MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGEMNCE LABORATORY

June 27, 1974
Revised March 4, 1975

A. . MEMO 3074 LOGO MEMO 11

LLOGO:
An Implementation of LOGO in LISP

Ira Goldstein
Henry Lisberman
Harry Bochner

Mark biller

Abslrach:

This paper describes LLOGO, an implementation of The LOGD language written in MACLISP
for the ITS, TENSO and TENEX POP-10 systems, and MULTICS. The relative merits of LOGO and LISP
as educational languages are discussed, Design decisions in the LIS implemeniation of LOGD are
confrasted with those of two other implementations: CLOGOD for the PDP-10 and 1LOGE0 for the
FOP-11, both written in assembler language. LLOGD's special facilities for character-oriented display
terminals, graphic display "turtles", and music generalion are alzo described.

This work was supported in part by the National Science Foundalion under grant number
Gl=-1049 and conducted at ithe Arlificial Intelligence Laboratory, a Massachusetts Institute of
Technology research program Reproduclion of this document in whole er in parl is permitied for

any purpose of the United States Covarnment.

TABLE OF CONTENTS

Page

Section | Why Implement LOGD in LISP 1
Sechion 2 Ditterences between LOGD and LISP s
2.1 Simplicity 2
2.2 Maturalness 4
23 Disparity B
Sectionm 3 Owerview of the Implemeniation 7
a1 Feader 7
3.2 Parsar 8
3.3 Evaluation 2
3.4 ’ Primtimg a8
35 Error Analysis L
Section 4 Pariormance] 10
4.l Size 10
47 Computation Time 1]
43 Use 10
4.4 A ailakyility 10
Sechion B Gatting Started 12
Section & Parzing LOGD 15
E.l Infix Expressions 15
6.2 Minus Sign 17
6.3 Homanyms 17
6.4 Abbreviations 18
Section 7 Defiming and Editing Funclions 19
7.1 Controd Characier Edifing 19
7.2 Printing Function Definifions 20
7.3 Erasing 22
Section B Error Handling and Debugging 24
2.1 Farszing Errars 24
B2 Fun Time Errors 24
B3 Breakpoints 25
2.4 Wrorg Mumber of Inputs Errors 28
BB Garbage Collector Errors 28
BB DOther Debugging Facililies 28
87 Interaction with LISP 28

Tahle of Contents

LISP LOGD MEMD Fage i March 4, 1975

Section 9 Compiling LLOGD User Procedures a0
Sechion 10 Using Files in LLOGO az
101 Saving and Reading Files a2
10.2 Mher File Commands 33
Seclion 11 Dilferamnces between 1 1L0GD and LLOGD a4
Sechion 12 Using LLOGD on MULTICS 38
12.1 : Where Ta Find I 38
2.2 File Marming Comventions 28
123 Tarminalagy 39
Seclion 13 Using LLOGD on TENSO and TENEX systems a0
Section 14 GEBERLAND 41
14.1 Starting Up 41
1842 Toplevel Primitives g1
14.3 Grid Primitives 42
14.4 Properly Primitives 42
145 bultiple Garm Primilives 43
1486 Turfle Primitives 44
14.7 Touch Primifives a5
14.8 Global Variables a5
14.9 Implement ation a6
Section 15 Dieplay Turlle for the 340 and GT40 47
15.1 Starting The Display 47
152 The Turtle 47
153 Koving the Turtle 48
15.4 Erazing the Scresn 49
155 Tur'hrl"lg te Turtle 49
156 Examining the Turtla's State 49
15.7 Thie Pan 50
158 Global Mavigation 51
159 Trigonometry 51
1510 Taut 5l
15.11 klanipulating Scenes 52
15.12 Profter 54
15.13 Fots 54
15.14 Paints 54
15.15 Global Stale of the Turtle’s World 55
Seclion 16 The Music Box - 57
16.1 Flugging In 57

162 Turning On 57

163 bMisie Primilives
Section 17 Digplay Turtle far the Enight TV Terminals
171 The Turfle
17.2 Maving the Turtle
173 Erasing the Screen
17.4 Turning the Turtle
175 The Pen
17.6 The Eraser
7.7 Orawing in XOR Mode
178 Examining and Madifying the Turtle’s State
179 bludliple Turfles
17.10 Global Mavigation
17.11 Triporometry
i7.12 Text
17.13 Paints and Circles
17.14 Scaling
17.15 Screen Colar
17.16 Saving Pictures
17,17 Frinling Pictures on the XGE
17.18 Shading
17,19 Shading Patterns
1720 Invisible Madsa
17.21 Extenzions
17.22 Implementation
[ndex

Index to LLOGO Primitives

Tahble of Contents

58
64

&5
717
&7
&7
68
68
68
69
I

7l
71
7l
72
73
74
6
I
7
7a
|

82

85

Section L. Why Implement LOGO in LISP

LISP has proved itsell te be a powerful language for representing complex information
processing tasks. This power stems from:

L. The uniform representation of programs and dala.

2. The ability to build arbifrarily complex data structures in the form of S-pxpressions.

3. Recursion.

Power, however, i nol necessarily good pedagogy. LOGD i= a compuler language designed
especially for the beginner. Its purpose is to inlroduce the fundamental ideas of compulation as
clearly as possible,

LISP LOGO is an implementation of LOGO in LISP, It has been designed for several reasons.
The first is thal these two languages share a fundamental core in common. Both are fime shared,
interpretive languages capable of full recursion, Variable and procedure names may be any string of
letters and digits, Sub-procedure definitions are independent of super-procedures. Both numerical
and list-structured information can be manspulated with equal tacility. Thus, the LOGD systems
programmer is freed of the necessity of re-developing various facilities already available in LISP
{lists, recursion, garbage collection, error service traps, interrupiz). He can concentraie on addilions
(better error analysis) and madifications (pedagogical simplifications) to LISP. LLOGO unifies language
development acress a broad spectrum ranging from PLANNER and CONNIVER through LISP to LOGO.

A second reason for this implementation is to provide a natural fransition o the Mare
powerful computational werld of LISP as the student grows more sophisticated. When desired, the
student has access to all of the capabilities of LISP including:

Arrays

Funclions of arbitrary number of inputs
Funclions that do not evaluate their inpuls
MICRO-PLANNER and COMNMIVE

Interrupts .

LISP compilar

Properly lists

Floating point numbers

Character display cursor manipulation
Intinite precizion fived point arithmetic

Why Implement LOGO in LISP Section 1

LISP LOGD MEMD Page 2 March 4, 1975

Section 2. Differences between LOGO and LISP

The ditterences befween LOGD and LISP can be described an the basis of three educalional

gaals:

Simplicity of both the computational and explanatory kind,

Maluralness wherein the overhead for a naive user is minimized by following standard English
comventions,

Disparity which emphasizes the distinclion belween various modes such as defining versus

FURnImE programs,

It should be noted, however, that there can be mo one unique solution to the “best”™
educational language: These three goals can confliel. Furthermore, they cannal be so emphasized
that important ldeas of computation are complelely eliminated from the language. For students of
different backgrounds, simplicily and naturalness may have very different meanings. Hence,
alternatives to the parlicular choices made in designing CLOGD and 11L0OGD are also described. This
section may be viewed as presenfing a spectrum of possibilites from which a teacher can build a
computational world tailored to his own pedagogical purposes.

2.1 Simplicity
Lists wersus Senlences
Lists have a simple recursive definition. A list is eilher

1. NIL, the emphy lis
2. lword] word? . .), & sequence of words (= aloms)
A A list of lisfs,

This definition is confusing when 1he sludent is shill having trouble with the concepl of recursion,
CLOGD limits itself 1a lists built from enly the first two of these three clauses. Such lists are called
“Eﬂl'l*ﬂ'mﬂi-.

Alternabive view: the concept of recursion is too imporlant (o be eliminated from LOGD,
Recursive programs are allowed. Educationally, the more examples of recursion available,
the easier it is to understand. Hence, lisls should be allowed,

Computational power iz not always in canflict with educational simplicity. In addition to the
clandard list operations of FIRST {CAR) and RBUTFKFIRST (COR), LOGD provides LAST and
BLITILAST. Furthermore, sl four of lhase operalions work on words as well as senfences. The fact
that word manipulation is more eostly than list manipulation for LISP, or that taking the LAST of a
list 1= more expenzive than compuling its FIRST is not of interest to the beginner. The natural
symmelry of having all of these operations is to be preferred,

Alternative view: LOGD introduces two dala 1ypes - words and senfences. There is both
an emply word and an emply senlence. LISPS world is easier fo undercland. There is
anly one lype of data, s-expressions. Primitives like CAR are list operations only; they do
nal operate on words by manipulaling the word's prinl name, as LOGO's FIRST does.

Repestedly BUTFIRSTing a sentence in LOGD always terminates in the empty st In LISP,
with ifs more general list structure built from “detied pairs™ and CONSing, this is not always 0. The
result is the possibility of “slip-through® bugs for EMPTY P endtests of recursive procedures. Thus,
LOGO eliminates a commaon source of error without significantly limiting computational power,

Alternative view: Allowing an alom o be the COR of an s-expression sometimes allows for
econamy of slorage. Alza, the symmetey of CAR and COR in LISP make the dala struclure

easier to explain, although they are symmetric as list operalions only for the particular
representation of lists wsed in LISP

Rigid program form

LISF allows programs to be lists of any form. Ediling and debugging conzeguently become
awkward due fo the difficully in naming parts of the program. LOGO simplifies program structure by

requiring thal a program be a serses of numbered lings, The localions of bugs and infended edits
are then far easer to describe,

Criticism;: LOGO wvislales this assumption by allowing the user to create lines of unlimited
complexity. It would be preferable to limit a line 1o a single top level cell. This does not
prohibit nesting, a fundamental idea in computation. Bul it does prohibit defeating the
entire painl of line numbers with sech code as;

=10 FD log BT %0 FD 100 RT 90 ., .

An alfernative schema mighl be o adept 3 "DOTT like convention. Lines are idenfified
by offsets from user-defined locetion symbols. This has the advantage of encouraging the
use of mmemoric names for portions of the user’s program, rather tham line numbers,
which have no mnemonic value, while relsining the virtue of having a nama for every part
of the program. The user would not have to renumber lines if he wanted to inserl more
lines befween two lines of code than the difference between their ling nuembers.,

Integer Arithmelic

The initial CLOGO world limits the user to integer arithmetic, The rationale behind this is to
avoid the complexity of decimal fractions, This is clearly a simplificalion whose value depends on the
background of the students,

Criticism: even for elemeniary school children, this simplificalion may cause confusion,
Most beginners are broubled with

L

— =

2

Proponents of fived poinf arithmelic might reply that ths is ne worse than
1

--- = 9999399
1
Howewer, a decimal printer can be clever in performing roundoff.
Other alternatives are fo limil arithmetic 1o rational numbers, or to use the following

LISP convention: Mumbers are fixed point unless ending in & decimal fraction. Operations
only return fixed point if both operands are fived point,

Differences between LOGO amd LISP Section 2.1

LISF LOGD MEMOD Page 4 March 4, 1375

Arother wirtue of LISP is that fived poinl numbers can be infinitely large. Arbilrary
limitations due te fhe finite size of the computer’s word do not exist o conluse the beginner,

Conditionals

LOGD allows the following fype of branching:

=10 TEST <predicate®
20 [FTRUE
=30 IFFALSE

TEST sels a flag which subsequen! IFTRUEs and IFFALSEs access. This avoids lhe nocessity of
fthe entire conditional appearing on a single line of the procedure. The student has explicil names in
the form of line numbers for each branch,

Criticism: This prevenls nesting of condifionals. A second conditional wipes oul the results
of the first, Alsa, fhe scope of the flag set by a TEST is unclear, In LLOGO, this flag is a
LISP variable, local to the procedure in which the TEST occurs,

LOGD s lack of canned loops such az [N and MAPCAR can be criticized as encouraging bad
programming praclice, such as excessive use of GO. This obscures the legical siructure of programs,
Also, it may be significantly confusing to the beginner, and the source of many bugs. & child might
urnderstand guite well a control structure concepl like “do Yhis part of the program three limes™, or
"do this part of the program for each element of the list”, bul may be wnable te open-code that
contral struclure in terms of jumps and conditionals, LOGOD programs can't be “pretty printed” to
reveal their logical structure as can programs writlen in LISP or a block structured language.

&2 Maturalness

Mremonic Mames

&n obvious wirtue of any compuler language is 1o wse procedure mames whose English
mearmng suggests ther purpose, Consequently, LISF's primitives CAR and CDR are renamed FIRST
and RU/TFIRST.

Mole: Everyone remembers how un-meemonic GAR and CDR are, However, most LISP
primitives are named after their English counterparis.

