MASSACHUSETTS INSTITUTE OF TECHWOLOGY
ARTIFICIAL INTELLIGENCE LABHORATORY

May 1374

A, 1. Memo 3RS Logo Femo 18

SUMMARY DF MYCROFT:
A SYSTEM FOR UNDERSTANDING SIMPLE PICTURE PROGRAMS=

Ira P, Goldatein

ABSTRACT

A callestion af pauwerful ideas--description, plans, Finearity,
insertions, global knouledge and imperative semantics--are explored
vhich are fundamental to debugging skill. To make these concepts
precise, a computer monitor called AYCROFT is described that can debug
elementary programs for drading pictures. The programs are those
Hritten for LOGO tuetles,

#The firat section of this paper will appear in the Proceedings of the
Conference on Artificial Intelligence and the Simulation of Behavior to
e held at the University aof Sussex, July 1974,

This work Was supported in part by the National Science Foundation under
grant number GJ-1849 and conducted at the &rtificial Intelligence
Laoratory, a Massachusetts [nstitute of Technology research program
supported in part by the Advanced Hesearch Projecta Agency of the
Department of Defense and monitored by the Office of Maval Research
undor Contract Numbes NBBBLG-7B-A-B362-2085,

Reproduction of this document, in whole or in part, is permitted for any
purpose of the United States Government.

l.

2.

3.

5.

L

Table of Contents

Introduction

Flowchart of the System
Pieture Models

The NAPOLEON Example
Plans

Linear Debugging
Insertions

Geometric Knowledge

e P e e
] G LR a Ll P e

The Annotator

2.1 Process Annotation

2.2 Semanties for Turtle Primitives
2.3 Plan-Finding Advice

£.4 Debugging Advica

The Plan=Finder

3.1 Plan=Finding as &earch

3.2 Linear Plan Space

3.3 Finding the Plan [or Stickman
3.4

3.5

Non-Linear Plans and Self Criticism
Supmary of the Plan-Finder

The Debugger

Model Violations

Pebugging as Search

Ordering Multiple Violations

Finding The Proper Repair-Point

Imperative Enowledge

Assumption and Protection

Deciding Between Alternative Debugping Strategies
Summary of Debugging Concepts

Classification of Bugs

T A S S S
D G o G En I P o

Conclusions

5.1 Top-Leval Debugging Guidance

5.2 heneralizability of Debugging Techniques
5.3 Extensions

Bibliography

19

£

34

Gy

UEBUGGING SINPLE PILTURE PRUGEANS

L. INTRODUCTTON

Thiz pupss raporis on progress im the development of & monitor for
debugging slencentary programs. Suth iresearch is important both for its
preactical appiications as well ez for its lavestigaticn of concepts
wnich are Fondemenvel to programming sEili. A computer moniltor called
MYCROFT has neen oesigned that can vepair simpls programs For drawing
pictures [Goldsiein 1974]). The reasons bo develop szuch monitors are:

Loowao provide & more preciss understanding of the mature of
programming skills;

E. o racilitate the development of mechines capable of
dabugging and sxpanding upon tha prograns given them by
humans; and

3. to proguce insight into the problem solviug procsss so
That it can be described more constructively to students.

AYCROFT is imtvended to supply occasionel advice €0 a studemt to aid
in the debugging of programs that go awry. ([Just as the sysiem's
pranesans, Avoroft Holmes. occasionelly suppliad advice to his younger
brother Sherloch on particulavly difricvle cases.) In this interaction,
tha vsar supplies statements that describe ezpecis of the intended
picturg and plzn, and the system Tillz in details of this commentary,
disgnoza: begs and suggests corrections. Im thiz paper, however, [
shhall not emphesize this interactive role. [Instead, my primary purpose
will Gs to describe AYCROFT as & model of the debugging process. This
ie reszopebls sionce WYCROFT's utility as an advizgor stems directly from
its upderstanding of debugging skEill.

MYCHOFY 13 ebla ©o correct the programs ?EEHGHELHIHIFUP the bugged
pictures showm in Figures 1.1, 1.3, 1.4 and 1.5 50 that the intended

pictures @re zchisved. In this paper, the debugging of figure 1.1, a

typical example, will be thoroughly explained. Figures 1.3, 1.4 and 1.5

are corrected in analogous ways: see [Goldstein 1974] for details.

<

Intended MAN Picture drawn by MAPOLEOM

FIGURE 1.1 FIGURE 1.2

Ficture drawn by
INTENDED TREE bugged TREE program

FIGURE 1.3

Goldsteln

e Introduction

!

Intended WISHINMGWELL

[

L iy ———al

Picture drawn by bugged WISHINGWELL

progran

FIGURE 1.4

O&O

Intended
FACEMAN

| /f<<
2 J

Ficture drawn by bugged
FACEMAN program

FIGURE 1.5

These pictures are drawn by program manipulation of a graphics
device called the turtle which has a pen that can leave a track along
the turtle's path. Turtles play an important role in the LOGO
environment where children learn problem solving and mathematics by
programming display turtles, physical turtles with various sensors, and
music boxes [Papert 1971, 1972]. Turtle programs have proven to be an
excellent starting poimt for teaching programming to children of all
ages, and therefore provide a reasonable initial problem domain for
building a program understanding system.

The context of AYCROFT's activity is the interaction of three kinds
of description: graphical [(i.e. the picture actually drawn), procedural
{the turtle program used to generate the picture) and predicative [the
collection of statements used to describe the desired scene). For
HYCROFT, debugging is making the procedural description produce a
graphical result that satisfies the set of predicates describing intent.
Thus, debugging here is a process that mediates between different

representations of the same object.

1.1 FLOWCHART OF THE SYSTEM

The organization of the monitor system is illustrated in figure 1.6.
Input to MYCROFT consists of the user's programs and a model of the
intended outcome. For the graphics world, the model is a conjunction of
geometric predicates describing important properties of the intended
picture. MYCROFT then analyzes the program, building both a Cartesian
annotation of the picture that is actually drawn and a plan explaining
the relationship between the program and model. (Any or all of the plan

can be supplied directly by the user, thereby simplifving MYCROFT's

task,)

FLOWCHART OF MYCROFT

MODEL == _—
implausillal debugging — lind nee plan
| MODEL
LSER i B PLAN INTERPRET
VICHLATION
= ﬂ_l_lﬂl-.u_-u..ﬂﬂ“-
PROGRAM

e

=

= data

(= modules of mycroft

debugging advice = caveats

FIGURE 1.6

REPAIRED
PROGRAN

The next step is for the system to interpret the program's
performance in terms of the model and produce a description of the
discrepancies. These discrepancies are expressed as a list of the
violated model statements. The task is then for the debugger to repair
aach wiolation. The final owtput is an edited turtle program (with
copious commentary) which satisfies the model, (Dccasionally, the plan
that MYCROFT hypothesizes requires implausible repairs--Tor example,
major deletions of user code--resulting in the debugger asking the plan=
finder for a new plan.)

The remainder of this first section describes the debugging of
NAPOLEON (figure 1.1) and introduces some important ideas about the
nature of plans. Section 2 describes the annotator used to document the
performance of turtle programs. &Section 3 inmtroduces the plan-finder

and section 4 discusses the debugger. Section 5 concludes with

suggestions for future research.

1.2 PICTURE MODELS

To judge the success of a program, MYCROFT reguires as imput from
the uzer a description of intent. A declarative language has been
designed to define picture modals. These models specify important
properties of the desired final outcome without indicating the details
of the drawing process. The primitives of the model language are
geometric predicates for such properties as connectivity, relative
position, length and location. The following models are typical of

those that the user might provide te describe Migure 1.2.

Goldstein 1] ' Introduction

MODEL MAM

M1 PARTS HEAD BODY ARMS LEGS

MZ EQUITRI HEAD

M2 LINE BODY

M4 V ARMS, V LEGS

M5 CONNECTED HEAD BODY, CONMECTED BODY ARMS, CONNECTED BODY LEGS
Mo BELOW LEGS ARMS, BELOW ARMS HEAD

END

MODEL V

M1 PARTS L1 L2

MZ LINE LI, LIME L2

M3 CONNECTED L1 L2 (VIA ENDPOINTS)

END

MODEL EQUITRI

Ml PARTS (SIDE 3) (ROTATION 3)

MZ FOR-EACH SIDE (= (LENGTH SIDE) 100)

M3 FOR-EACH ROTATION (= (DEGREES ROTATION} 120)

M4 RING CONMNECTED SIDE

END

The AN and ¥V models are underdetermined: they do not describe, for

axample, the actual size of the pictures. The user has latitude in his
description of intemt because MYCROFT is designed only to debug programs
that are almost correct. Therefore, not only the model, but also the
picture drawn by the program and the definition of the procedure provide

clues to the purpose of the program.

1.3 THE MNAPOLEON EXAMPLE

MYCROFT is designed to repalr a simple class of procedures called
Fixed-Instruction Programs. These are procedures in which the
primitives are restricted to constamt inputs. Sub-procedures are
allowed; however, no conditionals, wvarlables, recursilons oF iLterations
are permitted. Given below are the three programs which drew [igure
1.1=-=NAPOLEON, VEE, and TRICORN. The "{-" commentary is called the plan
and was generated by MYCROFT to link the picture modelz--HAM, ¥V and

EQUITRI==to the programs.

TO MAPOLEON = [accomplish man)

10 VEE £= [accomplish legs)

20 FORWARD 100 = [accomplish [piece 1 body))
30 VEE ¢= {insert arms body)

40 FORWARD 100 - laccomplish (piece 2 body))
50 LEFT 90 = {setup heading (for head))
60 TRICORN {= {accomplish head)

EMD

T VEE £- [accomplish)

10 RIGHT 45 = [setup heading for 11)

20 BACK 100 €= (accomplish 11)

30 FORWARD 100 €= (retrace 11)

40 LEFT o0 £= [setup heading for 12)

50 BACKE 100 4= [accomplish 12)

60 FORWARD 100 4= (retrace 12)

END

TO TRICORN = (accomplish equited)

10 FORMARD 50 - {accomplish (piece 1 (side 1)))
200 RIGHT 90 {= (accomplish [rotation 1))
30 FORWARD 100 {= laccomplish (side 2))

40 RIGHT 90 - laccomplish (rotatiom 2]}
50 FORWARD 104 £= {accomplish (side 1))

ol RIGHT 90 {= [(accomplish {rotatiom 3})
70 FORWARD 50 i= [accomplish (piece & (side 1)}})
END

The turtle command FORWARD moves the turtle in the direction that it
is currently pointed: RIGHT rotates the turtle clockwise around its
axis. A complete description of LOGO can be found in [Abelsom 1974],
but is not nesded here.

