MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

June 27, 1974

A. L MEMO 307 LOGO MEMO 11

LLOGO:

An Implementation of LOCO in LISP

ira Goldstaein
Henry Liebarman
Harry Bochner

Mark bller

Absiract:

This peper describes LLOGO, an implementation of the LOGD language writlen in
MACLISP for the ITS, TENSO and TEMEX PDP-10 systems, and MULTICS., The relative
merits of LOGD and LISP ss educational languages are discussed. Design decisions in the
LISP implementation of LOGO are contrasted with those of two other implementstions:
CLOGO for the PDP-10 and 1 LLOGD for the POP-11, both written in sssambler language.
LLOGD"s special facilities for character-oriented display terminals, grephic display
Murtles®, and music gensration are siso described.

This work was supporfed in part by the MNational Science Foundation under grani
number Gl-1049 and conducted at the Artificial Infelligenca Labarslory, & Massachusetls
Institute of Technology research program supported in part by the Advanced Ressarch
Projects Agency of the Department of Detense and monitored by the Office of Naval
Ressarch undar Contract Number NOOO14-70-A-0362-0005. Reproduction of this
document in whols or in pert s parmitted for sny purpose of the Umifed States
Govarnmeant, '

LISP LOGD MEMD

Section 1

Sechion 2

2.1
2.2
23

Section 3
-al
3.2
i

34
a5

Section 4
4.1
4.2
4.3
4.4

Seclion 5

Section 6
6.1
6.2
6.3
6.9

Section 7
7.1
7.2
7.3

Saction B

8.1

8.4

86
a7

Page | June 27, 1574

TABLE OF CONTENTS
Page
Why Implemant LOGOD In LISP 1
Differences batween LOGD and LISP 2
Simplicity 2
Maturalness 4
Dizparity 6
Cverview of the Implementalion B
Reader 8
Parsar k|
Evaluation 9
Printing 9
Error Analysis 10
Performance 11
Size 11
Compulation Tima 11
Lse 11
A ailability 12
Gatting Started 13
Parsing LDGD 16
Infix Expressions 16
kinus Sign 18
Homonyms 18
Abbreviations 13
Defining and Editing Funclions 20
Control Character Editing 20
Printing Funclion Definilions 2l
Erasing 22
Error Handling and Debugging 24
Parsing Errors 24
Run Time Errors 24
Braakpaints 5
Wrong Number of Inputs Errars 28
Garbage Collector Errors B8
Tracing 23
Interaction with LISP 29

Table of Contents

LISP LOGOD MEMO

Section 9

Section 10

10,1
10.2

Seclion 11

Sechion 12

12.1
122
123

Section 13

Section 14

1a.1
142
143
14.4
145
14.6
147
148
149

Saclion 15

15.1
15.2
15.3
15.4
155
15.6
15.7
158
159
15.10
15.11
15.12
15.13
15.14
15.15

Section 16

Page ii

Compiling LLOGD Lser Procedures

Using Files in LLOGD

Saving and Reading Files
Othar File Commands

Ditferences babween 1 1L0GD and LLOGD

Using LLOGD on MULTICS .

Where To Find it
File Maming Conventions
Terminalogy

Usimg LLOGO on TENSO and TENEX systems

GERMLAND

Starting Up

Toplevel Primitives

Grid Primitives
Proparty Primitives
hMultiple Garm Primilrves
Turtla Primitives

Taouch Primitivas

Glgbal Variables
Implementation

Dizplay Turtle Primitises

Starting The Display

The Turtls

Moving the Turtle

Erasing the Scresn

Turning the Turtle
Examining the Turlle's State
The Pen

Global Navigation
Trigonometry

Texl

Manipulating Scenes

Plotter

Pots

Paints

Global State of the Turlle's World

The Mustlc Box

Table of Contents

June 27, 1374

3z
a2

a4

aa

g

a]

a]
41
42

44
44

a7

a7
a7

a9
a9

51
51
51
52
53
54
54
B4

56

LISF LOGD MEMD Page il June 37, 1574

16.1 Plugging In 56
16.2 Turning On 56
163 Music Primitives 57

Table of Cantenta

LISP LOGO MEMD Page 1 . June 27, 1574

Section 1. Why Implement LOGO in LISP

LISP has proved ilself to be a powerful language for representing complex
information processing tasks, This power stems from:

1. Tha uniform representation of programs and data.

2. Tha ability to build arbitrarily complex dala structures in the form of s-expressions.
3. Recursion.

Power, however, is not necessarily good pedsgogy. LOGO s a computer language
designed especially for the beginner. Its purpose is to introduce the fundamental ideas
of computation as clearly as possible,

LISP LOGO is an implementation of LOGO in LISP. it has been designed for several
reasons. The first is that these two languages share a fundamenlal core in common.
Both are time shared, interpretive languages capable of full recursion. Variable and
procedure names may be any string of letters and digits. Sub-procedure definitions are
independent of super-procedures. Both numerical and list-structured informabion can be
manipulated with equal facility. Thus, the LOGO systems programmer is freed of the
necessity of re-developing various facilifies alresdy available in LISP {lisfs, recursion,
garbage collection, error service traps, interrupls), He can concentrale on addilions
{better error analysis) and modifications (pedagogical simphifications) to LISP. LLDGO
unifies language development across a brosd spectrum ranging from PLANNER and
CONMIVER through LISP to LOGO.

A second reason for this implementation is to provide a natural transition to the
more powerful computational world of LISP as the studen! grows more sophisticated.
When desired, the student has access to all of the capabilities of LISP including:

Arrays

Functions of arbitrary number of inputs
Functions that do not evaluate their inpuls
MICRO-PLANNER and CONMIVER

Interrupts

LISP compiler

Property lisis

Floating point numbars

Character display cursor manipulation
Infinite precision fixed point arithmetic

¥Why Implement LOGD in LISP Section 1

LISP LOGO MEMD Page 3 June 37, 1974

Section 2. Differences between LOGO and LISP

The differences belween LOGO and LSP can be described on the basis of three
educational goals:

Simplicity of both the computational and explanatory kind.
Maturalness wherein the overhead for a naive user is minimized by following

standard English conventions.

Disparity which emphasizes the distinction belween warious modes such as
defining wersus running programs,

It should be noted, however, that thers can be no one unigue solution to fhe
"best”™ educational language: These three goals can conflicl. Furthermare, they cannol be
so emphasized thal important ideas of computation are completely eliminated from the
language. For students of different backgrounds, simplicity and naluralness may have
very different meanings. Hence, alternatives fo the particular choices made in designing
CLOGO end 1ILOGO are also described. This section may be viewed as presenting a
specirum of possibilites from which a teacher can build a computalional world tailored to
his own pedagogical purposes,

2.1 Simplicity

Lists versus Sentences
Lists have a simple recursive definition, A list is aither

1. NIL, the empty list
2. (wordl word2 . ..}, a sequence of words (= atoms}
3. A list of lisks,

This definition is confusing when the studen! is still having trouble with the concept of
recursion. CLIGED limits iteell to liste built from only the first two of these three clauses,
Such lists are called "senfences”.

Alternative wiew: the concept of recursion is 100 important to be eliminated
from LOGD. Recursive programs are allowed, Educationally, the more examples
of recursion available, the easier it is o understand. Hence, lists should be
allowed.

Compulational power is not always in conflict with educational simplicity. In
addition to the standard list operations of FIRST (CAR) and BUTFIRST (CDR), LOGD
provides LAST and BUTLAST. Furthermare, all four of these operalions work on words
a5 well as senlences. The fact that word manipulation is more cosfly than list
manipulation for LISF, or that taking the LAST of a list is more expensive than computing
its FIRST ix not of interest lo the beginner. The nalural symmatry of having all of these
operalions is to be preferrad.

Alternative view: LOGD introduces two data types - words and sentences.

[ifferences between LOGD and LISP Section 21

LISP LOGO MEMO Page 2 June 27, 1974

There is bolh an emply word and an emply sentence, LISPs world iz easier to
understand, There is only one type of data, s-expressions, Primitives like CAR
are list operations only; they do not operate on words by manipulating the
word's print name, as LOGO's FIRST does.

Repeatedly BUTFIRSTing a sentence in LOGD always terminates in the emply list,
In LISP, with its more general list structure built from “dotted pairs® and CONSing, this is
not always so. The result is the possibility of “slip-through®™ bugs for EMPTY P endlesis
of recursive procedures. Thus, LOGD eliminates a commen source of error without
significantly limiling comput alional power.

Alternative wview: Allowing an atom to be the CDR of an s-expression
sometimes allows for economy of shorage. Also, the symmetry of CAR and CDR
in LISP make the dala structure easier to explain, although they are symmelric
a5 list operations only for the perticular representation of lists used in LISP,

Rigid program form

LISP allows programs o be lists of any form, Editing and debugging consequently
become awkward due to the difficully in naming parts of the program. LOGD simplifies
program sbruchure by requiring that a program be a series of numbered lines. The
locations of bugs and intended edils are thon far easier 1o describe,

Criticism: LOGD violates this assumplion by allowing the user to create lines of
urdimited complexity. It would be preferable to limit a line to a single top level
call. This does not prohibil nesting, a fundamental idea in computation, But it
does prohibil defealing the entire point of line numbers with such code as:

=10 FD 100 RT %0 FD 100 RT %0 ...

An alternalive scheme might ba to adopt & "DOT™ like convantion. Lines are
identified by offsels from user-defined localion symbals. This has the
advaniage of encouraging the use of mnemanic names for portions of the user™s
program, rather than line numbers, which have no mnemonic wvalue, while
retaining the virtue of having a name for every part of the program. The user
would not have to renumber lines if he wanted to insert more lines between
two lines of code than the difference batween their line numbers.

Integar Arithmatic

The imitial CLOGD world limils the user to inleger arithmelic. The ralionale behind
this is to avoid the complexity of decimal fractions. This is clearly a simplification whose
value depends on the background of the students. .

Cribicism: even for elementary school children, this slrruphfl:l’rm-n may Cause
confusion. Most beginners are troubled with

1

—ee

2

Proponents of flxed point srithmetic might reply that this is no,worse than
1
--- = 999999
1

Differances between LOOO and LISP Section 1.1

LISP LOGO MEMD Page 4 June 27, 1974

Howewver, a decimal printer can be ¢lever in performing roundofl,

Other alternatives are to limil arithmetic to ralional numbers, or fo use the
following LISP convention: Numbers are fixed point unless ending in a decimal
fraction, Operations only refurn fived point if both operands are fixed point.

Another virtue of LISP is that fixed point numbers can be infinitely large.
Arbitrary limitations due to the finite size of the computer’s word do nofl exist to confuse
the beginner.

Conditionals
LOGD allows the following Ivpe of branching:

=10 TEST <predicate>
=20 IFTRUE
=3 IFFALSE

TEST sets a flag which subsequent IFTRUE's and IFFALSE's access. This avoids the
necessily of the entire condilional appearing @n a single line of the procedure. The
student has explicit names in tha form of line numbers for each branch

Criticism: This prevents nesting of conditionals, A second conditional wipes out
the results of the first. In LLDGD, the flag set by TEST is simply a LISP
wariable. Since il is global, TEST s in sub-procedures can affect IFTRLUE: in
the super-procedura, Thiz introduces a non-local nature to control structure.

LOGDs lack of canned loops such as D0 and MAPCAR can be criticized as
encouraging bad programming practice, such as evcessive use of G0. This obscures the
logical structure of programs. Also, it may be significantly confusing to the beginner, and
the source of many bugs. A child might understand quite well 8 control structure concept
like “do Lhis parl of the program three times™, or “do this part of the program for each
element of the list™, but may be unable to open-code that control structure in terms of
jumps and condilionals. LOGD programs can't be “prefly printed”™ to reveal their logical
structure ss can programs written im LISP or & block struclured lenguage.

2.2 Naturalness

Mnemoanic Names

An obwious virtue of any computer language is fo use procedure names whose
English meaning suggests their purpose. Consequently, LISP's primitives CAR and CDR
ara renamed FIRST and BUTFIRST.

Mote: Everyons remembers how un-mnemonic CAR and CDR are. However,
most LISP primitives are named after their English counterparts.

CLOGD syntax allows the use of certain “noise words™, words which appear in the
user's code, bul have no effect beyond making the code read more like English senfences.
For swample, in the following lines of LOGOD code, the AND, OR, THEN, and TOD are
permitted but serve md compulational purpose. They do not designale procedures, as is
the usual caze with words not baginning with a colon,

Ditferences between LOGD and LISP Section 2.2

LISF LOGO MEMOD Page 5 June 7, 1974

*BOTH <predicate 1> AND <predicais 1>
YEITHER <predicate [> OR <predicats I»
*IF <predicate > THEN ...

Howaver, & the student gains more insight into LOGO, moise words become a
burden. They complicate the task of the parser, preventing the student from fesling that
he really understands the language. Most of the noise words have been eliminated in
both PDP11 LOGD and LISP LOGOD. [LLOGD will tolerate THEN in conditionals, and TO in
transfars, however, because they are so commonly used.] J

Matehing English vocabulary 1o compuler functions can be difficult. English words
rarely have a single meaning. Following are some examples where CLOGO may have made
the wrong choica.

1. CLOGO wses IS instead of EQUAL for its squality predicale. The ralionale is thal IS
will ba more familiar to & non-mathematical beginnar, However, the omnipresent nature
of thiz English verb results in such LOGD code as:

¥TEST IS :THIS.NUMBER CREATERF :THAT.NUMBER
thus, it might be better for LOGO lo use EQUAL

2. Another example where LOGD may have chosen the wrong word is in defining
procedures. This is done via

*T0 PROCEDURE.NAME :INPUT! :INPUTZ . ..

The English word "to” can imply execulion. For example, “he is to run his program” A
better choice would be “defina”,

Parsing

LISP avoids the necessily of parsing through the use of parentheses. This might
be considered well worth emulsting in LOGD for its explamatory simplicity. However,
simplicity must be contrasted with naturalness. A beginner is used lo uwsing English
where verbs and modifiers are connacted by gremmar, context and meaning rather than
explicit parenthesizing. This naturalness can be preserved for procedures thal take a
fixed number of inpuls. This sllows such lines of code to be undersiood by anyone
without any special programming knowledge.

'FORW ARD 100 RIGHT ™

Thus, a beginner can express himself with no exira burden of parenthesizing when his
programs are slill very simple.

Parging can be used to permit infix notation. Again it is simpler to demand that all
functional calls be in prefiv mobafion. However, a beginner i far more familar with
FORWARD :SIDE+[0 than with {FORF ARD (SUM :SIDE I0)).

Eventually, as one’s code becomes more complex, parentheses become a
simplilying tool. One does not have to guess how the parser will work, LLOGO allows
this. If desired, parentheses are permitted and interpreted in the standard way.

Dilterences between LOGO and LISP Section 2.2

LISP LDGO MEMD Page G June 27, 1974

Criticism: LOGO complicates its parsing slgorithm in several ways, making it
difficult to explain to a student. For example, the language does nol insist that
all primitives fake a fixed number of inpuls. In some cases such as the fitle
lines of definitions, this is reasonables. On the other hand, it is somewhat
confusing to limit such primitives as SUM fo only 2 inpuls if not parenthesized
but any number of inputs if parenthesized. Equally bad is the fact that
primitives like 11LOGOs PRINTOUT for printing definitions do not evaluate
their inputs. It would be more consistent for

TPRINTOUT "PROGRAM™

fo be required.

2.3 Disparity

Program Yersus Data

Both programs and data are information structures. The difference befwesn the
two is solely a matter of use. LISP preserves this elegant view by allowing programs o
be passed as inpul and, indesd, to even redefine themselves. This power, for all ils
simplicity, can confuse the beginner. For the novice, the difference between defining and
running a procedure is unclear. LOGED provides clarification by forcing a complels
distinction between the processes of defining and of evaluation,

Criticism: LOGD viclales this idea, A program cen be execuled inside a
definition if not preceded by a line number, This is a mistake, The typical case
is for the user to have intended lo lype the line number. In ils wistful desire

for more computational power, LOGD has forgoften its episiemological
foundations.

Hamany ms

LISP has the ability for a word to be the name of both & procedure and a
variable, The position of the word in a list then defermines how it s used. Homonyms,
however, can be confusing. How should a word which is both a procedure and a variable
be treated when it is the firsl element in a lis? Tha choice is arbitrary.

LOGD prevents such homonyms, Words evaluate as variables only when preceded
by ="

.« X .. causes X to evaluate as a procedure call.
+ :X .. returns the value of the variable X.

thus, LOGD and LISP share the power of allowing any string of lefters to be esither a
procedure or a variable name. But LOGO insists on an unambiguous “local® distinction,
independent of position, belween these two uses,

Another example of the clever ways LISP lakes advantage of homonyms is MNIL
LISP uses this word to name both the empty list and the logical truth value FALSE. This
can result in more economical procedures. The convenience, however, has no conceplual
basiz, Hence, it can confuse the user who does nol yel undersland either list
manipulation or logical analysis well. This is similar to the situation in APL, where the

Differences between LOGD amd LISP Section 2.3

LISF LOGOD MEMD Page 7 June 27, 1574

logical constants are the integers 0 and 1, and conditionals are accomplished by numerical
manipulation. It can lead 1o ebscuring the purpose of a given pieca of code.

Line orignfed input

LISP evaluates an expression when parentheses balance. Thus it cannot catch
arrars caused by typing loo many righl parentheses. LOGD waits for a carriage return,
Hence it is capable of recognizing this problem. Furthermore, 8 user can write several
calls on a lime. Execution is delayed unfil a carriage raturn is typed. Thiz has The virlue
of separaling the tasks of forming grammalical expressions from execuling programs.

Difterences between LOGD and LISP Seclion 2.3

LISF LOGD MEMO Page B June I7, 1974

Section 3. Overview of the Implementation

LISP LOGD is designed so that the uvser need never know that he is communicaling
with other than a standard LOGD. However, if desired, he can insert parenthesized LISP
code anywhere in his LOGD program,

LISP LOGOD is basically a compiler. 1t converts LOGD input to LISP programs, The
resull Is thal running most procedures takes less time since the code need mot be
repaatedly interned and parsed.

The following pages provide am overview of the major parls of the syslem.
Thesa are ils reader, parser, evaluator, printer, and error handler. More delailed
ewplanations of these will follow in later sections of this memo. For implementation
delails, LISP LOGD is available in well-commented interpretive code,

Code for the LOGD display turlle is discussed in Section 15, and code for the
music box in Section 16, The "LOGD project™ i concermed with more than the
development of & computer language. Of major interest is the design of various
computer-driven devices which provide a rich problem solving environment for the
student, However, special purpose primitives for driving these devices are independent of
LOGD wersus LISP issues and mush be added individually., A LISP-based implementation
does have one special virtue, For those devices like the music box which are driven by
ASCI characters, the primitives can be written m LISP or LOGD and then compiled. It is
nol necessary to create code ab the machine level

3.1 Reader

The LOGD reader is basically a line-oriented LISP reader, B returns a list of
atoms read between carrisge returns. Tha fundamental ftasks of interming atoms and
bullding list structure are handled by LISF. Conflicts in character syntaw and identifiers
between LISP and LOGD present the only subllefies.

Cerlain characlers such as the infix operators +, -, %, and | do nol reguire spaces
to be set off as atoms. This is equivalent o being a8 “single character object™ in LISP.
Other characters such as =" in dotted pairs are special in LISP but not in LOGD. The
solution to these conflicts is found in using separate “readtable™s for LOGOD and LISP.

Conflicks in names alse occur, The LOGD user has access to all the ordinary LISP
procedures, but must be prevenied from accessing LISP procedures which are internal to
LLOGD. This is accomplished by using two "obarrays™. When the user types in an
identifier with the same name gz an internal procadure, he accesses a different atom,

MACLISP allows any number of separale “readiable®™s and “obarray™s. This
permits multiple worlds - PLANNER, CONNIVER, LISP, LOGD - to co-exist with no conflict,
Switching worlds is computalionally fast, AN that is mnecessary i5 1o rebind Yhe
READTABRLE and OBARRAY wvariables to the desired warld. On the ofher hand, the

naive user is protected completely from other environments and need not even know of
thair exislence.

Dverview of the Implemeniution Section 3.1

LISF LOGO MEMO Page 3 June I7, 1374

3.2 Parser

The parser converfs a LOGD line to fist-structured form. This requires that
information on the mumber of inpwls used by a procedure be available. Inserting
parentheses 15 a trivial compulation for procedures with a fixed number of inpuls.
However, complexities are introduced info the LOGED parser by:

1. Having infix as well as prefiv operators.

2. Changing the number of inpuls depending upon whether the user embedded the form
in parentheses (SUM, SENTENCE, ..).

. 3 Primitives like T0 that do not parse their inpul.

