n+ 1)
2
. , n (n-1)
and = r = e
1,n . 2
n+1) tn+2)
But s and u don't.exlst. a problem which we mught sidestep bg
8,1 - 8,1 Co

remémbering to sum from n = 2 instead of 1, adding‘back ih the
initial term when we finish. Blithely proceeding, we will eventually
discover the pair . . o

n (n =~ k)
r L I il T T pp———
kyn 2
n+1) (h+k+1)
2-
. n
S W et = e - — ——  ———

ken - 2tk +1) (n-k - 1)
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Wi th
2
(k + 1) ‘
u = — o ——— - — —‘ ——————————— - ———— .
K,n n+k+1) tn-k -1
But this says that if we start with n=2, ué will get a zero

denominator in the k=l orphan. So we must transiate the
k=1 series by a term as we did for kK = 8. In fact, we wiil
have to do this for every k. A nice way to think of this
is that before the application of the

kth splitting function s ,» We interject the sptitting function

k,n
s = 1. Thus, before the k=8 split; r. uill become
n - 8.,n
» 3
(n + 1)
3 .
(n + 2)

‘necessitating the replaceméht of nbyn+1in s

, wuhich
8,n -
evades the division by 8. By extension, r will become
K,n
.2
n {n + k}

2 -
{n+k + 1) _(n +v2_k + 1)

just before the k + lst replacement of n by n + 1,
after which the value of s must be

2 (k +1)n

li.e. n + k + 1 replaces n). We note that the r formula now
corresponds to the one we got using the heuristics, but the s
formula does not. This is because the s in the earlier acceleration
combined the effects of the current s and the g = 1l preceeding it. .
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How could we have combined these tuo alternating spltting functions
to get the earliier one, had we not already knoun it? "Luckily",
some straightforward aigebra solves the more general problem of
finding the splitting function s equivalent to successively

' n

spiittfng by p

n

and then g :
n o . n

Sp}itting Function Addition Formula

s = p +qg d1-p +p r)

n n n n n+tl n
In our case, p =1 and
- n
2
n+k + 1)
q = s ™ o .
n k,n 2k +1) n_.
‘Using L 2
- (n + k) n
r - B et ———————— .
n Ky n+k 2

tn+k+1) (h+2k+l)

- our new, compound splitting function becomes

kyn 2 k+1) In+2k+1)
in accordance with the earlier transform.

The main point of all this is that once we successfully transform

a8 series by finding an s-r pair, we can find any number of neu s-r pairs
by interspersing the unit splitting function using this important
special case of the addition formula. We summarize it under the

name - : ‘ g :



‘Transiation Transform

s <- 1l + s o r
k,n k,n+k+l Kk, n+k

Rich Schroeppe! first proposed the technique of periodically
translating a series while accelerating it, originaliy for the.
- purpose of improving the convergence rate. Let us use this on

some accelerations to see how this improves on the improvement.

First we derive another pi formula from arctan 1:

(with n starting at 1). Heuristically choosing the
same denominator for the splitting function, while
requiring it to approach 1/2 for large n, we get the form

giving
2(2-2a n+2-a
u O eee————— e ———— e ———

Bn 2n+1) 2n+3)

suggestihg a = 1 so that

2n -1

r ® = e

i,n 2n+5
suggesting

' 2n -1

il = - —— . —— — ———

k,n 2n+4k+1
requiring a = 3 k + 1 (in the formila for u not shown)

Kk, n
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so that
n+3k+1
s . e
- k,n 2n 4+ 4k +1
giving
| 2Kk+1) 2k+2)
on L @niakaD enaenam
Thén v
pi 3k +2 | (k + 172y (k + 1) 1
ST e W

With a modest 2 bits/term. (The author is mildly embarrassed to later

discover that this formula is merely the result of pairuise grouping

the terms of Euler’s transform of the arctan 1 series, and could have

been computed directliy by using p = 1/2 = g .in the addition formula.)
: n n

Using the Trénslation-Transfcrm, we get

2n+2k-1
r - - - “—_-_--_';-_f'—
‘Kyn 2n+B8k+1:
n+ & k-+ 2 2n+2k-1
S = 1 — e e ——— o ———— e —————

These give .
i 20T K48) k+1/2 k+1 1
CTTTRETT G T TR 5
with a healthgilog 27 = 1.43‘decimai digits/term. MWe cou!d‘héve
gotten this pi formula diyectlg by accelerating arcsin 1/2, for which

r LB e e e —————————

K,n 4 2n+2Kk+2 Cn+6k+3
@2n+2k+1) 2n+2K+3)
s =l 4 el ————— .

and
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K,n o in + k+1) (2n+ Bk + 3) 2n+6k+5) (2n+6k+ 7}
starting n and k at 8. |
Recalling the fact that offsetting n by l/2‘chahges arcsin y
2 . ‘ A
into (arcsin yl/y, we have
pi 7k +65 -k + 1)

18" 3 (2k+1) k:8 3 3k+4) (3k+5)

- k>8

This last formula can also be found by a stralghtforuard acceleration
and translation transform of eta 2:

1 1 1 1 pi
eta 2 = -~ - - 4 0 o 0 . = —-
2 2. 2 2 , 12
1 2 3 4 :
‘ n {n + k)
Here  r B e e ’
: kK;n (n+k+1) n+2k + 1)
n+ k
and ) =l e el
"R, n 2 {n+2k+1)
{consistent Qith the heﬁrisit}cs)
. - v k + 1) (n+ k)
s0 ‘u = --~-—;---~---------------~_------~—,5--
kKyn o {n+ k + 1)~(n +2k+1) n+2ka+2).
. 2
3 , k ' v
and eta 2 = - [ S S

4 k>l 2 K+1) 2k+2)



PAGCE 48
{one half times»Markov's zeta 2 formula).

Thén, translation transforming:

n+k n+ 2k
r . T
K,n N+2k+1 n+3ka+1
(n+Kk (N+2K (h+é&k+3)
S = 1 T T e e A e e e S = e " ———— " - ——— i > o ——
k,n 2n+2k+1) (n+3k+1) (n+ 3k + 2)
2 |
ok +1) (n+Kk)(n+2K)
u = e e e - ———— o — — -t — - —————
k,n ' (n+2k+2) n+3xk+1) {n+3k +2) (n+ 3k + 3)
whereupon s R wu gives us 3/2 times the earlier fornula
’ 2,1 k»8 «k,1 ' -
2 ' A
for pi /18, Curiously, s  factors, so that
' - k,5 :

2 | | ok 3
pi 11 1 1 (=} (k+3) (7k+12) (k + 1)!
—— = = e - e B e E e e,
12 1 4 9 18 2 ‘ '

‘ . . k>l k (2 Kk + 3 {3k + 4)! .