CLOGOD synfax allows lhe use of certain "noise words”, words which appear in the user’s
code, bul have no effec! beyond making lhe code read mare like English sentences. For example, in
the following lines of LOGD code, the AND, OR, THEN, and TQ are permitted but serve no
computational purpose. They do not designate procedures, as is the usual case with words not
beginning with a colon,

BOTH <predicats 1= AND <predicate 2>
EITHER <predicate 1> OR <predicate 3=
IF <prodicete I* TIHHEN ...

COoTa... ..

Howewer, as the student gains more insight inbe LOGO, noise words becomes a burden, They
complicale the task of the parser, prevenling the student from feeling thal he really understands the
language. Most of the noise words have been eliminzled in both L 1LOGD and LISP LOGD, [LLOGO will
tolerate THEN in condifionals, and T0 in fransters, however, because they are =0 commonly used.)

Malching English vocabulary to computer functions can be difficult. English words rarely
have a single meaning. Following are some examples where CLOGO may have made the wrong choice.

1. CLOGO uses IS instead of EQUAL for its equality predicate. The rationale is that IS will be more
familiar to a non-mathemalical beginner. However, the ommipresent nature of this English werb
Fesulls in such LOGD code as:

TEST IS :THIS.NUMBER GREATERP :THAT.NUM BER
thus, it might be better for LOGO to use EQLIAL.

2. Another example where LOGO may have chosen the wrong word is in defining procedures. This is
done wvia:

T0 PROCEDURE.NAME :[ANPUTI INPUTS . ..

The English ward “te" can imply execulion. For example, “he is 1o run his program®™, A beller choice
would be “dafine”,

Parsing

LISP avoids the necessity of parsing through the use of parentheses, This might be
considered well worlh emulating in LOGO for ifs explanatory simplicily. However, simplicily must be
conlrasted with naturalness. A beginner is used fo using English where verbs and modifiers are
connecled by grammar, context and meaning rather than explitit parenthesizing. This naluralness
can be preserved for procedures that take a fixed nember of imputs. This allows such lings af code
ta be undersiood by anyvone wilhout any special programming knowledge,

FORWARD 100 RIGHT w0

Thus, a beginner can express himsell with no extra burden of parenthesizing when his programs are
still wery simple,

Parsing can be used to permit infix nolation. Again it is simpler to demand that all
functional calls be in prefiv potation Howewver, a beginner is far more familiar with FORIFARD
SSIDE+I0 than with (FORWFARD (SUM 51DE 1oL

Eventually, as one’s code becomes more tomplex, parentheses become a simplifying ool
One does not have te guess how the parser will werk LLOGD allows this. If desired, parenfhezes
are permitted and interprefed in the standard way.

Criticism: LOGO complicales ils parsing algorithm in several ways, making it difficult to
explain lo a student. For example, the language doss nol insist that all primifives take a
fixed number of inputs. In some cases swuch as the litle lines of definitions, this is
reazonable. On the other hand, it is somewhal confusing to limit such primitives as SL/M to
anly 2 inputs if not parenthesized bul any rumber of inputs if parenthesized, Equally bad
15 the fact that primitives like 11LOGOs PRINTOUT for printing definitions do not
evaluale their inputs. 1l would be mare consislent for

FPRINTOUT "PROGRAM"

to be rogquired,

Difterences between LOGO and LISP Seclion 2.2

LISP LOGO MEMO Fage & March &, 1975

2.3 Disparity

Program Versus Data

Bolth programs and data are informafion stroclures. The difference befween the two is
solely a matter of use. LISP preserves this elegant view by alowing programs to be passed as inputk
and, indeed, to even redefine themselves, This power, for all its simplicity, can confuse the beginner,
For the novice, the difference between defining and running a procedure is unclear. LOGOD provides
clarification by forcing a complete distinction between the processes of defining and of evaluation,

Criticiam: LOGO viclales this idea. A program can be execuled inside a definition if not
preceded by a line number. This is a mistake. The Iypical case is for the user to have
intended lo type the line number. In ils wistful desire tor more computational power,
LOGO has forgolien its epistemological foundalions.

Hoamornyms

LISP has the ability for a word to be the name of bolh a procedure and a variable, The
position of the word in a list then delermines how it is used. Homonyms, however, can be confusing.
Haw should a word which is both a procedure and a variable be treated when il is fhe first element
in a list? The choice is arbitrary.

LOGO prevents such homonyms. Words evaluale as variables only when preceded by ™.

. X .. causes ¥ fo evaluale as a procedure call.
. X .. relurns bhe vaelue of the variable X

thus, LOGO and LISP share the power of allowing any string of leiters lo be either a procedure or a
variable name, But LOGO insists on an unambiguous "local” distinction, independent of position,
batween these lwo uses.

Ancther example of the clever ways LISP takes advantage of homonyms is NIL. LISP uses
bhiz word to name bolh the emply list and the logical truth value FALSE, This can result in more
meonomical procedures, The convenience, however, has no conceplual basis. Hence, it can contuse
the user who doss not yet understand ether lisk manipulalon or logical analysis well. This is similar
to the situation in APL, where the logical constants are the integers O and 1, and conditionals are

accomplished by numerical manipulation. It can lead lo obscuring the purpose of a given piece of
code,

Lime arignfed input

LISP avaluales an expression when parenlheses balance. Thus il cannet calch errors caused
by typing loo many right parentheses. LOGD wails for a carniage return, Hence it is capable of
recagnizing this problem. Furthermore, a user can wrile several calls en a line. Execution is delayed
until a carriage return is lyped. This has the virfue of separating the lasks ol forming grammatical
expressions from execuling programs.

Section 3. Overview of the Implementation

LISP LOGO is designed so thal the user need never know that he is communicaling with

other than a standard LOGD. However, il desired, he can inzert parenthesized LISP code anywhere
in his LOGO program.

LISP LOGD i= basically a compiler. It converts LOGO input to LISP programs. The result is
that running mesl procedures takes less lime since the code need not be repeatedly interned and
parsed.

The following pages provide an overview of the major parts of the system. These are ils
reader, parser, evaluator, prinfer, and error handler, More delailed explanations of these will follow
in later sections of this memo, For implementation details, LISP LOGO is available in well-commentad
interpretive code.

Code for the LOGD display turtle is discussed in Section 15 and Section 17, and code for the
music box in Section 16, The "LOGO project” is concerned with more than the development of a
cemputer language. Of major inlerest is the design of various compuler-driven devices which
provide a rich problem solving environment for the stedent. However, special purpose primitives for
driving these devices are indepondent of LOGO versus LISP issues and must be added individually. A
LISP-based implementation does have one special virlue, For those devices like the music box which
are driven by ASCI characters, the primitives can be written in LISP or LOGD and then compiled, It
is nol necessary bo create code at the machine level,

3.1 Reader

The LOGD reader is basically a line-oriented LISP reader, If returns a list of aloms read
between carriage returns, The fundamental lasks of interning atoms and building list structure are

handled by LISP. Conflicts in character syntax and idenfifiers belween LISP and LOGO present the
only subltleties.

Certain characters such as the infix operators +, -, £, and [do not require spaces o be set
off as atoms. This is equivalent to being a "single characler abject® in LISP. Ofher characters such
as "." in dotted pairs are special in LISP bul not in LOGD. The solutisn te these canflicls is found in
using separate "readbable™s for LOGO and LISP.

Conflicts in names also occur. The LOGO user has access lo all the ordinary LISP
procedures, but must be prevented from accessing LISP procedures which are internal te LLOGO.
Thiz is accomplished by using two “sharrays™. When the user types in an idenfifier with the same
Aamé as an internal procedure, be accesses a different atom,

MACLISP allows any mumber of separate "readtable”s and “obarray™s. This permits mulliple
waorlds - PLAMMER, COMMIVER, LISP, LOGD - fo co-exist wilh no conflicl. Swilching worlds s
computationally fast, Al that s necessary is 1o rebind the READTARLE and ORARRAY warables fo
the desired waorld On the other hand, the naive user % profected complelely from olher
environments and need nol even know of their existence.

Dverview of the Implementation Section 3.1

LISP LOGD MEMD Page & March 4, 1975

?i? arser

N

The parser converts a LOGD line to list-structured form. This requires that information on
the number of inpuls used by a procedure be available. [nserfing parentheses is a trivial
computation for procedures with a fived number af inputs. However, complexilies are introduced
inta the LOGD parser by:

1. Having infix as well as prafix operalors,

2. Changing the number of inputs depending upon whether the user embedded the form in
parentheses (SUM, SENTENCE,). :

3, Primitives like T0 thal do not parse their input,
4, Homonyms: Funclions which have the same name in LISF and LOGO, but have different meanings.
These ate handled by having the parser delect the names of LOGD primitives which conflict with
LISP, and converl them to functions wilh different names thal do rot conflict.
This makes the parser the most complicated part of the simulalion.

Parsing information is slored on the properly list of a function. The major sub-procedures

are concerned with prefie, infix, and user-lyped parentheses. Special primitives are parsed by
storing a procedure as the parsing property.

3.3 Evaluation

The basic LOGO functiors thal do the user's computation - Le. the arithmetlic, list, and logical
primitives - are the simplest part of the simulalion These funchions all occur in LISP, wsually in a
somewhat more general form, Hence, this part of the implementation is little more than renaming.
Far many primilives, LLOGO provides more argument type checking and informative error messages
tham are supplied by their LISP counterparts,

Parsed code is eveculed directly by the LISP evaluator. Indeed, a user-defined program br
parsed form is simply a LISP PROG. The line numbers are fags in the PROG.

3.4 Printing

LOGO procedures could be represented as lists of unparsed lines internally. In this case, a
line must be intersed and parsed each time it is run. However, the problems of prinling the
definition and editing a function are simplified. The infernal formal is identical to the formal in which
the user originally Iyped the expression,

An alternative solution is to represent LOGO programs in parsed, ie. LISP ferm A LOGO
program internally is a LISP program. This maximizes run time speed and simplifies building program
underslanders, It has the disadvantage of complicating the parser and the prinfer.

1. The parser must handle functions thal have not yel been defined. This can be accomplished,
however, by reverling lo the solution of parsing al run time those lines which contain unknrown
functions, This run-lime parsing can aller the program's definition as well so it only rend GCELUF ORCE.

2. Printing definitions and editing lines requires an inverse parser or "unparser” which returns the

LISP-ified code o its original form, This is possible providing there is no information lost in parsing.
Such is the case if the parzer makes special provision for dislinguishing user-lyped parentheses
frim parser-ganaraled parentheses One way to accomplish this s by beginning user-lists with a
do-nothing funchion USER-PAREN defined az:

(DEFUN USER-PAREN (X} X)

3, Editing title lines s made more complex, Il the nuember of inputs accepled by a funclion is altered
by editing the title line, the edilor must reparse the lines of super-procedures in which a call to the
the edited function appears, This can be accomplished by maintaining 8 super-procedure frees,
although LLOGO does nol currently dao this,

These complicalions can be avoided by storing bath represeniations of the procedure, This
is an excellent example of 3 space versus complexity fradge-off. LISP LOGOD currently does nol store
bath representalions

3.5 Error Analysis

Since LOGOD is a language which is designed to be used by beginning programmers, il is
important to provide informative error mescages. Conseguently, all LOGD primitives do extensive
type chacking on their inputs, LLOGD will try to prind out the form which caused the error, and give
the line number if the error occurred inside a procedure. 8fler a simole mislyping error which can
be detected by the parser, the user is given an immediate opporfunity fo correct the line. For run
fime erFors, ke & given the option of causing breakpoints. Facilities for exploring the sfack from
inside a breskpoint loop are available. Since LOGOD procedures are represented internally as LISP
proceduras, the standard L15P TRACE package can be used

These facilities are implemenied using LISP error interrupt handlers and EVALFRAME. The
sophisticated user desiring customized error handlers can access the LISP facilities directly.

Dwerview of the Implementation Section 3.5

LISF LOGD MEMOD Page 18 March 4, 1975

Section 4. Performance

4.1 Size
LisP 26 Bocks (1029 36 bil wards)
LLOGO (compilad) 2 Binary program
5 Ll structuers
4 Mumbers, Alomic symbals, elc.
Total space a3

These figures do nol include space for user programs, or loading the displey turtle, music,
or GERMLAND packages, Belween 5 and 10K beyond the amount of storage menbioned above would
provide a reasonable amount of workspace for user programs and data; this wouwld correspond
roughly to programs of perhaps a lew pages. The figures above are lor the ITS implementalion; on
DECIO syslams, it occupies slightly less spaca. [n the current MACLISPE, slorage expands as needed,
LLOGO takes advantage of this feature == If programe grow beyond a cerfain cize the user is askhed
whelher he wishes the allocation 1o be increased. Slarage s expanded automalically on loading
special packages such as the display turtle. OF the |7 blocks which comprize the LLOGD system, all
but 3 are pure, and can be shared among users,

4.2 Computation Time

For most processing, LLOGD enjoys a speed=up ower CLOGOD and 11LOGD due to the fact
that parsing and inferning occur only once ab deline time. Further, LLOGD makes it possible to
campile LOGD source programs infe machine code using the MACLISP compiler for increased
efficiency [See Section 9] Workspaces can be stored on the disk in infernel LISP formal. [See
Section 10.1] Consequenfly, re-reading files has no overbeasd, CLOGD has an advantage, however,
in manipulaling words, as its inlermal data struclure is siring ralher than list @rienfed.