4, Homenyms: Functions which have the same name in ISP and LOGO, but have different
meanings. These are handled by having the parser defect the nemes of LOGD primitives
which conflict with LISP, and convert them to functions with different names that do not
conflict.

This makes the parser the most complicaled parl of the simulalion.

Parsing information is slored on the property list of a function. The major sub-
procedures are concerned with prefis, infix, and user-typed pareniheses. Special
primitives are parsed by sioring a procedure as the parsing property.

3.3 Evaluation

The basic LOGD functions that do the vser's computation - e, the arithmelic, list,
and logical primitives - are the simplest part of the simulafion, These lenclions all occur
in LISP, wsually in a somewhal more general form. Hence, this part of the implemantation
is little more than renaming. For many primitives, LLOGD provides more argument type
checking and informative error messages than are supplied by their LISP countarparls,

Parsed code is executed directly by the LISP svaluator, Indeed, a user-defined
program in parsed form is simply a LISP PROG. The line numbers are tags in the PROG.

3.4 Printing

LOGD procedures could be represented as lists of unparsed lines internally. In
this case, a line must be internad and parsed each time it is run. However, the problems
of printing the definition and edifing a funclion are simplified. The internal format is
identical to the formatl in which the usar originally {yped the expression,

#n alternative solution is o represent LOGD programs in parsed, ie. LISP form. &
LOGO program internally is a LISP program, This maximizes run fime speed and simplifies
butlding program undersianders. | has the disadvaniage of complicaling the parser and
the printer.

1. The parser must handle functioms that have nol yel been defined. This can be
accomplished, however, by reverling fo the solution of parsing ab run time those lines
which conkain unknown functions. This run-lime parsing can alter the program’s definilion
as well so it only need occur once,

Overview of the Implementation Section 3.4

LISP LOGO MEMD Page 18 Jume 27, 1974

2. Printing definitions and sditing lines reguires an inverse parser or “unparser” which

returns the LISP-ified code to ils original form. This is possible providing there is no

information lost in parsing, Such s the case if the parser makes special provision for

distinguishing user-lyped parentheses from parser-generalted parentheses. One way o

;ﬁnmplith this is by beginning user-lists with a do-nothing funchion USER-PAREN
ined as:

(DEFUN USER-PAREN (X) X)
3, Editing title lines is made more complex, The edifor must reparse the lines of super-
procedures in which the ediled funclion appears. This can be accomplished by
maintaining a super-procedure tree, although LLOGD does not currently do this,
These complicalions can be avoided by sloring bolh representalions of the

procedure. This is an excellent sxample of a space versus complexity trade-off. LISP
LOGO currently does not store both representations.

3.5 Error Analysis

Since LOGD iz a language which is designed to be wied by beginning
programmers, it is important to provide informalive errgr messages. Consequently, all
LOGD primilives do extensive type checking on their inputs. LLOGD will try fo print oul
the torm which caused the error, and give the ling number if the error accurred inside a
procedure. After a simple mistyping error which can be detected by the parser, the user
is given an immediale opportunity to correct the line. For run lime errors, he is given
the oplion of causing breakpoints, Facilities for exploring the slack from inside a
breakpoint loop are available. Since LOGD procedures are represented infernally as LISP
procedures, The standard LISP TRACE package can be used,

These facilities are implemented using LISP error inferrupt handlers and

EVALFRAME. If the sophisticaled user wishes to provide his own error handlers, he can
access the LISP facilities directly.

Overview of the Implementation Secthan 1.5

LISP LOGO MEMO Page 11 June 27, 1974

Section 4. Performance

4.1 Size
LisP 26 Blocks {1024 36 bit words)
LLOGO {compiled) 7 BEnary program
5 List structure
2 MNumbers, Atomic symbals, etc.
Total space 40

These figures do not include space for user programs, or loading the display
turtle, music, or GERMLAND packeges. Belween 5 and 10K bevond the amount of storage
mentioned above would provide a reasonsble amount of workspace for user programs
and data; this would correspond roughly to programs of perhaps a few pages, In the
current MACLISP, storage expands as needed. LLOGD lakes advantage of this feature == If
programs grow beyond a cerfain size the user is ashed whether he wishes the allocalion
io be increased. Slorage is expanded aulomalically on loading special packages such as
the display turtle. Of the 14 blocks which comprise the LLOGD systam, all bul 3 are pura,
and can be shared among users,

4.2 Computation Time

For most processing, LLOGD enjoys & speed-up over CLOGD and 1 ILODGD due to
the fact that parsing and interning occur only once at define lime. Further, LLOGD makes
it possible to compile LOGD source programs into machine code using the MACLISP
compiler for incressed efficiency [See Seclion 91 Workspaces can be stored on the
disk in internal LISP formal. [See Section 10.1] Consequenily, re-reading files has no
overhesd. CLOGD haz an advanlage, however, in manipulaling words, a5 ifs infernal data
structure is string rather than list oriented.

4.3 Use

Almost all of the primitives of CLOGD and |ILOGD, (including the muosic box,
display turtle for the PDOP-6 and GT40) are implemented. Hance, LISP LOGD is capable of
reading, parsing and running most files saved under CLOGD or 1ILOGD [perhaps
recessilaling minor modification]

it can also be wsed real-time by an individual familiar only with LOGD: no
krowledge of LISP is required. On the other hand, all of LISF's facilities are available.
Programs can be written in LISP, or in machine language using LAP, and can be mede
callable from LDGD. The special packages for the display furtle, music box and
GERMLAND can also be used from an ordinary LISP, Some other facilities of LLOGO, such
gz the breakpoint and stack menipulating funcltions, are also available for use in LISP.
LISP users can take advanltage of these facilities withoul interaction with LOGD simply by
loeding the approprialte files of LISP functions.

Performance Section 4.3

LISF LOGO MEMD Fage 12 June 27, 1974

4.4 Availability

The implemantation is wrilten completely in interprative code. B runs compiled
under the MACLISP currently im use at the Arfificial Infelligence Laboratory. LLOGD has
also been implemented on standard DEC PDP-10% under the TEMSO and TENEX systems,
and on MULTICS, These implementations are discussed in Saction 13 and Seclion 12 of
this memo.

Section 4.4

LISP LOGD MEMD Page 12 June 27, 1974

Section 5. Getting Started

In the following sections, we will go into more detail concerning the
implementation of LISP LOGD, and provide some praclical information for using it. We will
not attempt 1o provide [he reader with an introduction fo the LOGD language; several
excellent sources for this already exist, such as the LOGD Primer, and the | 1LOGD User™s
manual [LOGD memo 71 We will assume that the reader has read these, or is already
familiar with CLOGD or 11L0G], the other implemeaniations of the LOGD language available
al the Al lab. Instead, we will concentrate on pointing out differences betwean LLOGD and
other implementations of LOGD, and describing features unigue 19 our implemantation. It is
not mecessary to know LISP to understand most of what follows, although some
kmowledge of LISP would be helpful in gaining insight inlo the implementation. For more
information on LISP, sea the MACLISP Reference Manual by Dave Woon, and the Interim
LISP User’s Guide [Al memo 190]

MNotational conventions: Throughout this memo, USER TYPEIN and LOGOD CODE
will appear in a font [ike this, SYSTEM TYPEOUT will appesr in a fant hike ihis, Conbrol
characters are demoled by A followed by the character. You tvpe a control character by
holding down the confro! key while you are typing the character, 3 means escape or
altmode, notl dollar-sign, excep! where olherwise noted. Bngle brackels < > mean
something of the appropriate 1ype suggesled within the brachets; for instance, if your
user nama ks HEMNRY, <user name> means your user name, &g HEMRY, Except for control
characters, which usually take immediate affect, and except where otherwise noted, end
all lines of bypein with a carriage return.

The following procedure is intended fo help very maive usars of ITS to gel logged

in, and to obtain LISP LOGD, Ses A memo 215, How To st On the Syslem, for more
datails.

1. Find a free conszole, A console which is free shows,

AL ITS <wersion> CONSOLE <number> FREE. <time>,
2. A comsole which is free understands only one command. It is AZ The compuler will
respond with the following messages:

Al ITS <version=. DOT <version>.

<pumber> USERS,

<PEwS>
3. When it stops printing, login as follows: Iype

:LOGIN <user name>
i there sre any messages for you,

w=MATL==

Betting Started Bection &

LISP LDGO MEMD Page 14 June 37, 1574

will be printed, You can type & space fo receive il or amy other character to postpone if,
A * will ba lyped at the end

4, MNow you heve completed logging in to the Al system. LLOGO is a8 subsystem of Al ITS.
To get LLOGO starked,

5. Decide which version of LISP LOGD you wanl, Choose from:
LLOGD - Standard version of LISP LOGD. Vacabulary is compatible with CLOGO.

PILOGD - A version which uses a vocabulary wiich is compafible with FOPL1 LOGD, See
Section 11 for delails.

NLLOGD -The very latest version of LISP LDGD, This is experimental, s0 we maka no

promises.
When you decide which you wanl, lype
“name of program®>

for example, :LLOGO .

B, Then LLOGD will print oul some initial messages, including its version number and
LISP's and will ask you some gueslions.

D0 YOU WANT TO USE THE DISPLAY TURTLE®

f you wan! lo define and edit a procedure which contains turtle display commands, you
should answer YES lo this question. It is nol necessary thal you have the 340 display
scope, or the GT40 display, to do just defining and editing. You can even run the
procedure if you do nol mind nat being able o see what the procedure does. See Section
15 for more information.

GERMLANT?

H you want to play with GERMLAND, the display turtle for character displays such as
DATAPQINT terminsls, answer ¥YES This hat a prompler which will run some
demonstrations and provide help if you need if. Again, if you intend to define or edit
procedures designed bo run in GERMLAND, you must answer ¥ES. See Section 14.

MUSIC BOK?

If you want to use LOGD music box primitives, answer ¥ES. This will inguire further, as to
which music box, etc. See Section 16 In case you have srewered YES to any of these
guestions you have to wait for & while, because |t takes come time ta load in the files. If
you want to interrupt loading in type AX | rot AC W you have a file named LLOGOD
(INIT) on your directory or there is a file named <gser name> LLOGO. on the (INIT)
directory, LLOGD will read it as an initislizetion file, execuling LOGD code conlained
therein, When all this is finished, LLOGO will indicate its readiness with

Oetting Started Section 5

LISP LOGOD MEMD Page 15 June 27, 1574

LLOGO LISTENING
T

7. I you find yourself in the unfortunate situalion of meeling a bug in ISP LOGD, vou
may report it by wsing the function BUG. The input to BLU'G should be & message
deseribing the difficulty, enclosed in dollar signe. Far exampla,

YBUC ¥

THE TURTLE ESCAPED FROM THE
DISPLAY SCREEN ...

]

THANK YOU.
?

B. You can logout when you are finished by typing GOODBYE fo LOGD. The terminal
should then say,

AND A FLEASANT DAY TO YOU!
Al ITS <version> DINS0LE <number> FREE <iims>

9. Have fun!

Getting Sterted Section 5

LISF LOGD MEMD Page 16 June 27, 1974

Section 6. Parsing LOCO

Thiz section will disewss a few of the more complex issues in parsing LOGD into
LISP, and discuss how they are handled by LLOGD, LISP is triwal fo parse, as its synbax
is totally wnambiguows, The application of a function to ils impuls always happens in
prefix notation, and the precise syntactic extent of a form is always clearly delineated by
parentheses. LOGD syntax affords the beginning programmer some COnveniences over
LISP syntax, while relaining much of the expressive power of LISP. Parentheses can be
omitted surrounding every form, and the more customary infix nolation for arithmetic
expressions can be arbitrarily infermingled with prefix notation. These conveniences are
bought at the cost of complicating the parser, and introducing some cases where
ambiguity results regerding the user's inlent for some of the language’s syntechic
constructs.

6.1 Infix Expressions

LLOGD allows infix notation to be used as well as prefix funchions in arithmetic
ewpressions. Most LOGD arithmetic functions exists in both prefiv and infix favors, and
the user iz fres lo use whichever he desires, .

YPRINT 3xd+:A7SUM FIRST :X DIFFERENCE [Cx17 2
is the same as
TPRINT (TIMES 3 4 W(EXPT :A ((FIRST :X *TIMES AL 17)-21}

LLOGD observes the usual precedence and associativity of arithmetic operators,

Mote that a complication of the LOGO syntaw Is thal all functions, mob just infix
operators, are required to have precedence lavels. ls

*FIRST :Ax IT
the same as
YTIMES (FIRST :A) 17 or TFIRST(TIMES :A 17} 7

The situation is further complicated by the user's probable expectation that functions
which manipulate logical values have lower precedence than comparison operafors like <,
> and = Soy,

TEST :NUMBER < :PI
is taken (o mean,

FTEST (LESSP :NUMBER :PI} and not 2LESSP (TEST :NUMBER) :PI

Parsing LOGO Section 6.1

LISP LOGO MEMOD Page 17 Jume 27, 1974

CLOGO gives all arithmetic operators the same precedence on the grounds that
precedence would be difficult 1o explain clearly 1o children. However, this has the
drawback of deviating from the customary mathematical convention Since the mativalion
for intreducing infix nolation inte LOGD syntax is 5o thal arithmetic expressions can be
written in the infix form in common use, LLOGD has been designed to obey the usual
precedence conventions.

LLOGD tries to please everybody, If yvou feel that the precedence scheme which
has been implemented does nol agree with your inluilion, you are free 1o redefine the
precedence levels as you wish, LLOGD slso provides the capability of defining new infix
operalors.

The inilial defaull precedences sre identicel to those of LILDGD and are as
fiollonara:

T00: A [exponentiation]

BO0; + - [prefix]

B500: & N,

400; « - [infix]

300: [default precedenca for systam and user Tunctions)
m: ko=

100: I¥ NOT BOTH EITHER AND OR TEST

50: _ [MAKE]

Initially, operators of levels 50 and 700 are right associative, and the rest are lefl
azsociative, which iz the defsult. Logical fenctions should have precadence lower Hhan
comparison operators, so if the user defines a logical funclion he should sel lhe

precedence himself, otherwise it will receive the defaull precedence. The user cam
change things by using the following funclions:

PRECEDENCE <op>

Raturns the precedence level of <op>.
PRECEDENCE <op> <level>

Sels <op>’s precedence level o the specified <level*, which may silher be a
number, or another operator, which means that <op> is to be given the same precedenca
a5 that operator,
PRECEDENCE NIL <level>

Sets the default precedence for funclions to <lewael> Al functions which are nol

in the above list of infix furctions, or have not been assigned a precedence by the user,
receive the defaull precedence.

ASSOCIATE <number> <which-way>

Daclares that all functions of precedence lavel <number> will associale <which-
way>, which is either *LEFT or *RIGHT.

INFIX <ap* <leval>

Parsing LOGO Sectiom 6.1

LISP LOGD MEMD Page 18 June 37, 1374

Defines <op> fto be an infix operator of precedence <level> Specilying a
precedence is oplional.

NOPRECEDENCE

Forces all infix operators lo the same precedence level [this will be higher than
the default precedence] Makes LISP LOGO look like CLOGD [well, almost...]

#ANFIX

This variable contains a list of all current infix operators, Look, but don't touch.
Use INFIX to add new infix operabors,

6.2 Minus Sign
There is some ambiguity in the handling of minus sign. For example, consider

NWSENTENCE 3 -:4)

If the minus sign is inferpreted as an infix difference operator, this will result in a list of
one element. If the minus sign is interpreted as prefix negation, it will result in a list of
two elements, CLOGD uses the spaces in the line fo disambiguate this case. If there is a
space belween the minus sign and the A, it is interpreted as infix, Otherwisze, it is
interpreted as prefix, In 11LOGO, spaces are nol semantically significant excepl fo delimil
words, 5o this is interprefed as (SENTENCE (DIFFERENCE 3 :A)) regardless of the
occurrence of spaces. LLOGOD treats minus sign as does 11LOGO. One would oblain the
resull of the other interprefation by wsing

HSENTENCE 3 (-:A))

The preceding discussion applies only to the parsing of infix expressions. So, f-#/]
is & list of one element, a negative number, but /- 4/ is a list of two elements, minus sign
and 4,

6.3 Homonyms

LLOGOD makes all the funclions of LISP directly accessible to the LOGD user, in
exactly the same way as LOGO primitives. This runs into difficulty when a LISP function
and a LOGD funclion have the same name but differen! meanings. These are currently
handled by the parser, which converts them into innocuous atoms which do not conflict
with USP; and are reconverted upon unparsing, Currently the following funclions are
P Py e«

PRINT, RANDOM, LAST, EDIT, SAVE [in MULTICS only]

When the user fypes in one of these, it iz converted by the parser lo en internal
reprasenlalion consisling of a different funclion name [LOGO-PRINT, LOGO-LAST
LOGO-EDIT LOGO-RANDOM or LOCO-S5AVE, as appropriate]l When the user requests
that the line be printed oul or ediled the unparser converls it back lo the way it was
originally typed in. In the CLOGD-compatible version of LLOGD, when [CAREFUL is sat to
non-NIL the following primitives which conflict with CLOGO are also changed by the

Parsing LOGD Section B.3

LISP LOGO MEMO Page 19 June 27, 1379

parser: LIST is changed to PRINTOUT, DISPLAY to STARTDISPLAY, GET and READ
to READFILE, and DO to RUN. Warning messages are also printed in these cases.

There is one pitfall in the currenl method of handling homonyms: sometimes, as
with passing functional arguments, the parser does not get a chance to do its thing, so
the user may find an unexpecled function called; APPLY "PRINT calls LISP's
PRINT function, not LOGDs.

6.4 Abbreviations

Abbreviations are accomplished in LLOGD by puftting the name of the function
which is abbreviated on the property list of the abbreviation as an EXPR or FEXPR
property, as appropriate. Abbrevialions are expanded into their full form on parsing, and
are left thal way. The user has the capability of creating his own abbreviations by

YARBREVIATE <nmc nmame> <old name>
and erasing them by
YERASE ABBREVIATION <name>

ABBREVIATE evaluates its inputs, but ERASE doesnt. A complete listing of
abbrevialtions can be oblained by doing

TPRINTOUT ABBREVIATIONS

Parsing LOGO Section 6.4

LISP LODGOD MEMD Page 28 June 37, 1374

Section 7. Defining and Editing Functions

Im LOGD, when the user defimes a procedurs using T, or EDITs a procedure he
has previously defined, LOGD enfers an "edit mode™, whare lines beginning with a number
are inserted into the procedure under modification. LOGD prompls with ™" rather than "F°
to indicate this. The intent of having a separate mode for aditing procedures is fo stress
the distinclion between defining procedures and executing them. This distinction is nol
strictly maintained; if the line does not begin with a number, the commands are executed
as they would be ordinarily, with a few exceplions [the user is prevented from doing
another T or EDIT for instance] Occasionally, this lesds Yo errors, for inslance if the
user forgot to type the line number at the beginning of a line intended Tor insertion,

The defaull state of LLOGO is to retain the separation of edit mode from ordinary
mode as in 1ILOGD and CLOGD. The slightly more sophisticated user, howewver, might find
himself in an unnecessary loop of continualty typing EDNTs and ENID's while warking on
the same procedure. Since the lines typed by the user for inserlion into a procedure are
inserted immediately when the user finishes fyping the line, END does mol cause
anylhing to happen other than the termination of edit mode. The syslem always
remembers the name of the last function mentioned by TO, EDNT, PRINTOUT, elc. as a
default for these functions, so when working on & single function, EDIT serves only to
enter edit mode. The user has an oplion of burning off the separate edit mode by setting
the variable :EDITHODE to NIL This will cause lines beginning with a number to be
inserted into the defaull procedure at any time. In this mode, it is never necessary to use
END, and EDIT will only change the name of the default procedure it given an input.
The prompler will nol be changed.

In LLOGO, it is mol necessary to be in adit mode to use EDITLINE or EDITTITLE
on a line of the default procedure, and the editing control characters are available even
when not in edit mode.

7.1 Control Character Editing

LLOGD has a control-character line editor similar to those in CLOGD and 1 1LOGO.
This makes it particularly convenient to correct minor typing errors, by providing a
means of recycling portions of the line typed previowsly, instead of requining retyping of
the entire line. The editor keeps track of twa lines: an old fine which you are editing, and
a new lime, which LLOGD is to use as the next line of inpul, The old line is always the last
line you lyped al LLOGD, except immediately after a parsing error, when the offending
lime will be typed out al you, and it may be edited. You can also set the old line yourself
to be a line in the current defaull procedure by doing EDITIINE <line number>, or the
title of a procedure by calling EDFTTITLE. Everything you type after the prompler, or
cause to appear using the conbrol characters, is included in the new line, until you bype
carriage return, which terminates ediling for that line. You may use parls of the old line
in constructing the new ling by using the following edilor commands:

AE = Get the next word from the front of the old line, and put it on the end of the new
lime.

AR - Put the rest of the old line at the end of the new line. This is like doing AEs until
there is nothing left in the old line.