Repeating the translation transform on the pi/4 formula,
He get a series with 6 bits/term, but these terms have an
unfactorable quadratic in their numerators. Noting, however,
that r is the term ratio for in 2, we get
. B,372 v ‘ : ' ‘
N2 = s R wu
v k,3/72 k>B k,3/2
14 k + 11 k +1) 2k + 1)

- e =
16 kB 8 (4 k +5) (4 k + 7)
< 3 (14 k + 11)
et bk + 1  k+2
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Translation transforming the zeta 2 series, we get

2
{n + k)
r - e
" k,n 2
’ (n + 2 k)
o . 2
(2n+5K) (n+ k)
s = ]l b e A
k. n o >
2 2k -1) (n+2 k)
3 3
. k (n+ k)
u = bbbt d --—-‘---- -------- »'-
k,n 2 2

2 Q2k=-1h+2K (n+2k+1)

- Here we must use n = 8 and sum from k = 1 so that r

is initially that of zeta 2:

2

: 3
21 k - 8 3
- e R cmcmemmmmeee
8 k>1 3
8 2k +1)
» S
I et
8 i 3

k>B (2 k + 1)1

prdviding B bits/tern.



Translation transforming the 4/pi formula,

2
v Rn+2k-1)
r - e -
k,n 2
: (2 n+ 4k + 2)
| ‘ - 2
bn+10k+7 (2n+2k-1)
s = ] b
K, n & 1k + 1) : 2
2n+4k+2)
2 2
2k+3) 2n+2k-1)
u B e e e e e e
. k,n 2 2

8 (k+1) 2n+4k+2) (2n+bdka+d)

Noting that s  reduces to

K;Z
42 k + 47
32 k + 32
we get
v -
4 1 42 Xk + 5 (2 k + 1}
i B R oo
pi 4 2848 k>1 3
812 (k + 1)
| " 2k-13
] (42 kK + 5) { )
5 . . Kk
- - -+ ; ——— e
4 PARV 12k
k>1 2

- Which, like its predecessor, is also a series of exact binary
fractions, its kth term being an integer of about Bk bits
shifted about 12k bits to the right of the binary point, for

a net gain of B bits/term. Jack Holloway {(of the M. 1. T.
Artificial Intelligence Lab) points out that this enables us to
compute the millionth digit of 1/pi without computing the
~first half million digits. . ' ’
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Trans!at|on transformnng the pi formula whose ratio approached
2/27 {uhere we had set out to beat Euler's transform),

ne have
2n+3k+1) 2n+3k+2)
r e e e B
K,n n+5k+2) 2n+5k+3)
(2n + 3 k + 1) (2 n+ 3k + 2 2 n+7 Kk + 5)
S = 1— —————————————————————————————————————————————————
kon 2 @2n+5k+2 (2n+5k+ 3 2n+5k+ 4
- {(k +1) 2k + 1 2n+ 3k +1 2n +3k +2 2n + 3k + 3
V] W  TUemosoomess sk mdcmmsre memmm e m e s me e m e m e ———
k,n 2n + 5k + 2 2n + 5k + 3 2n + Sk + & 2n + 5k +5 2n +5k + 6
" which promises a term ratio approachlng 54/3125. But this
rapid convergence is marred by .the fact that s has an
‘ o k,8
unféctorable cubic numerator. Fortunately, s does not,
o ’ k,1

SO He can again puil the trick of transforming the series u:th
its first term borrowed. Thus :

pi (1K +13) (17k + 120 12 +13k + 33k + 4 3k + G

R R = o cmmm mmemmm e e
4 o 728 T kB 55k+75k+85k+95k+11

(11k + 13) (17k + 12

k2B 3 (2k + 1) (k+1) 2k +3) ( ) (=2)
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Translation transforming the special cases of the hypergeometric
function near the beginning of this paper, we get a few familiar
identities and a few weirdos. Recalling

Fla,bsciz) = R —eeco ol - 2
: 8 nm+c n+1

For Fla,l;c:z) we will have
n+k+a
r B meee—e—— - Z
kK, n n+2k+c¢
N+ K+ a z
s = 1 — e ——— ——— . [E T ——
K,n nN+2k+¢c z-1
Then
_ . 2
_ (z—2)k+(c—a)z-c . kK + a k +c -"a z
Fla,l;c32) @ oo __ R cmmmmem e e el .

c {z - 1) k2B 2k +c+1 2k +c+2 z -1

Taking the resultant with respect to k to find simplifying values of
a and ¢, We find that the degree of the term ratio reduces in the cases
c=2a-2, 2a-1, 2a, 2a-+ 1, and 2 a + 2, but only in

the case ¢ = 2 a is the result expressible as an ordinary hypergeometric
function: '

2
Fla,132a32) = —ec-. - Fla,l;a+1/2;----).
: 4z-4

In‘thevother éases.'the only uég to assure the n+l in the denominator
of the term ratio requires particular values of z:
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2
. ’ {a - 2)
Fla-2,2; a-1/2) —-eeeeee_ . )
o - 2a-4 : : (a-3) (a-1)
Fla,l; 2a-2; =<-=) = o
' a-3 2
{a - 1)
2
- {a - 3/2)
, Fla-1,2; a+1/2; —=eceeca_)
, : 2a-3 (a-2) (a~1)
Fla,l; 2a-1; ~-=v) & e
a-2 : (a -1) (2a-1)
2
3 (a-1/2)
Fla,2; a+—-j ——~o-un )
2a-1 : 2 a (a-1)
‘Fla,l; 28+l —=--) = e
. . @ {1 -2a) (2a-~-1)
v -2
. 3 a _
’ Fla,2; a+-3 ——mmmmmmco )
_ 2a- 2 (a-1) (a+l)
F(‘a.l; 2%a42; ==~} m e __ ‘

a+l o (1 -a (a+1)
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It is a manipula{ive pain in the neck to conmfirm a fact which
is obvious when you think about it: -

Transiation transforming an s-r pair and its-
dual produces equivalent formulas. :

" This is because the orphans split off by the 1’s are made by
the s's in the dual, and vice versa. '

For some reason, discoveries rarely proceed along the most cdirect
line. It is only afterwards that one sees how he could have found
his result much more easily. An exampie is the nmext three zeta 3
formulas, which are derived in seemingly the reverse of logical order.
This presentation has two advantages over Gaussian sanitization,

in that besides providing a datum on human problem solving,

it shows off the pouer of the splitting function-

addition formula in two unusual applications.

n + 1)

a {n+ 1)

a must then be 2 to reduce the degree of u, while b = 2 zeros the
~leading coefficient in an ugly guadratic factor of u's
numerator. The result is ' o

3 o
(n+1) (2n+75)
1pn N - . -
n+3Y 2n+3)
Ohlg slightly discouraged by the fact that the rétio is now
gquartic, we should obviously try IR :

(n+b) (n+1)
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But an exhaustive appiication of the FACTOR and RESULTANT functions
of MACSYMA fails to turn up any promising leads. Since
zeta 3 formulas are so hard to find, we desperately try