A Cartesian representation of the picture is generated by the
annotator that describes the performance of the turtle program. The
plan is used to bind sub=pictures to model parts. This allows MYCROFT
to interpret the program with repect to the model and produce a 1ist of
violated model statements. HYCROFT produces the following list of
discrepancies for KAPOLEODN:

(NOT (LINE BODY))
(NOT [BELOW LEGS ARMS))

(NOT (BELOW ARMS HEAD))
(NOT (EQUITRI TRICORM))

;The body is not a line.

:The legs are not below the arms.

i The arms are not below the head.

(The head iz not an equilateral triangle.

MYCROFT is able to correct these bugs and achieve the intended picture

Goldstein 10 Introduction

using both planning and debugging knowlaedge.

1.4 PLANS

This section introduces a vocabulary for talking about the structura
of a procedure which is useful for understanding both the design and
debugging of programs. A main-step is defined as the code required to
achieve a particular sub-goal (sub-picture). A preparatory-step
consists of code needed to setup, cleanup or interface betwesen main-
steps. Thus, from this point of view, a program is understood as a
sequence of main-steps and preparatory-steps. A similar ﬁnint of view
is found inm [Sussman 1973]. The plan consists of the purposes linking
main= and preparatory-steps to the model: in the turtle world, the
purpose of main-steps 15 to accomplish (draw) parts of the model; and
the purpose of preparatory-steps is to properly setup or cleanup the
previous vector.

A modular main-step 15 a seguence of contiguous code intended to
accomplish a particular goal. This is as opposed to an interrupted
main-step whose code is scattered in pieces throughout the program. In
NAPOLECON, the main-steps for the legs, arms and head are modular;
however, the code for the body is interrupted by the insertion of the
code for the arms into its midst. The utility of making this
distinction is that modular main-steps can often be debugged in private
(i.e. by being run independently of the remainder of the procedure)
while interrupted main-steps commonly fail because of unforseen
interactions with the interleaved code associated with other steps of

the plan,

has two stages. The First is to break the task imto independent sub-
goals and design solutions (main-steps) for each. The second is then to
dombine these main=-steps into a single procedure by concatenating them
into some segquence, adding (where necessary) preparatory-steps to
provide proper interfacing. The virtue of this approach is that it
divides the problem into manageable sub=-problems. A disadvantage is
that occasionally there may be constraints on the design of some main-
step which are not recognized when that step is designed independently
of the remainder of the problem. Another disadvantage is that Linear
desiogn can fail to recognize opportumities for sub=routinizing a segment
of code useful for accomplishing more than one main-step. A linear plan
will be defined as a plan consisting only of modular main-steps and

preparatory steps: a non-linear plan may include interrupted main-steps.

1.5 LINEAR DEBUGGING

Linearity is a powerful concept for debugging as well as for
designimg programs. MYCROFT pursues the following linear approach to
correcting turtle programs: the debugger's first goal is to fix each
main=s5tep independently so that the code satisfies all intended
properties of the model part being accomplished. Fellowing this, the
main-steps are treated as inviolate and relations between model parts
are Tixed by debugging preparatory-steps. This is nmot the only
debugging techmigue available to the system, but it is a valuable one
because it embodies important heuristics (1) concerning the order in
which wviolations should be repaired and (2] for selecting the repair-
point {location im the program) at which the edit for each wicolation
should be attempted.

Following this linear approach, WYCROFT repairs the crooked body and

the open head of NAPOLEON before correctimg the BELOW relations.
Repairing th;:E parts is done on the basis of knowledge described in the
mext two sections. Let ws assume for the remainder of this section that
these property repairs have been made -- NAPOLEON appears as in figure

1.7 == and concentrate on the debugging of the violated relations.

HAPOLEON with parts corrected MAPOLEON with statement 15
as RIGHT 135
FIGURE 1.7 FIGURE 1.8

Treating main-steps as invielate and fixing relations by modifying
setup steps limits the repair of (BELOW LEGS ARMS) to three possible
repair-points: (1) before the legs as statement 5, (2) before the first
piece of the body as statement 15 and (3) before accomplishing the arms
as statement 25. MYCROFT understands enough about causality to know
that there is no point in considering edits following the execution of
statement 30 to affect the arms or legs. The exact changes to be made
are determined by imperative semantics for the model primitives. This
15 procedural Knowledge that generates, for a given predicate and

location in the program, someé possible edits that would make true the

violated predicate, MYCROFT generally considers alternative strategies
for correcting a given violation: it prefers those edits which produce
the most beneficial side effects, make minimal changes to the user's
code or most closely satisfy the abstract form of the plan.

For BELOW, the imperative semantics direct DEBUG to place the legs
below the arms by adding rotations at the setup steps. Hore drastic
modifications to the user's code are possible such as the addition of
position setups which alter the topology of the picture; however,
MYCROFT tries to be gentle to the turtle program (using the heuristic
that the user's code 1% probably almoest correct) and considers larger
changes to the program only 1if the simpler edits do not succeed. The
first setup location considered is the one immediately prior to
accomplishing the arms. Inserting a rotation as statement 25, however,
does not correct the violation and is therefore rejected. The next
possible edit point is as statement 15. Here, the addition of RIGHT 135
makes the legs PARTLY-BELOW the arms and produces figure 1.8. This edit
is possible but is not preferred both because the legs and arms now
overlap and because the legs are not COMPLETELY-BELOW the arms. HMYCROFT
is cautious, being primarily a repairman rather than a designer, and is
reluctant to introduce new connections not described in the model.

Also, given a choice, MYCROFT prefers the most constrained meaning of
the model predicate, If the user had imtended figure 1.8, then one
would expect the model description to include additional declaratioms
such as (CONMECTED LEGS ARMS) and (PARTLY-BELOW LEGS ARMS).

Adding RIGHT 90 as statement 5 achieves (COMPLETELY-BELOW LEGS ARMS)
and the NAPOLEON program now produces the intended picture {(figure 1.2Z).
This correction has beneficial side effects in also establishing the

proper relationship between the head and arms, confirming for MYCROFT

that the edit is reasonable, since a particular underlying cause is
often responsible for many bugs. Thus the result of (DEBUG [BELOW LEGS
ARMS)) is:
5 RIGHT 90 <- (setup heading such-that (below legs arms)
({balow arms head))
(assume (= (entry heading) Z70))

The assume comment records the entry state with respect to which the
edit was made. If the program is run at a future time in a new
environment, then debugging is simplified. The cause of a BELOW
violation will now ismediately be seen to be an incorrect assumption,
and the corresponding repair is obvious -- insert code to satisfy the
entry reguirements described by the assumption. This illustrates the
existence of levels of commentary between the model and the program,
each layer being more specific, but also more closely tied to the
particular code and runtime environment of the program.

Linear debugging greatly restricts the possibilities that must be
considered to repair a wviolation. It is often successful and
constitutes a powerful first attack on the problem of Ffinding the proper
edit; however, it is not infallible. MNon-linear bugs due to unexpected
interactions between main-steps would not be caught by this technique.

Figure 1.9 illustrates a non-linear bug. (INSIDE MOUTH HEAD) is
violated but it cannot be repaired by adjusting the lnterface between
these two parts [(indicated in figure 1.9 by the dotted line OP) since
the mouth is longer than the diameter of the head. The imperative
semantics for Fixing INSIDE recognize this. Consequently, MYCROFT
resorts to the non-linear technique of modifying main-steps to repair a
relation between parts. The imperative semantics suggest changing the

s5ize of one of the parts because this transformation does not affect the

shape of the part and consequently will probably not introduce new

O
| O

FIGURE 1.9

vinlations in properties describing the part. Advice 15 required from
the user to know whether shrinking the mouth is to be preferred to
expanding the head. Two more non-linear debugging techniques are
discussed in the next two sections: one is based upon knowing the

abstract form of plans, and the other uses domailn-dependent theorems

about global effects,

1.6 INSERTIONS

In programming, an interrupt is a break in normal processing for the
purpocse of servicing a surprise. Interrupts represent an important type
of plan: they are a necessary problem solving strategy when a process
must deal with unpredictable ewvents. Typical situations whera
interrupts prove useful include servicing a dynamic display, and
arbitrating the conflicting demands of a time sharing system. In the
real world, blological creatures must use an interrupt style of
processing to deal with dangers of their environment such as predators.

A very simple type of interrupt 15 one im which the program
associated with the interrupt is performed for its side effects and is

state-transparent, i.e. the machine is restored to its pre-interrupt

state before ordinary processing is resumed. As a result, the main
process never notices the interruption. In the turtle world, an
analogous type of organization is that of an inserted main-step
{insertion). It naturally arises when the turtle, while accomplishing
one part of a model (the interrupted main-step), assumes an appropriate
entry state for another part (the insertiom). An obvious planning
strategy is to insert a sub-procedurs at such a point in the execution
of the interrupted main-step. Often, the insertion will be state-
transparent: for turtles, this is achieved by restoring the heading,
position and pen state. The insertion of the arms into the body by
statement 30 of NAPOLEOM is an example of a position- and pen- but not
heading- transparent insertion.

Insertions do not share all of the properties of interrupts. For
example, the insertion always occurs at a fixed point in the program
rather than at some arbitrary and unpredictable point in time. Nor does
the insertion alter the state of the main process as happens in am error
handler, However, if one focusses on the planning process by which the
user's code was written, then the insertion as an intervention im
accomplishing a main-step does have the flavor of an interrupt.