Delining and Editing Functions Section 7.1

LISP LOGO MEMO Page 21 June 27, 1974

A% - Delete & word from the front of the old line.

AP - Delete a word from the end of the new line. Like rubout, except rubs oul a word
instead of a character,

LLOGD uses different charactors then LILOGD and CLOGD do because LISP uses
most of the control characters for interrupts and ifo.

7.2 Printing Function Definitions

The function PRINTOUT can be used o look al definilions of user procedures. n
addition, it has other oplions for examining the state of your LLOGO. PRINTOUT doesn't
evaluate its inpuls.

FPRINTOUT <procedurs-nama> [Abbrowiation PO

Will print out the definition of the specitied procedure. If the name is omitted, it
will assume the last function thal was defined, edited, or printed.

PRINTOUT LINE <number> fPOL]

Prints out only the specified line in the default procedure.
PRINTOUT TITLE <procedure> [FOT]}

Prints the just the fitle of the procedure given. I the input is omilted, prints the
title of the curren! defaull procedurs. This is useful if you forgst which procedure iz the
default.

PRINTOUT TITLES [POTS/

Prints the fitles of all current user procedures. lgnores buried procedures [see
Section 10.1]1 :

PRINTOUT PROCEDURES [POPR]

Prints ouf the definitions of all currantly defined user procedures. Wil nol print
the definitions of procedures that are buried [see Section 10LL]L

FRINTOUT NAMES [PONJ

Prints the names and values of all user variables,
PRINTOUT ALL [POA]

Does PRINTOUT PROCEDURES and PRINTOUT NAMES.
PRINTOUT SNAPS

Prints a list of saved display turtle scenes. See Section 15.11.

PRINTOUT FILE, PRINTOUT INDEX

Delining wnd Editing Functions Sectlon 7.2

LISP LOGO MEMO Page 31 June 37, 1974

Ses Section 102,
PRINTOUT ABBRREVIATIONS

Prirts & list of all currant abbreviations, and the names of the procedures which
each abbreviales. '

PRINTOLT PRIMITIVES
Prints a complete list of all LLOGOD primilives.
Another useful command is LINEPRINT, which causes a lisling, similar to lhe

output of PRINTOLT ALL, to appear on the lime printer. It takes an oplional input, a
wiord to be wsed a= a bitle to name the listing generatad.

1.3 Erasing

The command ERASE will remove unwanled portions of your LOGD. The inpuls to
ERASE are not evelualed. The oplions available are:

ERASE <procedurs, variabls or mmap nems>

Cause the defimtion of the specified object to vanish. Note: When you dafine a
function using T, it checks fo see if there already exists a procedure of the same name,
and if so, inguires whether you want the old definition ERASEd, This is fo prevent you
from accidentally overwriting definitions of functions.
ERASE PRIMITIVE <primitive name>

The LLOGD primitive given as input will be erased. You might use this, for
example, if you wanled 10 use a name used by LOGED for one of your own functions, If
you define a name using TY) which conflicts with a LOGD primitive, it will inguire if you
want the definibion of the primitive lo be erased.
ERASE LINE <number> [ERL}

Erases lime <number> of the default procedura,
ERASE NAMES [ERN]

Unbinds all user variables.
ERASE PROCEDURES [ERP/

Erazes all interpretive user fumclions. Does nol affect compiled or buried
procedures,

ERASE COMPILED
Erases all compiled user functions,

ERASE ALL {ERA]

Defining and Editing Funclions Section 7.3

LISP LOGO MEMD Page 33 June 27, 1374

Like doing ERASE PROCEDURES, ERASE COMPILED and ERASE NAMES.
ERASE ABBREVIATION <abbreviation™

Erases the abbreviation given as input. Does nol affect the procedure that it
abbreviates.

ERASE FILE <fils spec> [ERF]

See Section 102,
ERASE TRACE <funmction> [ERTR]

Removes frace from <funclion® See Section 2.6
ERASE BURY <functions> [ERB]

The functions will no longer be buried. For a discussion on buried procedures, ses
Section 10.1. :

Defining and Editing Punctions Section 7.3

LISP LOGOD MEMD Page 34 June 27, 1574

Section 8 Error Handling and Debugging

The philosophy of the LISP LOGD &rror handling system is 1o try lo be as
forgiving as possible; the system will give yvou an opporfunily to recover from almost any
bype of error [except 8 bug in LLOGD] There are two bypes of arrors which can occur:

8.1 Parsing Errors

If for some reason, LLOGOD cannol parse the line you typed [for example, you may
have typed mismatched parentheses], this causes a pargsing error. When this happens,
LLOGD will print a message lelling vou why it was unhappy, relype the offending line al
woul, and type the editor prompt character. You now have a chance to redeem yoursell
by correcling the line == you may use any of the editing control characlers [see Seclion
7.1]1 When vou are salisfied thal the line is correct, type carriage relurn, and LLOGD will
resume evaluation, using the corrected line in place of the one which was in error,

B.2 Run Time Errors

When a run lime error occurs, a message will be printed. If the error occurs
inside a LOGD user dalined function, the message will say somathing like:

;ERROR M LINE <number> OF <procedure>
{LIME <number>15:
streason for error>

it the error occured inside a LOGD primifive, the message will look like:

{OULDNT EVALUATE <bad form=
sBECAUSE
icreason for erroes

where <bad form> is what LLOGD was brying lo evaluale when the error occurred,
Usually, this will give you entugh information to figure out where the error ocourred,
although <bad form> is sometimes uninformative. Usually, LLOGD will simply return bo the
top level loop when such an error occurs. However, I you SETQ the wvariable
:ERRBREAK Vo something other than NIL, [or MAKE "ERRBREAK . ..] a run fime
error will cause a LOGD break loop to be entered after the message i printed. Setting
the variable :LISPEBREAK to non-NIL will cause a LISP style breskpoint to occur when
an error happens. [For a detailed discussion of breakpoints, see below, Seclion 8.3.]
You can reswme execulion of yowr program from the point at which the error occurred,
by CONTINUEing with something to be used in place of the piece of data which caused
the error. If the error was an undafined function, you may CONTINUE with the name of
a function which has a definition. If the error was an unbound variable, CONTINUE with
a value for that variable. If the error was a wrong lype of input to a LOGD primitive,
CONTINUE with some appropriate value for an inpul to that funchion, ele. Usually it will
be obvious from the context what sort of item is required. Computation will be resumed
from where the error occurred, with the refurned item subslituted for the one which
caused the error. [Mobe: the usual LISP interrupt handler funclions expect a list of the
new item to be returned, while LLOG s expect simply the itam] The LISP LOGO rum-lime

Errar Handling and Debugging Section 8.2

LISP LDGO MEMOD Page 5 June 27, 1974

error handling works by ulilizing the LISP error interrupt facility. If you don’t like the
way LLOGD handles any of the error conditions, you are free to design your own error
interrupl handlers, either in LISP or in LOGO,

8.3 Breakpoints

& powerful debugging aid is the ability to cause breakpainis. Stopping a program
in the process of being evalualed allows the user to examine and modity ifs state, and
explore the hislory of evaluation which led up to the breakpoint, LISP provides excellent
facilities for doing this, including automatic gemeration of breakpoints when an error
cccurs. Whenever LISP starls 19 evaluate a form, it first pushes the form on a stack; from
a breakpoint one can examine the stack to determine what forms were in the process of
being evaluated, and perform evaluations relative to a particular stack frame, LISP LOGD
attempts to make these features easily available to the user, from silher LISP or LOGO.
Versions of these breakpoint funchions are also available which can run in an ardinary
LISP, without the rest of the LOGD) envirenment. Tha following facilities are available for
causing breakpoints:

LOGOBREAK <message* <condition™ <return-volue* [Abbreviation PAUSE/

The inputs are all optionel, and are nol evaluated. Unless <condition=> is given and
evaluates to NIL, LOGORREAK causes the user to enter a loop where LOGD commands
can be typed and the resulls printed. This is similar ko the top level loop except that 7 is
printed as a prompler rather than % it is very much like repeatedly evaluating PRINT
RUN REQUEST. W <message” is present, it will be prinfed out upan eniry to the break
point. W also prints the form in the current stack frame, which will be the call to
LOGOBREAK if called explicitly by the user, If the breakpoin! happened because of an
errar, the initial stack frame will be the ane containing the form which caused the error.
LOGOBRREAK tries wherever possible to print out the current {form as LOGO code befare
it enters a LOGO break point. Howewer, the cwrrent version is nol always smart emough
to distinguish between LISP and LOGO frames on the slack, s0 you mghl occasionally see
whal looks like infernal LISP garbage there. If you go up far encugh, you are sure fo find
the LOGO code. A smarler version could recognize the LISP frames and gnore them, The
third input is a defaull value for LOGOBREAK to returm if it is CONTINUED [See
descriplion of CONTINUE, below] Caution; the breakpoint funclions described in this
section use LISP's CATCH and THROW. Unlabelled THROWFs from inside a breakpoint
loop are highly discouraged.

nd

i control-A iz typed al any lime, even while a program is running, it will cause an
interrupt and a LOGD break point will be enlered.

LISPBREAK <message> <condition> <return value> [/Abb. BREAK |

This is like LOGOBREAK, except that the loop is a LIEP {PRINT (EV AL (READ)})
loop, This is especially useful when debugging a sel of LISP funclions designed fo run in
LOGD, To access wour LDGD variables and wser funchions from inside a LIS break loop,
prefix them with a sharp sign ["#"] LISP users note: you can intersct with this break
loop as with the standard LISP BREAK function, except that it is set up 1o allow use of
the stack hacking functions described below. If $P is typed, or (CONTINUE) invoked, the
<raturn value> will be the value of the call to LISPRREK.

Error Handling and Detugging Section 8.3

LISP LOGOD MEMO Page 25 June 27, 1974

aH

As in LISP, Al typad at any time will interrupt snd cause a LISP breakpoint to be
anterad .

:ERRBREAK

If this variable is not NFL, when a run time error happens, LOGOBREAK will be
called automalically. This gives you a chance to find oul what went wrong, and recover
by CONTINUEing with a new piece of data 1o replace the one that caused the error. It is
inifially set to NFL

{LISPBREAK

Like :ERRBREAK, except that if sef to something other than NIL, when an arror
happens, LISPEREAK rather than LOGOBREAK will be called. Initially set ta NPl

The following functions can be called from inside a breakpoint o examine and manipulate
the stachk:

uve

Moves the breskpoint up one frame in the slack, printing out the form which was
about lo be evaluated in that frame. This will be the lorm which called the one which was
last typed out by any of the funcltions mentioned in this seclion. Evalualiom now lakes

place in the new stack frame, This means that all local and input wariables will have the
wvalues they did when that form was sbout o be evaluated. However, side effeclts such as

assignment of global variables are nol undone, Frames are numbered for the user’s
convenience, from O increasing up to top level

LU'P <namber>

Goes <number* frames up the stack Like doing U'P, <number> limes. The
<number* may be negalive, In which casa, the breakpoinl is moved down the stack rather
than up.
L'P <atom™>

Goas up the stack until a call te tha function whose name iz <atom® is found.
UP <atom™ <number>

Goes wp the stack unlil the <pumber*th call to <atem® ks found. Searches
dowrrward for the <pumber>th call fo the specifisd function if <numbar> is pegative.

DOW N atem> <number®

Like L/P, excepl that it procesds down the stack inctead of up. Both inputs are
optional, and default s for U/P, except thal <number> defaults fo -1 instead of +1. W
<number> is given il is equivalent ta UP ... -<mamber>).

PRINTUP <atom®™ <number>

Error Handling and Debugging Bection 8.3

LISP LOGO MEMD Page 27 June 37, 1574

Bccepls inputs as does UP, bul instead of moving the breakpoint up the stack 1o
the desired frame, all frames between the current ome and the one specilied are printed
oul. This function is good for getting a quick view of the stack in the immediate vicinity of
the breakpoint. The breakpoint remains in the same frame as before. The two inputs are
optional, and default as for UP,

PRINTDOWF N catom™ <number>

Like PRINTUP, except thal the inpuls are interpreted as for DOW N rather than
az for U/P, thal is, it prints frames going down the slack.

EXIT <returm-velus>

Causes the current stack frame to refurn with the value <return-value>. That is,
the computation continues as if the form in the current frame had returned with <return-
velue>. The inpul is optional, and defaulls to NIL

CONTINUE <return-value> [Abbreviations CO, $P]

Causes the frame of the originally invoked breakpoint to return with the specified
valupe, The input is optional. Use CONTINUE to return a new item of data from inside an
error breakpoint; tor instance a new function name fo use in place of one which was
undefined. Mote that in many situations, for sxample from a user-invoked breakpoin! or
from an error breakpoint which expects an item to be returned as the value of the form
which caused the error, if you havent moved the breakpoint around the stack,
CONTINUE will be identical to EXIT. If the inpul to CONTINUE ts omifted, the defaull
return value specified by a third inpu! to LISPBREAK or LOGOBREAK will be returned
as the value of the breaskpoint. If no such default return value was given, NIL will be
refurned.

Here's an example: .

"MAKE '"ERRBREAK T
Yssure LOGD break happens!

twhen an arror accurs!
{CHANOING A SYSTEM NAME
T

T} SCREWFUP :N Define our losing procedura.!
=1 IF :N=0 THEN DUTPLT {UNBOUND
Count down to O, then!
»3 QUTPUT SCREWUF :N-1
gval variable which has no valus!
=END
SCREWUP DEFINED
PSCREWLIP 3
'ERADA IN LINE 1 OF SCREWUP
LIME 1 15: IF :M=B THEN OUTPUT :UNBDUND
s UNBOUND 1S AN UNBOUND YARIABLE
‘BREAKPOINT FRAME B: :UNBOUND
N Wrame 0 is lhe variable, Eval wasl
B 'working on this whan we bambed!
TWe can da any command!
twhile in the breakpoint.!
P IGoing up & frame, :L'NBOLND!

Error Handling and Debugging Section B3

LISP LOGD MEMD . Page 28 June T7, 1974

{BREAKPOINT FRAME 1; OUTPUT ;UNBOUND

twas the input te OUTPLTY
RDOWFN YHoing down a frame.!
BREAKPOINT FRAME B: :UNBOUND
TP 'SCREFUP
{BAEAKPOINT FRAME 4: SCREWUP :N-1

‘wa arrive at recursive invocation!

TN hwhare :N had the value 1!

1

TP "SCREWL/P 2 f we rise past 2 calls to SCREWFLP)
;BREAKPOINT FRAME 18: SCREWUP M-1

TN 1N was 3

3

TEXIT *SCREWED TWe decide for some reason!
SCREWED fhat SCREFLP of 2 is !

i Mo raturn the value "SCREWF ED!

tand all the previous invacations !

lnf SCREFLP return with the valua!
PSCREFED and we are al top level!
Macn thal fun™

B.4 Wrong Number of Inputs Errors

Since LOGD syntax requires thal the parser know how many inpuls a funclion
requiras, and LLOGD parses your inpul &s you type it in, errore may be gencrated if you
change the number of inputs a funchion takes by redefining the function, or by calling
EDITTITLE. Callz o that function which you typed previously are now incorrectly
parsed. LLOGD will calch most occurrences of this when the funciion is called, and prinl a

message like:

;{AEPARSING LINE <pumber> OF <procedure> AS: <new parse>

and atiempl lo recover. LLOGD always alfempls to reparse a line which caused a wrong
number of inputs error. 1 is not always possible to win, however, as side effects may
have occurred before the error was detected,

8.5 Garbage Collector Errors

Versions of LLOGO running in BIBOP LISP [LISPs with the capability of dynamically
allocating sltorage] have special handlers for garbage collector interrupts. If it decides
yvou have used too much slorage space of a particular fvpa, or too much stack space, it
will stop and politely ask if you wish more io be added. If you see these guestions
repeated many fimes in a short span of fime while running one program you should give
seriows consideration to the possibility thal your program is doing infinite CONSing or
recursing infinitely,

Error Handling and Debugging Section 8.5

LISP LOGO MEMO Page 23 June 27, 1574

8.6 Tracing

The standard LISP TRACE package may be used to frace LLOGO primitives or
user functions, The tracer is not mormally resident, bul is loaded in when you first
reference il. Ses the LISP manual for delails on the syntax of ils use and the various
oplions available,

8.7 Interaction with LISP

Im debugging functions writhen in LISP for use In LLOGO, if is olten useful to be
able to swilch back and forth belween LOGD and LISP fop level I2ops. You can leave the
LOGO top level loop and enber a LISP READ-EVAL-FPRINT loop by wsing the LLOGO
function LISP. From this mode, execuling (LOGO) [remember to type the parentheses,
you're in LISPI] will reburn b LOGD, Typing control-alsign [~&] ab any time will cause an
interrupt and switch worlds; you will enfer LISP if you typed ag from LOGD, or enfer
LOGD if wou typed it from LISP. The LISP loop gives you access to all internal LLOGO
functions and global variables, which are normally inaccessible from LOGD since they are
on a different obarray. LLOGED primitives and system variables are on both obarrays, so
they will be accessible from both LISP and LOGD, but LOGD user functions and variables
are on the LOGD cbarray only. The characler sharp sign ["#"] is an obarray-swilching
macro; bo access LOGO user functions and variables from the LISP loop, prefix them with a
sharp sign

Error Handling and Debugging Seetion 0.7

LISP LOGD MEMD Page 58 June I7, 1374

Section 9. Compiling LLOGO User Procedures

LISP LOGD compiles & LOGD source program info LISP and it is stored internally
only as LISP code, Since this is tha case, the LOGD wser has the capability of using the
LISP compiler directly on his LOGD programs, and obtain & substantial gain in efficiency,
once his programs are thoroughly debugged. LISP LOGD provides an interface fo the LISP
compiler which should make it unnecessary for the user to worry aboul interacting with a
separate program,

To compile all of the functions currently in the workspace, the function COMPILE
is available. [This does not include buried procedures -- see Seclion 10.1.] IV expects
one word as inpult, to name the file which will contain the compiled code, The names of
the funclions which are being compiled will be prinled out. A temporary oulput file
[named .LOGO. OUTPUT] will be writlen on the current directory and delsted after the
compilation is complete. The oulput file will have as first name thk inpul to COMPILE,
and second file name FASL [In tha MULTICS implementation, the lemporsry file will be
named logo owtpul and placed in the current directary. The oulput file will appear in the
working directory, with one name, the inpul to COMPILE.] Since the LISP compiler must
be called up as a separate program, be careful about interrupting the compilation bafore
it is finished [for instance, by AC] a5 yvou will not find yoursel! i LLOGD amymore.

To load a compiled file into LLOGD, say READFILE <pame> FASL. This will load
gll the compiled funclions which were compiled by COMPILE <mame>, and also restore
the values of variables that were defined at that lime. The names of compiled funclions
will be kept on a list called [;COMPILED and nof on [CONTENTS. For debugging
purposes, you might wan! to read in both the compiled and interpreted definitions of the
same functions, and wyou camn wee the funclions FLUSHCOMPILED and
FILL/'SHINTERPRETED to swilch back and forth betwsen compiled and interprefed
definitions.

The LOGD COMPILE function supplies declaralions for LOGO primitives. Some of
the declarations include LISP macros which replace calls fo LOGO primitives with calls fo
their fazter LISP counterparts for elficiency, and some oplimzation is done. For safely’s
sake, all variables are aulomatically declared SPECIAL However, the sophisticated user
is free to include in his program DECLAREs to UNSPECIAL inpul or local variables
which he knows will not be referenced globally, or provide declarations which will make
use of the fast-arithmetic LISP compiler.

A few warpings about compiling LOGD procedures: First, remember that LOGOD
syntax requires that it be known how many inputs a funchon expects, belore a decision
can be made as to how to parse a ling of LOGOD code, If, when defining 8 procedurs, you
include a call to a procedure which is nat yel defined, parsing is delayed until run time
[see Seclion 6 and Section 3.2 of this memo for more details]l The compiler, of course,
cannol do anything reasonable with an unparsed line of LOGO code, so afl parsing must
be compleled by the time the definition of any procedurs is compiled. The COMPILE
function attempts to make sure this is the case. Therefore, it is an error lo attempt to
compile a procedure which contains a call 1o a procedure which is not a LOGO primitive
and has not vet been defined.

Also, it must be remembered that compilation of LOGD procedures, ke those of
LISP; is nmot “foolproaf™, It ks not always the case thal a procedure which runs correctly

Compiling LLOGOD User Procedures Sectian 3

LISP LOGO MEMD Page 31 June 27, 1974

when interpreted, will be guarantesd to run correclly when compiled. Self-modifying
procedures, weird controd structures, and in ganeral procedures which depend heavily on
maintaining the dynamic environment of the interpraler may fail o compile correctly
withoul modificatson.