. 3
{(n +b) (n+ 1)
8 ] b e
l,n 2. .
' aln+3) 2n+3)

.Agéin a must be 2 to reduce the degree of u, and amazingly enough,
b = & gives ’

{n+2) (h+3)
2.h -
n + 4) (n + 5)

a simplification to something more like the initial ratio. This suggests
the possibitity of a sequence of ratios alternately cubic and gquartic,
generated by an alternating sequence of splitters. [f wue succeed, ue

can use the addition formula to combine pairs of consecutive splitters

to produce the compound spilitter which takes us from one cubic form
‘directly to the next. Anticipating this, we relabel the indices so that
the cubic ratios have consecutive k's, while the quartic ones are

distinguished by a prime {"). Thus, this last ratio (a cubic) will be
‘renamed r » Wwhile the previous quartic will be called r* . '
' 1,n ’ : B,n

Now we can guess that

2
{n+2K) {n+ 3K)

r B S e e = e = = ———— " ———

k,n : . ' ' ' 2

(n+3k+1) (n+4k +1)
and we Wwill shortly find that
- v >
(n+S5Sk+2) (n+ 2k} (n+ 3Kk)
s =l o
k,n 2

gives
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2

(N+2k+1) (M+3k+1) (2n+6k +5)
r' -_a T —— ——— o —— ———— ——— - —— . - e s e it o
k,n . Z

n+3Kk+3) (n+4k+3) (2 n+6k+ 3)

and then |
2 .

- N +S5K+4) (n+2k+1) (na+ 3k + 1)
s I B U
K,n 2

2k+2 2n+6k+3) (n+4k+ 2)

N +2k+2) (n+3k+23)

(n+3k+4) (n+4k+5)

Now we combine s and s’ in the addition formula and get a

- staggering expression for the compound splitting function
involving an unfactorabie polynomial of degree six in both k
and n. Proceeding to compute u anyway, we determine that each

of these ungainly terms will contribute a generous twelve bits:
B3 k +78 k + 19 {(k +1) 3k + 1) (B3 k + 58)
s B @ erEmmc e — - ————————— — + e ——— —
K, 1 8 2k +1) 3k +2) : ' -2
‘ ' : 182 B3k +2) (4 x +3)
. ‘ . 4A'
RBk+1) k +1)
u ’ - e e e e e e e e e o
k,1 ' - 2 2
16 B3k +4) (4 k + 3) {4 k +5)
4 3 2. . | -
. - 24578k +B41B1k +B82152k +2B427k+4154 (k + 1)
zetd 3 e R e
3456 (2k + 1) (3k + 1) 3k + 2) k>8 2 2

4 3 2 S 2

. (24578 +B4161K +62152k +2B427k+4154) K I (Zk+11 !
- §‘ N _-_..'_..._._.._....__.._.._____-_____-______-____» __________
k>0 48 2k + 1) Bk+1) Bk+2) bk + 3) 1
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This combination of cumbersome expression and rapid convergence

is reminiscent of too many applications of the transiation transform.
Noting that the translation transform can be inverted, we ask

- what acceleration formula can be transtation transformed to get

this monster. :

Inverse Translation Transform -
s -1
k,n=k-1
s €~ emmmmemmee
K,n r
kK,n=-k-1
ol <= r
k,n k,n-k

These relations follow from substltuting n-k for n and n-k-1 Afor n
in the translatlon transform. then solving for r and s .
Ky N " k.n

In the case in question; s . is too large to exhibit, but the result
N k'n .

of the fnverse~trénsiation transform is a barely tractable
2
h + k) (n+ 2 k)

fn+2k+1) (n+3k+1)

2 3 2 2 3 2
(n+k)  (n+2k) (2n +{2Bk+12)n +(B8k +83k+25)n+8Bk +158k +33k+13)

& 2Kk+1) h+2k+1) (M+3k+1) (n+3k+2

(k + 1) (4B x + 29)
then - s - = ] b e
Ck,1 . : 2
36 (3 k + 2}

) . (k + 1 2k + 1) ]
and u I ettt T R L

9 2k +3) Bk+2) (3k+4)



PAGE 58

-1 that
2 L | 4
366 k + 581 k + 173 | k + 1)
S 3k +4) (3K +5)
2 | 6
(364 k + 581 k + 173) k!

k>0 36 2k +1) Bk+ 21

Wwhich is somewhat nicer and still provrdes nearly 3 digits/term.
Reapplying the inverse transform,

>2_ |
n (n+ k)
r W e e e = Y P - —— ————
k,n - . ' 2
n+k+1) (n+2k+1)
(k + 1) (ﬁ + 3k + 2) n+ 3k +1
S T e e - —— - + s —————
K,n 2 2 2k +1)
4 n+ 2k + 1)
s0 thét
o >
3B k + 18 o {k + 1)
zeta 3 @ memeeee e R e e
16 (k + 1) {2k +1) k>B 2
: : ‘ b4 {2 k + 3)
| o 3ek-1l
2. TS
k2l 4 2k -1k ()

which, at 4 bits/term. is s:malar to the very first zeta 3 formula
HWe got, but twice as fast, It is, however, quite different from
~and computatlonallg superior to grouping terms of the sliouer series
_ pairuise, uhlch produce an unfactorable cubic numerator.
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In general, grouping terms pairuise tends to double the

degree of the term ratio whife doubling the digits/tern,

so if you intend to evaluate an R expressed series sequentially, -
the doubled computational effort per term will countervale

~ the greater convergence rate. Also, it greatly simplifies machine
- computation of these series uhen the integers comprising the:
numerators and denominators in the R expressson do not exceed

the computer's register size.

On the other hand, Rich Schroeppe! has noted that n
iterations of pairwise term grouping will,

. n
for large enough n, evaluate 2 terms of a sum much more rapidiy
than sequential evaluation, assumang the Fast Fourier (n iog n)
multipllcatlon algorithm, :

Combining terms pairwise is neatly done in R notation:

.e.. (b +r b~ +r (...
2k 2k 2k+1 0 2k+l

eee b+ r b +r r ...
' 2k 2k 2Zk+l 2k 2k+l

. ar

b Rr = (b +#r b ) R r = :
k k>B k 2k 2k Zk+l k2B 2k 2k+l
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Pitfalls

Inverse translation transforming arcsin 1/2,

K, N 3 2n-2k-1 2hn+ 4 k + 3

gives

n, Kk 2k=-2n+3 b6k+2n+ 5 bk +2n+7

Noting;that'fhis simplifies for n = 1, and that arcsin 1/2 begins

1 1 ,
- (1 + —-—— ( 1 +‘ooo
2 2%

so that a s 1748, .
pi 1 1 4 k +4 4k + 4
T - S
) 2 38 kxB 4 k + 7 4 k + S

But this is absurd. because it says that pi > 3 + 1/5, since the
R expression is > 1. What went urong? Recall that in the
derivation of the transform, the kth partial sum of the orphans
comprising the new series differs from the orlglnal sum by

the kth partsailg accelerated- seraes :