The FIMDPLAMN module aids the debugger in a second way bevond just
the generation of the plan. This is through the creation of caveat
comments to warn the debugger of suspicious code that fails to satisrly
expectations based on the abstract form of the plan. In particular, if
FINDPLAM observes an insertion that is not transparent, then the
following cawveat is generated:

30 VEE <- {(caveat findplan {(net (rotation-transparent insert)}).
The non-transparent insertion may have been intentional, e.g. the

preparation for the next piece of the interrupted main-step may have

been placed within the insertion. The user's program may have prepared
for the next maln-step within the insertion. Hence, FIMDPLAN does not
immediately attempt to correct the anomalous code. Only if subsequent
debugging of some model violation confirms the caveat is the code
corrected. Thera will often be many possible corrections [or a
particular model violation. The caveat is used to increase the
plausibility of those edits that eliminate FINDPLAN's complaint. In
this way, the abstract form of the plan helps to guide the debugging.
For NAPOLEON, analysis of (NOT (LIME BODY)) leads MYCROFT to
consider (1) adding a rotation as statement 35 to align the second piece
of the body with the First or (2) placing this rotation into VEE as the
final statement. Ordipnarily, linear debuggimg would prevent the latter
as it does not respect the inviolability of main-steps. However, it 1s
chosen here because of the corroborating complaint of FINDPLAN. The
underlying cause of the bug is a main-step error (non-transparent
insertion) rather than a preparatory-step failure. Thus,
(DEBUG (LINE BODY)) produces:

70 RIGHT 45 <~ [setup heading such-that {(transparent vee))

1.7 GEOMETRIC KNOWLEDGE

Linearity, preparation and interrupts are general problem-solving
strategies for organizing goals into programs. Howewver, it is important
to remember that domain-dependent knowledge must be available to a
debugging system. The system must know the semantics of the primitives
if it is to deseribe their effects.

The debugger must also have access to domain-dependent information
to repair main-steps in which the sub-parts must satisfy certain global

relationships. For example, TRICORN has the bug that the triangle is

Goldstein 18 Y Introduction

not closed. Each main-step independently achieves a side but the sides
do not have the proper global ralatinnship; Debugging is simplified by
the explicit statement in the model that: .

(FOR-EACH ROTATION (= {(DEGREES ROTATION) 120)).
But suppose the model imposed no constraints on the rotations. Then the
design of the rotations would have to be deduced from such geometric
knowledge as the fact that N equal vectors form a regular polvgom 4F
cach rotation equals 360/N degrees.

The pieces of an interrupted-step such as the first side of TRICORNM
are not always separated by a &latavtraﬁsparant insert. (This would be
a local interruption.) Instead, it is possible that more global
knowledge is needed to understand the properties of the intervening code
which justifies the expectation that the pieces will properly fit
together. In TRICORN, the second plece (drawn by statement 70) must be
collinear with the first (drawn by statement 10). The global property
of the code which justifies this is that equal sides and 120 degree
rotations results in closure. Thus, debugging violations of globally
interruptod-steps requires domain-dependent knowledge.

Geometric knowledge does not replace the need for general debugging
strategies: these are still very important to narrow the space of
possible repair-points for correcting a given wiolationm and to choose
between alternative corrections. GSection 4 discusses both types of

knowledge in greater detail.

Debugging is impossible without good de5ériptinn of a program's
purpose and performance. HYCROFT begins with the program and a model
describing its intended result. Two forms of additional commentary are
then.generattd: Performance Annotation documents the effect of running
the program while the Flan explains the intent. This commentary is
organized as sets of assertions in a database, bound together into
sequences representing what happened and why. Figure 2.1 shows part of
the database generated to describe NAPOLEON. The nodes are organized so
that the horizontal axis represents time and is used to answer such
causal questions as what changes occurred to which state variables and
which code was responsible for those changes. Similar data structures
for describing programs are used by Fahlman [1973] and Sussman [1973].

The wertical axis repreésents teleological abstraction and
explains the purpose of the code. Models fit into this descriptive
framework as the highest level of abstraction. They describe the final
goal without ties to specific plans or chronological performance. The
next lewvel is the plan, indicating the sub-goal organization for
accomplishing the model. Finally, the teleology rests on a description
of the actual performance of the turtle program when executed in a
particular initial environment.

MYCROFT analyzes a program by first building a complete
performance annotation and then applying the plan-finder to assign
purposes to the code. Performance annotation is accomplished by runnimg
the user's turtle program iln a "careful mode® which produces three kinds

of description.

=M o~ OoOmEmMm A

PLAN

PROCESS

INITIAL ANNOTATION FOR NAPOLEON

MODEL
PARTS LEGS ARMS BODY HEAD
¥ ARMS, V LEGS
EQUITRI HEAD
LINE BODY

(ACCOMPLISH (ACCOMPL ISH (SETUP HEADING (ACCOMPL ISH
MAN) LEGS) |ACCOMPLISH V] FOR L1} , L1)

POINT Pé STRUCTURE S1 STRUCTURE §1 ROTATION Ré VECTOR V1

STRUCTURE 5% DEGREES=45 POINT P

- PDSTTION=({00) -HEADING=135 LENGTH=100

- HEADING=270 POSITION=(71,

ern 71}

s PEN="DOW DIRECTION=315

F1: Entering

F2: Executing

|

F3: Entering

|

Fd: Executing

F&: Executing

>

NAPOLEDN statement 10 VEE Ltatement 10 Statement 20
VEE RIGHT 4% BACK 100
Time seguence of frames of program
causality

FIGURE 2.1

1. Process Annotation is a description of the output of the
program. It consists of a record of the effects of executing
each program statement. For turtles, this consists of the
creation of vectors, vector structures, rotatioms and poimts.

2. Planning Advice suggests the segmentation of the program with
respect to accomplishing the model on the basis of such
criteria as global connections,

3., Debugging Advice describes suspicious code by caveat comments
which aid in subseqguent debugging.

Details of these three kinds of performance annotation are given below.

The FIMDPLAN algorithm is then described in sectien 3.

2.1 PROCESS ANNOTATION

Process annotation provides a description of the output of a
program and its sub=procedures in terms of some language appropriate to
the purpose for which the program was designed. For example, the
performance annotation for an arithmetic program might be in terms of
mathematical equations to be satisfied at wvarious points im the
computation [Floyd 1967]. For turtle programs, an obvious choice is to
produce a Cartesian description of the picture drawn by the program.
Anmotation should reveal the basic effects of the code, free of vagaries
of individual programming style. This would include knowing the
description of a vector, regardless of whether the actual command is
FORWARD, BACE or SETXY. (The last command moves the turtle to an
absolute position on the screen.}

Annotation produces a sequence of frames. A frame is generated
to describe the execution of each primitive amnd sub-procedure call.
Each frame is a set of assertions specifying (1) amy changes to the
turtle's state and (2) the properties of any plcture elements which have
been created. The turtle's state consists of the values of the global

variables :HEADING, :POSITION and :PEN. Picture ealements {(created as

Goldstein £ Annotation

silde effects of executing turtle commands}) are vectors, rotations,

paints and structures (vector sets drawn by recognizable code segments

such as sub-procedures).

2.2 SEMANTICS FOR TURTLE PRIMITIVES
The process annotation is generated by imperative semantics
associated with each turtle primitive. These semantics describe the

performance of the turtle command.

SEMANTICS FOR (FORWARD :DISTANCE) ;Draws a vector.

[:VECTOR <=-= [GEMERATE-MAME 'V})
:All vertices, rotations, wectors and structures
sare given unique names to facilitate later debugging.
tIf subsequent investigation reveals that the
sparticular object has been given a label by
sthe user, then the system name is replaced by the
iuser's identifier.

ibeseribe the Vector in terms of its direction and length.

{ASSERT (= (DIRECTION :VECTOR) :HEADING))
(ASSERT (= (LEMGTH :VECTOR) :DISTAMCE))
{ASSERT (= (VISIBILITY :VECTOR) <PENUP, PENDOWN, RETRACEX)

sUpdate the State of the Turtle

[:POSITION «== [FORWARD :DTSTANCE})
:FORMARD :DISTANCE outputs coordinates of the new
;position. Set the turtle state variable :POSITION
;to this new location of the turtle.

(:POINT <-- (GENERATE-MANHE "P))
;If the coordinates are unique, bind POINT to
:a new name for this pesitiom. If mot, use the
:old name for the position. [If a mame already
;exists for this position, record the connections
;oceurring at this point between :VECTOR and
ipravious vectors,

SEMANTICS FOR (RIGHT :AMGLE) :Rotates the turtle.
[:ROTATION <=-- [GEMERATE-NAME "R))
sDescribe the Rotation in terms of its vertex and degrees.

(ASSERT (= (DEGREES :ROTATION) :AMNGLE)
{ASSERT (= (VERTEX :ROTATION) :POSITION)

;Update the State of the Turtle
{ :HEADING <== [(RIGHT :AMGLE)) :RIGHT outputs the new heading.
At the level of the process, actual numerical values are
doetermimed Tor the above properties. Because these assertions depend
upon the particular state of the initial environment, this is the most
spocific, least abstract level of commentary when compared with the

model and plam.

2.3 PLAN-FINDING ADVICE
Although perforsance annotation does not examine the model, it
can reveal c¢lues to the grouping of the user's program into main- and
preparatory-steps which aid in finding the plan.
1. Sub=-procedures that draw visible sub=-pictures
are hypothesized to be main-steps that accomplish
some model part.
2. Haximal sequences of "invisible™ primitives such
as (a) vectors drawn either by retracing or with the
pen up, (b)) rotations, and (c) PENUP commands are
grouped together as possible preparatory-steps.
Ad. Maximal sequences of visible vector instructions
plus any intervening rotations are grouped as
possible main-steps.
4, Global connections suggest code boundaries. Thus,
maximal sequences of visible vectors can be segmented
on the basis of such connections.
This segmentation 1s tentative and may be revised in the light of later
consideration of the model.

Suppose MAPOLEOM was not subroutinized and, instead, the arms,

legs and head were open-coded (i.e, coded as in-line sequences of
primitives rather than subroutinized). The above clues would be gquite
useful by utilizing the global connections between the body and limbs in

the picture to Sudgest main-step beundaries.

2.4 DEBUGGING ADVICE
Dddities inm the form of the program can create a suspicion of
bugs. The annotator notices these violations using Eational Form
Criteria which are sensitive to unexpected and apparently erroneous
code. Caveat comments are generated describing these complaints.
Rational Form Criteria are based upon expectations of simple
efficiency and consist of noting sequences of contiguous uses of the

sama primitive, such as FORWARD, RIGHT or PENUP. The annotator

considers the code to be odd: why didn't the user simply coalesce them

into a single call with a larger input or, in the case of PENUP, include

only the first instruction? The answer may be that the user has
forgotten to insert additionmal inmstructions. An example would be where
the user had forgotten to imsert several RIGHT commands into a saqﬂencé
of FORWARD instructions. A caveat stating that code may be missing is
placed between each pair of elements in the sequence of FORWARD's. A
violation of rational form occurs in the fnlluwing'triangla procedura
because the wuser has forgottem the first rotation.