Compiling LLOGD User Procedures Seciion 9

LISP LOGD MEMD Page 32 June 27, 1374

Section_10. Using Files in LLOCGO

A file specification on ITS has four components. Each file is named by two words,
of up to six characters each, a device [almost always DSK], and a direclary name [usually
the same as the user’s name] You can refer to a file in LOGD by using anvwhere from O
to 4 words. If you leave out the name alfogether, it will be assumed thalt you are
referring to the last file name menfioned. One word will be taken as the first file name,
and the second will default to > which means the highest numbered second file name
which currently exists if you are reading, or one higher if you are wriling. Two words
will be taken as the two file names, and the direclory and device will be defasulted. If
three names are given, the third will be assumed as the directory name, and the device
will be DSE. If four words are given, the third is device and fourth is the directory. Here
are some examples:

[Assume that the current user name is ESG, and FOO 3 is the highes! numbered file with
FOO a5 its birst filename]

*READFILE FOO

AVE FOO

*READFILE FiX) BAR
'READFILE FON) BAR HENRY
'READFILE FOO BAR DSK HENRY

ITS [<fnl> <fn2> <devsedirs)
Fid > DSK:ESG; [FO0 3]
FOO > DSK:ESG; [FOO 4]
FOO BAR DSK:ESC;

Fi BAR DSK:HENRY;

FOO BAR DSK:HENRY;

See Seclion 12.2 and Section 13 for information aboul file specifications on the
MULTICS and TENSD implementations. File specifications are accepted by LOGOD in the
same format as on ITS, o it may not be necessary to change any code to run on obther
implemenlt ations.

10.1 Saving and Reading Files

There are bwo ways of storing LOGD programs on the disk for later use. To store
the contents of the current workspace [all user functions and variables currently defined]
on the disk in the form of LOGD source code, use SAVE. It swpects as inpul a file
specificalion, as discussed above. The file created will contain the contenls of the user’s
workspace, function definitions and MAKEs for variablas, exactly in the form that he
would see if he did a PRINTOUT ALL

Workspaces can also be saved in LISP formal, as They are reprezented internally
by LOGD. This is accomplished by the funclion WRITE which takes ifs inpuls as doss
SAVE. Although the file created will not be so pretty to look at it you print if, using
WRITE produces files which are considerably faster to reload, since the program does
not have fo be reparsed. For leng-term storage of programs, howsver, it is recommended
that you use SAVE rather than WRITE. Changes in the implementation of LISP LOGD may
resull in changing the internal format of LOGOD programs, in which case, files crasted by
WRITE would not remain compatible, but files crasted by SAVE would remain so.

Using Files in LLOGO Section 18,1

LISP LOGD MEMO Page 33 Jume 37, 1974

To relosd & fila from the disk, use the funclion READFILE. This accepts a
slandard file specification, and reads it in, printing the name of the file. READFILE does
not care whether the file is in SAVEd or WRITten form. If the file was created by SAVE,
lines of code will be printed out as they come in from the disk. For written files, only the
names of funcltions and walues of variables will appear. If you get annoyed at all this
outpul; you can shut it wp with A, LOGD will return with a gquestion mark when the
loading is complete.

It is often convenient to treat a set of functions as a “package™ or “subsystem”.
For instance, you may have a set of yvour favorite funclions which you place in your
initializalion file, or a set of funclions designed for a specific purpose. When this 15 the
case il is inconvenient to have all these funchions written oul when you are working on
additional procedures, or have to see their definitions when yvou do a PRINTOUT ALL
That is, one would like a method of having the package of funclions available, but not
considered as part of the workspace by certain commands, You can do this by using the
function BURY. It takes unevaluated procedure names as input, and will assure that the
funclion is ignored by the following commands: PRINTOUT PROCEDURES, PRINTOLT
ALL, PRINTOUT TITLES, ERASE PROCEDURES, ERASE ALL, SAVE, WRITE and
COMPILE. Otherwise the function is unaffected, and can be invoked, printed, edited, efc,
A list of the names of buried procedures is kepl as the value of the variable :BURIED.
BURY ALL will BURY all currently defined procedures, and ERASE BURY will undo the
ettect of a BURY.

10.2 Other File Commands

PRINTOUT FILE [abbreviated POF] will print oul the contenis of a file, ERASE
FILE will cause the specified file to vanish [This has a safely check o make sure you
dont do anything you'll be sorry about]l These take file names as above, except that if
only one inpul is given to ERASE it defaulls to < the least numbered second file name,
again for safely reasons. PRINTOUT INDEX [POI} will print out all the file names in
the directory specified by one word. L'SE will change the name of the default directory.

Using Files in LLOGD Sectiom 18,2

LISP LDGO MEMD Page 34 Jume 27, 1974

Section 11, Differences between 1ILOGO and LLOGO

LISP LOGO was originally written 1o be compatible with CLOGO, & version of LOGD
written in POPLO assembler language. There now existe a version of LLOGD which we
believe to be "semantically compatible” with the PDP11 versian. By this we mean that the
wvocabulary Is the same -- any primitive in 11LOGD also ewists in LLOGD and will
{hopefully) have the same meaning. LLOGOD in fact has many primitives which do nol ewist
in 11LOGO, as well as offering the user access to the full capabilities of LISP. There are
substantial differences between LLOGO and 11LOGO with regard to file systems and error
handiing, and somewhat less substantial differences in the editor, turtle and music
packages. These are described in detail in other seclions of this document, There are also
are several less substantial differences, not mentioned in the preceding discussions, and
what follows is an attempt to provide a reasonably complate list of the knowledge that an
experienced | 1L0GD user would need to use LLOGO.

In 11LOGO, the double quote character ® is used to specify that the atom fallowing
it is not to be evaluated-

YPRINT "FOO
FOO

It s like LISP's single quote, excepl that it also alfects fhe LOGD reader’s decision aboul
when lo stop including successive characters in farming the name of an atam. In

TPRINT :F(0+3

the plus sign is a separalor character; it signale the end of the atom :FOO just as if there
was a space following :F(W). However, following a double guote, the only separator
characters recognized are space, carriage refurn, and square brackets. Thus, in 11LOGO,

IPRINT "FiN)+3
FO0+3

In LLOGD, the user may use the LISP single quote Yo specify thal an abom or
parenthesized list following the single quote is not to be eveluated. The presence of the
single quote does not change the way LLOGO dacides when an atom ends. In LLOGD,

TPRINT 'F({+3
;THE INPUT "FOO TO + IS OF THE WRONG TYPE

because the plus sign is slill a separalor character, LLOGD uses the double quotes as
CLOGD does; they are always malched, f ome s-swpression (atom or list) occurs in
between double guoles, it is quoted. If more than one occurs, the list conlaining them is
guoted. The correspondence bebween LLOGD double quoted expressions and LIS s-

expressions is as hollows:

L L N"‘

"egtpm>” sax ((JUOTE <atom>)

Fegle L. 2N mar (QUOTE (<al> <afi>})
"plx , <aN=) m=r (QUOTE (<al> .. . <al¥2)}

Differences between 1ILOGD and LLOGOD Section 11

LISP LOGO MEMO Page 35 June 27, 1974

Sguare brackels in 1ILOGD specity quofed lists. Parentheses are never used
around lists as in LISP, but are only wsed to delimit forms. LLOGD recognizes sguare
brackets as well as LISP's parentheses in denoting lisls. The difference belween brackels
and parentheses in LLOGD i thal the brackefs always denote Hst constants, and not
forms, and that the outer lavel of brackets is implicitly quoted:

[[FO0 BAR]] ==> (QUOTE ({(FOO BAR))

There iz & minor pilfall in the current implamantiation: note that fop leve!l parentheses
implicitly guote the list, interior ones do not, This does not always work, for instance
when using BUN one may expect interior lists afso o remain unevalualed:

*PRINT [PRINT [FOO BAR]] ==> (PRINT *(PRINT (FOO BAR))
FRINT (FOO BAR)
*RUN [PRINT [FOO BAR]] ==> (RUN *(PRINT (FOO BAR))

prints the value of the function FOO applied to input BAR.

Square brackets in | 1L0GO also share with double quoles the property described
above of affecting the LOGO reader’s decision on ending the names of atoms. Within a
square bracketed fst in 11L0OGD, an atom is terminated only by a space, carriege refurn
or brackel. This properly is not true of square brackets in LLOGD. In LLOGO, [F(N=3/ is
a list containing three elemants, but in 11LOGD, it conlains only one element.

String quoting in LLOGO is accomplished using the dollar sign character, §. LLOGO
will treat anything appearing between dollar signs literally, with special characlers devoid
of any special meaning. Within such a siring, two consecutive dollar signs will be
interpreted as a single dollar sign. So, $38% would be the word whose name is a single
daollar sign. $% is the emply word, Ruboul, edifing and interrupt characters canmol be
quoted in this manner, Use the ASCIT function of LISP if you really need them,

The character sharp sign [*#"] in LILOGD is used as a prefix macro character
which takes one input which must be a word, and execules it as a procedure. B is wsed
where one wants fo use a weird name for a procedure, or a8 name already used by the
system. Sharp sign is used es an escape 1o call that procedurs, Thus, a procedure
defined in 11L0GD by TO "PRINT ... would be called by #*PRINT, T0 "3 ... would be
called by #"3, ete. In LLOGD, sharp sign is used as a macro characler which causes the
next s-expression to be interned as if it were read in LISP it you are in LOGD, or as if if
was read by LOGO if you are in USP. If you are in the LISP mede of LLOGD and want to
access your LOGD variables, you can say &F00, elc. The conflict may be changed in the
near futwre by altering LISP LOGD's macro character fo one thal does mot conflicl with
1 1LOGO, Suggestions welcome.

The Boolean [logical] constants in 11L0GO are TRUE and FALSE, while in LLOGO,
they sre T and NIL, as in LISP.

The 11LOGD function LEVEL, which returns the current procedure depth, is not
implemented.

11LOGO forms are divided into two categories: those that output [return a value]
and those which do not. In LLOGOD, as in LISP, every form returns a value, To simulale
LILOGD and CLOGD in this respect, as » spacial hack; forms which return a question mark
do not have their values printed by LLOGD's top level function, However, LLOGD cannot

Dilferences between 11L0GD and LLOGD Section 11

LISP LOGOD MEMO Page 35 June 27, 1974

calch the arror of such a form hiding inside parentheses, as can 11L0GD, Most of the
primitives which do mot return 8 value in [1LOGO return ¥ in LLOGO.

The character 1 in 11LOGD is trealed as a macro “the valve of " if A is bound 1o
B and B is bound to C, then =4 is C In LLOGD, variables sel by MAKE are just LISP
atoms beginning with the characler 5 s0 =4 will be the value of the wvariable sel by
MAKE "A" <whatever>, etc, We are seriously considering changing this, eliminating the
incompatibility. The present setup requires MAKE to do an expensive EXPLODE on the
variable name, in order ta create the word which begins with a colon,

LLOGO expects to find only one form inside parentheses: constructs fike
WFD 100 FD 50 SUM 4 5)

are prohibited. 11L0GD allows more then one form inside parentheses under certain
restrictions,

The 11LOGO procedure TEXT, which returns a list of lists which are the lines of
a procedure whose name is given as inpul, is not implemented in LLOGD, However, you
can access the definition of a function in its parsed LISP form on the property list [CDR]
of the atom.

Comments: LLOGO understands two comment comventions: LISP's convention of
treating as a comment anylhing belween a semicolon and the next carriage refurn, and
LOGO' of trealing as a comment amything in belween exclemalion points, [The
exclamation points must be matched, and comments can be confinued past the end of the
line]l Anything after exclamation paints on a ling is ignored,

The top level loop in LISP LOGO is a READ-EVAL-PRINT loop whereas PDP11
LOGO is a READ-EVAL loop. This means that 11L0GD prints out only when you ask il ta
print unlike LLOGD which prints out values after every evaluation of a LOGD form,

In U 1LOG:
TSUM 4 8
YOU DONT SAY WHAT TO DO WITH 12

In LLOGD:
SUM 48
12

Line numbers can be any integer inside the INUM limit. Floaling point, negative
numbers and zero are allowed also,

Percent sign (¥} does not echo as a space. Carrisge relurns within square-
bracketed lisls print out as such, not as spaces, as in [1LOGO,

:EMPTY is the emply list, which iz LISPs NIL :EMPTYW iz the emply word,
which iz the LISP atom whose print name is (ASCI 0

The character control=T [AT] is converted o double guote ["] when il is read in
This is for compalibility with CLOGD. | haven't the faintest idea of why CLOGD does it

LISP LOGO and 11L0OGD differ on the syntax for arrays. LISP LOGO uses the LISP
array facilily; to define an array use:

Differences betwesn 11L0G0 and LLOGD Section 11

LISF LOGD MEMD Page 37 June 27, 1974

1ARRAY <name> T <dimenzion I> ... <dimendon N>
Values can be stored by
TSTORE <array meme> <mbperipi 1> . . <subreripi N> <valus>

Values are accessed as if the array were a function, which expected the same number of
inpuls as the number of dimensions in the array,

The LLOGD function RANDOM, of no inpuls, refurns a random floating point
number, which is between zero and one. If given fwo arguments, it returns a random
number belween ils first and second argument, inclusive, i both ifs inputs are fived
point, it returns a fixed point number, otherwice it refurns a flosting point number.
(RANDOM 0 9) behaves as 1 1L0GD RANDOM.

LLOGD has only one global test box. When a subprocedurs performs a TEST the
result replaces the resull produced by any TEST s pricr to the subprocedure call in its
superprocedure. JTFTRUEs and [FFALSEs alter the subprocedure call o the
superprocedure will be conditional on the last TEST which was performed, regardless of
what procedure it was in

ROUNDOFF in LLOGD takes either one or two inpuls, f given one input, the
number is rounded 1o an inleger, otherwise il is rounded to as many places to the right
of the decimal point as specified by the second inputf.

LOCAL variables are handled differently in LLOGD than in 11LOGD, Regardiess of
where a LOCAL statement is placed in a procedure, the variagbles declared will be local to
the entire procedure. This corresponds to & PROG wariable in LISP. LOCAL sccepls any
number of variable names as inpuf.

Inserting lines into procedures under program conirol should be done using the
funclion INSERTLINE. In 11L0GO, the following will insert a line into BLETCH when
MUMNG is executed:

T MUNG
=10 EDIT BLETCH
=20 10 PRINT {NEW LINE ADDED T BLETCH |
*END
This will not work in LLOGD. Instead replace line 20 with:
*30 INSERTLINE 10 PRINT fNEW LINE ADDED T0O BLETCH }
There 15 a memo by Wade Williams which ewplains some of the finer points of

LILOGD syntax, and should be consulted for further information. The 11LOGO User’s
Manua!l should slso be of assistance.

Diflerences betwreen 11L0GD and LLOGO Bertion 1

LISF LOGO MEMOD Page 38 June 37, 1374

Section 12. Using LLOGO on MULTICS

LISF LOGOD has now been implemented on WULTICS, and this iz the only wersion of
LOGD available for that system. Below are imstructions for wusing if, and a list of
differences between the MULTICS and TS versions. Ewcept for the differences im file
naming conventions, and limitations imposed by the operating system, source language
programs should be entirely compatible. For more information on MULTICS LIS, see the
MACLISP Reference Manual by Dave hMoon.

The LISP LOGD music package is available for use on MULTICS. See Section 16 for
more details, The dizplay turtle and GERMLAND packages are not available in the MULTICS
implemeniation. MULTICS does nol have adeguate facilities for wing displays such as the
340 and the GT40, # probably would be possible to implement a rudimentary furlle
package for the storage lype displays on MULTICS such as the ARDS and TEKTROMNX
terminals, but we have no plans to do so al presenl. We do hope to have available soon,
however, facilities for using the mechanical floor turtles [controlled by the Thornton Box)
on both ITS and MULTICS.

12.1 Where To Find It

To obtain LISP LOGD, you musl first create a link [o the necossary files. Affer
you log in, type

link >ndd>ap>lib>logo

This needs o be done only once for sach user. Subseguently, you can gel LLOGD simply
by typing

logo
You should then gel a message indicating the version numbers of LISP and LOGO, as on

ITS, amd the allocator will ask you if you want 1o usa the music box. W you have a file in
your directory named stert mploge it will be read in a3 an initialization file.

12.2 File Naming Conventions

An TS file specification consists of twa file names of up o six cheracters each, a
device and directory name. A file specification on MULTICS is called a "pathname™, and
consists of arbitrarily many componenis each naming a mode im a tree structure of
directories and segmenis [files] The components of a MULTICS pathname are separafed
by "=" characters, Any pathname beginning with **" is considered to be a full pathname,
i.e. start at the root of the tree, otherwise, it is considered to be relative fo the directory
which |5 currently the defaull. This will usually be something lke "edd=your-project-
name*your-user-name”, File names are assumed alse fo have twe companents as on ITS
and you type them inlo fo LOGO the same way, as [wo words, excepl thal each word is
not Hmited to six characters, The default second file name iz "logo®, not "% to be
consistent with MULTICS conventions, In your direclory, the two file names will appear
separated by a ".". Files whose second names are “fasl” are sssumed lo contain object
code produced by the LISP compiler. This will correspond to the file with only the first

Using LLOGD en MULTICS Section 12.2

LISP LOGD MEMO Page 33 June 27, 1374

name [no second component] in your directory. Here are soms evamples: [assume your
name is "person” and your project is “project™]

LOGD file name MULTICS file name

*read file foo *udd>pro joci> pereon> oo do go

Fread file foo bar >add>pro ject> parson® foo bar

tread file foo fal *udd>project> person> foo

Yread file foo bar mombls sudd>pro ject> person> mumble> foo har
*read file foo bar *wdd>llogo *udd=>llogo*foo.bar

12.3 Terminalogy

On MULTICS, conbrol characters are enlered to ISP by first hitting the break or
attn key [if you have one] and LISP should type CTRL/, then typing the ordinary non-
control character, then a carriage return. MULTICS has no other way of acknowledging
your existence before you hit a return, which is the reason for this kludge. Because of
this the control-cheracter line oriented editor which exists in the ITS implementation,
doez nol exist in the MULTICS implementation. MULTICS uses ¢ to rub out the previous
character, and @ to rub out the entire line. To enter these characters to LLOGO, precede
them with \.

If youw should have to use an IBM 274 terminal, remember that certain characlers
must be escaped The worst offenders are [and | (type <cemt-sign> <lpss-than> for [
and <eeni-sign* <greater-than> for f), type <mot-sign® for A, <cent-sign> <eent-sign> for
\. and type a <cent-sign> before # and & Upper and lower cases are dislinguished on
MULTICS, and all of the syslem funclions, both MULTICS's and LLOGO', have lower case
Mames,

To use LISP LOGD on MULTICS over the ARPANET from ITS, it is recommended that

Dave Moon's program THE be used rather than TELMNET, See DSKLIMNFO;TNG INFO for more
delails.

Using LLOGO on MULTICS Section 123

LISP LOGO MEMD Page 48 June 37, 1578

Section 13. Using LLOCO on TENS0 and TENEX systems

The wversion of LLOGD for TEMSD runs in a wersion of MACLISP that is nearly
compatible with thal used at MIT-AL The TEMSO version can also be used on TENEX
systems, Most of the incompatibililies are those necessitated by the difference in
operaling systems. Specifically, the following commands are not implemanted:

PRINTOUT INDEX {alias POI, LIST FILES)
LOGOUT (BY E)

COMPILE

IINEFPRINT

BUG

Also, the special packages for LLOGO (the fturtle primitives, the music primitives, and
GERMLAND) are unavailable.

Ancther difference between TENSD LLOGO and LLOGO on ITS iz in the lyping of
control characters (such as AG, AH, and all the editing characters - AR AE elch on ITS
these characters may be fyped at any fime. Those specifying an interrupt action (AG, AH)
will always take esffect immediately. Unforfunately, this is not brue in the TENSO
implementation, because TENGO allows a running program to be interrupted only by the
character AC. As a resull of this, if the user wanis to interrupt the LLOGO system while
it is running {e. g. execuling a user defined function), he must first type AC This will
inferrupt the program, and cause it to print %a, indicaling that it is wailing to read a
control-character. The user may then lype the desired control-character, and it will be
acted upon. Mote that typing AC is not necessary if the LLOGD system is nof running, but
rather waiting for input. Theretore the editing characters may be used without difficulty,
even on the TENSD sysfem

Another minor difference between the two operaling syslems is in the nolation
for file names. This difference is minimized by the syntax used by the LLOGD file
commands. For instance, the command

PREADFILE PROGRM LGO DSK USER

will read the file DSKASER; PROGRM LGO on ITS, while on TENSD the file read will be
DSK:PROGRM.LCOSUSER]. Thus mast user programs will ba able to run with little or
no modification to their inpultfoulput operations. (Mole that the default second file name
is > an ITS, while an TEMSO it s LG W you wanl fo use a LLOGD inmitialization file with
the TEMSD implementation, the nams of the file should be INIT.LGO on your user

directory.