. EE:-a = a R r = a u u e R o~
. k,n k,1 n>1 k,n 8,1 8,1 1,1 - k,1 n»l k.n
nx>1 : B C

which we assumed went to zero With increasing k.
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Now as k approaches infinity, r approaches
K,n

16 (n +1)
which is the term ratio for

S =172
(L + 1/8)

by the binomial theorem, so

2n+l 1 2 n+ 1 2
- - ———— - l - —— R A - — . ——— - ———

R
n>8 16 (n + 1) 16 n>1 18 (n + 1) 3
Thus the R expression in our error tehmvapproaChes

372
2
16 (1 - =)
.3
while the u's which are its coefficient form a convergent
infinite product! We can, in fact, evaluate this product as
the discrepancy between the two sides of the false equation.
To do this, we must find out what. :
1 - . bn+b4 bna+k
38 8 4n+7 4n+9

‘reallg equais. UWriting

4 n 4 n+ 4K
r | e e e e - ———— o e —
kK,n bn+b4dk+3 4n+ 4 K+ 5
n+ k
s = 1 4 —eee
k,n ko+ 1
Then
n+ k 4Kk + 3 4 k + 5
u B = mmemm— et e e
“K,n K +1 4n+ 4 k + 3 4 n+4k+5

{whose product over k, we note With relief, "dlverges to zero" for
n > =1} and g : '



4k +3 4k+5
r R e ———
1,k b k+7 4k+39

Buf this is just the sum
| 11 1 1 1 1
i S S

23 5 7 3 1

-uWith its terms grouped pairwise. Using.

2 x
arctan ------~ o - :
2 3 5 7
1 - x X X x
-------------- = X m e m em o e g e,
172 . 3 S 7
2

evaluated at 1, we get

1 bn+b4 bna+b 1 pi

= R eemree i 2 - (eeem - 1)
38 n>B 4 n+7 4&n+9 2 3/2.

Finally, thén,'_v

2k +1 bk+b Gk +b 32 pi

) B - ceme————-
k>8 2 k - 1 4Kk+5 4k+7 ‘ 8

This réla{ion ﬁaﬁ be verified bg multipfging bg
B vsiﬁ p§/4 ' I bk +3 4 k +5

. pil4 k2B bk 4+ 4 bk 4
td'}eave ’

2k +1 4k+3

- ——— ——

which approaches -3/2. More genefal1g. we have the

PAGE B2
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Corrected Series Transform

.r = s R wu + 0 u R r
n>m j.n k,m Kk>j k,m k>j k,m n>m n
where r is the limit of r = as k grous infinite.
n K, n :
In our parficular case, Il u converges for all m, giving’
k,m
2k +1 b K + & b k. .+ 4

k2j 2k =2m+1l bk+2m+3 4 k+2m+5

as a sum of two sums divided by a third sum. - I wish 1 had time
to further investigate this connection between sums and products.

Hoping for another product formula hy dualizing the transform
that started all this, we are very unpieasantly surprised.

2n+1 4 n+ 4 b n+ 4

r = e - ——— Y —— s — " > —

k,n 2n-2k+3 4n+2k+5 4n+2k+7

_ 3 2n-2k+1 4n+2k+3

s - . e ——— 0 — ——— - - L ———— o ——— -

K,n 8 k 2k +1

2k+3 2k-2n-1

u ™ e e .

K,n 8 k 2k +4n+5

The product of the u  “"diverges to 8", 1éadfng to é cohtfadiction

- K,n
‘of thebfact that the two series differ by évfinite product.

-.The problem here is very serious: each individual split is_invalid!
The quadratic growth of s is too fast for the input series,
. : k,n : :

which converges |ike a reciprocal quadratic for.all K.

1t uas most unherving and enlightening of Eugene Salamin

of the Draper Laboratories to point out that any series can be

converted to any other series in.a single split, since s can
‘ : ’ ' N+l
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aluays be chosen to satisfy the recurrence

1-5s +r s = anything .
n n n+l

Since each of our series transforms involves applying an infinite
number of splits, how can we be sure ue aren’t perpetrating the-
wWildest absurdities? Our salvation lies in zippers. To see
“what actually happens to our series, imagine a zipper

traveling along, splitting it in two. Right behind it, another
zipper is zipping it back together, but offset so that one tooth
{the orphan) is ileft hanging off the front and there is a
corresponding extra tooth on one side between the zippers.

I[f the series were finite, this extra tooth would become the
orphan on the right when the zipper reached the end. In symbols,
when the zippers reach the pth term,

. p-1 '
:E: a = a s + E :{l -s) a +-s a
n B @ . n n n+l n+l
n=8 - )

n>8

+(1;s}a+§:a.
P p n.
; n>p '

If the origihal’series_converges. then the last

sum will vanish as p grows, but this isn't necesarily true of

that extra tooth, (1 - s ) a . Thus, besides worrying about
: - p P ’

, We-must make surevthat the‘

the product over k of the u
' ' : k,n™

dimit as p grows large of (1 - s ) a approaches something
E . ' : Kyp K, p -

(preferably B8) which We can some over K. At last, then, the
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Really Truiy Correct Series Transform

R r - 5 R u + Il u R r + t
n>m j,n k,m k>j Kk,m kK>j kym n>m n k

K>j
‘where t =1Lim (1 - s° )} a  as n approaches infinity,
. kK n k,n k,n - '
r- = Limr as k approaches infinity, and, of course,
n k K,n ' .
u =1 -5 + s r . Ordinarily, s would be chosen
k,n k,n kon+l  k,n K,n

so that the product and the t  were 8.
: . k .



Summing the Reciprocal Fibonacci Numbers:

By an involved process, [ found

k
(-} ¢
n
r - oo
K,n £
n+2k+1
K
f + (~) f
n+4k+2 n+2k+1
s M e ——————
K,n (2 f + f } f
2k 2k+1 n+2k+1
n+k+l
{-) f f
2k+l  2k+2
u B e e e e e e e e e e e e
kK, n (2 f + f y f f

2k 2k+i n+2k+l  n+2k+2

where f , f , f ,,.;. are the fibonacci numbers 9, 1, 1, ...

o] {haf
k>8 2 f + f

‘ g g -
- k>B 2k+l 2k+2 1 3
R 'n 1n | v
where g = 2 f + f =04 + {--), the nth Lucas number.

n n-1 n ' b S ‘

This is'an extremely rapidly convergent series, yielding about
5 o
k /5 digits for k terms.
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Similar manipulations yield
1

n>l

sinh (2 k + 2) x - . sinh (& kK + 3) x

© - o ———— - . T (ks ot Vo T T T o Mtk — T ———————— = —— ——————————

Z sinh(2k+1l}x sinh(2k+2}x (2-2cosh x) (2-2cosh 3x)... (2-2cosh{2k+1} x
k>8 '

More generally , if
no n
f = X + Cy
n
so that
f = {x+yl f -xyf
N+l n n-1

then ue have.