T TRI

1¢ FORWARD 100 <- {(caveat annotator RATIOMAL=-FORM-WIOQOLATION

(sequential=primitive 10 30}))

A FORWARD 100

40 RIGHT 120

50 FORWARD 100

END
An edit that inserts a rotation into such a sequence of FORMARD

instructions would eliminate the rational Torm violation and therefore

be preferred in competition with other corrections which do not explain
the annotator's complaint. If the debugger corrects the program by
eliminating the annotation caveat, then the uwnderlying cause of the

error is considered to be "Missing Code™.

3. THE PLAN-FINDER

After performance annotation, the next step in describing the
program is to find the plan. The strategy is to attempt imitially to
find a linear plan, i.e. to match model parts with modular main-steps
and relations between model parts with preparatory=-steps. This approach
serves to limit the search space, but it is not adequate to recognize
interrupted main-steps and insertions. These "non-linearities" are
suggested by suspicions about the cause of violations implied by the
conjectured linear plan. These suspicions are that the cause of the
violation is not an error in the user's program but a mistake in the
plan=finder"'s linear interpretation of the plan. If additional evidenca
confirms the suspicion, the plan-finder corrects its linear analysis and
finds the correct global or insertion type of plan. This approach of
first pursuing & linear interpretation and only 'debugging' this
approach in response to anomalies is a powerful reasoning mechanism for
searching complex spaces. As was noted in section 1, the debugger uses
a similar analysis to simplify finding the proper repairs.

Plan=finding obtains some guidance from the plicture and some
from the program. The picture supplies such clues as:

(a) global connections which suggest sub-picture boundaries;
(b) retracing which suggests inserts;
and (c) violations of model statements which are then used both as
plausibility criteria (to distinguish between alternatiwve
interpretations) and to generate suspicion demons {which look
for non-linear planning structures).
The program supplies quite different clues about intent. This includes:
(a} sub-procedure structure which aids in recognizing main-steps;

and (b} the order in which the picture is drawn which, when combined
with program-writing criteria, suggests the order in which the

model parts are accomplished.

3.1 PLAN-FINDING A5 SEARCH

Finding the plan can be conceptualized as a search of a space of
"partial plans". The search begins with the model, the program and the
performance annotation. A partial plan is an explanation of some
fraction of the model in terms of the program. Given a partial plan,
its dawghters are the result of generating alternative explanations for
ofne of the remaining unassigned model parts., A terminal node is reached
when all of the model parts have been explained and a complete plan is a
path from the root to a terminal node, wherein an explanation is
provided for how each model part is achieved.

A partial plan consists of PURPOSE comments which assign model

predicates to code, unassigned model parts, expectations, the implied

partial interpretation, and demons.

FURFOSES = These are the basic statements of a plan and appear as
"{-" gommentary in the MAPOLEON procedures. Five kinds of purposes

are generated by FIMODPLAM: accomplish, imsert, setup, cleanup and
retrace.

UNASSIGMED HODEL PARTS - The model specifies a list of parts. These
are aither primitive picture objects {(vectors or rotations) or sub-
models. An unassigned part is one without a PURPOSE statement
indicating how it is to be accomplished,

EXPECTATIONS - These are predictions of which part is expected to he
accomplished by the next main-step. They are based on applving
program=writing criteria of efficiency and simplicity to the model.
See the discussion of Analysis by 3Synthesis in the next section.

PARTIAL INTERPRETATION = Model predicates can be evaluated by
ordinary Cartesian geometry using the binding of model parts to code
{which the plan implies) and an anpotated description of the code's
affects. A partial interpretation consists of those model
predicates whose truth value is known given the current partial
interpretation,

DEMONS - Demons are used to explain subseqguent code in such a way
that wiolations in the partial interpretation are eliminated. The
elimination results from debugoging the system's linear analysis and

recognizing the existence of an interrupted or inserted main-step.
The partial planm is complete when all of the unassigned parts
are explained by PURPOSES. Debugging is fixing the violations of the

resulting complete interpretation.

3.2 LINEAR PLAN SPACE

The search is neither a standard breadth nor depth First
exploration of the space. Instead, the system initially assumes a
linear structure to the user's plan, looking to assign the parts to
sequential code segments. The possibility that a part is being
accomplished by disjoint segments of code or by insertions is not
considered. This greatly constrains the search space. Branching,

however, is not eliminated: for a given program, more than one linear

plan will wsually be possible. To choose among the altermatives in this

linear plan space, several plausibility criteria are used.

1. (Advice) The first is to take advantage of user, annotator or
debugger advice to initialize the partial plan space. Annotator
arflvice originates in noticing (1) sub=procedures that have been
previously associated with a model and (2) open-coded sequences

identified as having a comson purpose on the basis of non-model clues

like penstate changes and retracing. (See section 2.31.) The first
produces PURPOSE assertions which form the initial partial plan: the
second SUGGESTIONS which have the effect of causing open-coded

soquencas to be treated as sub-procedures, Debugging advice is im
the form of a request that the plan-finder supply a new plan that

does not make certain hypotheses about the program. This interaction
arises when the debugger fimds all editing strategies for the current

plan implausible.

2. (hAnalysis by Synthesis) Another method 1s to consider the model Trom
the point of view of program writimg. This leads to twa Torms of
advice. The first is to assign sub-pracoedires to model parts if
possible [on the grounds that the model parts constitute a likelw
plan for breaking the picture into sub-goals). The second is to
generate expectations for the order in which the parts are to be

accomplished, This is done by observing transitive sequences of such

predicates as BELOW and CONNECTED in the model. The heuristic is
that that these sequences represant the probable order in which the
parts are accomplished, thereby minimizing retracing.

3. (Static Ewvaluation Function) A third method iz a plausibility
estimate of partial plans. This estimate is simply the number of
satisfied model statements and expections minus the number of
violated model statements and expectations. If the program is bug
free and the plan is correct, them the plausibility number will be
maximal. At any instant in time, only those plans with the highest
plausibility number are explored. After analyzing a statement of
coda, the plausibility number is recomputed and the active plans are
rechosen. Inactive plans are “hung" and are not resumed unless their
active brethren become less plausible,

3.3 FINDING THE PLAN FOR STICKMAN
Az an example, let us consider the problem of finding the plan

for NAPOLEON. Recall that the procedure is:

TO NAPODLEON ;oee Figure 1.1

10 VEE

£0 FORWARD 100

30 VEE

40 FORWARD 100

50 LEFT 90

G0 TRICORN

END
We shall assume that the VEE sub-procedure has been previously annotated
and associated with the V model but that TRTICOEN and NAPOLEON have just
been defined and their purpose is unknown. BY conzidering sub-
procedures as candidates for accomplishing model parts (analysis by

synthesis), TRICORN is bound to the EQUITRI model. The result is two

possible ipitial partial plans. These are:

PARTIAL .PLAN.L: PARTIAL.PLAN.Z:

10 VEE <= {accomplish legs) 10 VEE <= [accomplish arms)

30 VEE <- [accomplish arms) 30 VEE <- [accomplish legs)

G0 TRICORN <= {accomplish head) G0 TRICORM <- (accomplish head])

Further constraints are imposed by FINDPLAN's program=-writing
expectations. ©On the basis of BELOMW, FINDPLAM expects:
{accomplish legs) <-» [accomplish arms) <-» {accomplish head)
The double arrow indicates that the sequence may happen in either

forward or reverse order. On the basis of connectivity, the

Goldstein an Finding the Plan

exXpectat ioms are:

[accomplish legs) <-> (accomplish body) <-> {accomplish head)
Taken together, the result is that statement 10 is believed to
accomplish the LEGS and statement 30 the ARMS. Thus, PARTIAL.PLAN.1 is
preferred.

The code of the program is then considered statement by
statement. Statement Z0 draws a vector and is therefore believed to be
the BODY. It might be only a piece of the body but this is not pursued
until the linear assumption that the body i3 accomplished by a modular
main=s5tep is rejected.

Statements 30 and &0 have already been assigned to the arms and
head, respectively. As a result, all of the model parts have been
assigned but statement 40 remains unexplained. FINDPLAN consequently
backtracks and interprets statement Z0 as only piece of the body. A
demon is created for recognizing the body's completion and plan=finding
recommences at statement 3I0. Statement 40 satisfies this demon since it
diraws a vector that begims at the endpoint of the first piece of the
body. The result iz that it is considered (piece 2 body). Thus, with

almost no search, the plam for NMAPOLEON is correctly deduced.

TO NAPOLEON t= {accomplish mam)

10 VEE - [accomplish legs)

Z0 FORWARD 100 {= [accomplish {piece 1 body))
0 VEE {= [(insert arms body)

40 FORWARD 100 t= (accomplish {(piece & body))
50 LEFT 90 t= [setup heading)

60 TRICORM €= [accomplish head)

END

3.4 NOM-LINEAR PLANS AND SELF CRITICISM
This section explains how interrupted and inserted main-steps
are recognized. When FINDPLAN binds an unassigned model part M to a
segment of code € and the resulting interpretation implies model
violations, there are three possible explanations:
1. The code is inm error: a bug has been discovered.

2. C is not intended to accomplish M. Choose another interpretation
for C.

A, € accomplishes only a PIECE of H. The remainder of M is achieved
in pieces.

Possibility 1 requires no special actiom by FINDPLAM: the
violation will eventually be passed to DEBUG for correction.

Possibility 2 requires that the a different linear plan be chosen. This
will occur if the curremt linear plan becomes less plausible than
alternative linear interpretations when compared in terms of the static
plausibility function described earlier. Possibility 3, however,
represents an error in the plan-finder's linear analysis of the program.
Hence, to take account of possibility 3, demons are gemerated. These
demons are looking For better interpretations tham the current linear
plan {(i.e., interpretations which do not imply as many vioclatioms). The
following paragraphs describe the creation of such a demom in the plan-
finding process for TRICORN.