A version of TENSD LLOGD is currently available at Carnegie-Mellon (Chli-108). it
may be lbaded there by means of the following command:

RUN DSK:LOGO[M480LC99)

Using LLOGD on TENS8 and TEMEX systems Section 13

LISP LOGD MEMD Fage 41 June 27, 1974

Section 14, GERMLAND

The GERMLAND package is designed to provide the wser with a display
environment in which interesting nontrivial questions can easily be investigaled, without
the need for sophisticated display equipment. The current implemantation runs on any of
the character display consoles in use at the Al laboratory.

Conceplually, GERMLAND consists of a square grid, on which may “live™ as many
as 10 “germs™. Each germ may have an arbitrary LOGD program associated with it; this
program delermines the germ's movements, as well as whether it sals any of the “food”
prezent at itz position of tha grid For a discussion of some of the problams that can be
investigated in this environment, see LOGD working paper 7.

14.1 Starting Up

The GERMLAND package may be loaded automalically at the start of an LLOGD
run, When started, LLOGD will ask which of the special packages you want, Simply type
YES, followed by a carriage return, when it asks whelher you wanl GERMLAND. The
GERMLAND package will then be loaded, and give you instructions for further help. Nole
that if the grid becomes garbled, because of a transmission error for insfance, you can at
any time cause it 1o be redisplayed by typing the character A\ [control-backslash]

14.2 Toplevel Primitives .

RUNGERM
invokes prompter. Asks queslions necessary to get started and offers help.
GCERMDEMOS

Runs a series of demos, leaving the demo praograms available for the user to play
with,

TOPCERM

Starts up a GERMLAND READ-EVAL-PRINT loop, using the grid set up by the
most recent call to RUNCERM.

LUUNGRID

Exits from TOPGERM, back to LLOGD.
REPEAT <program|>* <programi> ..

Each program defines one creature. A round consists of executing each program
im turm, Affter each round, the program waits for inpul. I the user lypes a space, one
round is performed; if the user types a number, that many rounds are done. This is

repeated indefinitely until an error occurs. REPEAT is not sublle with respect to
parallel processing. No efforl is made lo Iry each program and see whether any conflicts

GERMLAND Section 142

LISP LOGD MEMO Page 42 June 27, 1974

occur. However, sventually & more slaborate wersion could be designed fhal was
sensitive o synchronizing the lives of the germs. If no programs are passed fo REPEAT,
it attempls to use the programs associated with each germ by RUNGERM.

14.3 Grid Primitives

GRID <pumber>
Inifializes GERMLAND, A sguare grid iz created with <number> sguares in a side.
PRINTGRID

Clear screen and redisplay GERMLAND grid. Typing A\ also causes this lo
happen. If there is @ germ on the square, the characier which represents that germ is
printed in the square’s position. i the squere is an cbstacle, an "X" is prinfed. I there is
food on the square, the number of parficles is printed. If the sguare is emply, a " is
printed,

GRIDFP <position>
A predicate which cutpuls T itf the position is a legitimate grid square.
WERAP

Go inte “wraparound” mode, in which germs are alfowed to go across the
boundaries of the grid.

NOWRAP

Leave “wraparcund” mode.
Note that WRAP and NOWRAP aifect the variable :WRAPAROUND. See Page 46.
MOVE <position>

The germ is moved to the specified grid square. <posilion™® is a senlence of the x
ard v coordinates of the square. Typical use is: MOVE NORTH. If the germ moves to a
sguare which is already inhabited, the former inhakbitant is killed MOVE prints an error
message if an attempl is made fo MOFE to a square with an obstacle on if, or & square
outside the grid. The <position* does nol have to be adjacent fo the current location of
the germ. Hence, MOVE allows non-local movement to any grid square.

STEP =direciion>

<direclion* is interprefed as a heading. i must be either 0, %0, 180 or 270 (mod
360) STEP allows more elegance in the descriplion of a germ program. If the same
structure is used for all directions, then the program can call a subprocedure whose inpul

is cycled through the four directions.

GERMLAND Section 14.3

LISP LOGO MEMD Page 43 June 27, 1974

14.4 Property Primitives

PUTSQUARE <position> <information> <property>

For the specified grid sqguare, the data stored under the given property is st to
<information=,

CETSQUARE <pouition> <property>
The information stored under the <property> is returned. Typical uses are:
(GETSQUARE <position> "F{D) returns food at <position>,

(GETS(N/ARE <position= 'INHARITANT) returne the number of thu- BErm
currently living there, NIL f unocoupled,

(GETSQUARE <position> "OBSTACLE) returns T iff the square is an obstacle.
REM3IDUARE <porition> <properiy>

Remowves informalion stored under <property®>,
W HAT <pasition>

Outputs all of the information stored for the given position
FOOD <position>

Outputs the number of food parlicles at the given position. FOOD returns 0, nol
NIL, when there is no food.

FOODP <position>

Predicate which refurns number of food parlticles if any al the given position; NIL
it none,

FILLFOOD <p>
Puls <n= morsels of food on each sguare of GERMLAND.
EAT <mamber>

Swbtracts <number> of food particles from the currenl square. Generates an
error if <number> is larger than the tolal food available, There are two types of germs
== thosze that are hungry and those that are nol. Each hungry germ has a food supply
associaled with it. The food supply is increased every time he eats by thal number of
particles, and decreased by one for each generation. If it ever reaches zero, the germ
dies. 5o, if he eats only one particle of food on a burn, he must sal again on the newl
turng if he eats 2, he cen skip 8 turn withoul eating, etc.

GERMLAND Section 14.9

LISP LOGD MEMD Page 34 June I7, 1974

14.5 Multiple Germ Primitives
W HERE =;germ>

Returns the coordinates of the square that germ is currently inhabiling.
NORTHP <:germ>

Returns true only if the ¥ coordinate of germ ks greater then the X coordinate of
the germ whose program is currently being executed by REPEAT.

SOUTHP, WESTP, EASTP

Analogous to NORTHP.
KILL <:germ>

Aszasginates <:germ®* and prinls eulogy.
CERM <:germ® <pquare®

Initializas :germ to stert out located et <squars> sgerm is an integer batwesn |
and 10,

FOODSUPPLY <:germ>
Returns the amount of food that the germ has.
MOCESSIBLE <square> <:germ>

True if and only il <:germ> can gel fo <square> on his next move.

14.6 Turtle Primitives

HEADING <:germ>
Returns the current heading of the germ.
FORWARD <number>

Move <number> spaces in the direction of the current heading. Abbreviales to
FD <pumber>, <number> may be negalive.

BACK <number>

Move <number* spaces opposite to the current heading. Abbreviales lo BK
<humber>,

NEXT <direction>

Returns the coordinates of the next sguare in the current direction.

GERMLAND T Section 13.6

LISP LOGO MEMD Fage 45 June T, 1574

RIGHT <number>

Turn right <number> degrees-—<number> should be a multiple of 90, This may be
abbreviated sz RT <number> .

LEFT <rumbar>

Equivalent to RIGHT -<number>. Abbreviates as LT <number>,
FRONT

Returns coordinates of the square in front of the turtle.
RIGHTSIDE, REAR, LEFTSIDE

Analogous o FRONT,
FSIDE, RSIDE, BSIDE, LSIDE

Abbreviations for FRONT elc.

14.7 Touch Primitives
TOUCH <position=

Outputs NIL if <position> does not contain something that can be touched.
Otherwise it outputs anm atom describing the touchable object, eg. BORDER or
OBSTACLE. Typical use is: TOUCH FRONT.
OBSTRUCT <square>

Puls an obstacles al <sguare> Germs cannot move onlo sguares with obstackes.
DESTRUCT <square>

Removes obstacle at <square>.

14.8 Global Variables '

‘GERM

The number of the germ whose program is being executed by REPEAT.
GRIDSIZE

Size of the GERMLAND grid set by the GRID funclion.
HUNGRY

T => Garms are killed if their foodsupply goes o O

NIL => A germ's foodsupply is ignored by REPEAT.

OERMLAND Section 14.8

LISP LOGOD MEMO Page 96 June 77, 1374

W RAPAROUND

T == Motion scross borders ks permitted,

NIL => Motion across borders is an error,

The wuser should never change FRAPAROUND directly. ke WRAP and
NOWRAP to change modes,

14.9 Implementation

GERMLAND uses an array to represent the grid, and additional arrays for easy
access o information about a parlicular germ The individual primitives are, for the mast
part, straightforwardly implementable, given this data representation. Some care is faken
in interfacing with the standard LLOGD envirionmenl, so that all the usual debugging
features of LLOGD may be used in the development of germ programs, wilhout
interference with the display of the grid.

GERMLAND Section 14.3

LISP LOGO MEMD Fage 47 . June 27, 1974

Section 15. Display Turtle Primitives

The display turtle package for the 340 and GT40 is also usable from an ordimary
LISP as well as from LLOGO. Do (FASLOAD TURTLE FASL DSK LLOGO! to get the
simple display commands like FORFARD, RICHT, etc. and (FASLOAD DISPLAY FASL
DSK LLOGO) for the fancier snap-manipulating commands,

Abbreviations for tha following primitives are noted in square brackets.

15.1 Starting The Display

STARTDISPLAY 5D}

Initializes the screen. The turlle is displayed at its home, the cenfer of the
screen. This command is also useful for restarting everything when thangs get fouled up,
the PDPG loses, etc. STARTDISPLAY CT40 uses the GTE0 display rather fhan the 340
display. If you are using the GT40 as a display for the LOGOD turtle, it must not be logged
in to ITS as a console,

NODISPLAY [ND]
Says vou want o stop using the display, Flushes the display slave,

I the display slave for the PDP-6& dies, check that the run light is on I nol, stop, io
resal, deposit O in 40 and 41 and then starf.

LISF has threes control characters for the desplay:

N

Turns off display.
L g

Display prints like thy.
AR

Turns on display for lurtle, assuming a prior call o STARTDISPLAY.

15.2 The Turtle

HIDETURTLE [HT]

Makes the turtle disappear.
SHOWTURTLE [5T]

Brings the turtie back to life.

Display Turtle Primitives Section 15.2

LISP LOGOD MEMD

TURTLESTATE

June 37, 1974

Returns O if the turlle is nol displayed, else returns the walue of TURTLE.

{TURTLE is the number of the display item which is the current turtle.

MAKTURTLE <code>

The current turtle is replaced by the picture drawn by <code>.

Prowvidas

capability to rotate pictures, Subseguent turtle commands, like FORWARD, RIGHT, ete.
will make the picture drawn by <code> move as il it were the original turtle [triangle]

OLOTURTLE

Restores the original LLOGD turlle,

15.3 Moving the Turtle

FORW ARD :steps [FD]

Moves the turtle steps in the direction it is currenily pointed.

BACK :teps [BK /]

Moves the turtle steps opposite to the direction in which it js pointed.

SETX :x

Moves the turtle to (:x, YCORL
SETY :y

koves the turtle to (XCOR, iyl
SETXY :x :v

Moves the turtle to (mx, =y}
DELX :dx

Moves turtle to (XCOR+dx, YCORL
DELY :dy

Moves turtle to (XCOR, YCOR+dy).
DELXY dx :dy

Moves turtle to (XCOR+ux, ¥COOR+ody).
HOME [H/

Moves furtle homa o its slarling slale.

Desplay. Turtle Primitives

LISP LOGO MEMO Page 43 June 37, 1974

15.4 Erasing the Screen_

WIPE

Erazes the picture on the screen, Does nob aflect the turtle, or any snaps,
WIPECLEAN [WC/

Like WFIPE, except hides snaps also.
CLEARSCREEN fC5]

Equivalen! o WIPE HOME.

155 Turning the Turtle

RIGHT :angle [RT]

Turns tha turtle clockwise :angle degrees,
LEFT :angle [LT}

Turns the turtle counter-clockwise :angle degrees.
SETHEAD angle

The turtle is turned to a heading of :angle.

15.6 Examining the Turtle's State

Mole: The turtle’s home is {0, O) and a heading of O carrespands o pointing straight up.
The variables :XCOR, :FOOR and :HEADING describe the state of the turtle in floating
peint. These wvariables should not be changed explicitly by the user. The following
functions return components of the twrtle’s stale rounded to the nearest integer.

XCOR

Outpuls the X coordinate of the furtle.
YCOR

Outputs the ¥ coordinate of the turtle,
HEADING

Outputs the heading of the turlle,
XHOME

Qulputs the X coordinate of the turtle’s home in ebsolute scope coordinates (i.e.
relative to lower left-hand corner of the screen)

Display Turtle Primitives Section 15,8

LISP LOGO MEMO ' Page 58 June 37, 1574

YHOME

Cutputs the ¥ coordinate of the twrtle’s home in absolute scope coordinates,

15.7 The Pen
PENDOWN [PD]

Pen lowered to paper. Turlle leaves a track when moved.
FENUP [PU]

Pen raised from paper. Turlle does nol leave a track when moved,
PENSTATE

Returns +]1 = penup or -1 = pandown
PENSTATE <l or -1

Sels the penslate. A common use for this primitive is to make a sub-procedure
transparent lo pen slate,

PENP
T if pen is down, elsa NIL.
HERE

Outputs (SENTENCE XCOR YCOR HEADING). Usetul for remembering location
via MAKE "P" HERE.

SETTURTLE :state [SETT]

Sels the stale of the furtle fo skale. state &5 a senlence of X coordinate, ¥
coordinate, and heading. The heading may be omilted, in which case it is not alfected,

RANGE :p

Distance from the turtle's current location fo :p. wp is & point specified by a
sentence of X and Y coordinates,

BEARING :p
Dutputs absclute direction of p from burtle,
TOW ARDS :p

Dutputs relative dicection of o from turile,

Display Turtle Primitives Sextion 15.7

LISP LOGO MEMD Page 51 June 27, 1974

15.8 Global Navigsation

Mote: These primitives return floating point if aither of their inpuls are floaling point.
RANCE :x :v

Outputs distance of turtle from the point (xx,)
BEARING :x :¥

Outputs absolute direction of (x,) from turtle. (SETHEAD (BEARING :x :¥))
points the turtle in the direction of (x:y)

TIHF ARDS :x :¥
Qutputs relative direction of (x,) from turtle. (RIGHT (TOWARDS :x :¥))
points the turtle in the direction of [,).

15.9 Trigonometry
COSINE rangle

Cosine of :angle degress.
SINE :angle

Sime of :angla degrees.
ATANGENT :x oy

Angle whose tangent is ooy,

[SIN, COS, and ATAN are the corresponding functions which input or oulput in radians]

15.10 Text
SHOWTEXT

Subsegquent printing Is moved on the screen. Initially, prinling begins in the upper
left corner,

HIDETEXT

Subsequent printing is no longer displayed. Text currently on the screen remains.

REMTEXT

Any taxt on the screen is erased and subsequent printing is not displayed.

SHOW

Display Turtle Primitives Section 15,18

LISP LOGO MEMD Page 52 June 37, 1574
A wvariable which is T if printing is being displayed, NIL if not. Set by

SHOWTEXT. HIDETEXT, and REMTEXT. Don't sel it yourself.

:TEXT

Variable containing the number of the display item which is the fext displayed by
SHOWTEXT, elc.

MARK :x
(TYPE :X!is placed at the turlle’s current location. SNAP "witle” MARK “text”
creates a snap of the word ™ext™. This allows the word to be manipulated, ie. Moved to
any part of the screen, atc.
:TEXTXHOME, :TEXTY HOME
Variables containing coordinates of fext to be displayed on the screen

Changeable by wser, Initially :TEXTXHOME= 0, ;TEXTYHOME= 1000, These are in
sbsolule scope coordinates.

15.11 Manipulating Scenes

Mote: :PICTURE is the name of the turtle’s track. Does nob include any snaps displayed
via SHOW, SHOW SNAP, etc. :TURTLE is the name of the turtle. ;TEXT is the name of
any text displayed via SHOWTEXT.

SHOW :cene

iscena is moved o the currentl position of the furtle and displayed. It is not
copied.

HIDE :scene
seene is hidden but not destroved,
PHOTO "scene” [SNAP]

The current picture is copied and named :scena, Any old snap of this name is
destroyed.

PHOTO "scena”™ <line> fSNAP]
The picture drawn by <ine> is named =cene.
ENTERSNAP “scena”

(PICTURE is rebound to a fresh display item. The initial state of this item hides
the turtle, Subsequent commands refer fo this new item.

ENDSNAP

The original :PICTURE is restored.

Display Turtle Primitives Section 12101

LISP LOGD MEMD Page 53 June 27, 1974

RESNAF “icene”

moerne 15 made the current picture. The only difference batween this and
ENTERSNAP “seene” is that a new display ifam iz nol created, and The turtle is nol
hidden, ENDSNAP also reslores the original :PICTURE.
RESNAP “scene” <line>

The picture drawn by <ine> is added to wmcens. The <liine> is executed, raferring
to the turtle residing in mcene, Subsequent commands will refer fo the old turtle.

PICTURE <dizplay commands>

:PICTURE is bound to a new display item while the commands are executed, The
original :PICTURE is restored following ewecution of the commands, Similar to SNAP
“seane” <commands> except that no name is given to the new ilem. Inslead, the mumber
of the item is refurned. Thus, the same effect is achieved by:

SNAP “scenn” <commands* or
MAKE “icene”™ PICTURE ~commands*

Except thal mcens is nol sddad fo the Hst of snaps,
SHOWSNAP :scene
A copy of scene is displayed at the turtle’s current position.
HIDESNAP :scene
All copies of scene are hidden,
ERASE :scene
All copies of scene are destroyed.
SNAPS

A list containing all current snaps.

15.12 Plotter
PLOTTER

The display is plokted on a new plofter page. PLOTTER will ask if arrays from
previous plot should be erased. The user should iype YES if his preceding plot is
complete.
PLOTTER 1|

Display plotted on current plotter page.

NOPLOT

Display Turtle Primitives Section 15,12

LISP LOGO MEMOD Page 54 Jume 27, 1374

The plotter 15 released.
DISPACE

Dutline of w11 page displayed as :PAGE.

15.1% Pots
DIALS =
Outputs the valve of pot = as a decimal fraction belween 0 and 1. Careful: the
:'Inul;:lirjirs on the pots are marked in octal, but LLOGD normally sxpects decimal numbers as
15.14 Points
[Points are displayed whather or not the pen is down]
POINT
Displays a point al the turtle’s current locafion.
POINT :p
Displays a point at :p.
POINT qamap :p
Displays a poinl in snap at :p.
POINT qamap ix iy

Displays a point in snap at {x, o)

15.15 Clobal State of the Turtle's World

For all of these functions, the first input “scene® is optional. If left out, the command
refers to :PICTURE by defaull.

SETHOME :scene

Resels turlle’s home 1o current position,
SETHOME :tcane :x iy

Resels the turile’s home to the absolule scope coordimates of (i, w). Takes
effect immediately by moving the current :PICTURE to the new home. (SETHOME :scene
512, 512.) reslores the homs to the center of the screen.

MOTION :eens

Display Turtle Primitives Section 1515

LISP LOGD MEMOD Page 55 June 27, 1974

Moves scens under the conbrol of space war comsole |, Bulton lerminalss
movement. The new home is refurned, expressed in sbsolute scope coordinates, I the
current home (s returned immedistely and the space war console is ignored, check that all
switches on the color scope data switch exlension are in the middle position,

BLINK :acens
Blinks :scens.
UNBLINK :cene
Terminates blinking.
BRIGHT :xcene

Returns current brightness of sceme &8 & numbar from 1 (dimmest) to B
(brighlest) Ordinarily, :-TURTLE and :PICTURE are al maximum brightness.

BRIGHT :pcena [Jevel

Sels brightness of =cene to level, where devel is an intager from | fo B
SCALE :ivena

*

Returms current scale of =cene. Scale is an integer from 1 (standard ccale) fo 4
{16 times standard scabe).

SCALE :pcene ize

Sels scale of mcene fo size, where =%ize is an infeger from 1 to 4. size is a
multiplicative scale factor. Hence, SCALE 2 doubles the size of an ordinary piclure,
SCALE 3 quadruples it and SCALE 4 multiplies the size by B, SCALE | restores piclure
to standard size. This is a hardware scaling and affects the current display ss well as
future displayage.

DSCALE :scale

The length of a turtle step is resel lo wscale. wmcale may be any real number,
Resetling the scale with DSCALE rather than SCALE has lhe advantage that the scale
factor may be any real number. However, DSCALE applies only to future display and not
the current picture,

Display Turlle Primitives Section 15.15

LISPF LOGD MEMO Page 56 June 27, 1974

Section 16, The Music Box

The music bow is a fone generalor for from one to four simultanecus woices,
having a range of five octeves. Because of the limesharing environment, music |s
compiled into a buffer, and then shipped to the music box all at once, for smoaoth timing.
Wherever possible, these primitives have been made compatible with both those of
POP11 LOGD and PDP10 CLOGD. They made be used with the "old™ (Minsky) music box,
or the "new” (Thornton box compalible) music bow.