S n+2k+l

Cnek 2kel  2kel . 2k42 2k42
c (xy  (x -y ) x -y )
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so that E -—- =

. _ I f
' n>m N
‘ k+l: ,

f - (xy) f m+k - 2k+1 2k+1 2k+2 2k+2
m+bk+2 m+2k+1 o {xy)l - {x -y ) x -y }
x =1) (1 -y f ¢ k38 kel k42 k2 kel .

: = ' m m+1 odx -y ) x -y yof f

m+Zk+2  m+2k+3
again with the convergence rate of a theta function.
The aufhor is perplexed by the fact that terms in the right side

j j+l j+l j

of this equation blow up when x =y or x =y for some
nonnegative integer j, while the left side does not. In fact, it
'is hard to see how equality could hold when x is fixed at 2, for
example, and y is nearly 1. Numerical experiments, however,
indicate that the equation indeed holds, the large term being
rapidiy eroded by later onmes. This indicates that when such an
offending j exists and is positive, the above expression, with

R instead of R , must be 8.

k> j - k>

v . ' .n : .
I[f we really do wish to sum 1/{x - 1), (a so called Lambert series
when x = 1/z)}, we must resort to sneaky tricks: ' )

oMl ox =1 ml o x ) o= (1) (e ) = (=)
(Ixl > 1)

~This holds because, on the right, term 2 m + 1 canceis

term 4 m + 2, leaving only the terms where n = 4 m,

- These latter two sums avoid the division by zero when fed to the
 transform. o - '



In other cases we can avoid the probiem by using the identity

n. » y n
cy k T cy k+l
(====) {-=--)

1 i
n n - lk 1 y k
n>B x - cy k>B (-} - - (-2}
B - X € x

(x> lyf) .
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v 'One Last Zeta 3 Fornula

Knopp, Chapter VII] exercise 128a, points out a relatlon
between zeta 3 and the series Nlth ratuo

- —————— -

(n+2k+1)

as a candidate ratio in get another zeta 3 transform.
After guessing the form .

{n + 2 K + 1)

ue flnd (ulth JUSt a Ilttie help from NACSYHA)

1 2k +1
a = e v bow e
6Bk + 2 3k +1
3
(2 k + 1)
C | ecammm e
2 (3 k + 1) (3 K + 2)
. -. N 3
: Sk + 1Y 2k + 1) o
d B e e
2 (3 k+ 1) (3 k + 2)
2 ©03
{k +'l) {2k + 1)
B M cmmemrmmcec e mar e ————

3 (3 K + 1} 3k + 2)
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~ Despite these composite coefficients, the author has so far
failed to find any nicely factorable expression or sum of
tuo express:ons for this splitting function. Puttlng this
function in some inteiligible form could shed much ight on how and
“when to look for such things. As it stands, the gross disparity
in elegance between the ratio and its splitter seems to suggest
that we should seek ‘a new formulation of the transform process,
In any case, taking partial frdctlons u:th respect to n,

3 2 2

‘ N+ 4k + 1 {2k + 1) (3n + (15k + 9) n + 28k + 25k + 8)
-] B m—eec———— - e i T U, .
k,n 2 3k + 1) - 3
En+2k+1) Bk+1) (3 k+ 2)
Then
2 ' .2
56 k + 8B k + 29 o (k + 1)
zeta 3w el R e

3 k>8 3 3k +4) (3 k + 5)
24 (2 kK + 1) (k + 1) C K

In the previous exercise, Knopp indicates that

nl n (n+ 1)

This is 1/8 (= the first term) of uhat Wwe would get bg substltutang
k + 1/2 for. k in the last R expressuon for zeta 3, since

Euler's Constant

In the Amerlcan Mathematical Honthlg, vol. 76 43,
Marg3 p273 1. Gerst and H. F. Sandham give

T 1 2 2 2 2 3 3 4
gamma = - - - k- - - g ool h oo el oo,

2 3 4 5 8 7 8 15 18

the numerator increasing by one each time the denom|nator reaches .
a pouer of 2. We can write this as_the doubie sum
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1 1 1
- - - ke,
8 9 1@

. . n
which is the series for - log 2 started at. the 2 th term,
summed for n.> 8. Recall the application of the translation
transform to .

Ky n 2n+b4k+1

(the “embarrassing” formula) to get pi/4., since for k = 8 this is:
the term ratio for arctan 1. Replacing n by n+ 1/2, and redefining

‘we have, fof,kA-'B; fhe ratio we want. Réplac?ng nbyn+ 1/2
in the corresponding splitting function and u,

2n+ Bk +3
S - e ———————
K,n A n+ 2k + 1)
Rk +1 2k+2
%] B e e e e e ——— —
" k,n 4 n+ 2k +»1) h+2k+2)

which says



PAGE 73

—(-)  2m+Bk+3 '(zwru(zk@n) '
e @ e R cmm oo
:E::'n Gmim+1) k> 4 2Kk+m+2) 2k +m + 3)

2m+Bk+3) (2K

= (m=1)! 2: e
. v k+1

k8 4 (m+ 2k 4+ 1)

(for m even). Thus. to get Eulers constant, we must

: J
sum the R expression withm =2 , for j > 8.

gamma = S o e mme o
E E ' A , |

>8 k>B 2 + 2k + 1  j42k+2
: ( ) 2 2 -1)
2k ’
This prospect grows

cheer ful uwhen we notice that after a few J, the R expressions will
-converge with great rapidity, returning 2 j + 2 bits/term.. This
is because in the term ratio, there are two m's.in the denominator

and none in the numerator, Thus b bits of gamma will require about
(b=j)/(2j+2) terms of the Jth series. This says that the total
number of terms of all series will be about

b b-1 b-2 g - b

s F sk - Ly == Y - (Inb - 1)

2 4 B 2b 2
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Zeta 2 Revisited

'n {n + k)
r B e
k,n 2
(n + k + 1)
n+2k +v1
s ™ e
© k,n k + 1
gives
{k + 1) (n + k)
u - - - e e e -
K, n -2
{n + k + 1)
Now s =2 and
k,1 "
2
{k + 1)
u = e e
k,1 2
(k + 2)

which is a strange way to prove zeta 2 = 2 eta 2 .
Translation transforming,

| 18k -3 K
zeta 2 = e B B et .
bk 2k -1 k»l 2 2k + 1)

~This series has similar convergence tb our first (Markov) one -
3 Lk

zeta 2 = ——- R ccmmmmmmen
2k kx1 .2 2k +1)

except that the former oné‘alternates{'



The zeta 2 term ratio

——— —————
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Choosing the splitting function a n + b will produce a neu ratio of

n+ p n+gq. Q(a.b:n+1)

- - —————— —— e - ————— 1

n+r+1 n+s+1 Qab;n)