4.3 Use

Almost all of the primitives of CLOGD and [ILOGO, [imcluding the music box and display
turtle] are implemented, Hence, LISP LOGD is capable of reading, parsing and running most files
saved under CLOGD or 1 1LOGO [perhaps necessilating minor modification]

It cam alzo be used real-lima by an individual familiar only with LOGD: no knowiedge of LISP
is reguired, On the other hand, all of LISP's facilities are available, Programs can be writlen in LISP,
ar in machine language using LAP, and made callable from LOGO. The special packages for the
display turtle, music box and GERMLAND can also be used from an ordinary LISP, without the rest of
the LOGD environsment, Some other facilities of LLOGD, such as the breakpoint amd stack
manipulating functions, are also available for use in LISP. LISP users can take advantage of these
facilities without interaction with LOGD simply by loading the appropriate files of LISP functions,

4.4 Availability

The implermentation is written complefely in inlerpretive code. 1l runs compiled under the
MACLISP currently in use al the Artificial Intelligence Laboratory. LLOGO has also been implemented

LISPF LOGOD MEMO Page 11 March 4, 1975

an standard DEC PDP-10% under the TEMBD and TEMEX aysteme, and on MULTICS. These
implementalions are discussed in Section 12 and Section 13 of This mema,

LISP LOGO MEMD Page 12 March 4, 1975

Bection 5. Getting Started

In the following seclions, we will go into more detail concerning the implamentation of LISP
LOGO, and provide some practical informalion for using it. We will nat atlempt fo provide the reader
with an introduction to the LOGD language; several excellent sources for this already exisl, such as
the LOGD Primer, and the 1 ILOGD User's manual [LOGD mems 7] We will assume thal the reader has
read these, or is already familiar with CLOGO or 11L0GO, the other implementations of the LOGO
language available al the Al lab. [nstead, we will concentrate on poinfing out differences between
LLOGD and other implementations of LOGD, and describing fealures umique fo our implementation. It
iz not necessary to know LISP to understand most of what follows, although some knowledge of LISP
woild be helpful in gaining insight into the implementalion, For more information on LISF, see the
MACLISP Reference Manual by Dave Boon, and the Inlerim LISF User’s Guade [A] memo 190] by Jon
L. While.

Motalional conventions: Throughou! this memo, USER TYFPEIN ard LINAD CODE will
appear in a font like this. ARBREVIATIONS for LOGO primitives will he noted in braces |).
SYSTEM TYPEOUT will apprar in a font like this. Control characters are denoled by & followed by the
character. You type a conirol character by holding down the key marked “eontrol” while you are
typing the character, just ke you would use the “shift™ key lo type a capital letler. $ means escape
or altmode, not dollar-sign, excepl where olherwise noted, Angle brackets < > mean something of the
appropriate type suggested within the brackets; for instance, if your user name is HENRY, <user
pame> means your user mame, sg. HENRY., Except for control characters, which usually fake
immediate elfect, and except where olherwise nated, end all lines of fypein with a carriage refurn.

The following procedure is intended to help very naive users of ITS fo get logged in, and to
obtain LISP LOGO. Ses Al memo 215, How To Gel On the System, for more defails.

I. Find a free console, If it is a TV cansole, lurn it on using the swilch on the gray box mounted on
the wall, It should show the names of all the users currently on the system, Ofther types of consoles
will show the message,

Al ITS <version> CONSOLE <number> FREE. <time>,
2 A console which is free understands only one command, AZ. [on TV terminals, use the key marked
CALL. The computer will respond with the following messages:

Al ITS <version>, DOT <wversion>,

=pumber> USERS.

CIEW R
3. When it stops printing, login as follows: Type

SOGEN <user mema>

If there are any messages for you,

~-MAIL--

will be printed. You can type a space 10 receive il or any other characier to postpone it. A = will be
fvped al the end.

4. Now you have completed logging in fo the Al syslem. To gel LLOGD started,

5. Decide which version of LISP LOGD yvou wanl. Choose fromm:

LLOGD - Standard version of LISP LOGO. Vocabulary is compatible with 11LOGD. Saction 11 contains
a detailed comparison of this varsion ot LLOGD with 11LOGD.

CLLOGD - A version which uses a vocabulary which is compalible with CLOGD.
MLLOGO -The wery lalest version of LISP LOGO. This is experimental, 50 we make no promises.
When yvou decide which you wanlt, type

“name of program®

for example, [LLOGO .

6. Then LLOGO will print oul some inilial messapes, including its version number and LISPs. LLOGO
has available several packages of special functions, and you will be asked which of these you are
going fo use. If you are at TV consale, The first guestion will be

D0 ¥OU WANT TO USE THE TY TURTLE?

It you want fo use the furtle commands lo display piclures on your terminal, you should answer
YES. You should slso amswer YES if you intend fo define or edil a procedure containing such
commands, even il you don't run the procedure. See Section 17 for delails on the TV turtle, I vou
are nol logged in at a TV terminal, you can use the furtle on the 340 or GT40 displays instead.
LLOGD will ask

D0 YOU YWANT T USE THE DISPLAY TURTLE?
If you answer ¥ES, il will then ask which display you want to use. It is not necessary thal you
have the 340 display scope, the PDFS, or The GTE0 display, 1o do just defining and editing. You cam
even run the procedure if you do not mind not being able fo see what the procedure does. See
Section 15 for mare information,

GERMLAND?
If you want to play with GERMLARD, the display turlle for character displays swch as DATAPOINT
terminals, answer YES. This has a promplter which will run some demonstrations and provide help if

you meed it, Again, f you infend to deline or edil procedures designed to run in GERMLAND, wou
must answer Y ES. See Section 14,

MUSIC BOX?

If you want to use LLOGD music box primitives, answer ¥ ES This will inguire further, as 1o which
music box, ele, See Section 16, In case you have answered YES to any of these guestions you

Betting Started Section 5

LISF LOGO MEMO Page 14 March 4, 1975

have to wait far a while, because it takes some bime 1o load wn the Tiles. If you want fo interrupt
loading in type aX | nol aG IF wou change your mind about wanfing any of the subsystems
menlioned above, you can go through the initisl quesltionnaire again by calling the function
ALLOCATOR. 1f you have a file named LLOGO (INIT) on your directory or there is a file named
cueer mame> LLOGO, an the (TNIT) directory, LLOGD will read it as an imfialization file, executing
LOGD eode contained therein. When all this is finished, LLOGD will indicate its readiness with

LLOGD LISTEMING

#

7. Il you find yourself in the unfortunale siluation of meeling a bug in LISP LOGO, you may report it
by using the function BU'G. The inpul to BUG should be a message describing the difficulty, enclosed
in dollar signs. For example,

BUG §

THE TURTLE ESCAPED FROM THE
DISPLAY SCREEN . ..

§

;THANK YOU FOR YOUR PATIENCE.

bl

8. You can logout when you are finished by fyping GOODRYE to LOGD. The terminal should then
say,

AND & PLEASANT DAY TO Y0U!
Al ITS <version> CONSOLE <number> FREE <time=

9, Hawve fun?

Section 6. Parsing LOGO

This section will discuss a few of the more complex issues in parsing LOGD into LISP, and
discuss how they are handled by LLOGD LISP 45 trivial lo parse, as ils synlax is tolally
unambiguows. The apphcaton of a function 1o its inpuls always happens in prefic notation, and the
precise syntactic extent of a form iz always clearly delineated by parentheses. LOGO syntax atfords
the beginning programmer some conveniences over LISP synlaw, while relaining much of the
expressive power of LISP. Parentheses can be omitted surrounding every form, and the more
customary infix notation tor arithmelic expressions can be arbitrarily intermingled with prefix
nolalion. These conveniences are bought at the cost of complicaling the parser, and introducing some
cases where ambiguily resulls regarding the user’s intent for some of the language's syntactic
constructs.

6.1 Infix Expressions

LLOGD allews infix notalion o be wsed as well as prefix functions in arithmelic expressions.,
Most LOGD arithmetic functions ewsts in both prefix and infix flavers, and the user is free to use
whichewver he desires.
FRINT 324+ 188LM FIRST :X MIFFERENCE G072
s the same as
FPRINT (TIMES 3 4(EXPT :A ((FIRST :X+(TIMES :C IT}21)

LLOGD observes the usual precedence and associativily of arithmelic operalors.

Mote thalt a complication of the LOGD syntax is that all funclions, not just infix operators,
are required to have precedence levels, [s

FIRST :A+ 17

the same as
TIMES (FIRST :A} 7 or FIRST (TIMES :A 17} 7

The situation iz further complcated by the wser's probable expectalion hal funchions which
manipulale logical valees have lower pracedence than comparison operators like < * and =, So,

TEST :NUMHBER = :PI
is taken to mean,
TEST (LESSF :NUMBER :PI) and not LESSP (TEST :NUMBER) : Pl

CLOGD gives all arithmelic operators the same precedence on the grounds thalt precedence

Parsing LOGO Section 6.1

LISP LOGO MEMOD Page 16 March &, 1975

would be ditficult 1o explain clearly to children. However, this has the drawback of deviating from
the custamary mathematical convention, Since the molivation for introducing infix potation inte LOGO
syntaw is so that arithmelic expressions can be written in the infix form in common wse, LLOGO has
been designed to abey the usual precedence conventions.

LLOGO tries lo please everybody. IF you feel thal The precedence scheme which has been
implemented does not agree with your intuilion, you are free to redefine the precedence levels as
you wish, LLOGO alze provides the capability of defining new infix oparators.

The initial default precedences are identical to those of 11L0OGD and are as follows:

F00: A [exponentiation]

G00: + - [prelixz]

BO0: w7 Y

400; = - [infix]

300: [default precedence for system and user functions)
200: <> =

100: IF NOT o7 EITHER AND OR TEST

50: « [MAKE]

Initially, operators of levels 50 and 700 are righl associative, and the rest are left
assaciative, which is the default. Logical functions should have precedence lower than comparison
operators, so if the user defines a logical function he should set the precedence himself, otherwize it
will receive the default precedence. The user can change things by using the following functions:

PRECEDENCE <op>
Returms the precedence level of <op>,
PRECEDENCE <op> <levesi>

Sels <op™’s precedence level to the specified <lepel>, which may either be a number, or
ancther operator, which means Thal <ep> 15 10 be given the same precedence as that aperalor,

PRECEDENCE NIF. <level>

Sets the defaull precedence for funclions 1o <lewel>. All functions which are nol in the
above list of infix functions, or have nol been assigned a precedemce by the user, receive the
defaull precedence,

ASSOCIATE <number> <wwhich-way>

Declares that all funclions of precedence level <number> will associate <which-way>, which
is either "LEFT or "RIGHT.

INFIX <op> <level>

Defines <ep> to be an infix operator of precedence <level> Specifying a precedence is
oplional.

MOPRECEDENCE

Forces all infix operalors te the same precedence level [thic will be higher than the default
precedence]l Makes LISP LOGO look like CLOGO [well, alrost...]