Suppose FINDPLAN has just decided that statement © achieves
model part M and that this results in a violation because M is too
small. FINDPLAN suspects that M may be being accomplished in pieces. A
COMPLETION demon is5 created looking for subsequent code CC which would
eliminate the violation if CC is interpreted as another PIECE of M. If
such code 15 found, the action of the demon is to edit the original

partial plan so that M is now considered as being achieved by an

Goldstein 3z Finding the Plan

interrupted main-step. IF the code between the pieces of the main-step
returns the turtle to the exit state of the first piece, then it is
interpreted as being an insertion. COMPLETION demons are also created
when a wvector is too short to accomplish an intended conmectiom. AR
example occurs in the linear interpretation of TRICORN shown below:

TO TRICORM iIncorrect linear plan initially deduced.
10 FORWARD 50 <- {accomplish {side 1))

0 RIGHT 120 L= {accomplish {(rotatiom 1))

30 FORWARD 100 <- {accomplish (side 2))

At this point in the plan-finding process, the violation
sof unequal sides occurs. A COMPLETION demon is created

sthat i1s looking for a vector of length 50 that could be
iinterpreted as the remainder of (side 1).

40 RIGHT 120 4= {accomplish {rotatiom 2))
30 FORWARD 100 <- (accomplish {(side 3})

tHere the violation of (side 1) not being connected to
iislde 3) occurs. A second COMPLETION demon is created
ithat is looking for another PIECE of (side 1) that connects
ito (side 3).
G0 RIGHT L20 4= (accomplish {(rotatiom X))
70 FORWARD 50 <~ {(accomplish 7)
END
Both of the COMPLETION demons are triggered by statement 70. The result
is that statement 10 is reinterpreted to accomplish only
(picce 1 (side 1)) and statement 70 is assigned the purpose of
accomplishing (piece 2 (side 1)). This produces the correct plan.

{Other demons are created in the plan-finding process for TRICORM.

However, they are never triggered amd are therefore not mentioned.)

3.5 SUMMARY
The
(1) The

(2) The
{3) The

OF THE PLAN-FINDER
algorithm for plan-finding performs well when:
user supplies advice in the form of a partial plam;

procedure has subroutines;
procadure has Tew bugs.

If the program is not subroutinized and is full of bugs, the szearch

grows unmanageable and difficulties arise in selecting the most

plausible candidate. This performance is quite reasonable in the sense

that similar statements are true of a human problesm solver investigating

a strange program.

4. THE DEBUGGER

4.1 MODEL VIOLATIOMNS

The monitor is designed to debug model violations. These are
recognized by the INTERPRET module {see agaim figure 1.6) which compares
the output of a syntactically and semantically correct turtle program
{i.e. a program that iz able to run to completion without requesting any
illegal computations) to the description of intent provided by its
picture model, using the plan to bind sub-pictures to model parts., The
result is a list of violated model predicates. The program is
considered correct when all of these violations have been eliminated,

Correcting model violations is accomplished by using two types
of procedural knowledge: (1) a collection of genmeral debugging
strategies for repairing programs and (2) directions for fixing
particular geomeiric and logical predicates. Because overall guidance
is derived from the model, we shall call this type of analysis model-

driven debugging.

4.2 DEBUGGING AS SEARCH

A debugging strategy is a sequence of editing commands whose
@ffect is to modify the program so that it satisfies its model. There
are penerally multiple debugging strategies for correcting a given set
al violations. These alternative debugging strategies arise from choice
of the repair-points at which the corrections are to be made as well as
of the exact meaning that the user intended.

To clarify the issues which arise in selecting the best
debugging seguence, it is useful to conceptuwalize the problem in terﬁs

of a search mataphor. Tha space 15 that of all possible debugging

strategies for correcting the program. Each node is a set of model
violations: the aorigin of the space is the initial output of INTERPRET.
Am arc is an edit which which leads to a node containing the new (and
presumably smaller) set of violations which are produced by the patched
code. Branching occurs for each possible pateh for correcting a
wiolation. A path through the space constitutes a series of edits that
transform the program to an acceptable form.

Becognizing the existence of multiple possibilities for
correcting a program, it is appropriate to ask what knowledge 1s used
to:

choose the next model vioclation te be debugged?

generate the possible corrections for that violation?

{3) choose the most plausible correction?

The following sections answer these questions. Ordering
Criteria are introduced for choosing the sequence in which the
violations are debugged. A linear approach curtails the number of
possible edit points which are initially considered. The imperative
semantics of the model predicates are used to generate possible
corrections. FPlausibility criteria are designed for selecting among

alternative debugging strategies.

4.3 ORDERING MULTIPLE VIOLATIONS

Multiple bugs are difficult to fix. Guidelines are required Lo
order the sequence inm which the violations are debugged. These
guidelines reflect an understanding of dependency relationships betwren
violations, thereby serving to minimize the unfortunate cccurrence of a
correction undoing previous repairs or introducing new violations. The

ordering is dome on the basis of preferring to repair:

(1) bugs in properties of model parts before bugs
in relations between model parts;

(2) bugs in intrinsic properties (or relations) before
bugs in extrinsic properties {or relations);

and (3) bugs occurring earliest in the temporal sequenca
of execution.

The following paragraphs describe these criteria and explain their

rationale,

4.3.1 Debug Properties Before Relations

The system debugs violations of properties of model parts before
ropairing violations of relations between model parts. This is based on
the important heuristic of first having a successful theory of the parts
before attempting an explanation of thelr interactioms. This is more
than good style. The behavior of the interfaces is designed relative to
the esatry-axit states of the code for the main-staps accomplishing the
parts. To determine the specific state changes to be made at an
interface, the performance of adjacent main-steps must be established.
Thus the code for sub-pictures must be (ixed prior to deciding on the
proper edits to the preparatory=-steps.

Properties of individual model parts include unary model
primitives (e.g. VERTICAL, HORIZOMTAL and LIME) as well as user-defined
sub-models (e.g. EQUITRI and V). The most common relations between

model parts are predicates such as ABOVE, BELOW, and COMMECTED.

4.3.2 Debug Intrinsic Before Extrinsic Predicates
The idea behind the next ordering criteria is to estimate the
range of possible locations in the program at which the repair might be

made for sach violatiom. The heuristic is then to fix those violations

of most-limited scope first; both because they are easiest and because
of dependency relationships.

point and the manifestation-point. For a property (P M), H a model
part, the manifestation=point is the location in the program at which M
is completed and the truth of the statement (P M) can be evaluated. The
repair-point is the location in the program at which the edit is
eventually made to correct the violation. For a relation (R H N}, the
manifestation-point 15 the location in the program at which both M and N
have besn completed and the relatiom B can be evaluated,

This criterion would be pointless if there were no way to
estimate the scope of a violation before entering into the details of
debugging. However, this is not the case. One method for estimatimg
the scope of a violation is to know whether the property of relatiom is
intrinsic to the responsible code.

A property (F A) 1s intrinsic to the code for A if it is
independent of preceding code and entirely due to the main-step Tor A,
Similarly, the relation (R A B} iz intrinsic if it is independent of
code preceding A, assuming that A is achieved before B, Repair is
simplified by fixing intrinsic predicates before extrinsic ones since
(1) for intrinsic violations, the possible repair-points are easier to
find since they canmot occur prior to the code for A, and (2) the proper
corrections for extrinsic predicates depends upon the the code being
intrinsically correct.

In the world of turtle geometry, intrinsic errors are
distinguished by being independent of the frame of reference: they
cannot be corrected by translating or rotating the picture. This is

because in the simplified envirenment of fixed-instruction turtle

programs, code groups draw rigid bodies. The initial interface of a
code group has the effect of establishing the origin and orientation of
the sub-picture but does not affect the local relations among vectors.,
Topological predicates [invariant under transformations that preserve
connectivity) and geometric predicates (invariant under translation amd
rotation) are independent of the frame of raference and therefore yield
intrinsic violations., Bugs in the following model primitives are always
intrinsic to the code group to which they refer: OVERLAP, INSIDE,
OUTSIDE, PARALLEL and CONNECTED.

Extrinzie errors are those affected by the initial environment
in which the code group is executed. The initial environment consists
of the bindings of the turtle state variables -- ;HEADING, :POSITION and
:PEN. These variables control the orientation, origin and visibility of
the sub-picture as well as its relation to previopusly drawn parts of the
picture. Model predicates which depend on the ini£ia1 state are
VERTICAL, HORIZONTAL, BELOW, and ABOVE.

Debugging imtrinsic violations Cirst tends to establish the
praper connections at interfaces. Debugging extrinsic relations like
ABOVE then becomes simply a matter of establishing the proper heading at
interfaces.

In the turtle world, the distinction between intrinsic amd
extrinsic predicates 1s particularly easy to make; however, it remains a
useful debugging distinction im other domains. If a property of a
program is due to some local data structure {[such as a bound variable)
or local control structure (such as a loop) and is independent of the
preceding code, then it is intrinsic and worth debugging in private
before extrinsic properties (whose causes are less easy to isolate) are

rapairad.

4.3.3 NAPOLEON's Violations
The following list of violations for MAPOLEOM is ordered by the
above criteria:
(Violations of Properties of Parts of NAPOLEOGN)
(An Intrimsic Violatiom =- Manifested in Private)

(NOT (EQUITRI TRICORN))

(An Extrinsic Wiolation -- Not Manifested in Private)
[(NOT (LINE BODY))

(Violations of Relations between Parts of NAPOLEON)
[Temporal Order -- {legs, arms} accomplished before {arms, head}))

(NOT (BELOW LEGS ARMS))
(NOT (BELOW ARMS HEAD))

q.4 FINDIMG THE PROPER REPAIR-POINT

For sach wiolatiom, DEBUG must find the proper repair-point in
the program at which to insert the correction. Of course, the debugger
knows that the repair-point cannot follow the code for the parts
mentioned im the violation but this is hardly a sufficient constraint.
Consequently, DEBUG uses two heuristics==Private and Linear Debugging--

ta limit the possible locations for the correction,

4.4.1 Private Debugging

Am dnitial hewrlstlc for constrainimg the possible repair-points
for a violated property is to limit consideration to the code directly
responsible for the model part in question. This is done by runninmg the
responsible code independently of the larger procedure of which it is a
part. Specifically, the responsible code 15 executed with the turtle
started at the entry state. The violated properties will be manifested
in this private environment if the main=step is modular. However, if

there is intervening code, 1.e. the main-step is interrupted, then the

linear assumption that the cause is intrinsic to the responsible code
and not due to interactions may be wrong.