Where O is a polynomial quadratic in n and linear in a and b.
Now a and b can be chosen to make Q divisible by any two
“of the gquantitiesn+p, n+g,n+r, o Nn+s, or
they can be chosen to zero one or both leading coefficients
of Q. Thus for our new ratio we may have any one of the
guantitites

n+p n+gq n+p n+qg+ 1
—————————————————— ’ N -—-———»——— M e ————— >
n+r+1 n+s+1 n+r+1 n+s+1

n+p N+ q n+p n+q
______________ y —mmeememe e,
n+r+1 n+s n+r+1 n+s-1-
Nn+p n+q n+p+1l n+g+1
---------- g OF  mmmemmmee e
N+r n+s n+r+1l n4+ss+ 1

or any of the above unth p and g suapped or r and s swapped.
Aiso. from the addition formula, we learn that p = 1 and
n :

g = - 1/r combine to produce 8, the identity spiit,
N n : : ‘

“and thus the splitting function

will perform a reverse translat|on (the opp05|te of s = 1)
: n
.producnng ‘
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- ———— ——— ————

By combining the above operations, we see that it is possible
to independently change any of the four terms of our original
term ratio by any integer. - Thus, any series whose ratio is of
this form, with p, g, r, and s all integers, must evaluate to

2
cpi +d

Wwith ¢ and d rational, since the splitting process only adds and-
multiplies by rational quantities. Among these rational quantities
is 8/8, uhich figures into those splits which would result

in cancellation to a linear term ratio. For example, to get

- —— ——— —— s ——

- ——— —— - ——

Thus, if both denominator terms exceed both numerator terms,
there is no way to pass through any ratio where a ‘
denominator term is as large as a numerator term. In this

A 2 .
Wway we are prevented from proving that pi is rational,
since it is easy to show that any series with ratio

telescopes to a rational sum when with r is rational and

r - p is an integer. As a corollary, we observe that we can o
achieve such a cancellation if a denominator term initially exceeds
one in the numerator, thus any series with ratio

sums to a rational if p is rational, r - p is an integer, and
9 - s is a nonnegative integer. g : ’ ’

A particularly neat special case of the ahove
is the transform: S :



2
, n .
r - - — - - -
k,n n o+ ) (n+ k)
n+¢-1
s - mmm——ee
k,n Kk +c¢c -1
2
K
u M @ e —— e
K,n (k + ¢ -1) (n + k)
which says
2 2
n m+c -1 k
_______________ R - B
n>m (n + ¢} (n+ j) j+c -1 k»j k +c) (k +m)
i.e.
2
n

is a symmetric function in C, j, and m.

With ail of these relations, there must be a neat

2

of pi proof in here someuhere.

irrationality
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For those readers Wwho have found the treétment'so far a bit on the
Heaviside, warning: we are approaching a singularity--ue will now
_attempt to accelerate the "series"

e E (1) "' @l - 11420231 4..,

1
: 1-t
gotten from iteratively integrating by parts e dt/t from 1
to infinity. o :
We have
r = -Nn .,
1,n

This is a special case of
nin+c ned +1)

K, R (n+a+k) (n+d)
' K

With'd =co=aandz = -1,
. _

k,n 2 n+d)
‘ k

splits this to yield
l+z0d +k+a-cn+ k+a 1+zd)
ko - ‘ ln+d) (n+a+k z
- K
which foﬁmailg satisfies the recurrences if

Ttk o+ al 1+z4d)

This says that
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- -l
r II-il _-_-‘ _____ R v
n>m jen z m+d) k>»j k,m
‘ bl
where
1+ z{d +k+a-¢)
. K :
v . - et =
k,n (n+a+k)z
I+z2k+2a-c¢c-1) (k+a-1) (k+a-c-1)
(n+a+k z M+a+k-1) (n+a+k v
. k-1
{using the recurrence relation for d to eliminate it).
K
Expressed in standard notation,
Jjan jom K, m
n>m k>}
a b
. k,n+l k+l,n
With r ® ————el and v E —m—ma
kyn - a kyn b
K,n K,n
so that b =
k+l,m
l+z@2k+2a-c-1) . k+a-1 k+a-c-1
e b = e e b
m+ a4+ k) z kem ~ m+a+k m+a+k-1 k-l,m
With b =s  and b =5 v K
jem Jom Lm0 gym j,m

In the special case of @ - 11 + 21 - ... -
we have j = m = 1, c=aa=d =« arbitrary, .and z a -1,



Choosing ¢ = 1, we have

. n ) . .
Z {(-) n! won Z b
K
n>B '

With b = 1/2, b = 1/8, and
S| 2

For reasons unknoun to the author, this last series seems to
oscillate with ever decreasing frequency and amplitude about
‘the "correct" ansuer .5388347..., gotten from the integral,
The convergence is slou: summing through b gives

» = s .
.598283... and through b gives .5935... .-

Larger values of c tend to reduce the frequency of early

oscillations and the amplitude of later ones, slightly improving
the long term convergence.
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Numérical Experiments

The reason that we choose s approximatety = 1/(1 - r y
) k|n . . ) kcn

and not exactly is that r  usually becomes an explosively
’ k,n -

complicated expression after a few k, But there is nothing
preventing us from numerlcalig grinding out a few orphans
to see how fast the series would go, could we find its
formula. MWe try good old

pi =4 (1 -1/341/5-1/7+ ...

and get the foliowing data. (The orphans are consecutrvelg
numbered, with the cumulative sum on the next line. The correct
portion of each sum is under!ined. Sums and orphans have all been

: 69 - _
scaled up by a factor of 18 and truncated to integers.)

3888888BB8888BBBB@888BGBB88888BBBGOBBBBG8888888888888888888880888BBBBB
388888888838868@88868838088888888888BSB@BBBBB@B@BSBBBBB@”@BBGBBBBBBBBB
138388383858888883882833338233883385383388888888888388858558538882888828
3l388888888888888888888888888888888888888888880888?8880888888888888888
 .2B8721818437772953454382236447748437629958433321726268391949687146498
3141561858738666184834327112533663732651884738821859514895883856835378
31352227689441336637992558518328658334826578222228694221 244785286
- 31415324829663556262389651 858921 82953382218765399281 7425923051 BB820664 -
~ 2433866112473381121684567925111189166634236262217858865571729697
3141592652362366873622886789468187164431385299635543962651 178672558361
~1231734176348781444565983771714828118936413886526198111388129
314158265359479108433708682348260989262862135185719578471772787838584398
- 7888184639717879772;5851489o781888478801°8°h457°58359548°1
31&15828535888888653311SBC54°5°7484715124574221478758a4731543147987658
. 2831758786224834123680203816344880323984348648544942B96724
31415926535837926248373753883773485 5728788422467868185789888897888389
928785487783247368695814568164132363748064579366477248.
3141582853589783544822849171524781921143°585865994”39”54448674874774°l
- - 307978293862687771788265186518483534771B42225758468795
3141532853589793238844:591@89&897853287875988811588915088”4417lﬂ888878
.18 1767488885137966711559785978848431872884617127544585
314158265358878323881l558814874886444437958848884 3B226687858848553141
11 - 241278143838542884396759163825924861181175858234964
3141582653589793278378882771844757359441l9888”838458165485887782318177
12 91785799864563348284737373562391 42637366181 14571387
314l592853588783238487388578988888841488578819587378“”5°9 483896383484
13 2181728788B4868155689121231284613B3427248586867
: 3141592853589783238482418388“8b687378 384139531685433696608321 145476351
14 - 25343147094875436588273813732823811464818378
314159285358879o238482418“6 4837282333287083823412484954577189682857981
15 232388224886839277781298877864526863277459821521
3141582SS3588783238482643342878887l32688484314298349581445387139689582