ANFIX

This variable contains a list of all current infiv operalors. Look, but don’t touch, Use INFIX
to add new infix cperators,

6.2 Minus Sign

There is some ambiguity in the handiing of minus sign For example, consider
(SENTENCE 3 -0

[f the minus sign ois inferprefed as an infie differance operator, this will resull in a list of one
elemont, 1f the minus sign is inlerpreted as prefix negation, it will resull in a list of two elements,
CLOGD uses the spaces in the line to disambriguale fhis case, 1l there is a space belween the minus
sign and the A, it is interpreled as infix, Dlherwize, it is inferprefed as prefix. In 1ILOGD, spaces
are nofl semantically significant esxcept fo delimit words, so0 this s interpreled as (SENTENCE
(IMFFERENCE 3 :A)) regardless of the occurrence of spaces. LLOGD treats minus sign as does
LILDGO. One would ablain the resull of the ather interprefation by using

(SENTENCE 3 (-:1))

The preceding discussion applies only to the parsing of intix expressions. So, [-4] is a list of
ane alement, a negalive number, but [= 4] is a list of bwo elements, minus sign and 4,

6.3 Homonyms

LLOGD makes all the functions of LISP directly accessible fo the LOGD user, in exactly the
same way as LDGD primitives. This runs info difficulty when a LISP funchion and a LOGO funchion
have the same name bul differen! meanings. These are currently handled by the parser, which
converls them inte innocuous aloms which do nol conflicl with LISP, end are reconverled upon
unparsing. Currently the following functions are homomyms:

FPRINT, RANDOM, LAST, EDIT, [also SAVE in the MULTICS version]

When the wuser bypes in one of these it s converfed by the parser to an infernal represenialion
consisting of a diffarent funchion name [LOGO-PRINT, LOGO-LAST LOGO-EMNT LOCO-RANDOM or
LOGO-5AVE, az appropriate] When the user reguesfs that the line be printed oul or ediled the
urparser conwverts it back to the way it was onginally typed in. In the CLOGD-compalible version of
LLOGD, when [CAREFLUL is not sel fo NIL the following primitives which conflict with CLOGD are
also changed by lhe parser: LIST is changed fo PRINTOUT, MEPLAY to STARTINSPLAY, GET
and READ to READFILE, and [N} 1o RUN. Warning messages are also printed in these cases,

There is one pilfall in The current method of handling homonyms: sometimes, as wilh passing
functional arguments, the parser does not gel a chance lo do obs thing, so the user may lind an
ureypected function called;, APPLY "PRINT . _ .. calls LISPs PRINT funclion, nol LOGO's,

Parsing LOGD Section 5.3

LISP LOGD MEMD Page 18 March 4, 1375

6.4 Abbreviations

Abbreviations are asccamplished in LLOGD by putting the name of the fumction which is
abbrewvialed on the property list of the abbreviation a2 an EXPR or FEXPR properly, as appropriale.
Abbrevialions are expanded into their full form on parsing, and are left thal way. The user has the
capabilily of crealing new abbreviations by

ARBREVIATE <new name* <pld name> [AH]
and erasing them by
ERASE ABBREVIATION <name>

ABBREVIATE evaluates its inpuls, but ERASE dosan't. A complate lisling of abbreviations, and the
names of procedures abbrevialed by them, can be oblained by doing

PRINTOUT ABRBREVIATIONS

Section 7. Defining and Editing Functions

In LOGO, when the user defines a procedure using T0, or EDITs a procedure he has
previously defined, LOGD enters an "edit mode”, where lines beginning with a number are inserled
into the procedure under modification. LOGD prompts with ™" rather than "*" to indicate this. The
intent of having a separale mode for edifrng procedures iz to stress lthe distinetion belween delining
procedures and execuling them This distinclion is not strictly maintained; if the line does nof begin
with a number, the commands are sxecuted as they would be ordinarily, with a few exceplions [the
user is prevented from deing anather TO or EDIT for mstance] Occasionally, this leads lo errors,

for instance if the user forgotl fo type the line Aumber al the beginning of a line intended for
insertion,

The default stale of LLOGO is o refain the separation of edit mode from ordinary mode as
n 11L0GD and CLOGO. The slightly more sophisticsted wser, howewver, might {ind himself in an
unnecessary loop of continually typing EINT: and END's while working on the same procedure.
Since the lines fyped by the user for inserfion inlo a procedure are insarted immediately when the
user finishes typing the line, END does not cavse anything to happen olher than the terminalion of
edit mode., The system always remambers the name of The last fumciion menfioned by T, EDIT,
PRINTOUT, efc. as a default lor these funclions, so when warking on a single funclion, EDIT serves
only ta enter edit mede. The user haz an optien ef lurning off the separate edil mode by selting Lhe
variable :EDITMODE 1o NIL. This will cause lines beginmng with a number to be inserled into The
default procedure at amy time. In this mode, it is mever nacessary to use END, and EDIT will only
change the name of the defaull procedure if given an input. The prompler will not be changed.

In LLOGO, it is not necessary to be in edit mode to use EDITLINE or EDITTITLE on a line
of the default procedure, and the editing control characters are available even when nat in edil
rode,

7.1 Control Character Editing

LLOGOD has a control-character line editer similar 1o fhose in CLOGO and 1 ILDGO. This makes
il particularly convenient to correct minor typing errors, by providing a means of recyeling portions
of the line typed previously, instead of requiring retyping of the entire line, The reader keeps track
of twe lines: an old line which you are editing, and a new line, which LLOGO is to use as the next line
of input. The old line is always the last line you typed at LLOGO, excepl immediately after a parsing
error, when lhe offending line will be typed out al yeu, and il may be edited. You can also sel the
eld line yoursell to be a line in the current default procedure by doing EDITLINE <line number®, or
the tille of a procedure by calling EDITTITLE. Everything you type after the prompler, or cause to
appear using the confrol characters, is included in the new line, unlil you type carriage return, which
terminales editing for thal line. You may use parts of the old line in construcling the mew line by
using fhe following commands:

~AE

Get the next word from the front of the old line, and put it an the end of the rew line.

Defining and Editing Punctions Section 7.1

LISP LOGD MEMO Page 28 March 4, 1975

~R

Put the rest of the old line at the end of the new line. This is like doing AE’s unlil there is
nathing left in the old line,

MS
Delete a word from the front of the old line.

Y

Delete a word from the end of the new line. Like rubout, except rubs out a word insfead of
a characler,

LLOGO uses different characlers than | ILOGO and CLOGO do because LISP uses most of the
control characters for interrupls and ifo.

The LLOGO top level loop keaps a record of recent interachions with the user. The following
functions are uselul in referring back 1o a previously typed in line, or previeusly produced value
without retyping il.

LEASTVALUE <n>

Without an input, LASTVALUE returns the last value typed oul by the top level loop. This
is like the variable % in LISP. An input of <n> to LASTVALUE returns the <n>th previous value.

LASTFORM <n>

LASTEFORM returns the most recenily lyped form, like the varigble « in LISP. An input can
specify the <n>th most recent form. EVAL LASTFORM executes the last form over again.

THISFORM
Like LASTFORM 0, this returns the farm in which it is eontained, like the variable - in LISP.

LASTLINE <n> [ILINE]

Returns the last [ar <n>th] previous line. RUN LASTLINE execules the last line again. Note
that a line may contain more than ong {orm,

IHISTORY <n>
Sats the mumber of interactions remembered by LLOGO te <n> Inputs to LASTVALUE,

LASTLINE, and LASTFORM must be less than this number, which can be examined as the value of
the variable (JTISTORY, and is initially set to 5,

7.2 Printing Function Definitions

The function PRINTOUT can be used to look at definitions of user procedures. In addition,
it haz other options for examining the sfate of your LLOGO. PRINTOUT doesn'l evaluate its inpuls.

PRINTOUT <procedurc-name> PO}

Will print out the definition of the specified procedure. 1fF the name iz omitted, it will
agaume the last function that was defined, ediled, or printed.

PRINTOUT LINE <number> |POL)
Printz out only the spacified ling in the defaull procedure.
PRINTINT TITLE <procedurs> [POT]

Prirts fhe just the tifle of the precedure given. 1f the input is omitled, prints the tille of
the current detaull procedure. This is useful if you forget which procedure is the defaull,

PRINTOUT TITLES {POTS)

Prinfs the titles of all curren! user procedures. lgnores buried procedures [see Seclion
1011

PRINTOUT PROCEDURES {POFPR]

Printe out the definitions of all currently defined wser procedures. Will nol print the
definitions of procedures thal are buried [see Sechwon 10U1]

PRINTONT NAMES {PON}

Prints the names and values of all user variables.
PRINTOUT ALL {P01)

Does PRINTOUT PROCED/RES and PRINTOUT NAMES., Anolher wseful command is
LINEPRINT, which causes a lisling, similar te the culpul of PRINTOUT ALL, to appear on the line
printer, 1t takes an oplicnal input, 2 word to be used as a title to name the listing generaled,
PRINTOUT SNAPS

Prints a list af saved display turtle scenes, See Sechion 1511,

FRINTOUT FILE

PRINTOLT INDEX
Sep Section 102,
PRINTOLT ABRREVIATIONS

Prints a list of all current abbreviations, and the names of the procedures which each
abbreviakes.

Defining and Editing Functions Section 7.2

LISF LOGO MEMO Page 22 March 4, 1975

PRINTOUT PRIMITIVES

Prints a complete list of all LLOGD primitives.

7.3 Erasi ng

The command ERASE will remove unwanted portions of your LOGO, The inpuls to ERASE
are nol evalualed. The oplions avallable are:

ERASE <procedura, varichle or snap name=

Cause the definition of the specified object 1o wanish. MNole: When you define a function
using T, it checks 1o see if thare already exists a procedure of the same name, and if so, inguires
whether you want the oid definition ERASEd, This is fo prevent you from accidentally overwriling
delinitions of functions
ERASE PRIMITIVE <primitive naome®

The LLOGO primitive given as input will ba erased. You mighl use this, for exvample, il you
wanted to use a name wsed by LOGO for one of your own functions. If you define 8 name using TO
which contlicts with a LOGO primitive, it will inquire if wou want the definition of the primitive to be
erased,
ERASE LINE <number> [ERL}

Erases line <number> of the default procedura,
ERASE NAMES {ERN}

Unbinds all user variables.
ERASE PROCEDURES (ERP]

Erases all inlerprelive user functions. Does not affect compiled or buried procedures.
ERASE COMPILED

Erases all compiled user funclions,
ERASE ALL [ERA)

Like doing ERASE PROCEDURES, ERASE COMPILED and ERASE NAMES.
ERASE ARRREVIATION <rhhreviction=

Erases the abbreviation given as input, Does not affect the procedure that il abbreviates,

ERASE FILE <file spoe> {ERF]

Gee Section 102 In LILOGD, DELETE is a synonym of ERASE FILE, but in LLOGO, thal
name 15 used far the LISP function which deletes slemenis from lisks.

ERASE TRACE =funciion= {ERTR]
Aemoves trace from <function®. See Sechion 8.6

ERASE BURY <functinns> [ERN]

o The funcltions will no longer be buried. For a discussion on buried procedures, see Seclion
1001,

Delining and Editing Functions Sectian 7.3

LISF LOGO MEMD Page 24 March 4, 1975

Section B, Error Handling and Debugging

The philosophy of the LISP LOGD error handling syslem is 1o try lo be as forgiving as
possible; the system will give you an opportunity to recover from almost any type of error [excopl a
bug in LLOGO] There are fwo bypes of errars which can acour:

8.1 Parsing Errors

If for some reasen, LLOGD cannot parze the line you typed [for example, yvou may have
typed mismatched parentheses), this causes a parsing error, When this happens, LLOGD will prini a
message teling you why it was unhappy, relype the ofending line af you, and fype the editor
prompt character, You now have a chance lo redeem yourself by correcling the line -- you may use
any of the editing conlrol characters [see Seclion 7.11 When you are salisfied thal the line is
correct, type carriage return, and LLOGO will resume evaluation, using the correcled line in place of
the ome which was in error,

2 Run Time Errors

When a run time error occurs, 8 message will be printed, 11 the error occwrs inside a LOGO
user defined ftunchion, the message will say something like:

;ERROA 1N LINE <number= OF <procedure>
;LIME <number= 15 2
<reason for errars

It the error accured inside a LOGD primitiee, the message will look like:

JCOULDN'T EVALUATE <had form=
BECALSE
;<reason for error=

where <bad form> is what LLOGD was trying to evaluale when the error eccurred. Usually, this will
give you enough information to figure out where the error occurred, although <bad form> is
sometimes uninformative. Usually, LLOGD will simply return to the tep level loop when such am error
occurs, However, if you SETQ the variable :ERREREAK to something other than NIL, [or MAKE
*ERRBREAK ...] arun time error will cause a LOGO break loop to be entered afler the message is
printed. Setting the variable :LISPREEAK to non-NIL will cause a LISP style breakpoint to occur
when an error happens. [For a delailed discession of breakpoints, see below, Section B.3.] You
can resume oxecufion of your program from fhe point al which the errer occurred, by
CONTINLU Eing with something to be used in place of the piece of data which caused the error, |f
the error was an undefined function, you may CONTINUE wilth the name of a funclion which has a
definition, 1f the error was an unbound variable, CONTINUE with a value for that variable. If the
error was a wrong lype of inpul o a LOGOD primitive, CONTINUE with some appropriale value for
an input fo that funchion, etc. Usually it will be sbvitus frem the context what sort of item is
required. Computation will be resemed from where the error occurred, with the returned item
substifuted for the one which caused the errar. [Mote: the uswal LISF interrupl handler functions
expect a list of the new item to be returned, while LLOGO' expect simply the item]. The LISP LOGO
run=lime error handling works by ulilizing the LISP error interrupt facility, If you don't like the way
LLOGOD handles any of the error condilions, you are fres to design your own error inlerrupt
handlers, sifher in LISP or in LOGO