If the wviolation is manifest, the code group is then debugged im
this simplified context, free of the effects of the remainder of the
original program. Private debugging is used to repair the three
incorrect rotations of TRICORM. There are no complications when the
edited sub-procedure is rejoined to the NAPOLEON super-procedura.

The relationship between the picture drawn in private and in
public is simple for fixed-instruction turtle programs since the picture
is a rigid body and only its orientation and origin is affected by the
initial environment. For more complex programs, difficulty occcurs in
finding a representative private environment and further research is
necessary. This is similar to the problem of diagram generation im
geometry theorem proving and to the problem of case analysis in
automatic program verification.

The private repair may make assumptions about the entry state to
the code. [f this happens, it will be reflected in ASSUME comments
regarding the entry state to the main-step. When run again in the real
context, any conflicts between assumptions made in private about the
initial environment and the actual entry state are themselves debugged.
This is accomplished by adding code to accomplish the assumptions in the
super=procedure or, i this proves impossible without causing additional
violations, backtracking and attempting an alternative correction in
private.

An example of this would occur If the model for NAPOLEON had
declared that the body must be vertical. Debugging the body {(statements
20 and 40) im private would result im the assumption being generated

that the entry heading must be 0 or 180 degrees. The code for the body

is then reconsidered In the context of the NAPOLEON super-procedure.

The actual entry state to statement 20 does not have :HEADING egual to 0
or 180 degrees, Consequently, the debugger now attempts to add a
rotation at some preceding point in the program to achieve this entry
state. This addition will most likely occur immediately prior Lo
statement 20 or, perhaps, as the initial setup to the NAPOLEOMN program.
The debugger chooses whether to prefer 0 or 180, and at which repair-
point, on the basis of side effects, minimal change to the user's
program and planning caveats. This set of plausibility criteria is
described in sectiom 4.7,

The system also checks for bad side-effects on code following
the edited sub=-group due to a new exit state for the edited code. A
cleanup step may be needed to eliminate undesirable comsequences of the
private repairs. The modified mainm-step may violate protection or
assumption commentary generated by other edits. If so, the standard
practice is to either (1) modify the offended edit in light of the new
structure for the main-step or (2) backtrack and correcting the main-
step in private in some alternative way. G&See section 4.6 for details on
the protection mechanism.

Occasionally, when the code is run in private, the violation
does not occur. This happens because the main-step is not modular and
the violation is due to code appearing between pleces of an interrupted
main-step. Private debugging remains useful, however, because it
clearly indicates that the cause of the error is in the intervening
coda., [NOT (LINE BODY)) is an example: the body when run in private is
indeed a line. The bug is in the effect of the inserted VEE om the
heading of the second vectar.

Private debugging is also used to correct intrinsic violations

of relations., Recall that the definition of an intrinsic relation is
that it is entirely due to the code between the model parts mentioned in
the relation. Hence, the repair-point must occur there. The same
precautions required when the code is rejoined to the super-procedura--
i.e, satisfying assumptions, and possibly cleaning up--must be taken.
Outside the turtle world where it may not be 50 easy to decide if a
relation is intrinsic, private debugging cam still be attempted. Just
as for properties, 1 the violation does not appear im private, them it
i5 known that it 15 not intrinsic and the system can look for causes in

preceding code.

4.4.2 Linear Debugging of Relations

Linear Debugging is a techmique for limiting the possible
repair-points for correcting violated relations of both the intrinsic
and extrinsic kind, It is based upon the assumption that DERUG has
already privately repaired the main-steps to satisfy their properties.
The linear debugging technique is to consider editing corrections only
4t preparatory=-steps and not intermal to the code for the main-steps.
Main-steps are treated as inviolate black-boxes: their centents nead
neaither be known nor changed. This is based uwpon the assumptiom that
the main-steps are independent and that the only corrections necessary
to repair relations is to make adjustments at interfaces. This was the
technigue used to debug (BELOW LEGS ARMS). DEBUG limited the search for
the proper edit by not considering the addition of a rotation to the
interior af the VEE sub-procedura. Instead, it restricted itsell to anm
analysis of possible corrections at the level of the NAPOLEON super-
procedure.

Linear debugging fails whem the underlying cause of the

wiolation is due to the code for one of the parts. In such a case, it
is necessary to remove the restriction against modifying main-steps. An
example where this occurs was sShown im figure 1.9. The violation of the

mouth not being imside the head is cawsed by the size of the mouth, not

by the interface.

4.5 INPERATIVE KNOWLEDGE

How is the set of possible edits For repairing a violation
genarated? The answer lies in the wse of procedural knowledge
associated with the model primitives which provides directiom on how to
make the predicate true. The system has imperative knowledge for
logical primitives like egquality and conjunctiom as well as for
geometric primitives appropriate to the turtle world. This imperative
knowledge outputs a set of possible edits whose effect is to eliminate
the violation.

In the NAPOLEON example, (NOT (EQUITRI TRICORN)) is a violation
of a usar-model. Such violations are fixed by recursive entry to the
debugger and analyzing the code for the model in private. 3Such

recursion ultimately reduces the debugging to fixing violations of model

primitives.

4.5.1 Imperative Enowledge for Geometric Primitives

The following discussion describes im a simplified way the
imperative knowledge associated with several of the model primitives.
Let X and ¥ be vectors and assume that X is accomplished before Y.
(LINE X ¥) <=> (AND (PARALLEL X Y) (CONMECTED X Y))

The imparative semantics for AMD directs debug to establish the two
relations of PARALLEL and COMMECTED. These are defined below.

({PARALLEL X Y) <=3 (= [DIRECTION A) (DIRECTION B) (HOD 180))

The anmotator records the DIRECTION of vectors. The repair is to
insert rotations between the code for X and the code for ¥ so that
the direction of Y becomes equal to the direction of X (mod 180).

(VERTICAL X} <=» (OR (= (DIRECTION X) 0) (= (DIRECTION X) 180))
Alter preceding rotations so as to make the direction of X 0 or 180.
{ CONNECTED X ¥)

Choose a connection point on X (P1) and a connection point on ¥
(PFZ). The connection point is sometimes specified in the model: for
egxample, the user may have indicated that it should occur (AT
(MIDDLE (SIDE ...)}). Then compute the wector ¥V from P1 to PZ. The
gdit is to add code for V into an interface hetween X anmd Y. This
will have the effect of translatimg Y so that Pl is moved to
coincide with P2.

If the exact position is unknown, deduce it from constrainmts such as
preferring to effect the code in minimal ways. This is done by
manipulating individually the length and angle imputs to translation
and rotation interface steps {occurring between the code for X and
the code for Y) and observing if X and ¥ intersect as a result.
Branch in considering alternative allowable connection positions.

{ABOVE X Y} = (similar technigque for BELOW, RIGHT-OF, LEFT-0OF)

Te compute the required correction for a given interface: assume
that the figure has already been debugged to be topologically
correct=-e.g. all of the conmections are correct. This implies that
the only degree of freedom in interfaces is the heading.

In considering a given interface, Tind the range of headings which
satisfy the predicate. The range is determined by first finding the
heading of most restrictive meaning of ABOVE -- CEMTERED-ABOVE
wherein the center of gravity of X is directly above Y. Then relax
thisz heading to Find the maximum range in which less restrictive
meanings of the predicate--COMPLETELY-ABOVE and PARTLY-ABOVE--remain
true. To select a specific heading to actually edit into the code,
choose the value that satisfies the most restrictive meaning of
ABOVE. If there is still a range of possible headings, use the
average value. Record the range considered im case later debugging
results in conflicts and another heading must be chosen.

4.5.2 The Rigid Body Theorem
Fixed-instruction turtle programs draw rigid bodies, i.e. the
only effect of the initial runtime environment is to alter the

visibility, origin or orientation of the frame of reference. This

Ltheorem simplifies the generation of possible repair edits by allowing
computation of the required rotation for HORIZONTAL, VERTLCAL and
FARALLEL to be made only once, independently of the point in the code at
which the edit is to be added. This is useful since there are usually
many points at which patching the code must be considered to fix these
violations.

For example, suppose the side of a triangle 1s to be made
horizontal. The required rotation is computed for the side. However,
if the edit is made immediately prior to the code for the side, the
triangle shape will be destroyed. The rotation, however, can be added
to preceding code, rotating all subsequent vectors the same amount and
conseguently still making the side horizontal.

In general, if the correction 1% a rotation of the frame of
reference, the edit can be added anywhere prior to the code group to be
rotated. If the rotation is to change the relation between two sub-
pictures, then it can often occur anywhere in the code occuring between

the main-steps which accomplish the sub-pictures.

4.5.3 Imperative Enowledge of Logical Predicates

The general advice for fixing (= (P A) (P B)}) is to use the
imperative semantics for property P to either make [P A) equal to [P B)
or vice versa. For the simple case of fixed-instruction turtle
programs, the change is usually made to A or B on the basis of which
occurs last. This is preferred because of the rigid body nature of sub-=
pictures. For example, suppose A occurs before B, Then adding RIGHT
:ANGLE before A rotates A but it also rotates B, An opposite rotation
must be added after A if B is not to be affected by the Tirst edit.

Thus, fixing the sub-picture which occurs first commits the system to

two changes of the program. Of course, editing the code before B may
also reguire a cleanup because of bad side effects but this is not
inevitable as it is in the first case. This preference is reflected in
the general debugging criteria of avoiding conflicts, minimizing change
to the user's program and preferring beneficial side aeffects.

Thus, fixing equality consists of:

General Knowledge: Either A or B can be fixed. Prefer to alter the
unprotected element (section 4.6).

Domain=-Dependent Knowledge: Imperative semantics ara provided for
relating primitives to their effects., These semantics are used by
the annotator to document the effect of a statement of code, and by
tha debugger to add the correct code to achieve a desired effect.
For example, to alter the direction of a vector, the anmotation
semantics for FORWARD (section £.2) indicate that the DIRECTION
property of vectors is egual to the current heading. The annotation
semantics for RIGHT indicate that :HEADING is incremented by :ANGLE
following execution of "RIGHT :ANGLE". The conclusion drawn by the
debugger, then, is that either "RIGHT :ANGLE®™ is needed to fix the
direction of B or "RIGHT -:ANGLE® is needed to fix the direction of
A, where :AMGLE equals the difference between the desired direction
and the actual direction.