W oo N O U & W N - ®
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16 2B117881978615258826723087134582629645551667
v 3141592853589783““848”64 S7279618S111221743148813 956623827 1267852411893
17 84Z450815262727517188086143793468561422442885
314158285358878323848264337383860192648447865718“8181339 3682927485174
18 - 47833177665521571424556498856729B8586085926
314159485358879323846784”37359l778748818849895757»616078ub85°876879”88
18 988965978899482244841 SB8CE2146558286587835682
3141582653589783238452843 88478589/577715741784 18&517585732535662878
<20 212139288656926447846431 4858845282650
31415926535837332384626433837 u43828853984266847885288634899 698262198
21 , - 1888993349637380231172873274388527
_ 314l5828535887832384626433832884382887388433188486?1675662868415973883‘
22 ' o379635”849551“88'é°5816164788
3141592653589733238462643383286438236731 1866823691571 554734562 32138459
23 ' - 93550638719682807937414048 86978“438874
31415828535837332384626433832795827204229898542831
24 ’ <bB87334749783484288915817272678¢86
3141598265358373323846264338327350827386847783292535
25 B : 776779841l3915°°258°°8289785°88_
3141592653589793238462642338327958273086925341 276709
26 - - 75488548485751”181522365°884
314158285358878323848264738°2795827o86925°l8875184 ' :
27 v ' 2261723 88298388594381580568548878915
314158285358878323846284338 2795829568648377859848 -
28 : - 1491858619247312513798835935615
‘ 31415828535897832384826433832785829568834857473658
23 : 39603896838874857867288587
314158285358378323848284378 7858’95680348:7778987 '

38 - 726731073981888”1715841&74344198358 ;

314159285358878327848784038327858 288413 v
31 - 18788865899o67778452l2881398188
3141592653583733238462 64o38°2785828841
32 o . - 98162261775859098712383193496275
_ 3141592853588793238462843383”7958288419 i -
- 33 ' 27835883186933188428328
. 314158285358878343848284338327858288&19 ' ' : o
- 34 _ 22268082222673517598341
314158285358978323846764378327958288419 o ' ' : :
35 ” : - 7385315242817
‘ 3141594o53588793238482643 327350288418
36 : : , - 12465888455732688563211328518b8
§14158285358978323848264338327 5828841971693
37 o B - 244BB7B2417395193 -
'§1415326535897932384628433832785828841971883' ' - '
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 UWe note several things:

1) The first.six terms are positive, after uhich the signs
are apparently randonm.

2) The series converges faster and faster until the
first negative term, which provides oniy one
additional correct digit.

3) After this, the terms grow erratically smaller until
term 15, which has nearly 1880 times the magnitude of term
14 and yet provides four new correct digits. ‘

4) Terms 18, 22, 26, 29, 31, 33, 34, 35, and 37 have
the wrong sign, i.e. they actually make the sum worse.
Term 31 actually undoes a good digit.

S)  Term 36 is seventeen orders of magnitude larger than .
term 35 and provides five new digits, while the sizable term 27
overcompensates and contributes less than one.

6) The general trend after term 6 seems to be ever slower
convergence. ' :

Littie wonder that we couldn’t find a formula--1 dare
you to prove it converges at all!

I am indebted to Richard P. Houwell of the MIT RLE POP-1
for confirming that these results are not merely the POP-18
bignum routines gone hayuire.

Now in the éarlg 13850’ s, Daniel Shanks did a Ph. D. thesis
{Journal of Mathematics and’Phgsﬁcs,,lSSS. first articie}
involving primarily numeric methods of sequence extrapolation.

Among them was a transform which he denoted e |,
. ’ : 1

which, in effect, replaces each but the first term with

the limit of the exponential sequence defined by that term's
predecessor, itse!f, and its successor--the first menber of the
kth sequence produced by this process becoming the kth member
of the transformed sequence. 0On page 5 Shanks gives a
numerical example for which he too chose the & arctan 1

series (actually the seguence of partial . ’

sums). He computed only six transform terms to eight decimal
places, since he was technologically constrained to electro~
mechanical computation. Rich Schroeppel made the remarkable
observation that if Shanks had started his sequence with -

a zeroth partial sum of B, his transformed seqguence would have.
been identical to the screwy sequence of partial sunis

that we got from splitting by 1/(1-r), and indeed, extending
the computation of his example (without the initial 8} - .
exposes the same erratic convergence. Although it is coubtful
that he anticipated this, Shanks provides some valuable insight
into this phenomenon with his section on spectra of sequences.
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Miscel ianeous Accelerations

In exercise 123c of chapter VIII, Knopp gives a relation

completely equivalent to one step of a transform for eta 2 and
Catalan's constant, but he seems to miss the significance of it,
presumabiy because he uas more interested in identifying series

" than in evaluating them. Rephrased in terms of spiitting functions,

2
n
r I :
k,n : 2
{(n + 2 k)
1 k 2n+Bk+1
s - — e e
K,n 2 2 .2
{n + 2 k)
3
k (2 k + 1)
‘u B = e ———————
K,n 2 2

2 n+ 2 k) h+2k+1)

Inverse transliation transforming the "embarrassing" pi/é
formulas : ' '

n -k
r = - - ——— —_ -
~kyn n+3ka+1
1 (6 k +1) (4 kK +5) (4-k + 1) (2 k + 1) 4k o+ 1
s - e s m e —— e e e +d e ————————
k,n 2 16 (n+3 k+ 1) &8 (n+ 3k + 2} 16 (n -k - 1)
1 k+1 2k+1 bkl 4k + 2
¥ = |TT memmamemme e e e e mG e e ere e i - ——— . - ———— . — o —
K,n 2 n~k=-1 n+3k+l n+3k+2 n+3k+23

pi - 11k +8 8 k+1 4k+1 &4k+3

. o 4 K ,
}E: (11 k + 8) 16 k! (3 k)! (4 k!

3 6k +58) {2k}t (Bk + 1}!
k>B : L

which, with a term ratio approaching 18/27.jhas the ieast-
finite convergence rate of any {rational) pi series | knou.