B.3 Breakpoints

A powerful debugging aid is the ability 1o cause breakpeints. Stopping a program in the
process of being evaluated allows the user lo examine and modify its stale, and explere the history
ol evaluation which led up 1o fhe breakpoint. LISP provides excellent facilities for doing this,
including automatic generation of breakpeinis when an error occurs. Whenever LISP slarls lo
svaluate a forem, it firs! pushes the form on a stack; from a breakpoint one can examine the stack to
delermine what forms were in the process of being evaluated, and perform evaluations relative o a
particular stack frame. LISP LOGO atfempls o make these fealures easily available to the user, from
aither LISP or LOGD. Versions of these breakpoin! funclions are also available which can run in an
ordinary LISP, without the rest of the LOGO envirenmeni. The following facilities are available for
causing breakpoints:

LOGORREAK <messager <condition® <return-value> [PAUSE}

The inpuls are all optional, and are nol evaluated. Unless <condition> is given and
evaluates ta NIL, LOGOBREAK causes the user to enfer a lpop where LOGO commends can be
typed and the results printed This is similar lo the top level loop excepl that T is printed as a
prompter rather than % it is very much like repeatedly evalualing PRINT RUN REQUEST. If
<message> is present, it will be prinfed oul upen enfry to the break point. It also prints the form in
the current stack frame, which will be the call to LOGORREAK if called explicitly by the user. If the
breakpoint happened because of an error, the initial stack frame will be the one containing the form
which caused the srear. LOGOREEAK tries wherever possible 1o print oul the current form as LOGO
code belore it enters a LOGOD break poinf. However, the curreni version is not always smart encugh
ta distinguish between LISP and LOGO frames an the stack, so you might occasionally see whal looks
like internal LISP garbage thers. If you go up far entugh, you are sure to hind the LOGO code. A
smarter version could recopnize the LISP frames and wgnore them The third input is a default value
tor LOCOBREAK to return if it is CONTINUEA, [See descriplion of CONTINUE, below]. Caution: the
breakpoint funclions described in this section use LISP's CATCH and THROW. Unlabelled THROWs
from inside a breakpoint logp are highly discouraged.

Al

¥ contral-A is typed at any time, even while a program is running, it will cause an interr upt
and a LOGO break point will be entared

[ISPRREAK <message™ <condition® <return valus® {HREAK]

This is like JOCOBBEAK, excapl thal the loop is a LISP {PRINT (EVAL [{READN) loop.
This is especially useful when debugging a set of LISP funcliens designed to run in LOGO. To access
wour LOGOD variables and user funclions from inside a LISP break loop, prefic them with a sharp sign
["£"]. LISP users note: you can interact with this break loop as with the standard LISP BREAK
function, except that it is sel up 1o allow use of the slack hacking functions described below. If 3P is
typed, or (CONTINUE) invoked, the <reiurn value> will be the valus of the call to ILISFRREAK.

AN

Az in LISP, AH typed at any time will interrupt and cause a LISP breakpeint to be entered.

Error Handling and Debugging Section 8.3

LISP LOoGD MEMO Fage 26 March 4, 1975

:ERRBREAK

If thizs wvariable is not NI, when a run lime error happens, LOGOBREAK will be called
automatically, This gives you & chance to find out what went wrong, and recover by CONTINUEing
with a new piece of dala to replace the one that caused the error. It is inilially sel lo NFL. As in
L1LOGO, the function DERUG will also change whether breakpoinis occur on errors,

(LISPBREAK

Like :ERRBREAK, except thal if set lo somathing ather than NI, when an error happens,
LISPBREAK rather than LOCORREAK will be called. Initially sel to NFL

The following furctions can be called from inside a breakpoint fo examine and manipulate the stack:
e

Moves The breakpaint up one frame in the stack, printing out the farm which was aboul o
be evalualed in that frame, This will be the form which called the one which was last typed out by
any of the funchions mentioned in this section. Evalualion now fakes place in the new stack frame.
This means thal all local and input variables will have the values they did when that form wes aboul
to be evalualed. However, side effects such as assignment of global variables are not undone.
Frames are numbered for the vser’s convenience, from O increasing up fo fop level,

LUP <numbeor>

Goes <number> frames up the stack. Like doing UP, <pember> limes. The <number> may be
regative, in which case, the breakpoint is moved down the stack rather than up,

[P <atom>
Goes up the stack until a call to the function whose name is <atom® is found,
UP <atem> <ngmbpree

Goes up the stack until the <pembercth call o <siom™ i found. Searches downward for the
=mumbarrth call to the specified function if <aembers s negative,

DO N <atom> <wembor

Like [P, excepl thal it proceeds down the stack instead of up, Both inputs are optional, and
default as for U'P, excep! thal <number> defaulls to -1 instead of +1. 11 <pumber> is given it is
eguivalent to L'P .. (~<number=)

FRINTUFP <atom?* <anmber=

Accepls inpuls as does [P, but instead of moving the breakpoint up the sfack to the
desired frame, all frames between the curren! one and the one specified are printed out. This
function is good for gelling a quick view of the stack in the immediate vicinity of the bBreakpaint,
The breakpaint remains in the same (rame as before. The two inpuls sre oplionsl, and defaull as for
P,

PRINTINWEN <atom> <mumber>

Like PRINTL/P, excepl that the inputs are inferpreted as for DOW N rather than as for UP,
that is, it prints frames going down the stack,

EXIT <eeturi-valea®

Causes the current stack frame 1o refurn with the value <retarm-oslus>. That is, the
computation continues as if the form in the current frame had relurned wilh <retarn-valuer, The
imput is oplional, and defaults to NI

CONTINUE =retarn-value> |C()]

Causes the frame of the originally invoked breakpoinl to relurn with the speciflied value.
The input is optional. Use CONTINUE to return a new item of data from inside an error breakpoint;
for instance a mew function name te use in place of one which was undefined. Nole thal in L
situations, for example from a user-invoked breakpoint or from an errer breakpoint which expects
an item to be returned as the value of the form which caused the error, if you haven't moved the
breakpoint around the stack, CONTINUE will be idenlical to EXIT. Il the input to CONTINUE is

omitted, the defaull return value spacified by a third inpul to LISPEREAK or LOGOBREAK will be
returned as the wvalue of the breakpoint Il no such defaull return value was given, NI will be

refurned. $P can also be used fo refurn from the breakpoind, just 2z in a LISP breakpoint, Mole
that this works a bit differently from CONTINUE in 11LOGD as when the breakpaint returns,
execulion conbinue from exactly the point al which il was interrupted and not beginning with the
next line of code,

Here"s an example:

TMAKE "ERRIREAK T

Mssyre LOGOD break happens!
yhan an error oocyrs!
;CHANGING A SYSTEM NAME
T
0 SCREWLFP :N Define our losing procedure.!
=1 IF :N=0 THEN OUTPUT :UNBOUND
ICount down to O, then!
*2 (WTPUT SCREWL'P :N-1
fewal variable which has no value!
=END
SCAEYWUP DEFINED
TSCREWLUFP 3
sERAOR IN LIME 1 OF SCREWUP
;LINE 1 15: IF :N=8 THEN OUTPUT :UNBOUND
#UNBOUND IS AN UNBOUNT YARIABLE
sHREAKPOINT FRAME B; UNBOUND
EED | Frame 0 is the variable, Eval was!
3] twarking on Thiz when we bombed]
"We can do any command!
bwhile in the breakpaint.!
TP IGoing up & frame. JL/NROLININ
sBREAKPOINT FRAME 1: DUTPUT :UNBOUND
Pwas fhe input to OUTPLT
2 IF N lgoing down a frame.!
;BREAKFOINT FRAME 8. -UNBIUND

Error Handling and Debugging Section B3

LISP LOGO MEMD Page 28 March 4, 1375

P CSCREIFLP
BREAKPOINT FRAME 4: SCREWUP :N-1

wie arrive al recursive invocalion!

TN lwhere :N had the value |?

1

TUPE "SCREWFLP 2 1t we rise pasl 2 calls lo ACREWL/P!
{BREAKPOINT FRAME 18; SCREWUF :M-1

TN LN was 31

3

TEXIT 'SCREWFED e decide for some reason!
SCREWED Mhat SCREWLF of 2 5!

kd Ha return the valpe "SCEENFE D

tand all the previgus invocalions !
Yaf SCREWL/F relurn with The valus!
PRCREIFED and we are at top level
"Wasn'l thal fun?!

B4 Wrong Number of Inputs Errors

Simee LOGO syntaxy requires that the parser bnow bow many inputs a fusction requires, and
LLOGO parses your inpul as you lype it in, errors may be generated if you change the mumber of
inputs a funclion fakes by redefining The fumclion, or by calling EDITTITLE. Calls to that funclion
which yvou fyped previously are now incorrecily parsed, LLOGD will catch most occurrences of this
when the function is called, and print & mazsage like:

{HEFARSING LINE <number> OF <procedure> AS: <npew parse>
and attemp! 1o recover. LLOGD always altempls 10 reparse a line which caused a wrong number of

inputs error, 1F is nof always possible fo win, however, as side effects may have occurred belore the
error was delected.

8.5 Garbage Collector Errors

Versions of LLOGD runmng in BIB0P LISP [LISPs with the capability of dynamically
allocating storage] have special handlers for garbage colleclor inferrupts, [F it decides you have used
too much storage space of & particular bype, or too much stack space, it will stop and politely ask if
you wish more fo be added, |f vou see these guestions repeated many times in a short span of Hime
while running ome program you should give serigus consideralion 1@ the possibilily thal your
program is doing infinite CNSIng or recursing infinilely.

B.6 Other Debugging Facilities

The standard LISP TR/ACE package may be used o brace LLOGD primitives or user
functionsz, The tracer s not normally resdent, but is loaded in when you first reference it, See the
LIS® manual for delails on the synlax of its use and the various oplions available. Mo LOGO step by
step execution inferprefer comparable to the 1ILOGD STEP facility exists, but stepping packages
written tor LISP cam be wused in conjunchion with LLOGO

B.7 Interaction with LISP

In debugging functions wrilten in LISP for use in LLOGD, it s often useful lo be able to
switch back and forth belween LOGD and LISP top level loops, You cam leave the LOGO top lewvel
leep and enler a LISP READ-EVAL-PRINT leop by using the LLOGO funclion LISP. From this mode,
executing (LOCO) [remember 1o lype the parentheses, you're in LISP!] will return to LOGO. Typing
conlral-uparrow [An] at any Bime will cause an inferrupt and swilch worlds; you will entar LISP if
you typed as trom LOGO, or enter LOGOD if you typed it from LISP, The LISP loop gives you access
to all internal LLOGO funchions and global variables, which are normally inaceessible from LOGO since
they are on a different obarray, LLOGD primitives and syslem warisbles are on both obarrays, 50
they will be accessible from both LISP and LOGO, but LOGD veer functions and variables are on the
LOGD obarray only, The character sharp sign ["¢7] 15 an obarray-swilching macro; to sccess LOGOD
user funclions and variables from the LISP loop, prefix them with a sharp sign,

Error Handling and Debugging Section B.7

LISP LOGD MEMD Page 30 March 4, 1975

Section 9. Compiling LLOCO User Procedures

LISP LOGD compiles a LOGO source program info LISP anmd it is slored intermally omly as
LIS#® cade. Since fhis i the case, the LOGD wser has the capability of using the L1SP compiler
directly on his LOGD programs, and obtaim 8 substanlial gain in efficiency, once his programs are
tharoughly debugged. LISP LOGO provides an inferface 1o the LISP compiler which should make it
urnecessary tor the user fo worry aboul interaching with a separate program,

To compile all of the fenclions currenlly in the workspace, the funclion COMPILE is
available, [Thiz does not include buried procedures =- see Ssction 10.1.] Tt especis one word as
input, ta name he file which will confain the compiled code. & second oplonal inpul can specify a list
of declarations to the LISP compiler. For ezample,

COMPILE FOO [DECLARE [FIXNUM (ANTEGERV ARIARLE]]

The names of the funchions which are being compiled will be prinfed oul, The COMPILE function will
start wp the compilation and then return. 1T will print ancther message when the compilation is
firisheed, A temporary output Tle [named LRG0, QUTPUT] will be woften on the current directory
and deleted after the compilation s complete, The output file will have as first name the input to
COMPILE, and second file name FASL [In the MULTICS implementation, the lemporary file will be
named logo owtput and placed in the current directory. The output file .will appear in the working
directary, with one name, the input to GOMPILE] Since the LISP compiler mus! be called up as a
separate program, be careful about interropling the COMPILE function before it is finished [for
instance, by AG] as you will nol find yourself in LLOGD anymare.