To fix (AND C1 C2 ...), correct all of the conjuncts. Order the
debugging attack on the basis of the same criteria used to order the
initial set of violations. Correct properties of main-steps beflore
correcting relations between main-steps. Correct intrinsic before
extrinic predicates. Debug a given group of conjuncts at the same level
{with respect to the preceding criteria) in temporal order.

See [OGoldstein 1974] for a description of imperative semantics
for other model primitives such as INSIDE, OUTSIDE, OVERLAFP, OR, NOT and

FOR=ALL.

4.6 ASSUMPTION AND PROTECTION
DEBUG generates assumption and protection commentary assoclated

with each repair to aid in resolving difficulties where an edit causes

new violations or undoes the effects of some previous edit. Assumptions
about the entry state at the repair-point describe expectations on which
the imperative semantics based their analysis., Protection commentary
quards the code [rom the repair-point to the manifestation-point (the
place in the code at which the sub-pictures referred to by the violated
model predicate were completed), again because the details of the repair
depend upon the state manipulations of the code between the edit and the
manifestation=-point. Protection is introduced by Sussman in the context
of debugging blocks world programs [Sussman 1973].
A simple example arises for the following tree program:

MODEL TREE i8ee Figure 4.1.

Ml PARTS TOP TRUNK

HZ LINE TRUMK

H3 EQUITRI TOP

H4 VERTICAL TRUNE

M5 COMPLETELY-BELOW TREUNKE TOP

MG COMNMECTED TOP TRUNK
M7 HORIZOMTAL (BOTTOM (SIDE TOP))

END

TO TREE4 = laccomplish tree)

10 TRIANGLE - f(accomplish top)

20 RIGHT 60 £= [setup heading such-that

foverlap (interface statement 30) (side 3 top)))
0 FORWARD 50 = (retrace (side 3 top))

40 RIGHT 45 £= (setup heading for trunk)
50 FORWARD 100 <£- {accomplish trunk)
END

T0 TRIANGLE = {accomplish equitri)

10 FORWARD 100 <= (accomplish {(side 1 triangle})

20 RIGHT 120 €= (accomplish {rotation 1 triangle))
30 FORWARD 100 «<- [(accomplish {(side 2 triangle))

40 RIGHT 120 = [accomplish {rotation 2 triangle))
50 FORWARD 100 «<- (accomplish {(side 3 triangle]})

(cleanup position)
60 RIGHT 120 {= (accomplish {rotation 3 triangle))

{cleanup heading)
END

See figure 4.2 Tor the picture drawn by TREE4 with the turtle starting

at the center of the screen and with a heading of zero degrees.

TOP

TRUNE

Intended TREE
FIGURE 4.1

TREE 4
VERSION 2
Base Made Horizontal

FIGURE 4.3

THEE 4
VERSTON 1
Slanted Base and Trunk

FIGURE 4.2

v
TREE 4

VERSION 3
Trunk Made Vertical

FIGURE 4.4

Debugging the base of the TOP to be horizontal results in the
addition of statement 5 to rotate the triangle so that the necessary
orientation is established. This produces figure 4.3.

5 RIGHT 30 <- (setup heading such-that (horizontal (side 3 top)))
Debugging the TRUNE to be vertical by modifving the initial setup,
however, undoes this correction (Figure 4.4).

3 RIGHT 45 <= (setup heading such-that (vertical trunk))

The solution is for the initial correction of (HORIZOMNTAL (SIDE 3 TOP))
to include commentary explaining its purpose, scope and assumptions.
aGpecifically, this commentary is:

1. an assumption that the entry state to statement 5 is :HEADING=0:
(ASSUME (TREE4 STATEMEMT 5) (= :HEADING D)).

2. a protection to any modifications of :HEADING from statement 5, the
repair-point, to statement 50 of TRIANGLE, the manifestation=point
of the error:

({PROTECT :HEADIMG UNTIL (TRIAMGLE STATEMENT S50},

Statement 50 is the manifestatiom=point of the error since it

accomplishes (side 3) and INTERPRET 1is then able to recognize that

a violation exists==the base of the triangle is not horizontal.
These comments force the debugger to prefer the alternative repair
strategy of making the trunk vertical by editing the rotation af
statement 40 to be RIGHT o90.

A second use of this commentary, in addition to preventing
confTlicts between edits, is to simplify debugging the procedure if it is
avar run in a new environmant. Unsatisfactory imitial state values are
immediately noticed by the assumption commentary. For example, if
statement 5 of TREE4A contains the assumption that the entry heading
should be 0, then being run in any other environment will generate a

violation. This violation then directs the debugging.

Thus, previous debugging sessions produce commentary whose
specificity eliminates complex questions of responsibility and
interpretion. The system has, in effect, generated the
snapshots of performance which Maur and Floyd utilize to verify

Goldstein 50 Debugging

programs | Floyd 1967, Nauwr 1967].
The assumption comment is passed to the debugger as an instruction and
the result is that code is added prior to statement 5 which converts the
heading to the desired value.

Often a protection conflict can be resolved. The debugger is
simply recalled to achieve the edit which gave rise to the protection,
taking into consideration the new entry or exit state requirements.
This second call to the debugger involves less effort than the first.
The commentary from the first remains and indicates the desired
Cartesian state to be achieved at the manifestation-point. If the
second edit succeeds without causing unfixable violations as side
effects, then the system has patched its own edit and need not reject

the basic form of its current analysis.

4.7 DECIDING BETWEEN ALTERNATIVE DEBUGGING STRATEGIES

More than one debugging strategy is usually available to iz a
given violation. The strategies differ with respect to their estimate
of the failure point and with respect to the type of correction they
apply to lix a given model violatien. For example, the imperative
somantics for BELOW indicate the desired direction but allow the
correction to be added into any prior interface. In NAPOLEON, the arms
can be made above the legs by adding the appropriate rotation to the
beginning of the MAPOLEON procedure or immediately following statement
10, the code for the LEGS. The preferred debugging strategy is the one
that does minimal violence to the user's code, reflects the abstract

plan, and Tixes the greatest number of violations.

4.7.1 Plausibility on the Basis of Side Effects

The first criterion for judging the success of a partial
debugging strategy is an analysis of the side effects of the
corrections. The debugging strategy with maximal beneficial side
oflfects is preferred. Beneficial side effects occur by eliminating
additional model violations, satisfying planning expectations or
eliminating viclations of rational form.

One might ask why an edit might have any benaficial side effects
at all. Isn't it more likely to have bad side affects and cause
other violations? The answer is that often several violations
are caused by the same error in the code. Then one debugging
strategy will stand out from its brethren by fixing this error
and thereby simultansacusly curing several vielations.

On the other hand, sometimes a correction causes additional
model vislations. In this case, either the new violations can
themsaelves be debugged or the debugging strategy must be abandoned.
Assumption and protection commentary are used to help im understanding
those bad side effects wherein one edit undoes the effect of some other
debugging edit. IF the bad side effect cannot be eliminmated, then the
debugging strategy must be rejected. This is the case with a linear
debugging of GOOGLY .EYES (figure 4.5).

The eyes cannot be brought into the head by shrinkimg the interface
without causing them to overlap the nose. Thus this debugging strategy
@liminates one violation (OVERLAF EYE HEAD) only to introduce another

{OVEELAP EYE NOSE). The svystem is forced to consider non-linear

debugging and fix the parts themselwves.

4.7.2 Plavsibility on the Basis of Minimal Change
Another plausibility criterion is that of minimal change to the

user's code, A debugging strategy that changes an input is preferred to

Oy

G00GLY EYES

FIGURE 4.5

one that adds statements; and a strategy that adds statements is in turn
preferred to one that deletes them. The rationale is that a repairman
Should make minimal changes to a system. The goal is to fix the program
in harmony with the user's intent, not teo redesign it. This caution is
further justified by the fact that the system does not fully know the
programmer's intent or plan. Hence, 1t sust be hesitant to make major

revisions to his program.

4.7.3 Plausibility on the Basis of Caveat Comments

& third basis for choosing between altermative debugging
strategies is advice from the annotator and plan-Finder on likely
errors., The annotator alerts the debugger to oddities in program
Structure which may be the underlying cause of some semantic violation
(section 2.4). The plan-finder fulfills the same purpose with respect
to code that contradicts expectations arising from the tyvpe of plan.

The mechanism of informing the debugger of the possibly erroneous code
is through "caveat" comments. The comments are noticed when the
debugger considers the associated code im the course of debugging some

model violation. A repair edit is accorded extra plausibility by the

debugger iT the correction eliminates the complaint that imitiated the
caveat.

Caveats generated by the plan-finder are created by noting
insertions which are not transparent, interrupted-steps which depend on
specific runtime environments and linear plans in which main-steps use
the same resource such as an assumption about a particular state
variable. In an extended system, caveats would be generated by such
oddities as iterative programs which fail to halt and shared free
variables. As an example, recall that the arms in NAPOLEON represented
a non-transparent insert and that this information advised the debugger
to edit the correction lnto VEE rather than directly into the NAPOLEOM
super-procedure.

Comments are used=-=rather than the Annotator or Plan-Finder
immediately calling the Debugger to correct the violation--because a
violation of rational form is not a guarantee of a bug: the oddity may
be harmless or even intended by the programmer. An example in which a
sequence of FORWARD instructions arises naturally is the following
triangle program:

To TRI

10 FORWARD 50

20 FORWARD 50

30 RIGHT 120

40 FORWARLD 100

50 RIGHT 120

60 FORWARD 100

EMD

" The first two FORWARD's are surprising. However, if this TRI i= being

debugged in preparation for being converted to a triangular head with
the remainder of the stick-man inserted as statement 15, then the

apparent violation of rational form is explained. The utility of

comments is that if the code is not suspected of being im error by the

Goldstein 54 Debuggimg

debugger, the comment has no effect. It plays a role only if DEBUG
finds a model violation that cam possibly be corrected by changing the
odd code. Only then does the comment enter into the analysis by
supporting such adding plausibility to debugging strategies that
eliminate its complaint of non-tramsparent insert or sequential

commands .