16.1 Plugging In

Tao plug in the old music box, find an EXECUPORT fterminal. Plug it into a2 300 baud
ITS line, wsing the phono type plug on the fop right of the EXECUPORT back, or the
acowstic coupler. Make sure the terminal is turmed off, and plug the music box inlo the
left back of the EXECUPORT. {Or find this all sef up in the music room on the third floor.)
Turn off the music box and attached percussion box, and put the EXECUPORT swilches
into the "line” and "uppercase” positions. Turn on the terminal, type AZ and log into ITS.
The panic procedure for the old music box (symptom; keyboard dead but ITS not down) is
to switch to local lowercase mode, turn off the music box, and type b, Then type $P.

When using the music box from MULTICS, remember that both carriage refurn and
live feed must be typed lo end a line, when using an EXECUPDRT. The terminal should be
in "half duplex™ and "lower case”™ modes, The panic procedure described above is not
recommended, since pulling the ferminal inle lecal mode will have the effect of logging
you oul of MULTICS,

Plugging in the new music box is a bit more of a problem dus to limitations of
present hardware. The criticel item is a small piece of elecironics known as the “terminal
controller card”, to be had from General Turlle in the basement of 545 Tech Square. This
card is fo be inserted in the correct orientation in port 4 of a Thornton bowx. (f you have
never done this, ask! Putfing it in backwards will burn out the card) The music box
should be plugged into port |, 2, or 3, depending upon which has the music box card. (It
should be labelled.) Then, plug the interface connector of the Thorton box into a 300
baud ITS line, a terminal into port 4, and log into ITS. The panic procedure for the new
music box is fo gel your terminal to echo "a " (control=0) spacel. Since the normal print
routines will aclually send <uparrow > for <control-0=, thiz iz most easily done with the
"echo”™ gadgel of the Thorfon Box, a small conneclar which makes the Thorton Box look
like a full duplex compuler line. (f you want to make yoursell one, see General Turtle or
Kark Miller; you probably won'l need il.)

16.2 Turning On

Assuming you are plugged in and logged info ITS, you may now run either music
box in LISP or LLOGO. LLOGD will ask you it you want the music box; if so, it will ask you
which one; if the new one, it will ask you which port it is plugged inte. After answering
all questions, typa STARTMUSIC. It will tell you fo turn on the music box (the old one
will make a lol of naise), and then lype K. Then, the noise (if any) will stop, and you
are ready to go. LLOGD behaves much like other LOGDs, and underslands the primilives
bealaw,

The Music Box Section 16,2

LISP LOGO MEMD Page 57 June 27, 1374

The music box can also be run from a pure LISP, Type (FASLOAD MUSIC FASL
DSK LLOGO), and answer the questions.. Type (STARTMUSIC) and the following

primitives will behave like LISF SUBRS or FSUBRS. (f you do EERLIST hacking, see Mark
Miller.) -

16.3 Music Primitives

A great deal of efforl has gone inlo ensuring upward compatibility with CLOGO
and 11L0GO. It you have programs for sither of these which no lenger work on LLOGO,
please lel me know, Motice that many “intermediate” level funclions such as CHORL'S,
which had been written in LOGD code, are supplied as LISP primitives for efficiency. In
addition, new facilities have been added which should be helpful. In the following, all
such situations have been indicated. Occesionally, a single funclion replaces several
LOGD functions; the others are shill available, but may print @ message recommending the
newer funclion for future code. Since most music functions sre executed for effect,
unless olherwise indicated, the value of a function is the atom {word} 7.

ROOM

Returns the number which corresponds fo a drum beat. Using DRUM is more
efficient. Mo inputs.

BRUSH <duration lisr>

Takes 1 input, a flist of durations. Plays {ie. stores in the music buffer for the
current voice) a sequence of brush notes (see GRITCH) and rests. A duration of n
means | brush followed by n-1 rests,

CHORUS <form 1>, ... <form 4>

Takes from one to four inputs, which should be forms [procedures with
arguments, or constants] CHORUS evaluates each argument in turn, and then goes on to
the next voice, in cyclic order, and evaluates the next argument. Example:

MCHORUS SING | 10 SING 5 10 SING 8 10
o

If the number of inputs is the same as :NVOICES, sequential calls 1o CHORLS or
SING will do the expected thing; if the number of voices used by the arguments is egual
to :NVOICES, recursive calls will also work. For other situations, just remember that
:WOICE is updated after evaluating each argument. For example, if :NVOICES = 3 and
you CHORUS twoa calls to SING, the next call to CHORUS will affect voice 3,
CHORUS2 <form 1> <form P>

Version of CHORUS which tfakes exactly two arguments, For upward
compatibility only,

CHORUSA <form 1> <form 3 <farm >

Analogous to CHORLSZ.

The Music Bax Section 16,3

LISP LOGD MEMO Fage 58 June 27, 1974

CHORUSH <form I> <faorm I* <form 3* <form 4
Analogous to CHORL/SA.
DRUM <list of durations>
Analogous to BRUSH for drum notes (see BOOM).
GRITCH

Returns the number corresponding to the brush sound of the percussion speaker,
More efficient to use BRUSH.

MAKETUNE <tune mame>

Takes as input a nama, fike LOGD MAKE or LISP SET. It multiplexes the buffer
and saves it as the "thing™ of the name. That is, it stores the tune as dala, as opposed fo
procedures. This allows faster playing (see PLAYTUNE) and easy storage (5/AVEd with
other LOGD wvariables.) Since MAKETUNE does not clear the buffer, allows saving and
playing incrementally larger portions of a long piece. Tumes made on one music box can
be played on the other, with the exceplion that funes with exactly three woices can
never be plaved on the new music box (ses NFOICES. MAKETUNE did nol exist in
CLOGD or 11LOGE0.
MBUFCLEAR

Mo inputs, Clears the music buffer, and starts at woice 1. This should be done for
example, after typing AG lo kill an unpleasant song, or affer MAKETUNEing the final
version of a song, before starting a new one.
HBUFLOUNT

Same as VLEN.
MHBUFINIT

No-op, ‘Prints message fo let you know you tried to use this relic of the past.
HEBUFNEXT

No-op. {(See MBUFINIT)
M BUFPUT

No-op. (See MBLUFINIT)
MBUFOLT

Ma inputs. Plays the music buffer. Does not clear it
MCLEAR

Same as MBLUFCLEAR.

The Music Bax Section 16.%

LISP LOGO MEMD Page 53 June 27, 1974

MLEN

Returng the duration of the longest [VOICE created so far (since the last
MBUFCEAR). Useful for building procedures such as percussion accompaniments for
arbitrary length tunes. (see FVLEN, :HAX)

MODMUSIC <T or NIL*

Takes one input, NIL or otherwise. If non-NIL, puls music in 2 mode where
numbering iz from O to 59, and note 60. ia the same as note 0, {le, (rote mod &O)), s0
that one need not worry aboul exceeding the range of the music bow.

NEW MUSIC

Mo inputs, Informs system that you wish to use the new music box. Asks which
port music box is plugged into. Normally user will nol nesd to call NEFFMUSIC, az the
questionnaire at load lime suffices. See: OLDMUSIC.

NOMUSIC

Mo-op. See MBUFPUT. This function may be reinsialed as a way 1o excise the
music packags, for example, when one wants to load the turtle package instead.

NWOTE <piteh> <duration>

Linfortunately, (through no fault of LLOGD), thare are minor varialions balwesn
1ILOGD and CLOGD. The difference between NOTE and SING is one such problem
According to LOGD memo 7 (B/10/73), MOTE is the basic 11L0GD music command, |t
takes two inputs, a pilch and a duration. | numbers pilches chromaticslly from -24. lo
J6. with O baing middle C. There are also three special pitches, as follows:

-28. is a resl

-27. 15 a boom

=26. is a grilch

=25, is illegal.
11LOGD NOTE can also take multiple inputs. LLOGD muzic has implemanted all of this for
NOTE, except the multiple inpuls. The numbering is slighlly different from CLOGD SING,
which is slso implemanted in LLOGD. {see: SINGL

NVOICES <1, 2, 3, or 4>

Takes one inpul, hopefully a number between | and 4. Sels :NVOICES to that
number, clears the buffer, and sets :FOICE to 1. Remember that 3 woices is illegal on the
new music system, and will generale an error. It is generally beller o use four voices,
one blank, so that tunes will play on either music box, In MODMUSIC T mode, (normally
not the case), calling NVOICES with a number outside of [1,4.] will not cavse an error,
but sesms crazy. The L+ inpul mod 4 will be wsed instead. SETing :AMVOICES or
MAKEing "NVOICES™ cannot be prevented, bul is considered & faux pas. Accessing
:NVOICES is welcomed. Calls MBUFCLEAR and resets VOICE lo 1. See: :NVOICES,
VOICE, VOICES, HMODMUSIC.

OLDMUSIC

The Music Hax Section 163

LISFP LOGO MEMO Page B8 June 27, 1374

Mo imputs. Puls system in made for old music bow. Normally nol needed by user,
as questionnaire at load time suffices, Might be used, for example, if you made a mistake
answering the guestions. See: NEW MUSIC.

PERFORM [Abbraviation PM |

Mo inputs. OQuipuls the music buffer, end then does an WEUFCLEAR. Ses:
MBUFOUT, MBUFCLEAR, PLAYTUNE.

PLAYTUNE <tune>

Takes one input, which must evaluate to a tune created by HAKETUNE. it plays
the tume. Does nol clear or ofherwise alier the current emusic buffer, PLAYTUNE is
transparent to fhe current number of voices, even il the fune uses a differenl number,
See: MAKETUNE, PM.

REST

Mo inputs. Returms bhe number of the nole which generates silence on the music
box, {Like BOOM and GRITCH, this will win independently of whether 1 1LOGD or CLOGD
primilives are being used; likewice, it will be the correct number for MODMUSIC T or
mormal stale, even for different scalebases.) Naturally this checking is less efficient than
just calling SING -25. or NOTE -28. for the sppropriste duration, See: SING, NOTE,
MODMUSIC, :5SCALEBASE.

RESTARTMUSIC

Mo inputs. Like STARTMUSIC, except re-initializes all system variables, and runs
queshionnaire as far back as asking which music box, Useful in situations of tolal loss
after panic procedure, Usually tunes croated by MAKETUNE, and user procedures will
be intacl. Buffer will be wiped outl. In cases of peculiar behavior at login or load time,
guarantees that everybody thinks they have the device you think they do. I this does
not work, go to "PLUGGING IN".

SING <piich> <duration>

Basic CLOGD and LLOGD music command. Takes two inputs, a pitch number, and a
duration. It is highly recommended that durations be integers grester than 01 Very large
durations {each unil corresponds to a characler atom in LISP) are apt to slow down the
system a lof, so small infegers are highly advised. Pilches are from -25. to 39, with O
being middle C. (Bul see the remarks about LILOGD's wvariant, NOTE, and also
:SCALEBASE and MODMUSIC) Pitch -25, s a rest, -24, a boom, -23. a gritch, -22.
ignored. (Bul see REST, BOOM, CRITCH) Durations are normally broken down into N-1
beats of pitch and 1 beat of rest, to avoid slurring the music. However, if the SPECIAL
wariable [JNSTRUMENT is "STACCATO®, | beat of nole followed by M-1 bealts of rest
will be sung. [ie, stored in the music bulfer under the current voice)l. If other phrasing
iz desired, it may be added later,

SONG <pitches> <durations>

Takes two inpuls, a list of pitches and a list of durations. Calls SING, pairing
pitches with durations until the shorter list is exhausted. In other LOGDs, this was not a
primitive, bul was writlen as a recursive LOGD procedure,

The Music Box ' Section 1683

LISF LOGO0 MEMO Puge 61 June 27, 1974

STARTMUSIC

Mo inputs. Should be called to turn on the music box. Unlike CLOGD, it pauses o
let you furn on the bow, to minimize the unpleasant moise generation on fhe old music
box. (PERFORM alone will suffice). Clears the music buffer and sets :VOICE to 1.
Probably unnecessary with new music box.

VLEN

Mo inputs. Relurns duralion of current buffer. See: MBUFCOUNT, :MAX,
MLEN. Useful when chorusing a tune wilh an accompaniment. If the accompaniment is
the last argument fo CHORLS and containg a stop rule like,

iF VLEN = MLEN THEN 5TOP

the accompaniment can be used with arbitrarily long bunes,
FOICE <vnice®

Sets VOICE to its one input, provided that input is a positive inleger less than 5.
H greater than the current number of voices, NVOICES is called fo increase the number,
All music from now wntil the next call to FOICE (or a primitive like CHHORUS which calls
VOICE) will go into this wvoice. All the wvoices in use will be multiplexed prior o
FPERFORMing the buffer. In MODMUSIC T mode inpuls greater than 4. do not cause
errors, bul are simply cycled through the allowed voices. MAKEing (ILLOGD) or SETing
(LISP) :VOICE is not nice.
VOICES

MNo-op. See NOMUSIC. W anyone has a use for this which is reasonable, eg,
synonym for MVOJCES, | will be glad o implement if.

(INSTRUMENT

Special system variable which is user setfable. Its value determines the behavior
of MOTE and SING as above. Current meaningful modes are LEGATO and STACCATO.
Anything else is considered STACCATD for now.
MAX

This pseudo veriable is actually a call to MLEN, above. It exists for compatibility
with CLOGO.

:NVOICES

Special system variable, nol to be changed excepl by calling N\VOICES. 1 tells
you the number of voices being filled or played at prasent. Default is 2.

VOICE
Special system variable, to be changed only by calling FOICE. Tells you the

current voice thal s being filed. MBUFCLEAR resels to 1. Alweys inilialized to 1. Can
be changed by call to CHORLS.

The Music Bax Section 16.3

LISP LOGO MEMD Page B2 June 27, 1978
SCALERASE

Special system variable which may be changed by user. It tells the offset from
middle C to be used in renumbering noles to ones faste. Default s zero.

The Music Bax Section 163

LISP LOGO MEMO Page 63 June 27, 1974

Index

1ILOGO 2,11, 13,37
TILOGD User's manual 13,37

340 14,38, 47

Abbreviation 19, 22, 23

altmade 13
ambiguity 16
Angle brackals [3
APL B
arithmetie 3, 16, 17
ARPAMET 39
Brray 1, 36

, ASCI B
associafivity 16
BBlP 2B
brackets 35

breakpoint 10, 28, 25
buried procedures 21, 22, 23, 30

canned loop 4

carriage relurn 7, B, 13, 20, 24, 35, 36, 39, 41
Character display 1, 14, &1

character synfax B

CLOGD 23,4511 13,18

CMU a0

colen 36

comments 36

comparizon L6, 17

compile 22, 30

Conditionals 4,5

CONNVER 1,8

Control character 13, 20, 21, 24, 39, 40
confrol structure 4, 31

confrol-atsign 29

DATAPOINT terminals 14
defining 5, 14,20
devica 32

davices B

directary 32,38
Disparity 2

dollar - 35

datled pair 3,8

double guote 34, 36

LISP LOGD MEMO

Page B4 June 27, 1978
adit mode 20
Editing 3,9, 10, 14, 20, 35, 40
English 2, 4,5

error handling 24, 34
error interrupl 25

error interrupt hendlers 10
error messages 9, 10
evaluator 9

exclamation points 36
exponenfiation 17

file specification 32, 38
frwed point 1,3 437
Floating point 1

food supply 43

fraction 3

funclional arguments 19

garbage collector 28
generalion 43

GERMLAND 11, 14, 38, &0, 41
global variables 29

GTag 11, 14,38, 47

heading 42
homonyms 6, 9, 18, 19
How Ta Gel On the Sysfem 13

hungry 43
BM 2741 39
identitiars B

impleamentalion 8, 12

imfie 5, 8,9, 16, 17, 18
initialization file 14, 38, 40
inpute 5,6, 9, 28

Intarim LISP User's Guide 13
inferning B, 11

Intarrup! L, 21, 35, 40

line number 3, 4, 6, 9, 36
Line oriented input 7
limg-oriented LISP reader B

limk 38

lists 2

logic B, 16, 17,35
login 13

logout 15

WACLISP Reference hManual 13, 38
minus sign 18

mislyping 10

mrembnic 3, 4

MULTICS 12, 18, 30, 32, 38, 39
music &, 11, 14, 34, 38, a0

Index

LISP LOGOD MEMD

Page 65

Maturalness 2
nagative Aumber 18
MLLOGD 14

noise words 4,5

obarray B
obstacle 42
oulput 35

parentheses 5, 7,9, 16, 36
parser 5.9, 16, I8, 19, 28
parsing property 9
pathname 38

PDP-& 11,47

Fercent sign 36

FLANNER LB

pracedence 16, 17

prefix 5,9, 16, 1B

pretty print 4

primitives B, 9, 22, 30, 34
printing 9, 10

program form 3

program understanders 9
prompler 20, 41

Praperty list 1,9, 19, 36
pure [l

reader 8

readiable a
FELUrsion L2
roundoff 4

rubout 21,35

rum fime srror 10, 24

Self-modifying procedures 31
samicalon 36

santences 2

charp sign 25, 29, 35
side effects 2B
Simplicity 2

single character ohject B
singhe quote 34

size 11

snap 47

spead 9,11

stach 10, 75, 28

string 11,35
super-procedure tree 10

TENGD 12,32, 490
TEMEX 12
Thornton bow 56
THE 39

top level 29, 36

Index

June 27, 1374

LISP LOGO MEMD

Page 66

furtle 3, 11, 14, 21, 38, 40, 47
tvpe checking 9, 10

typing errors 20

unparser 10, 18

variables B, 21, 29, 33

words 2
wrong number of inpuls 28

June 27, 1974

LISP LOGD MEMD

Page 67

Index to LLOGD Primitives

EAT Y

Al 25

sl 40

sE 20

nF a7

sl 14,30, 40, 58
ol 26

A a5

aP 2l

AR it

ng 21

AT 36

s 33

nX 14

nY 47

o 13 56

$FP 2527
LAREFUL 18
LOMPIHLED 30

{LONTENTS 30
EDITHMODE 20
EMPTY 36
EMPTYEF 36
:ERRBREAK 24, 26
ALERM 45
LRIDSIZE 45
:HEADING 49
HUNGRY 45
(ANFIX 18
ANSTRUMENT 61
LISPRREAK 26
MAX &l
NYOICES &l
SCALERASE 62
SN 51
SNAPS 53
:TEXTXHOME 52
STEXTYHOME 52
TURTLE 48
MMCE &l
FRAPAROUND 86
XCOR 149
NCOR 49

Index to LLOGD Primitives

June 7, 1974

LISF LOGD MEMD

Fage 68

ABHREVIATE 19
ACCESSIBLE 44
AND 4,517
ARRAY a7
ASCIT 36
ASSOCIATE 17
ATANGENT 51

BACK 44, 48

" BEARING 50

RK 44, 48
BLINK 55
BOaOM 57
BOTH 5,17
RREAE &5
BRIGHT &5
RRUSH &7
BSIDE 45
BUG 15, 40
BURY 33
BUTFIRST 2,3,4
BRUTEAST 2

CAR 23,4
CATCH 25

COR 2,34, 36
CHORLS &7
CHORUSZ 57
CHORLSY 57
CHORLS 58
CLEARSCREEN 49
co 27

COMPILE 30,33, 40
CONS 3,28
CONTINUE 24, 25, 26, 27
COSINE 51

Cs 49

DECLARE 30
DELX 4B
DELXY 48
DELY 48
DESTRLUTT 4%
DiaLs 54
DSPACE &4
DISPLAY 19
oo 419
FN 26,28
DRLUM 58
DSCALE 55

Index to LLOGO Primitives

June 27, 1374

LISF LOGD MEMD

Page 63

EASTP 44

EAT 43

EINT 1B, 20
EDITLINE 20
EDITTITLE 20,28
EITHER 5,17
END 20
ENDSNAFP 52
ENTERSNAP 52
EQUAL 5
ERASE 19, 22,23,33, 53
EFALFRAME 10
EXIT 27
EXPLODE 36