The LOGD COMPILE funclion supplies declarations for LOGD primifives. These should be
sufficient to compile most LOGD programs and the user meed mot supply any himself, Some of the
declarations inclede LISP macros which replace calls to LOGO primitives with calls to their faster
LISP counferparts for efficiency, and some oplimization is done. For safely’s sake, all variables are
automatically declared SPECIAL. However, the sophisticated user is free to include DECEAREs to
ENSPECIAL input or local variables which he knows will not be relerenced globelly, or provide
declarations which will make use of the fast-arithmelic LISP compiler.

Te load a compiled file inle LLOGD, say READFILE <pame> FASL This will load all the
compiled fumctions which were compiled by COMPILE <mame=, and also restore the wvalues of
variables 1hat were defined al that bime. The names of compiled funclions will be kepl on a list called
LOMPILED and ol on j0ONTENTS, For debugging purposes, you might wani fo read in both the
compiled amd interpreted definilions of the szme funclions, and you can wse lhe fumclions
FLUSHCOMPILED [FLC) and FIUSHINTERPRETED [FLIY to swilch back and forth between
compiled and interprefed delintions,

A few warnings about compiling LOGD procedures: First, remember thal LOGD synlax
requires thal it be known how many inputs a funclion expecls, before a decision can be made as lo
how to parse a lime of LOGD code. If, when defining a procedure, you include a call o a procedure
which 15 not yet delined, parsing s delayed until run lime [see Seclion 6 and Seclion 3.2 of this
mema for more detads] The compiler, of course, cannot do anything reasanable with an urparsed
lime of LOGD code, so all parsing must be compleled by the fime the definition of any procedure is
compiled, The COMPILE funchon altempls to make sure this is the case, Therefore, if is an error fo
altempl to compile & procedure which contains a call 1o a procedure which is nat & LOGD primilive
and has mot yel been defined,

Also, it mus! be remembered that compalation of LOGO procedures, like those of LISP, is not
“foolproof™. It is not always the case thal a procedure which runs correctly when interpreted, will be
guaranteed to run correctly when compiled. Self-modifying procedures, weird control structures, and
in general procedures which depend heavily on maintaining the dynamic environment of the
interpreter may tail to compile correctly without modificatian,

Compiling LLOGD User Procedures Section 3

LISF LOGD MEMD Fage 32 March 4, 1375

Section_10. Using Files in LLOGO

EARPREE - e S gt S)

& file specilication on ITS has four components. Each file is named by lwo words, of up to
ciw characlters pach, a device [almas! always DSK], and a directory name [usually the same as the
user’s pame]. You can refar lo a file in LOGO by using anywhere from O te 4 words, If you leave out
the rname altogether, it will be assumed thal you are referring lo the last lile name mentioned. One
word will be laken as the first file name, and the second will default to >, which means the highest
numbered second file name which currenlly ewsls it you are reading, or one higher if you are
wriling. Two words will be taken as the two file names, and the direclory and device will be
defaulted. If three names are given, the third will be assumed as the directory name, and the device
will ke DSKE, If four words are given, the third is davice and fourth is the direclory. Here are some
e amples:

[Assume That the current user name s ESG, and FOO 3 i the highest numbered file wilh FOO as ils
firch filename)

LG ITS [=lal= <in2> <day>=dirs]
READFILE FOU Fn » DIK:ESG; [Fi 3]
SAVE Frid FOo = DEK:ESG; [FO0 4]
READFILE FOiO BAR Fii)y RAR DSE:ESG;
READFILE Foi) BAR ITENRY Fiil HAR DSK:NNENRY;
READFILE Fiil BAE DSK HENRY Frnl HAR DSK:NENRY;

See Seclion 12.2 and Section 13 for infarmation abouf file specifications on the MULTICS
and TERSD implementations. File specificalions are accepled by LOGD in the same format as on ITS,
s0 it may not be necessary to change any code to run on other implementations.

10.1 Saving and Reading Files

There are two ways of storing LOGO programs on the disk for later use. To store the
contents of the current workspace [all user funclions amd varighles currently defined] on the disk in
the farm of LOGD source code, use SAFE,. It expects as inpul a lile specification, as discussed above,
The file ereated will contain the contents of the user’s workspace, funclien definitions and WAKEs
for variables, exactly in the form that be would see if he did 8 PRINTOL'T ALIL

Werkspaces can alen be saved in LISP format, as they are represented infermally by LOGO.
This is accomplished by the funclion IWRITE which lakes ils inpuls as does SAVE, Although the file
created will mot be so pretly fo look at il you print i, using IFRITE produces files which are
censiderably faster te reload, since the program does nol have fo be reparsed. For long-ferm
storage of programs, however, il is recommended thal you use SAVE rather than WRITE. Changes
in the implementation of LISP LOGD may resull in changing the infernal formal of LOGOD programs, in
which case, files created by WRITE would not remain compalible, but files created by SAVE would
remain so.

To reload a file from the disk, use the function READFILE {RF). This accepls a standard
file specificalion, and reads il in, prinling the name of the lile, READFILE does not care whelther
the file is in SAVEd or WRITten form. 1f the file was created by 3AVE, lines of code will be printed

out as they come in from the disk. For written files, only the names of functions and values of
variables will appear. If you get annoyed at all this eutput, you can shut it up with oI, LOGD will
refurn with a guestion mark when the loading is complete.

It is often convenient to treat a sel of funclions as a "package” or "subsyslem™ For
instance, you may have a set of your favorite funchions which you place in your inilialization file, or
a selt of funclions designed for a specilic purpase. Whan this is the case, it is inconvenient 1o have
all these functions written out when yeu are working on additional pracedures, or have to see their
definitions when you do a PRINTOUT ALL That is, one would like a8 methad of having the package
of funclions available, bul not considered as parl of the workspace by cerfain commands. You can do
this by using the function BURY. It takes unevaluated procedure names as input, and will assure that
the function is igrored by The following commands: PRINTOLT PROCEIN/RES, PRINTOUT ALL,
FPRINTOUT TITLES, ERASE PROCEINRES, ERASE ALL, SAVE, WRITE and COMPILE. Otherwise
the function is unalfected, and can be invoked, printed, edited, etc. A list of the names of buried
procedures is kepl as the value of the variable :BURIED. BURY ALL will BURY all currently
defined procedures, and ERASE BURY will undo the effect of a BURY,

10,2 Other File Commands

FPRINTINT FILE [POF} will print oul the contents of a file. ERASE FILE will cause the
specified file to vanish [This has a safely check to make sure you don't do anything you'll be sorry
about] These take file names as above, except that il only one input is given ta ERASE it defaults
to <, the leas! numbered second file name, again for safely reazons. PRINTOUT INDEX [POT} will

print out all the file names in the direclory specified by one word. USE will change the name of the
default directory.

Using Files in LLOGO Section 182

LISP LOGO MEMO Page 34 March 4, 1975

Section 1L Biff-er!nm between HLOGO and LLOGD

LISP LOGO was ariginally wriltan 1o be compalible with CLOGD, a version of LOGD writlen in
POPID assembler language. There new existe a version of LLOGD which we believe lo be
“semantically compatible” with the POPL] version. By this we mean that the vocabulary is the same
-- any primifive in 1ILOGO also exists in LLOGO and will (hopelully) have the same meaning, LLOGD
in fact has many primifives which da net esist in 100G, as well as offering the user access to the
full capabilities of LISP, There are subsiantia! differences between LLOGD and 1 ILOGO with regard
te file syslems and error handling, and somewhat less substantial dhflerences in the editor, turlle and
music packages. These are descrbed in detail in other seclions of This documeni. There are slso are
several less substantial differences, nol mentioned in the preceding discussions, and what follows is
an attempl to provide a reesonably complete list of the knowledge that an experienced 11LOGO user
would need to use LLOGO.

In 1ILOGO, the double guote character ™ is used to specify that the atom following it is nol
lo be evaluated-

TPRINT "Fo0
F

It is like LISPs single quole, excepl that it slso affects the LOGD reader’s decision about when o
stop incleding successive characters in forming the name of an atom, In

PPRINT :FiM1+3

the plus sign is a8 separalor character; it signals the end of the alom :FIND just as if there was a
space following :FON). However, following a double guote, the only separator characlers recognized
are space, carriage return, and square brackels, Thus, in 1ILOGO,

PPRINT "Fod+3
FO0+3

Im LLOGO, the wser may use the LISP single quate to specify thal an alom or parenthesized
list following the single guofe is not to be evaluated, The presence of the single quole does nol
change the way LLOGD decides when an atom ends, [n LLOGO,

FPRINT *F)+3
;THE INPUT 'FOO TO + 15 OF THE WRONO TYFE

because the plus sigm s slill a separafor character LLOGOD uses the double guoles s CLOGO does;
they are always malched, [f one s-expression (alom or list) occurs in beftween double quotes, it is
quoled. If more than ome occurs, the lish conf@ning them 15 quoled. The correspondence belween
LLOGO double quoled expressions and LISP s-expressions is as lollows:

S _|'|||fl-lI

"catam=" ==> (QUOTE <atom=)

"eslE L s ==x (QUOTE (<al> ... <alN=))
gl L. <alN= === (QUOTE (<xl= . <sN=))

Square brackels in 11LOGD specify gquoted lists, Parentheses are never used around lists
as in L15F, but are only used to delimit forms. LLOGO recognizes square brackels as well as LISP's

parentheses in dendoling lists, The difference belween brackels and parentheses in LLOGD is that the
brackels always denole lisl constants, and not forms, and that the outer level of brackets s implicitly
quaoled:

[[FOO BAR]] === ((AOTE ((F(M BARM

There is a minor piltall in the current implementation: note that fop level parentheses implicitly
quate the hist, inferior ones do mal. This does ot slways work, for insfance when using RV one
may expect interior lisls alse to reman unevaluated:

PPRINT [PRINT [F(0 BART] === (PRINT "(PRINT (FO0 BARM
PRINT (FOO BAR)

TRUN [PRINT [FON) RART] === (RUN "(PRINT (F(i) RAR)
prints the value of the function F(ND applied fo input BAR.

Square brackels in 11LOGD also share wilh double guctes the property described sbove of
affecting the LOGD reader’s decision or ending the names of atoms. Withen a sguare brackeled list in
LILOGD, an atom is terminaled only by a space, carriage refurn or brackei. This property is not true
of square brackets in LLOGO In LLOGO, [FOd+35s a isl contaming three elements, bul in L 1LOGO, it
conlains only one element.

String quating in LLOGD is accomplizhed using the dollar sign characler, §. LLOGD will treal
anylhing appearing between dollar signs literally, with special characters devoid of any special
meaning, Wilthin such a string, two conseculive dollar signs will be inlerpreled as a single dellar sign.
So, $555 would be the word whose name i a single dollar sign, 38 bs the emply word, Rubout,
editing and interrupt characters cannot be quoted in this manner, Use the ASCHT function of LTSP o
yvau really need Them.