4.7.4 Guessing the Culpable Interface

Even with the restriction te linear edits, fixing a predicate
relating two main-steps may produce many possible edits. For example,
making the head above the legs in NAPOLEON could be done by adding a
rotation at any of several places in the program preceding the execution
of the TRICORN sub-procedure. Consequently, the system initially
considers edits to only two interfaces =- the interface immediately
preceding the second main-step (i.e. code for the model part
accomplished last) and the imitial setup to the program. The immediate
interface is preferred on the expectation that preceding interfaces have
already been protected in the course of debugging., The global setup is
considered because "Unexpected Runtime Environment® is a common cause of
errors. The plausibility of these editing points is them analvzed by
the criteria described in the preceding sections -- beneficial side
affects, minimal change, and caveats as well as the protection criteria
described im the preceding section. If they are Tound implausible,
additional interfaces are considered im order, proceeding backwards from

the second main-step.

4.8 SUNMARY OF DEBUGGING CONCEPTS

The debugger's knowledge divides into two categories: general

debugging technigque and specilfic imperative knowledge of logic and

geometry.

Debugging Technique

Linear Attack -- First verify main-steps privately. Then analyze
relations in terms of interlaces. Only if all aelse fails, modify
main=steps to fix relations.

FPlausible Search -- Compare alternative debugging strategies using
plausiblity criteria of minimal change to the user's code and
maximal beneficial side effects.

Culpable Interfaces -- Prefer either the initial interface or the
interface immediately preceding the bugged module. This is based
on the assumption that the temporal attack has already verified
intermadiate interfaces.

Caveats -- Use caveat coements generated by the Plan-Finder and
Annotator to suggest the location of the repair,

Intrinsic versus Extrinsic Errors -- Classify model violations as
intrinsic or extrinsic on the basis of whether Lhe error is
internal to the code being examined. Intrinsic errors have limited
scope and can be debugged privately.

Handling Multiple Bugs =-- debug those wiolations of most-limited
scope first: that is, debug properties before relations; then
intrinsic predicates before extrinsic ones, and finally in temporal
aorder.

Commentary =-=- Use commentary to express bthe purposSe, assumplions
and scope (protection) of & correction and to notice conflicts
between different corrections.

Enowledge of Geometry and Logic

Imperative Semantics of Predicates - In addition to standard
verification code, primitives have semantics that suggest what to
do to make the predicate come true, This consists of procedural
knowledge which examines code and generates edits to make a
particular geometric predicate true.

Rigid Body Theorem = This theorem is a precise statement af the
ef fect aof the initial environment on a segment of code for Fixed-
Instruction Turtle Programs, namely that the code produces a rigid
body and that the initial environment affects only the orientation
and position.

Goldstein 1] Debugging

3. Imperative Enowledge for Logical Predicates - Procedures for making
conjunction, disjunction, negation, eguality and set membership
true with minimal effortc.

4.9 Classification of Bugs
The following taxonomy of bugs susmarizes the types of earrors

which the system corrects.

Linear Main-3tep Failure:
Manifestation: Failure of main-step to accomplish model
part in private, i.e, when roun independently.
Fix: (Private Debugging) Repair in private, rejoin and
gatisly any initial assumptions.
Ex: (NOT (EQUITRI TRICORM)) im NAPOLEOM.

Preparation Error:

Ranifestation: Violation of relation between model parts.

Fix: (Limear Debugging) Find culpable interface, make
edit suggested by the imperative semantics for the
pradicate, and protect assumptions and behavour until
the point at which the error was manifest.

Ex: See Unexpected Runtime Environment and Local
Preparation Errors

Unexpected Runtime Environment: {(type of preparation failure)
Manifestation: Violation due to False assumptions of
the entry state to program. (Program does succesd in
certain environments).
Fix: Add an initial setup which converts the actual entry
state to the desired entry state.
Ex: (NOT [(BELOW LEGS ARMS)) im NAPOLEOM,

Local Preparation Error: (tvpe of prepaFation error)
Manifestation: Violation intrinsic to the program,
and not dependent on the initial environment.
Fix: Modify state appropriate to the imperative semantics
for the violated predicate.
Ex: (NOT [(VERTICAL TRUNK)) in TREE4.

Non-Linear Main-5tep Failure:
Manifestation: Main-step succeeds in private.
Fix: See resource conflicts, insertion errors,
and global errors described below,

Unconsidered Second-Order Constraint on Main-step:

{type of non-linear main-step failure)

Mapnifestation: Yiolation of a property of model part
not detected in private, Hanifested by analvysis
of a relation between the main-step and some
other model part.

Fix: Modify main-step in such a way that violation is

corrected while the first-order description of properties

asserted In the model is still satisfled. Guldance is
provided by the imperative semantics for the predicate.
Examples of such transformations are dilation and
reflection.

Ex: (MOT (INSIDE MOUTH HEAD)) in BIG.MOUTH.

Resource Conllict: (type of non-linear main-step Tailure)
(Mentioned for compléteness: not handled by debugger.)
Manifestation: Vicolation of property of part

described in model which was not exhibited in private.
Fix: Some assumption made when run privately is being

violated in public. Such am assumption could be the

availability of & given resource, e.g9. a free variable.
Ex: Attempt to correct both (VERTICAL BODY) and

(HORTZONTAL (SIDE TOP)) im TREE4 by modifying the

initial interface statement 5 (section 4.5)

Insertion Error: (type of non-linear main-step Tailure)

Manifestation: Main-step Fallure not indicated in private
with the additional element that a caveat comment
genarated by the plan-Tinder informs the debugger
that the code group for the main-step surrounds an
insert which is not transparent.

Fix: Make lnsert state-transparent.

Ex: (NOT {(LINE BODY)) in NAPOLEON.

Global Error:
Manifestation: Model part accomplished mon-lecally fails.
Fix: Find relevant theorem which was the basis of expecting
the global plan to succeed. Find assumptions made by

theores which were not justified. Hake these assumptions

Lrue.
Ex: (NOT (LINE {SIDE 1 TRICORN})) in NAPOLEON.

5. CONCLUSIONS

5.1 TOP-LEVEL DEBUGGING GUIDANCE

The top-level organization of model-driven debugging is to order
the modal violations and then proceed to fix them in turn. This
technique makes the basic assumption that guidance in Tixing the program
can be obtained by analyzing the specific details wherein the picture
failed to satisfy lts description. Alternatively, top-level guidance
can be obtained through:

1. structure-driven debugging - insight inte the form of programs,
e.q. such structural considerations as recursive and iterative

control patterns and global versus local variable scope.

2. evolution-driven debugging - the evolutionary or editing history
of the user's coda.

3. process=driven debugging - the abstract form of the process at
the time of the error [Sussman 1973].

A more compléte debugging system would exhibit all of these forms of

direction.

5.2 GENERALIZABILITY OF DEBUGGING TECHNIQUES

The mini-world of programs against which this analwsis of
debugging is tested 1s that of fixed-instruction turtle procedures.
These are, of course, a particularly simple form of program. Their
simplicity allows the imperative semantics Tor the geometric primitives
to utilize the Rigid Body Theorem, justifying the same state change to
different interfaces to correct a givem bug.

The debugging techniques used to handle even these simple
programs are by no means exhaustive. MNevertheless, it 15 worth noting
that many of the techniques utilized by the model=driven debugger are of

broad application: an imitially linear analysis, the need to order the

attack on multiple bugs, compatence to cope with alternative debugging
strategies--these are uwseful regardless of the nature of the top=level
direction or the complexity of the program.

The choice of plane geometry as the semantic domain For MYCROFT
was not accidental. Geometry allows the use of a Cartesian annotator
and a powerful model language for specifying spatial relations. Other
domains may not be susceptible to a MYCROFT-like approach bacause of the
lack of powerful ways in which to document the effects of the program
and the lack of a good model language. However, it is5 worth noting two

points:

1. spatial models are very important for programming in
applications beyond graphics. (This is rFelflected in the way

programmers refer to memory, stacks and data structures in
spatial ways.)

and 2. program planning and debugging involwve techmigques of broad

applicability but cannot be entirely dome in the absence of
domain-dependent Knowladge,

5.3 EXTENSIONS

The design of MYCROFT required an investigation of fundamental
problem solving issues including descriptionm, simplification, limearity,
planning, deﬁugging and annotation. MYCROFT, however, is only a Tirst
step in understanding these ideas. Further investigation of more
complex programs, and of the semantics of different problem domains is
necessary. It is also essential to analyze additional planning concepts
such as ordering, repetition and recursion as well as the corresponding
debugging techniques. Ultimately, such research will surely clarily the
learning process in both men and machines by providing an understanding

of how they correct their owm procedures.

Goldstein &0 Bibliography

6. BIBLIOGRAPHY

LAbelson 1973]

Abelson, H., Goodman, M. and Rudolph, 1.

LOGO manual

LOGO Memo 7 LOGD Project, MIT AI Laboratory {August 1973)

[Floyd 1967]

Floyd, R. W.

"Assigning Meaning to Programs®

Proc. Symp App. Math AMS vol. XIX (1967)

[Fahlman 1973]

Fahlman, Scott

A Planning System For Robot Construction Tasks
AT-TR-283 MIT AI Lubnratnry ﬁan 1973)

[Goldstein 1974]

Goldstein, I.

Understanding Simple Picture Programs
AI-TR-204 MIT Al Laboratory (March 1974)

[Hewitt 1971]

Hewitt, C.

"Procedural Embedding of Enowledge in PLANMER®
Proc., TJCAI 2 (Sept 1971)

LHeDermott 1972]

McCermott, D.W. and G.J. Sussman

The CONNIVER Reference Manual

Al Memo 259 MIT Al Laboratory [July 1973)

[MNaur 1967]

Naur, P.

"Proof of Algorithms by General Snapshots®
BIT &, 1967, 310-316.

[Papert 1971]

Papert, Seymour A.

"Twenty Things to Do with a Computer®

Al Memo 248, MIT AI Laboratory (June 1971)

L Papert 1972]

Fapert, Seymour A.

"Teaching Children Thinking®

Frogrammed Learning and Educational Technology, Vol.9, No.5 (Sept 1972)

[Sussman 1970]

Susspan, G.J., T. Winograd, and E. Charniak
Hicro- Flanner Reference Manual

Al Memo 203, MIT Al Laboratory (December 1971)

[Bussman 1973]
Gussman, G.J.
A Computational Model of Skill Acquisition

AI-TR-297 MIT Al Laboratory (Sept 1970)

[Winstan 1970]

Winston, P.H.

Learning Structural Descriptions from Examples
MAC-TR-76 MIT Al Laboratory (Sept 1970)