Even worse is the B bits/term one gets by purposely choosing
splitting functions which don't make u tend. to zero with n:

n+ k n-=kK+2
r 3 - TmEmem e e e ————— -
K,n Nn+K+2 n-k+1

: 2 n + k
3 - l e ————— e ——— e ———
k,n 4k +3 n-k+1
4 k-1 n+ k n -k

u B - e et e .
K,n bk+3 n+k+2 n-k+1

Choosing n = -1/2, k = @ (i.e. starting the arctan 1 series one
term too earlyl, -

Bi 4k +5 2k+1 4w-1
1 4+ o= = meoeee R - mmmmmoe e
4 4k +3 kgBAi- 2k +3 4k +3
k
(4 k +5) (1)
| Z(2k+.1i 4 k-1) (6K + 3)
k>

which is no better than if we had taken terms of the original
series pairwise. Grouping pairwise, however, would have
destroyed the alternating sign. Instead, this series

arises directly from arctan 1, )
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Retransforming Euler’s transform of arctan 1,

8.n 2n+1

I found
_ , |
n+ k 2n+4k +Bk +23
r W e e e, e e
k,n 2n+ 4k +3 2
: 2n+ 4 k +6k+1
4n+Bk+3
-8 B e e
K, N 2n+4k+3
2 ‘
) 2k -1 n + k 2n+46k + 14 k + 11
u_‘ - T T T T e T e e e e e
k,n 2n+4k+3 2n+4k+5 2

2n+ 4 kh + Bk +1

which is very unlike the other acéelerations in this paper
due to the quadratic occurrence of k in r and u.

Transtation trénsforming the foregbing. then initiaiizing
n to l and k to 8,

2 . _
pi 8 (146 k + 33k +28) 2 k+2 2k-1
= m e et R o e
2 Y- k2@ 3 Bk+1l Bk + 13

pi 2 {7k +8) k#1172 k+1 1
—— O e R - e——————.— —— —————— —_

415 kx8 Kk + 7/B k + 11/6 2

we suspect a single application of some splitting function relates
them. To find it we divide the first formula by 2 and reurite the
second formula so that they both have the same expression to the
right of the R,

27 k+B) 2 K+l 2Kk+1 k+2 Bk+13 2k -1
S, S e mmmme e oo
15 k28 3 Bk+7 Bk+1l k+2 Bk+13 2K -1
27 k+6) 2k-1 Bka+7 1 2 k%2 2k -1
® —e——cmeeee B -
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b : b
» ‘ - S k+l : "k :
(Thrice using the rule 'R --=-r =« -—— R r.,)
k> b kK b k»8 k
K .8

Now wWwe have tuwo series of the form

b Rk r and ¢ R r.
kK k>»8  k kK kB k

Performing a modified split on the first of these,

(b -t +t) R r =t R r + (b -t) R r

k  k  k kB kK k k2B Kk kK k k2B k
=t +r t R e + b -t) R r
B 8 k+l k>B- k+l k kK kB k
= t +r t R r + _(bb -t} R  r

8 k k+l kxB k- K k k»B K
=-t 4+ (b -t +r t } R r
B k Kk - k k+l k»B Kk

HWhich we must make equal to c R r uwith the right choiée of t .
E - k k»8 Kk ‘ k

" This means t = 8 and

t -b- +c¢
C 3 Kk K
t L e T
k+1 r
k
In this’case.v
: 4 {14k o+ 33k +.20)
b 8 e
Kk 185
2 (7k+6) 2k=-1) Bk+7)
Cc - T T G e e G = - > " o - ———

r\‘ B e = em—————  m—————
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Factoring the first few numerical values of t , we can easily guess.
: K

2k BK+5 BKka+7

which is confimed by dlrect substltutnon into the recurrence.
Noting

b -t +r. t )} R r =

t ot rob.o b
k  k+l Kk kil k+1
b (1 = e~ 4 ;e } R e
8 b b b k»B bk
3 k+l K : K
we see that t /b is the ordinary splitting function:
k k :
for the series uifh'ratio b r/b .v
' k+1 k k
Thus. v
3k (Bk+5) (Bk+7)
s : = —-——————————--‘. _______________
k : . 2
2 (k +1) (14 k + 33 k + 28)
splits : _
pi 4 (14 k + 33 k + 28) 2 k+2 2k-1
4 105 k> 3Sk+ll B k + 13
kto get
' 2 (7 k +8) (2 k+l 2kl
pi - ——————————— H ———————————————
1S k20 3 Bk+7 Bk+11

'eliminéting'that uglg quadratic. Perhaps these bothersome
polynomials which arise so often in our faster accelerations are
s:mllarlg dispensable. Perhaps there is even a way to do this

to series whose convergence rate has been doubled several tlmes
by pasru:se term grouping.
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Negating both sides of the recurrence for t ,

_which says that if t takes b to ¢, then -t ‘takes ¢ back to b .
k K~ k. k k K

Thus
K 7k+B6 2k-1
carries the second series back to the first.

Another example of alternating splitting functlons'
First a preliminary split of _

r T
n 2n+1
by
4 n+ 4
S M emwm——————
n 2n+3
to get
n 2n -3
Ind B8 @ —emeesmes eemma——.- .
8,n 2n+7 2n-5
Thenv
. n o+ Kk 2n-646k -3
Il B e
K, n 2 n - 4 kK - 5 2 n + 8 K + 7
is-sp!if by
b n+4k+4
p M e ————— -
Ky n 2n+ 8k +7

to-get
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k,n 2n-4k-3 2n+8k+11
which.is in turn spiit by A '

4 n+ 18 k + 11 °

q B et —————

~kyn 2n+ 8k + 11
tbvget r . pand g combine in the addition formula to

k+1 : .

2n-4k -3 Bk +5 6 k+3
8 = o] + q TETTTES SISO mem e s mr s e e
k,n Kyn ken 2n-4k-5 2n+ 8k +7 2n+ 8k +9
which gives a u containing five linear terms over five |inear terms
) K,n :
which approaches -27/512. s  is quartic, and for at ieast the small
kK, n .

positive integers, won’t factor. The resulting pi formuias are dull.
Mildiy interestiny is the fact that transiation transforming
yields a formula both faster and slightiy simpler, but not enough

to make it a good pi formula. (Unfactorable cubic on the left of
"R, four linear factors over four linear factors on the right,
‘ratio approaches -27/3125.) ' '

Somewhat different pi formulas result if the preliminary splitting
function s is merely.2, which gives '

-n
n
e v B ee—em—— ) .v r'.‘ .
B,n 2n+ 3 -1,n+l
so that q - and p cah'be combined with the addition
k-1,n+l K, n+l :

formula to getba.diffefénf splitting function.

In general, the arguments to the addition formula my be
interchanged by making the first argument a preliminary split
on the first iteration. Unless one of them is identically 1
{the translation transform), the resulting formulas will
differ significantly, but converge at the same rate.