The character sharp sign ["#"] in 11L0G0 is uvsed 25 a prefix macro character which takes
one inpul which must be a word, and execuies it & a procedure. 1 i vsed where one wants to use
a weird name for a procedure, or a name already used by the syslem. Sharp sign is used as am
escape bo call that procedure, Thus, a procedure delined in LILOGD By TO "PRINT . . . would be
called by £ PRINT, TO =1 ... would be called by £°3, elc. In LLOGO, sharp sign is used as a macro
character which causes the next s-expression to be interned as if il were read im LISP if you are in
LOGD, or as of if was read by LOGO o you are in LISPE, 1f you are in The LISP mode of LLOGO and
wanl o access your LOGD variables, you can say &FiNE, elc. The conflict may ke changed in the
near future by altering LISP LOGD's macro character 1o one thal does nob conilict with 1 1LOGO,
Suggestions weloome,

The Boolean [logical] constanis in | LLOGD are TRUE and FALSE, while in LLOGO, they are
T arnd NI, as in LISP,

The 11LOGD function LEVEL, which returns the current procedure depth, is nol
implemenied,

The character :im L1LOGD is frealed as a macra “the value of L. if A is bound to B and B is
bound to C, then =4 is C In LLOGO, vanables sel by MAKE are just LISP atoms beginning with the
character 5 =0 o4 will be the value of the variable set by WAKE 7" <whatever>, ete, We are
seriously considering changing this, eliminaling fthe incompahibility., The present sefup reguires
MAKE to do anm expensive EXFIODE on the variable name, in order 1o create the word which
beging with a calon,

LLOGD expacte to find only one form inside parentheses: construcls like

Ditlerences hetween 11L0G0 and I..F.II‘-EI Section 11

LISF LDGO MEMO Page 36 March 4, 1975

(FD 100 FId S0 SUM 4 5)
are prahibited. 110L0G0 allows more thas one form inside parenfheses under certain restrictions,

The 11L0GD procedure TEXT, which refurns a list ol lists which are the lines of a
procedure whose name is given as input, is not implemented in LLOGOD. However, you can access the
definition of a function in its parsed LISP form on the property lis? [COR] of the atom

LLOGD understands two comment conventions: L1SP's convention of trealing as a comment
anything between a semicolon and the nexl carriage return, and LOGOs of treating a3 a comment
anything in between exclamalion points. [The exclamation points must be metched, and comments
can be continued past the end ol the bae] Anpthing affer exclamation poinls on a line is ignored,

LELOGD forms are divided info two categories: those that output [return a value] and those
which do nob. In LLOGD, ac in LISP, svery lorm refurns a value, To simulate 110060 and CLOGD in
this respect, as a special hack, farms which refurn a question mark do nat have their values printed
by LLOGOs top level funchion. Howewver, LLOGD cannot cafch the error of such a form hiding inside
parentheses, as can 110L0G0. Mosl of the primilives which do notl refurn a value in 1 1LOGD return ?
in LLOGO,

The top level loop in LISP LOGO is a KEAD-EVAL-PRINT loop whereas PDPLL LOGD is a
READ=-EVAL lcop. This means that [1LOGD prints out only when you ask it to print wnlike LLOGO
which prints oul values after every evaluation of a LOGOD form,

In 11LOGO;
50UM 48
YOU DONT SAY WHAT TO DD WITH 12

In LLOGO:
*SUM 48
12

Line numbers can be any infeger up to the magimum magmtude allowed by 36 bits, Fleating
point, negalive numbers and zeroe are allowed also, These are cccasionally useful when you have to
inserl imes before a line numbered | or belween bwo consaculively numbered lines,

LLOGD follows the LISP conventions for numericed inpul. In LILOGO, a decimel point is an
indicator of floaling point input, even il no fractional digils follow [like FORTRANL The LISP
convention 15 that an infeger Tollowed By a decimal poant withoul any fractional digits is considered
as an inleger base lan regardless of the seiling of the varizble JRASE, which allows the numerical
inpul radix to be changed. The number s considered loating point only f some digits follow Fhe
decimal point, In DILOGD, I s a floaling point number, buf jn LLOGED, it is an inleger, and 10 is
flealing point ome. Alsg, N iz nol used in LLOGD for negative exponent floaling point input, as in
ILOGD, E with a negative exponent following s the preferred form,

I 1 1L
FI415 N 4

In LLOGO:
JI415F-4

Percent sign (%) does nol echd as a space. Carriapge refurns within square-bracketed lists
prirt out as such, not az spaces, as in 1 ILOGO.

(EMPTY is the emply list, which is LI5Fs NIL :EMPTYW is the emply word, which is the
LISP atam whose print name is (A5G 0.

LISP LOGD and LLILOGD differ on the syntax for arrays, LISP LOGD uses the LISP array
facility; to define an array use;

ARRAY =pamne> T <dimention [> . . . <dimension V=

Values can be stored by
STORE <array mame> <subgeript 17 ., <swbeript &> <valoe>

Values are accossed as of the array were a funclion, which expected the same number of inputs as
the number of dimensions in the array. Arrays are not considered as part of your workspace in
LLOGED, so you can't do PRINTOLT ARRAYS, ERASE ARRAY S, elc.

The LLOGD funclion KANDOA, of no mpuls, refurns a random floaling point mumber, which
iz belween zero anmd one. If given bwo arguments, it refurns a random number befween its lirst and
second argument, inclusoee. I both its impufs are fowed pamt, it relurns a fived péinl number,
alherwize il returns a floaling point nusber. (RANDOM 0 9) behaves gz | 1LOGD RANDOM.

R NIDOFFE in LLOGD takes either one or bwo inputs. [f given one inpul, the number is
rounded 19 an inleger, olherwise if is rounded o as many places 1o 1he right of the decimal point as
specified by the second input,

The TIME function refurng real bime in seconds, not sidieths of a second, as in 110L0OGO,

LOCAL variables are handled differenily in LLOGD than in 11L0GD. Regardless of where a
LOMGAL stalement is placed in a procedure, fthe wvariables declared will be local te the entire

procedure, This corresponds to & PROG variable in LISP. LOCAL accepls any number of variable
names as inpul.

[meerting lines info procedures under program control should be done using the function

INSERTLINE. In L1LOGD, the Tollowing will insert a line inte BLETCI when MUNG 15 execuled:

0 MUNG
=0 EIIT RLETCH

=20 10 PRINT [NEW LINE ADDED TO BLETCH]
=END
This will ot work in LLOGO. Inslead replace line 20 wilh:

=20 INSERTLINE 10 PRINT [NEW LINE ADDED T BLETCH]

Mone of the | 1LOGH special commands whose names begin wilh a pericd are implermented in
LLOGO, althauwgh there are occasionally LISP funetions with different names and semantics which can
be made 1o do the same thing,

There 15 a memo by Wade Williams which explains some of the finer points of 11LDGD

syntax, and should be consulted for further informalion, The | ILO0GD User’s Manual should also be of
agsistance,

Difterences between TILOGO and LLOGH Ceetlan 11

LISP LOGO MEMO Page I8 March 4, 1975

Section 12, Using LLOGO on MULTICS

LISP LOGD has mow been implemenied on MULTICS, and this is the only wersion of LOGO
available for that syslem. Below are insiruchions for using if, and a list of differences between the
BLULTICS amd ITS wersions, Excepl for the differences in file naming comventions, and limitations
imposed by the aperaling syslem, source language programs should be enlirely compatible. For more
information on RMULTICS LISP, see the MACLISP Reference Manual by Dave Maon

The LISP LOGD music package is avalable for use on RMULTICS, See Section 16 for more
details, The display furtle and GERMLAND packeges are nol available in The MULTICS implement alion
MULTICS does not have adeguale facifilies for using displays such as the 340 and the GTA0. T
probably would be possible to implement a redimentary turtle package for the storege lype displays
on MULTICS such as the ARDS and TEKTRONIX terminals, bul we have no plans to do so at present,

12.1 Where To Find 1t

To obtain L1SP LOGD, vou must first create a link to the mecessary files. After you log in,
type

link rudd=ep=lik*loge

This needs to be done only once for each user. Subzequently, you can gel LLOGD simply by byping
logn

You should then get a message indicating the version numbers of LISP and LOGO, as on IT5, and the

allocator will ask you if you wan! to use the music bow. If you have a file in your directory named
start aploge it will be read in as an initialization file.

12.2 File Naming Conventions

A ITS file specification consists of tbwo file mames of up to six characlers each, a device
and directory name. A file specificalion on MULTICS is called a “pathname”, and consists of arbitrarily
many components each naming a node in a tree slruclure of direclories and segments [liles] The
components of a MULTICS pathname are separafed by "7 characlers. Any pathname beginning wilh
"=" s considered to be a full pathnams, ie. slerl at the rool of the lree, olherwise, it is considered
to be relative to the direclory which is currenily the defaull. This will usually be something like
"rudd>your-project -name>your-user-name”, File names are assumed 2lso to have two components
as on ITS and you bype them inte fo LOGD the same way, as lwo words, exceplt that each word is not
limited to six characters. The defaull second file name is “logo”, not ™%, to be consistent with
MULTICS corventions, In oyour directary, the fwo file names will appear separaled by a ".". Files
whose second names are “fasl” are assumed 1o contain object code produced by the LISP compiler.
This will correspond fo the file with only the first name [no second component] in your directory,
Here are some examples: [assume your name is "person” and your praject is “project™]

LOGO file name) MULTICS file name

G T T

read file foo >udd>pro fect® poreon® foologo
read file foo bar rudd>pro ject> pereon=foobar

read (fle fon fos] *udd>pro joct> porean> fos
read file foo bar meomblo Fudd>pro foer> poreon momble> foo bar
read file foo bar »add={loga Fudd>llage> fos.bar

1.3 Terrr}!'_[[gluqf

On MULTICS, contral characlers are entered to LISP by first hitting the break or atin key [if
wou have one] and LISP should type CTRL/, then typing the ordinary non-control character, then a
carriage refurne MULTICS has no other way of acknowledging your existence belore yvou hit a return,
which is the reason for this kludge, Because of this the conlrol-characler line oriented editor which
exists in the [TS implemeniation, does not exist in the MULTICS implementation. MULTICS uses # to
rub out the previous characler, and @ to rub out the entire line, To enler these characters to LLOGO,
precede them with 3, . .

It wou sheuld have te use an 188 2741 terminal, remember that certain characters must be
escaped, The worst offenders are [and] (type <rent-sign® <less-than> for [and <cent-sign>
“greater-than> for) type <not-sign> for &, <pemt-aign® <cent-sign> for |, and type a <eent-sign>
before & and @ Upper and lower cases are distinguished on MULTICS, and all of the system
functions, bolh MULTICS s and LLOGOYS, have lower case names,

To use LISP LOGD on MULTICS over the ARPANET frem ITS, il is recommendsd that Dave
hoon's program THE be used rather than TELMNET, See DSELINFOLTHGE INFO for more details,

Wsimg LLOGOD en MULTICS Section 1223

LISF LOGD MEMD Page 48 March 4, 1375

Section 13. Using LLOGO on TEN50 and TENEX systems

The wersion of LLOGD for TENSO runs in a wversion of MACLISP that s nearly compatible
with thalt used at WIT-A] The TEMSD version can also be used on TEMEX systems. Most of the
incompatibilities are those necessitated by the difference in operabling systems. Speciflically, the
tollowing commands are nal implemented:

PRINTOUT INDEX (alias POI, LIST FILES)
LOGOUT (BY E)

COMPILE

LINEPRINT

[

Also, the special packages for LLOGO (the turtle primitives, the music primitives, and GERMLAND) are
unavallable,

fnother difference belween TENGD LLOGD and LLOGD on TS s in the typing of comtral
characters (such as oG, AN, and all the edifing characters - AR AE etc). on 175 these characters
may be typed al any time, Those specilying an interrupt action (G, AIF) will always take effect
immediately. Unforlumately, this is nol true in the TERSD implementation, because TENSD allows a
running program to be interrupted only by the character A0 As a resull af this, if the user wanls
to interrup! the LLOGO system while it 5 running (e, g. executing a user defined function), he musl
first type AC. This will inferrupt the program, and cause it fo print 7, indicating that it is waiting to
read a contral-character. The user may then bype the desired conlrol-character, and it will be acted
upon. Mote that fyping AC is nol necessary if the LLOGD system is nob running, but rather wailing
for input, Therefore the editing characters may be used withoul difficully, even on the TENSO
syslem,

Another minor difference belween the fwo operafing systems is in the nolation for file
names. This difference is mirimized by the syntax wvsed by the LLOGD file commands, For instance,
the command

FREADFILE PROGREM LGO DSK USER

will read the file DSK:ASSER:; PROGEM LCO on ITS, while on TENSO the file read will be
DEK:PROGEMLGOIUSER]L Thus most user programs will be able to run with little or no
madification to their inputfoutpul operations. {Note thal the defaull second file name is > on ITS,
while on TENSD i is LOO) I you want te use a LLOGD inifialization file with thu TEMSD
implementation, the name of The file should be INIT.LGD on youer user directory,

A wersion af TENGD LLOGD is currently avallable at Carnegie-Mellon (CMU-108) It may be
lpaded there by means of the following command:

RUN DSK:LOGOL 80 LET]

Bection 14, CERMLAND

The GERMLAND package is designed le provide the user with a display environment in
which interesting montrivial questions can easily be imvestigated, withoul the need for sophisticated

display equipment, The current implemantation runs on any of the character display consoles in use
at the Al laboratory.

Conceplually, GERMLAND consisis of a square grid, on which may Tive™ as many as 10
"germs”. Each germ may have an arbitrary LOGD program associsted with ity this program
defoermines the germ’s movemonts, as well as whethar it eals any of the “food” present at its
posifion of the grid. For a discussion of some of the problems that cam be Investigated in this
emvirgnment, see LOGD working paper 7,

14.1 Starting Up

The GERMLAND package may be loaded aulomalically at the start of an LLOGO run. When
slarfed, LLOGO will ask which of the special packhages you wani Simply type YES, followed by a
carriage return, when il asks whether yvou wanl GERMLAND., The GERKLAND package will then bea
loaded, and give you instructions for further help. Note that if the grid becomes garbled, because of
a transmission error for instance, you can al any lime cause it to be redisplaved by typing the
character a\ [confrol-backslash]

14.2 Toplevel Primitives

RUNGERM

Imvokes prompler. Bsks guestions necessary fo gel started and offers help,
GERMDEMOS

Funs a series of demos, leaving the demo programs available for the user o play with
TOPGERM

Starts up a GERMLAND READ-EVAL-PRINT loop, using the grid sel up by the most recent
call to RUNGERM,

L'NGRID
Exits from TOPGERM, back to LLOGO
REPEAT <programl> <program?> ..