FALSE 6,35

FD 44, 48
FILLFOOD a3
FIRST 2,3, 4
FILUSHCOMPILED 30
FLUSHINTERPRETED 30
FooD 43

Foopr 43
FOODSUPPLY G4
FORIWARD 44, 48
FRONT 45

FSIDE 45

GCERM 44
GERMDEMOS 4]
GET 19
GETSQUARE 43
GO 4,5
GOODBYE 15
GRID 42
GRIDP 42

H 48

HEADING 44, 43
HERE 50

HIDE 52
HIDESNAP 53
HIDETEXT 51
HIDETURTLE &7
HOME 48,49

T 47

IF 517
IFFALSE 4,37
IFTRUE 4,37
INFIX 17, 18
INSERTLINE 37
Is 5

Index to LLOGO Primitlves

June 27, 1974

LISP LOGOD MEMD

Page 78

KIiLL 44

LAST & 18

LEFT 45,43
LEFTSIDE 45
LEVEL 3%
LINEPRINT 22, &0
LISPBREAK 25,27
LIsT 19

LLOGO (INIT) 14
LocaL - a7z
LOGORREAK 25, 26, 27
LOGOUT 40

LSIDE 45

LT 45, 49

MAKE 17,32 36
MAKETUNE 58
MAKTURTLE 48
MAPCAR 4
MARK 52
MRUFCLEAR 5B
MBUFCOUNT 58
MBUFINIT BB

MHBUFNEXT 58
MBUFOUT 58
MBUFPUT 58
MCLEAR 58
MLEN 59
MODMUSIC 59
MOTION 54
MWE 42
NEWMUSIC 59
NEXT 44

NIl 6,35, 36
NODISPLAY 47
NOMUSIC 59
NOPLOT 53
MIPRECEDENCE 1B
NORTHF 44
wMoT A7

NOTE 59
NOWFRAP 42, 46
MYOICES B8

OBSTRUCT a5
OLODMUSIC 59
OLOTURTLE 48
OR 4,517

Index ta LLOGD FPrimiatives

June 37, 1974

LISP LOGO MEMD Page 71 June 27, 1574

PAUSE 25

PD S0
PENDINFN 50D
PENP 50
PENSTATE 50
PENLIP BO
PERFORM &0
PHOTO 52
PICTURE 53
PLAYTUNE &0
PLOTTER 53
POINT 54
PRECEDENCE 17
PRINT 1B
PRINTDOWN 27
PRINTGRID a2
PRINTOUT 6, 19, 20, 21, 22, 32, 33, 40

PRINTUP 26
PROG 9,37
[FR 1]

PUTSQUARE 43

RANDOM 18, 37
RANGE B0

EEAD 19
READFILE 19,30, 33
REAR 45
REMSOUARE 43
REMTEXT 5l
REFEAT 4]
RESNAP B3

REST &0
RESTARTHUSIC 60
RIGHT 45, 4%
RICGHTSIDE 45
ROLNDOFF 37
RSIDE 45

RT 45,49

RN 19
RUNGCERM 41

SAVE 18, 32,33
SCALE 55

sn a7
SETHEAD 43
SETHOME 54
SETT 50
SETTURTLE 50
SETX 4B
SETXY a8
SETY 48

show 52
SHOWSNAP B3
SHOWTEXT 51,52

Index to LLOGO Primitives

LISF LOGO MEMO

Page 72

SHOWTURTLE 47
SINE 51

SING &0
SONG 60
SOUTHF 44
SPECIAL 30
ST a7
STARTDISPLAY 19,47
STARTHMUSIC &1
STEP 42
STORE 37
SUM B

T a8
TEST 4,17,37
TEXT a6

THEN 4,5
THROW 28

T0 4,5, 20,22
TOPCERM 41
TOUCH 45
TOWARDS 50
TRACE 10,23, 29
TRUE a5
TURTLESTATE 48
TYPE 2

UNBLINK 55
UNGRID 41
UNSPECTAL 30
P 26,27, 28
USE 33
USER-PAREN 10

FOICE 6l
VOICES &l
wC 49
WESTPF 44
WHAT 43
WHERE 44
wrrE 49
WIPECLEAN 43
WRAP 42, 36
WRITE 32,33
XCOR 43
XHOME 43
YCoR 49
YHOME 5O

Index ta LLOGD Primitives

June 27, 1974

LISP LOGOD MEMD Page 73 March 4, 1975

TVSIZE

Relurns a list containing the horizontal and werlical sizes of the display area in raster
points. The default size is 300 x 300, The dimensions of the entire TV screen are 455 [vertical] »
576 [horizontal]l

TVSIZE <new-size>

Sets both the horizonlal and vertical sizes of the display area o <pew-size> Modifying the
TVSIZE causes a CLEARSCREEN to be performed. The size of fhe area af the bottom ol the screen
for typein and typeout is adjusted lo fake up as much space as possible on the screen not being
used for graphic output. Changing the TFSIZE will not have any effect on pictures previously saved
by MAKEWINDOW [see Section 17.16]

TVSIZE <pew-xr-size> <mewm-y-siza®

Sets the horizontal and vertical sizes independently. If either of the two inputs s NIL, the
corresponding size remains unchanged.

TURTLESIZE

Returns a list conbaining the horizonfal and wertical sizes of the display area In turtle
coordinates, These are in floating point. The initial default is 1000 x 1000, and the origin is always st
the cenber of the screen - so turlle coordinates initially range from <500 bo +500, If wraparound
mode is in effect, furtle coordinates are allowed above and below fhe range sel by TURTLESIZE,
and will be mapped o appropriate points on the screen

TURTLESIZE <new-uizer

Sets the dimensions of fhe sereen in furtle coordinales o <nme-sive> furtle steps, If the
display area is nol square [thatl is, if the horizontal and verlical TV size paramelers are not equall,
then <mew-size> is taken 10 be the number of turtle sleps for the minimum dimension of the screen,
and the olher dimension is adjusted accordingly. In parbicudar, you can®t specify TURTLESIZE
independently in each direction, so that a turfle step always corresponds to the same number of TV

points, Changing TUKTLESIZE has no effect on the piclure currently being displayed, or on any
pictures saved by MAKEWFINDOWF.

SETHOME [TURTLENOME)
SETHOME <now-z-home® <pew-y-homa> [TH}

Changes the origin of turtle coordinales to the specified location, defsulting to the turtle’s
present pasition, That pasilion an the screen will then correspand to an XCOR and YCOR of zero for

all subsequent turtle commands, The home location is local to each turtle, so that each of saveral
turtles may be assigned differen! homes on the screan

LY

17.15 Screen Color

The Knight terminals have a facility for easily changing whelher bils which are on in the TV
memory will be displayed as dark or light on the user’s screen. By analogy with a photograph, in
"negalive” mode, points which are on [graphics and text] will ba displayed as light on a dark
background. In "positive™ mode, they are displayed as dark on a light background, The current shale

Display Turtle lar the Kaight TV Terminals Seetian 17.15

II.ISP' LOGOD MEMO Page 74 March 4, 1975
of a user's terminal can be complemented by typing <ESC» €. The following functions allow it to be
examined and canlriolled by a user program.
COLORSTATE [CLST)

T iff the user is in “posilive” mede, NIL if in "negative™ mode.
COLORNEGATIVE [CLN}

Puls the user in negalive mode, ie lighl text and lines on & dark background, This is the
mode in effect initially at login lime.

COLORPOSITIVE [CLP)
Pute the user in positive modse; dark text and piclures on & light background.
COLORSWITCH {CLSW}

Complemenls the COLORSTATE; if the current mode is negalive, swilches to posilive mode,
or vice versa. Thizs has the same effect as typing <ESC> C on the lerminal,

17.16 Saving Pictures

In creating pictures which consist of repeating patierns of smaller pictures, and creating
animated cartoons, it is often wseful 1o be able fo save displayed piclures drawn by a series of
turtle commands, and operale upon them as a unil, displaying and erasing them, moving them to
other parfs of the screen, efc. The LLOGOD TV turtle provides such a facility, allowing the user to
save rectangular porfions of the screen as arrays of points. These arrays can be displayed and
erased at any location an the screen, although they cannol be aulomatically rotated.

This facility is somewhat diflerent from the SNAF command in the LLOGD 340 turlle and
1ILOGD, The SNAF operation saves the picture as display lisls, essentially a veclor representation,
while the TV lurlle window saves am array of poinls. For large, sparse piclures, the weclor
representation consumes less space, while the point array represenfation favors small, complex
pictures. Saving point arrays makes it possible to redisplay pictures much mare rapidly than
redrawing them with the commands used o originally generate the piclure, since recomputation of
points lying along vectors is unnecessary, It is therefore ideal for programs which want to make only
few, spatially localized changes lo a picture, bl need the maximum possible speed for dynamic
updaling of the screen. It also has the advantage thal the amounlt of space and lime wsed for
creating and redisplaying piclures is insensilive to the complexily of a picture within an area. These
characteristics make an array represenltalion more suvitable than a veclor representation for, say, 8
spate war program, where the space ship must be redisplayed rapidly, and consisls of perhaps a
large number of vectors confined lo a small area of the screen [t also provides a “clipping™ facility,

Saving point arrays has a properly not shared by LLOGD's SNAP for the 340 -- "What you
see iz what you gel".‘Everylhing within the designated area iz included, regardless of how it was
caused o appear -- veclors, text, points, olher FFINDOWF s, etc, This means that you can always tell
what will be included in a saved picture simply by looking al the screen.

Display Turtle lor the Knight TV Terminals Section 17.16

LISP LDGO MEMO Page 75 March 4, 1975

MAKEF INDOW <window-rome> <gize> [MIF]

Creates a "window™, Le, an array of points, and names it <windosw-mame>. The <window-
name* should be a word, and should be chosen s0 as nol lo conflick with existing funclions or
arrays. The window is cenlered on the turlle’s current location; and extends for <size> turlle steps
harizontally and verlically from the center. The location of the center of the window and its size are
remembered,

MAKEFINDOWF <window-name> <horizonal-tire> <voriical-size>

Creates a window cenlered on the turtle’s current location, but sets the horizontal and
wvartical sizes of the window independently, so the area saved can be rectangular instead of sguare,
as in the one input mode.

MAKEWINDOW <window-name* <conter-z* <centor-y* <horizontal-size> <vertical-size®

Creales a window cenltered on the specified location, of the specified size. If the <eertical-
size> is omitted it is assumed identical to the <herizontel-size>.

ERASEW INDOW <window-name> {EWF}

Destroys the window specified by <wirdow-name>, If the window is no longer needed, this
permits the space that it occupied to be reclaimed,

ERASEWINDOWS [EWS]
Erazesz all currently delinad windows,

W INDOW S

Global variable which contains a list of all currenlly defined windows.

WINDOWFRAME [FF}

Takes inpuls like MJAKEFINDOIF, except for the window name, That is, it takes from one
to four inpuls specifying a size and oplionally a cenler location. IFININIF FRAME displays a box on
the ccreen which indicates the extent of the picture which would be saved by a MAKEWFINDOWF of
the corresponding size and location. This is useful in deciding how larges a window iz nacessary
before wsing MAKEWINDOW, The box is XORed info fhe screem, so that giving the
FINDOWFRAME command again will cause the box to disappear. If no inpuls sre given to
FINDOWF FRAME the size and location defaull to the last ones specified.

SHOWWINDOW <window-name> [S5HF)
Causes the specified window lo be displayed at the location at which it was originally
created. Currently, wraparound is not allowed; display of the piclure is nol allowed to cross the edge

of the display area. Changing TVSIZE and TURTLESIZE have no effect on the sire of saved
picturas,

Display Turtle for the Knight TV Terminals Section 1716

LISP LOGO MEMOD Page 76 March 4, 1975

SHOFWFINIW <window-neme> <pew-conler-r> <prm-cantar-y>
Causes the window to be displayed al the new location specified.
HIDEWINDOW {HF)

Accepls arguments like SHOWIFINDOIF, but displays the window turning off any paoint
which was on in the window when it was crealed. The effect of this is as if the picture were
redrawn in eraser mode, If a call to SHOWWINDOW displayed the window on a blank areas, a
similar call to HIDEWINDOW will erase it. If SHOWWINDOW superimposed the window on

something already displayed, the old picture is nol guarantead lo remain intact sfter the window is
hidden.

XORWINDOW [XWF)

Like SHOWFINDOW and HIDEW INDOW, but XOR's the picture into the screen.
WINDOWHOME <window-name> [WII}
WINDOWHOME <window-name> <new-r-home> <now-y-home>

Changes the home location associated with a window to the specified location, defaulling 1o
HERE., This iz the location where the center of the window will be displaysd if only the name of the
window is given as input lo SHOWF INDOW, HIDEW INDOW, ate.

SAVEW INDOW S <filespoc> {SW5]
Crealez a file on the disk which saves all currently defined windows in binary. They can be

reloaded al a laler lime with CETWINDOWS. The file specification follows the same formal as other
LLOGO file commands such as READFILE, and LISF's UREAD. The filenames are nol evaluated.

CETWINDOW S <filespee> [GIF)

Reloads windows from a disk file creatad by SAVEFINDOFS.

17.17 Printing Pictures on the XGP

Pictures drawn with the LLOGO TV turlle may be printed on the Al Lab®s Xerox Graphics
Printer to obtain hard copy. The following primitive creates a file which can be printed by the XGP
control program SCRIMP,

XGP <file» <arsa>
Creales a file saving the picture in the designated areas of the screen. The file can then be
printed on the XGP. The file specification follows the same formal as other LLOGD file commands ==
from one to four words. A rectangular area limiting the picture saved is specified in the same format
accepled by the window commands == from one 1o four numbers, If omitted, the area defaulls to the
enfire screen, Example:
XGP PICTURE > 200 300 100

saves the picture extending for 100 turtle steps horizontally and vertically from the point (200, 300)

Display Turtle for the Knight TY Terminals ' Section 17.17

LISP LOGOD MEMO Page 77 March 4, 1375

in the file PICTURE = on the current directory. Caplions can be prinled on the screen using the
MARK command and will appear on the printed picture. The piclures will be approximalely the same
size as they appear on lhe TV screen. Currently piclures saved are limifed to 300 by 300 TV points.

Two warnings concerning ¥GP piclures: Firsl, the XGP has a problem common lo all Xerox
machines == an inabilily lo reproduce large black regions. An altempt to print a picture with areas
filled in black will cause the black regions to “white oul®, Pictures created by using the SHADE
command to shade regions with dense pallerns will net be prinled correctly on the XGP, Also, it is
best to try to limit the area of the screen saved fo as small an srea as possible. Since picture files
must be outpul lo the XGP fast enough o insure that ane line is printed before the next one is read,
large files may lose when the system is crowded. The symptom of this sorl of lossage is blank
horizontal bands in the middle of the picture. More efficient XGP commands to be implemenied soon

will reduce the likelihood of this sort of lossage. Images on the TV screen drawn by the TV lurlle
can alzo be printed wsing the Teklronix hard copy machine.

17.18 Shading

B unigue advanbage of the TV displays over veclor oriented displays is that in addition to
the dizplay of line drawings, they make feasible the crealion of piclures using shaded areas.
Palterns of poinis of varying densities can be used to fill regions, creating the effect of a “gray
scale™. The TV turtle’s shading facility is asimed toward crealing & convenient and efficient means of
specifying aress to be shaded, and patterns lo be usad in shading. The basic idea is thal regions to
be shaded are indicated by drawing a closed curve around them in PENDOIFN mode, and placing the
turtle inside the region belore issuing the SHADE command, with an argument delermining lhe
pattern o be wsed. Several simple paltlerns are supplied by the system, but the user has the
opportunity of defining new ones.

SHHADE <pattern mamae>

Shades the area enclosing the burtle’s current localion. The input is a pattern 1o be used in
shading the area, and defaulls to the SOLID patfern if omitied, The turtle must be sitling in an
emply area [nol on & line or in a filled in region], or an error resulls. The effect of this primitive is
to fill in the region surrounding the turtle’s location with the shading pattern given [by inclusive
ORing it in with the existing picture] The region to be shaded must be bounded by a closed curve;
SHADE works by filling in the patterm starling from the turtle's location, and stopping when &
boundary is reached, If the region is not closed, the entire screen will be shaded!

17.19 Shading Patierns

Shading patterns are represented as functions which fell the SHADE primitive how to
shade an area. The syslem provides a group of predefined shading patterns, described below. These
will probably be sufficient for most simple uses of shading; ie. distinguishing a2 few neighboring
regions with different shading pallerns, atc. Those needing more sophisticaled capabilitios can dafine
their own patterns, The predefined shading patterns currently available are:

Ll

SOLID

A shading pattern which fills in every point. This pattern is the default used if no argument
is given to SHADE.

Display Turtle for the Knight TY Terminals Section 17.13

LISP LOGD MEMO Page 78 March 4, 1975

CHECKER

A pattern which fills in every other point, in checkerboard fashion,
HORIZLINES

A pattern consisting of horizontal lines, sllernating light and dark.
VERTLINES

Like HORIZLINES, except lines are verlical.
CRID

Both horizontal and vertical lines, superimposed.
TEXTURE

A pattern which turns en points randomly, crealing a texture like effect. An average of half
the peints will be turned on.

DARKTEXTURE

LIGHTTEXTURE

Like TEXTURE, bul shade using different densities of points, DARKTEXTURE turns on an

average of 3/4 of lhe points, created by OR'ing two random numbers, LIGHTTEXTURE averages
1/4 of the points, obtained by ANDing two random numbers.

Mew shading pallerns consisting of arbilrary piclures can be defined by using the following
primitive:

MAKEPATTERN <pattern-name> <window-name> [MP}

The first argument is a name for the new paltern. The second Is the name of a window,
constructed by the MAKEWINDOW command. This creates a new paltern, which consists of the
pictura saved in the window, The patlern name may then be given as input fo SHADE., The effect
will be to fill the closed curve to be shaded with the picture specified by the window. If area
beyond the extent of the original picture is to be shaded, the piclure will be repeated horizontally
and verfically as many times as is necessary to fill the area,

Alternatively, a shading pallern may be constructed by the user direclly as a funclion. [This
can resull in fasler shading than by using a patiern censirucled by MAKEPATTERN, although it’s
more difficult to write, especially for complex patlerns.] A paitern is a funclion of lwo inleger
arguments, ¥ and ¥ coordinates of a word in the TV memory [as for the inpuls to TV, See Saction
17.22]) It returns an injeger, which indicates the state of 32 bils of the screen, left justified.

17.20 Invisible Mode

When a program does both a considerable amount of graphics as well as mon-graphic
computation, it often becomes convenient to be able lo debug lhese componenis separately. An

Display Turtle for the Knight TV Terminals Section 17.28

LISP LOGOD MEMO Page 73 March 4, 1975

"invisible®™ mode makes it poassible to debug the non-grephic parts of a program containing turlle
commands, withoul incurring the overhead of drawing on the screen. When the syslem is heavily
loaded, code run in “invisible® mode will run much faster, allowing the user to run a procedure if he
is not interested in the picture drawn, then return to “visible” mode to debug the pictures drawn by
the program. Pictures drawn in invisible made are nol saved and relurning to visible mode requires
that programs be re-executed o opserve the picture drawn,

INVISIBLE

Enters "invisible™ mode. Any primitive thal would cause changes to pictures on the screen:
movement of the turtle, display of saved pictures; poinis, elc, will nol cause anylhing on the screen
to change while running in invisible mode, Execution of procedures containing turtle primitives will

proceed much faster; this permils running of procedures containing turtle primitives for the purpose
of debugging their non-graphic behavior,
VISIBLE

Returns to "wisible” mode. Turlle funcltions have iheir wsual effect, as well as their usual
slownezs. VISIBLE casses a CLEARSCREEN.

17.21 Extensions

One possible source of exlensions lo the TV turfle package would be the inclusion of
picture-saving capabilities similar 1o the SNAP command of the LLOGO turlle for the 340, or to
LILOGD™s SNAP. Thiz would differ from the “windows" described abowve in that it would be a lower-
level representation of the picture in terms of vectors to be displayed, rather than an array of
points, Because the TV terminale do nol have hardware for display of veclors, necessitating the
compulation of points lying along a vector fo draw i, redisplay of a snap would be very nearly as
time-consuming as re-execuling the LOGO procedure which drew the picture. In contrast, redisplay
of a window bypasses that recompufation, and requires much less time to redisplay than the original
drawing procedure required. However, a vector reépreseniation does provide several advantages. It
is less space-consuming for pictures which occupy large portions of the screen, but contain few
wvectors. It can be used more easily with pictures for which a description in terms of rectangular
portions of the screen would be inconvenient; for example, an irregularly shaped piclure surrounded
by drawings not to be included in the saved picture. The window representation makes it difficult to
assign Independent names to the saved graphic output of each of several programs if the pictures
overlap. Certain transformalions such as rolations and scaling mighl be more easily performed on a
vechor representation than on poink arrays.

An additional difficulty in providing a snap facility in the TV turtle similar to that possible
with vector oriented displays would arise in implementing the ERASE SNAP command. 1f several
lines all pass through a single poini on the screen, the point must not be furned off until all lines are
erased, If one line is erased via an ERASE SNAP, and other lines slill pass through the point, the
point must not be turned off. This requires keeping frack of how many lines pass through each poinl.
Such information could be oblained from computing the intersection and overlap of vectors displayed
whenever a wveclor s drawn or erased, or by keeping a “reference count™ for each point,
incremented whenever a line passing through the point is drawn, decremented when such a line is
erased. The "eraser mode™ of the TV turtle turns off points along lines drawn regardiess of their
previous stale. This makes it somewhal less convenient than ERASE SNAP for erasure of one of
several overlapping piclures;, although the same effect can be achioved by saving the previous

Display Turile for the Knight TY Terminals Section 17 21

LISP LOGOD MEMO Fage B8 March 4, 1376

contents of an aree in a window before drawing over it. In some cases, XOR mode can be used
instead, so that the same procedure can be used bolh to draw a piclure, and {0 erase if,

Another alternative representation for picture elements would be run lenglh encoding, This
would raecord the conlenls of an area of the screen, as does the TV turlle “window”. Each lina of tha
area is represented as a sequence of numbers, The numbers in the sequence alternately specify
how many conseculive paints are on, and how many conseculive poinis are off, Like the window
operation, this technique is capable of being used with piclures conlaining sheded areas, which
would nol be possible with a represenfation consisting solely of vectors, Although it would require
somewhat more compulation time lo redisplay than would a window, it would not prove quite as
space consuming for large and sparse pictures, It is nol clear whether the lime and space fradeoifs
invalved would justify the use of this representation.

Each alternalive representation for picture elements carries with it unigue advantages and
dizadvantages, in terms of time and space efficiency, ease of modification, elc, Rather than becoming
committed te a single representation, a betler goal is to provide flexibility by making available many

oplions and allowing a user or an inlelligent syslem o chogse the representalion according lo the
reguirements of the applicetion.

An alternative to the TV turlle’s spproach 1o piclures involving shading is o extend the
LOGD concepl of the turtle’s "pen” and "eraser™ to a "paintbrush™ A "paint™ consisting of a particular
shading paltern and a width for the paintbrush would be chosen by the user. When the turtle is
moved after the execution of a BRUSHDOWN command, the shading pattern is drawn in an area
extending for the specified widlh on either side of the path of the turtle's movement, Howewver, this
method has the disadvaniage that programs to shade even very simple geomelric figures can become
quite complicated. This mode might be useful however, if it were possible 1o move lhe brush under
contral of some analog input such as & light pen or mouse. Another possibility is fo supply the
system with specific knowledge about shading comman shapes, such as circles,

Other extensions to the TV turlle could center on providing facilities oriented towards
animation. LOGD as a graphics language i= primarily orienfed toward the display of static pictures; it
is weak in some of lhe capabilities needed for convenient generalion of movies. A more extensive
vocabulary of tramsformations which can be applied fo pictures would be helpful. This could include
ratation and scaling of saved piclures, threes dimensional coordinate transformalions, as well as a
convenient way of incorporaling user defined transformations. Some means of explicitly controlling
the time in which changes happen lo the displayed picture should be provided. Exlension of the
control structure to allow parallel ewecution of procedures would facilitate programming
independantly changes to the piclure which should accur simulfaneously,

Another capability which the system should have is some provizion for analog input, such as
from a light pen, joystick, tablet, or mouse. This would allow the system to oblain and manipulate
freehand sketches, Convincing drawings of people or objects that would be difficult to comstroct
from turtle programs could be readily input and lhen manipulated by programs. Objects on the
screen could be selecled by a user inleraclively using a rubber band veclor, which is oftan more
canvaniant than typing, especially for children.,

17.22 Implementation

The POPL1 which contrals the TV terminals malntaine fhe user's screen in ils memory, one
bit per point. An ITS system call allows the 11% memory 1o be mapped into the address space of a
program running on the FDPLO. An initialization routine written in LAP assembly language performs
this system call, and sels up an array header which convinces LISP that this area of memory is really

Display Turtle lor the Knight TV Terminals Section 17,22

LISP LOGD MEMO Page 61 March 4, 1375

the data for a LISP two-dimensional integer array, This array is accessible direclly by the user who
finds the supplied turtle primitives not swiled to his needs. All changes to the display screen are

perlormed directly by LISP STOREs, and the remainder of the display package is wrillen entirely in
LISP.

The following primitives are Flﬂ"-:l-lblj’ not of general interesi, bul are inlernal to the TV
turtle package, and might conceivably be of use to a user desiring nonstandard applications.

TV <line> <colummn-word>

This is the array which holds the user's TV buffer. A call to TV returns a 36 bil fixed point
nurmber, which contains two 16 bit PDPL] words, left juslified. STORE's into the array will cause
the array and the user's screen fo be modified as described in the discussion of DRAW MODE,
below. Any such STORE's should keep the low order four bils of each word zero, The first Input
counts number of lines from the fop, from O to 954, The second selects & word on the line, laft to
right, from O to 17 [for a tolal of 18 « 32 = 576 bits per line]

DRAWMODE <mode>

The POPLL has a feature which enables any attempl to wrile 8 word in the 11" memaory
from the PDPLO to result in a specified boolean funclion of the word being written and the word
previously there, DRAIFMODE changes thal specification according to <mede>, which should be an
integer representing the mode chosen from the values ol one of the following atoms: TOR, XOR,
ANDC, SAME, COMP, EQV, SETD, SETE, SET. For example, STORE TV 0 0 16 will turn the low
order bit of the sacond 16 bit word of the TV bulfer on it I0R mode is in effect, offl il ANDC mode

is in effect, and complement whalever is there if in XOR mode. DRAW MODE relurns the number
describing the mode préviously in effect,

{DRAFMODE

A global variable containing the current mode number as set by the last call to
DR/ MODE.

Display Turtle far the Knight TV Terminals Section 17.22

LISP LOGD MEMD Page 832 March 4, 1975

Index

SHOWTURTLE mode 68, 69
DATAPOINT lerminals 13

LILOGO 2,4, 10, 12, 13,37, 64, 74, 79 decimal point 36
11L0GO User’s manual 12, 37, 60 defining 5, 13,19
degrees 67,71

240 13, 38, 47, 64, 72, 74, 79 device 32

' devicas 7
abbreviation 21, 22 direction 71
abbreviations 18 directory 32, 38
altrmode 12 Disparily 2
ambiguity 15 display area &4, 72
analog input B0 dizplay lists &4, 74
Angle brackats 12 dollar 35
animation 80 dofted pair 3,7
APL & double quate 34
arithmetic 3, 15
ARPANET 39 edil moda 19
Array 1,37 Editing 3, &, 13, 19, 35, 40
ASCII 7 edifing characiers 40
associativity 15 English 2,4,5

" Brasar 65, 68, 69, 71, 80

background 68, 73 error handling 24, 34
BIBOP 2B error inferrupt 24
block structure 4 error interrupl handlers 9
braces 12 error messages B, 9
brackets 35 avaluator B
breakpoint 9,24, 25 . exclamation poimts 36
buried procedures 2l, 22, 23, 30 sxponenfialion 16
cannad loop 4 file 76
carriage return 6, 7, 12, 19, 24, 35, 36, 3 file specification 32, 38
Character display I, 13, 4] fived paint 1, 3, 4, 37
charactar syntax 7 Floaling point 1, 36, 70, 73
circle 72 food supply 43
clipping 74 FORTRAN 36
CLLOGD 13 fraction 3,36
CLOGO 2,3, 4,510, 12, 17 functional arguments 17
closed curve T
Chil 40 garbage collector 28
colon 35 generalion 43
comments 36 GERMLAND 10, 13, 38, 40, 4]
comparison 15, 1& global variable 65
compile 22, 30 global variables 29
compiler 7 GT40 13,38, 47, 64

conditionals 4.6

CONMIVER 1,7

Control character 12, 19, 20, 24, 39, 90
control structure 31

Index

LISP LOGD MEMD

heading 42,67, 70, 72
homea 67
homonyms 6,8, 17

How Ta Get On the Syslem 12
hungry 83

1IBM 2741 39

identifiars 7
implamantation 7, 10

infix 5, 7, 8, 15, 16, 17
initialization file 14, 38, 40
inputs 5, 8 28

integers 70

Interim LISP User's Guide 12
interning 7, 10

Interrupt 1, 20, 35, 40
invisible mode 79

Joyatick &0

LAP a0

light pen &0

line number 3, 4, 6, 8, 36
Line orienfed impul B
link 38

LISP 36, 84, 71, 76, 80
lists 2

logic &, 15, 18, 35

login 12

logout 14

MACLISF Reference Manual
minws sign 17
mistyping 2

12, 38

mnemonic 3, 4
mouse 80
MULTICS 11, 17,30,32, 38, 39

music 7, 10, 13, 34, 38, 40

MNaturalness 2
negative mode T4
negative number L7
MLLOGO 13

noise words 4
numearical input 36

Index

Page B3

obarray 7
obslacle 42
QR 77
oulput 3B

painlbrush BO
parentheses 5, 6, B, 15,35
parser 45,8, 15, 17,28
parsing property B
pathname 38

POP-& 47

POPIL BO

pen 65, 68, 69,71, BO
Percent sign 36
‘PLAMMER 1, 7

point 72 ,

point arrays 74

posifive mode 74
precedence 15

prefix 5, 8, 15, 17

pretly print |

primitives 7, B, 22, 30, 34
prinfing 8

program form 3

program understanders B
prompler 19, 4]

Property list 1, B, 18, 36
pure 10

radians Tl

readar 7

readiable 7

FECUrsion I, 2

rofation 79

roundaff 3

ruboul 20, 35

run length encoding 80
run time error 9, 24

scaling 79

SCRIME T8

Self-modifying procedures 31
semicolon 36

sentences 2

shading 77

shading paltern Firl

sharp sign 25, 29, 35

side affects 28

March &, 1375

LISP LOGO MEMD Page B4

Simplicity 2
single character object 7
single quote 34

size 10

snap 74
Space war 74
speed 8, 10

split screen 64

stack 9, 25, 28

string 10, 35
super-procedure free 9

Teklronix 7

TENSO 11,32, 40

TENEX 11

text 71,74

Tharnten box 57

ThE a9

top level 29, 36

triangle turtle 65

turtle 7,10, 21, 38, 40, 47
turtle coordinates 72,73
turtle marker 55

turtle stale T0

TV buffer 2l

TV sereaen 73

TV turtia B4

type checking ~ 8,9
typing errors 19

unparser B, 17

wariables B, 21, 29, 33
vectors 67,74, 79

windows 79

wards 2

wraparound &7, 73,75
wrong number of inputs 28

XGP 76
XOR 68, 68, 75, 8Q

Ivdex

March 4, 1375

LISP LOGO MEMO

P 4], 4z

LY &9

nA 25

AL a0

nE 19

nF a7

A 14, 30, 40, 59 .
Al 25, 40
Y 47

npP 20

AR 20

nS 20

~lF 33

aX 14

AY 47

AZ 12,57, 64
3P 25, 27

* 20

- 20

(LAREFUL 17
{LOMPBILED 30
KLONTENTS S0
DRAFMODE Bl
DRAWTLRTLE (1
(EDITWODE 19
EMPTY a7
EMPTYWF ar
:ERASERSTATE &8
:ERASETURTLE 66
:ERREBREAK 24, 26
GERM a5
JFGRIDSIZE a5
HEADING 449, 65, 69, 70

:MISTORY 20
MUNGRY 45
INFIX 1y .

JNSTRUMENT B2
LISPEBREAK 286
M AX ¥
:NVOICES 62
:PENSTATE 65, 68
{PICTURE 55
SCALEBASE 63

Page 85 Mareh 4, 1975

Index to LLOGO Primitives

SEETURTLE 65

SHowr 52
SNAPS B3
:TEXT &2

TEXTXHOME 52
TEXTYHNOME 52
TURTLE 48,58, 70
TURTLES 70
VOICE 62
WFINDOWS 75
WRAP 67
H#FRAPAROUND a6
:XCOR 49, 65, 69, 70
:XORSTATE 69
FCOR 49, 69, 70

<ESC=C 74

ABRREVIATE 18
ACCESSIBLE 44
ALLOCATOR 14
AND 4, 16

ARC 72
ARCTAN 71
ARRAY 37
ASCIHE a7
ASSOCIATE 16
ATANGENT 51,71

BACK 44, 48, 66
BEARING 51,71
BK 44, 48, 66
BLINK 55
BOOM 58

BOTH 4,16
BREAK 25
BRICHT &5
BRUSH S8
BSIDE 05

BUG 14, 80
BURY ALL 33
BUTFIRST 2,34
BUTLAST 2
BYE 40

Index 1o LLOGD Primitives

LISP LOGO MEMOD

CALL 12
CAR 2,3, 4
CATCH 25

CDR 2,3,4,36
CHECKER 78
CHORUS 58
CHORLIS2 58
CHORLISI B8
CHORLS4 58
CIRCLE 72
CLEARSCREEN 49,67,7%
CLN 74

CLP 74

CLST 74

CLSWw 74

co 27
COLORNECATIVE 74
COLORPOSITIVE 74
COLORSTATE 74
COLORSWITCH 74
COMPILE 30,33, 40
CONS 3,28
CONTINUE 24, 25, 26, 27
COSINE 51,71

C5 49,67

DARKTEXTURE 78
ooT 64

DERUG 2B
DECLARE 30
DELETE 22
DELX 48, 66
DELXY 48, 66
DELY 48, 66
DESTRUCT 45
DiALs 54
DISPAGE B4
DISPLAY 17
po 4,17
DowN 26, 27
DRAFMODE Bl
DEL'M 59 -
DSCALE 56
EASTP 44

EAT 43

EMT 17,19

EMTLINE 19
EDITTITLE 19, 28

Page B6 March 4, 1975

EITHER 4,16

END 19

ENDSNAP 53
ENTERSNAP 53
EQUAL 5

ERA 22

ERASE 22,33,53
ERASE ABRREVIATION 18, 22
ERASE ALL 22,33
ERASE BURY 23
ERASE COMPILED 22
ERASE FILE 22,33
ERASE LINE 22
ERASE NAMES 22
ERASE PRIMITIVE 22
ERASE PROCEDURES 22, 33
ERASE SNAP 79
ERASE TRACE 23
ERASERDOWN 68
ERASERUF 68
ERASEWINDOW 75
ERASEWINDOWS 75

ERR 23

ERD 6B

ERF 22

ERI. 22

ERN 22

ERF 22
ERRLIST 57
ERTR 23

ERL' BE
EVALFRAME 9
ElF 75

EWs 75

EXIT 27
EXPLODE 35
FALSE 6,35
FASLOAD 47,57
FD &4, 48, 66
FILLFOOD 43
FIRST 2,4
FILC 30

FLI 30

FLUSHCOMPILED 30
FLUSHINTERPRETED 30
Foop 43

FooDP 43
FOODSUPPLY 44

Index ta LLOGD Primifives

LISP LOGO MEMO

FORWARD 44, 4B, 66, &7, 70
FRONT 45
FSIDE 45

GCERM 44
CERMDEMOS 41
GCET 17
GETSQUARE 43
CETWINDOWS 76

cao 4
COODBYE 14
CRID 42, 78
CRIDF 42
CRITCH 5%
Cw 76

H 49,67
HATCH 70

HEADING 44, 50, 69
HERE 50,70, 72, 76
MHIDE 52
HIDESNAP 53
HIDETEXT 52
HIDETURTLE 47, 65
HIDEWINDOW 76
HISTORY 20
HOME 49, 67
HORIZLINES 78
HT 47, 65

H¥ 76

IRASE]

IF 4,16
IFFALSE 4
IFTRUE &
ILINE 20
INFIX 16, 17
INSERTLINE 37
INVISIBLE 79

Is 5
KILL 44 .
LAST 2,17

LASTFORM 20
LASTLINE 20
LASTVALLE 20
LEFT 45, 49, 67
LEFTSIDE 45

Page 67 March &, 1975

LEVEL 35
LIGHTTEXTURE 78
LINEPRINT 21, 80
LISPRREAK 25, 27
LIST 17

LIST FILES 40
LLOGO {INIT) 14
LocAL 37
LOCOBREAK 25, 26, 27
LOCOTURTLE 70
LOCOUT a0
LSIDE 45

LT 45,49, 67

HAKE 16, 32, 35, 66
HAKEPATTERN 78
MAKETUNE 59
HAKETURTLE &5
MAKEWINDOW 73,75, 78
MAKTURTLE a8
MAPCAR 4
MARK 52,71
MEUFCLEAR B9
MBUFCOUNT 59
MBUFINIT 59
MBUFNEXT 59
MBUFOUT 59
MEUFPUT 59
MCLEAR 59
MLEN &0
HODMUSIC 60
MOTION 55
MOVE 42

MP 78

MUCRTL - 63
MUTYD 63
MUWAIT 63

MF 75

ND 47, 64
NEWMUSIC 60
NEXT 44
NODISPLAY 47, 64
NOMUSIC 60
NOPLOT 54
NOPRECEDENCE 17
NORTHP 43

NOT 18

NOTE BD

Index o LLOGD Primitives

LISF LOGO MEMO

NOUFRAP 42, 46, 67
NVOICES &0

OBSTRUCT 45
OLDMUSIC 6Bl
OLOTURTLE 48
0OR 4, 16

PAUSE 25

PD 50, 68

PENDOWN 50, 68
PENP 50

PENSTATE 50

PENUP 50, 68
PERF(RM Gl

PHOTO 52,53
PICTU/RE 53 -
PLAYTUNE &l
PIOTTER B4

FPILOTTER | 54

PM 6l

PO 21

POA 2]

POF 33

POI 33,40

POINT 54,72
POINTSTATE 72

POL 21

PON 21

POPR 21

POT 21

POTS 21

PRECEDENCE 16
PRINC 7l

PRINT 17
PRINTDOWN 27
PRINTGRID 42
PRINTOUT 5, 17, 19, 20, 21
PRINTOUT ABRREVIATIONS 18, 21
PRINTOUT ALL 21,32, 33
PRINTOUT FILE 21, 33
PRINTOUT INDEX_ 21,33, 40
PRINTOUT LINE ~ 21
PRINTOUT NAMES 21
PRINTOUT PRIMITIVES 22
PRINTOUT PROCEDURES 21,33
PRINTOUT SNAPS 21
PRINTOUT TITLE 21
PRINTOUT TITLES 21,33

Page B8 March 4, 1975

PRINTUF 26
PROG B, 37
PU 50,68
PUTSOUARE a2

RANDOM 17,37
RANGE 50,51, 71
READ 17

READFILE 17,30, 32, 40, 76
REAR 45
REMSQUARE 43
REMTEXT &2
REPEAT 4l

RESNAP 53

REST &1
RESTARTMUSIC 6l
RF 32

RIGHT 84, 49, 67, 70, 71
RICHTSIDE 45
ROUNDOKF 37
REIDE 45

RT 44, 49, 67

RUN 17

RUNCERM 4l

SAVE 17,32, 73
SAVEDISPLAY 1)
SAVEWINDOWS 76
SCALE 55

S0 47,64

SETHNEAD 49, 68, 71
SETHOME 85, 69, 73
SETQ 65

SETT 50, 70
SETTURTLE 50,70
SETX 48, 66

SETXY 48, 66, 67
SETY 48 66

SHADE T, 78
SHOW 52
SHOFSNAP 53
SHOWTEXT §l,52
SHOWTURTLE 47, 65
SHOWWINDOW 75, 76
SINE 51,71

5ING 6l

SNAP 52,53,74,79
S0LID 77

S0NC 61

Index to LLOGD Primitives

LISP LOGO MEMD

SOUTHFP 44
SPECIAL a0
ST 47,85
STARTDISPLAY
STARTMUSIC
STEP 42
STORE 37,81
SUM 5

SVD o4

5w 758

Sws 76

TEST 4,16
TEXT 36
TEXTURE 78
TH 73

THEN 4
THISFORM 20
THROW 25
TIME 37

TO 4,5, 19,22
TOPGCERM 41
TOUCH 45
TOWARDS 51, 71
TRACE 9, 28
TRIANGLETURTLE 66
TRUE 35
TURTLEIIOME 73
TURTLESIZE 73
TURTLESTATE 48
TV 78 8l
TVSIZE 73
TYPE 52,71

17, 47, &4, 70
57, 62

UNBLINK 55
UNGRID 4]
UNSPECIAL 30
uP 26, 28
UREAD 76

USE 33
USER-PAREN 9
USETURTLE 70 -
LT 70

VERTLINES 78
VISIBLE 79
VLEN B2
VOICE &2
VOICES 62

Page 83

WC 49

WESTP 44

WFF Fi

Wi 76

whnar a3
WIIERE 43
WINDOWFRAME 75
WINDOWHOME 76
WFIPE &7

WIPE a9
WIPECLEAN 439
WRAP 42,67
WRITE 32,33
XCOR 49, 66, 69, 73
XD 69

XCP 76
XHOME 50
XORDOWN 69
XORUP 69
XORWINDOW 76
XU 69

X 76

YCOR 66, 69, 73

YCOR 49
YHOME 50

Imdex ta LLOGD Primitives

March 4, 1975