Each program defines one creature. A round consists of executing each program in turn,
After each round, the program wails for imput. If the user types a space, one round is performed; if
the user lypes a number, thal many rounds are done. This is repeated indefinitely until an error
occurs. REPEAT is not sublle with respect to parallel processing. Mo effort is made to try each
program and see whether amy conflicts ocour, However, evenlually 8 more elaborale version could
be designed that was sensidive to synchronizing the lives of the germs. [f no programs are passed
to REPEAT, it attempts to use the programs associated with each germ by RUNGERM.,

GERMLAND Section 14.2

LISP LOGD MEMD Page 42 March 4, 1975

14.5 Grid Primitives

GRID <pumbior>

[matializes GERMLAND. A square grid is created with <aumber> squares in 8 side.

PRINTGRID

Clear screen and redisplay GERMLAND grid. Typing A\ also causes this to happen. If there
is a germ on the square, the characler which represenis thal germ is printed in the sguare’s
position. If the square is an obstacle, an X" is printed, If there is food on the square, the number
of particles is printed. 1f the sguare is emply, 8 "." is prinled.

CRIDP <pasition>

A predicate which oulputs T iff the position s a legilimate grid square.

WFHAP

Go into “wraparound” mode, in which germs are allowed Yo go across the boundaries of the
grid.

NOWFRAP

Leave "wraparound” mode.
Mate fhat FEAFP and NOIFEAP affect the variable :WRAPARDILUND. See Page 46.
MOV E <position>

The germ is moved to the specified grid square. <position* is a sentence of the x and y
coardinates of the square. Typical use is: MOVE NORTIH. 1f the germ moves to a square which is
already inhabited, the former inhabitant is killed. MOVE prints an error message if an attempt is
made to MOVE fo a square with an obstacle on i, or a square outside the grid. The <pesition> does
nal have toe be adjacent fo the current location of the germ. Hence, MOVE allows non-local
maversen! o any grid sguare

STEP ~direction=

cdirection> is interpreted as & heading. It musl be either 0, 90, 180 or 270 (mod 360).
STEP allows more elegance in lhe descriplion of a germ program. If the same struclure is used for

all directions, then the program can call a subprocedure whose input is cycled through the four
directions.

14.4 Property Primitives

PUTEMIARE <position> <information® <properiy>

For the specified grid square, the data stored under the given property is set to
<pnformalion™.

CETSQUARE <pasition® <property®
The intormation stored under the <preperiy® s returned, Typical uses are:
(GETSQUARE <position= 'FOND) returns food at <positions,

(GETSQUARE <position> "INHARITANT) returns the sumbar af the germ currently living
there, M f unocoupied.

(GETSQUARE <position> "ORSTACLE) returns T iff the square is an obslacle.
REMSQUARE <position™ <property>

Remaoves information stored under <property=.
B HAT <position>

Outputs all of the informalion stored for the given posilion

FOnD <position>

Quiputs the number of food particles al the given position. FOOD returns 0, not NIL, when
there is mo food, .

FMIDP <positinn>

Predicate which returns number of food particles if any at the given position; NIL if none.

FILLFOOD <n>

Puts <m> morsels of food on each sguare of GERMLAND.

EAT <numbar>

Subtracts <nember> ol food parflicles from the current square. Generales am error if
<number> i5 larger than the tolal food available. There are lwo lypes of germs -—- thase thal are
hungry and thoze that are not. Each hungry germ has a food supply assecialed with it. The food
supply is inergased pvery lime ha eats by that aumber of parlicles, and decreazed by one for each
goneration. If it ever reaches zero, the germ dies. Sa, if he eats only one particle of food on a turn,
he must eat again on the next furn; if he eats 2, he can skip a turn without eating, etc.

14.5 Multiple Germ Primitives

WHERE <:gorm=
Returns the coordinates of the square that :germ is currently inhabiting,
MNORTH P <:gperm>

Returns true only if the » coordinale of germ is greater than the X coordinale of the germ
whose program is currenlly being executed by REPEAT.

GERMLAND Section 14.5

LISF LOGO MEMO Page 44 March 4, 1975

 SOUTHEP

W ESTP

EASTP
Aralogous o NOETP.
KILL <:gorm=
Azzassinates <igerm>™ and prints ewlogy.
GERM <:germ® <square>
Initializes :germ fo starl oul localed al <equare>. :perm is an inleger between 1 and 10,
FMIDSUPPLY <:germ>
Faturns the amount of food thal the germ has.
ACCESSIBLE <aquare> <:germ>

Trwe if and only if <;germ> can gel to <sguare® on his next move,

14.6 Turtle Primitives

HEADING <:grrm=
Returns the current heading of the germ.
FORW ARD <pumbers

bMove <number> spaces in the direction of the current heading. Abbreviales to FD
<number®. <number> may be negaiive,

BACK <nunber>

Move <mumber> spaces opposile to the current heading, Abbreviates to BK <number>.
NEXT <dirpretion>

Refurns the coordinates of the nexi square in the current direclion
RIGHT <nowmbers>

Turn FIEhI o mis b= :hgrms——ﬁmmﬁm should be a mﬂliplﬂ af 90. This Fay ba
abbreviated azs BT <number> .

LEFT <mumbsr=

Equivalent o RIGHT ~<number>, Abbreviales as LT <number>,
FRONT [FSIDE)

Returns coordinales of the square in front of the furlle,

RIGHTSIDE {RSIDE}

REAR {[BSIDE)

LEFTSIDE {LSIDE)

Analogous to FRONT,

14.7 Touwch Primitives

TOUCH <posiiian:

Outputs NI if <position> does nob conlain something that can be louched. Otherwise if
oufpuls an alom describing the touchable object, eg. BORDER or OBSTACLE. Typical use is:
TOUCH FRONT.

ORSTRUCT <agquare=
Puts an obstacle at <equare> Germs cannot move onto squares with obslacles.

DESTRUCT <squara®

Removes cbstacle al <square>

14.8 Global Variables

GERM

The number ol the germ whose program is being executed by REPEAT.
HGRIDSIZE

Size of the GERMLAND grid set by the GRID tunclion,
HUNGRY

T == Germs are killed if lhair foodsupply goes to O,

NIL => A& germ’s {oodsupply is ignored by REPEAT.

GERMLAND Seclion 14.8

LISP LOGD MEMD Page 46 March 4, 1975

WRAPAROUND
T => Mohon across borders 15 permithed,
NIL =» Mohon across borders it an arror,
The wser should mever change [@FRAPAROUND directly, Use WRAP and NOWFRAP to

change modes.

14.9 Implementation

GERWILAMND uses an array [o represent the grid, and additional arrays for easy access fo
informaltion abouwt & particular germ. The individual primitives are, for the most part,
straightforwardly implementable, given this dala represeniation. Some care is taken in interfacing
with the standard LLOGO environment, so that all the usual debugging features of LLOGD may be
used in the development of germ programs, without interference with the display of the grid.

Section 15. Display Turtle for the 340 and GT40

The display lurtle package for the 340 and GT&D displays is also usable from an ordinary
LISF as well as from LLOGD. Do (FASLOAD TURTLE FASL DSK LLOGO).

15.1 Starting The Display

STARTIMEPLAY {8}

Initializes fhe screen. The turtle s displayved at its home, the center of the seresn. This
command is also wseful for restarting everylhing whan lhings gel fouled up, the POPE loses, elc.
STARTIMSPLAY "GTH# uses the GTAD display rather than the 390 display. IT you are wsing the
GTA0 as a display for the LOGD turlle, it must nol be logged in te ITS as a consale.

NODISPLAY [ND)
Says you want 1o stop using the display, Flushes the display slave,

If the display slave tar the PDP-§ dies, check that the run light is an. [f nol, stop, i resel, deposit O
im 40 and 41 and then start,

LISP has three coniral characters tor the display:

Al

Turns off display.
nY

Dizplay prints like thy.
AF

Turrs on display for furlle, sssuming a prior call to STARTDISPLAY.

152 The Turtle

HIDETURTLE (HT)

kakes the lurlle disappear.
SHOWTURTLE (5T}

Brings the turtle back to life.

Display Turtle for the 398 and GT48 Section 15.2

LISF LOGO MEMOD Page 448 March 4, 1375

TURTLESTATE

Returns O if the turlle is not displayed, else returns the value of :TURTLE. :TURTLE is the
number of The display item which is the current furlle.

MAKTURTLE <eode>

The current turlle is replaced by the piclure drawn by <eode>. Provides capability to
rotate piclures. Subsequent turtle commands, like FORWARD, RIGHT, etc. will make the picture
drawn by <code> move as it it were the original turtle [friangle]

OLDTURTLE

Restores tha origimal LLOGO furile.

15.3 Moving the Turtle

FORW ARD <steps> [FD)
baoves the furtle <stepa> in the direction if is currently pointed,
BACK <steps> [BK)
Maoves the lurlle <steps> opposite to the direction in which if is pointed.
SETX <x>
Mowves the turlle to (<x>, ¥COR).
SETY <y>
Moves the turlle lo (XCOR, <y=),
SETXY =x& <45
Moves the turfle to {<x>, <y,
DELX <dx>
Moves lurtle lo (XCOR«<dx= YCOR),
DELY =dy>
Moves turtle to (XCOR, YOOR«<dy=),
DELXY <dx> <dy>

Moves Burtle to (XCORv<ds>, VOOR+<dy=)

HOME [If)

boves turtle home o its starting slale.

15.4 Erasing the Screen

WiPE

Erases the picture on the sereen. Does not attect the turtle, or any snaps.
WIPECLEAN [WC]

Like B JPE, except hides snaps also,
CLEARSCREEN (L5}

Equivalent to WIPE HOME,

15.5 Turning the Turtle

RIGHT <angle> [RT}

Turns the turlle clockwise fnrl.:.rinf* degreas,
LEFT <angle> {LT}

Turns the turlle counler -clockwise <angle> degrees.
SETHEAD <angle>

The turtle is turned to a heading of <angle>.

15,6 Examining the Turtle's State

Mote: The turlle’s heme is (0, 0) and a heading of O corresponds 1o poinling straight up. The
variables :XCOR, :¥COR and :NEADING describe the slate of the turtle in floaling point. These
variables should rot be changed explicitly by the user. The following funcltions return components
af the turtle’s stale rounded to the rearest inleger.
XCOR

Dutputs the X coordinate of the turtle.
YCOR

Outpuls the ¥ coordinate of the Turlle,

Display Turtle for the 348 and GTI8 Section 156

LISP LOGO MEMD Page March 4, 1975

HEADING
Outputs the heading of the turtle.
XHOME

Outpuls the X coordinate of the turtle’s homs in abzolute scope coordinates (ie. relative to
lower lefl-hand corner of the screen)

YIOME

Outpults the ¥ coordinate of the turtle’s home in absolule ccope coordinates,

15.7 The Pen
PENIMNFN {PD}

Pen lowered to paper, Turlle leaves a lrack when moved.
FENUEP (PL}

Pen raised from paper. Turtle does not beave a track when moved.
PENSTATE

Returns +1 = panup or -1 = pendown
PENSTATE <1 ar -1>

Sets the penstate. A common use for this primitive is to make a sub-procedure transparent
ta pen state.

PENP
T if pen is down, else WL
HERE

Outpuls (SENTENCE XCOR YCOR NEADING). Useful for remembering location via MAKE
“P" HERE.

SETTURTLE <state> {SETT]

Sets the stale of the furlle 1o <state>. <state* is a sentence of X coordinate, ¥ coordinale,
and heading. The heading may be omitled, in which case it Is not affecied,

RANGE <p>

Distance from the turtle’s current localion to <p>. <p* is a point specified by a zenfence of
X and ¥ Eﬂnrdlnites. .

BEARING =p>
Oulputs absalule direction af <p> drom turfle,
TINF /IRDS <p>

Qutpuls relative direction af <p> from turile.

15.8 Global Navigation

Mate: These primitives return floating point it either of their inpuls are floating point.
BANGE =x> <y>

Qutputs distamce of turtle from the poinl (=x>, <>,
BEARING <x> <y>

Outputs absclute direction of (<x> <y*) from tertle. (SETHEAD (BEARING <x> <y>))
points the turtle in the direction of (<x> =),

TOW ARDS <x= <y=
Dutputs relative direction of {<x=, <y} from turlle, (RIGHT (TOWARDS <x> <y=}) points

fhe turtle in the direction of (x>, <)

15.9 Trigonometry
COSINE <angle=

Cosime of <angle> degrees.
SINE <angle=

Sine of <angle= degrees
ATANGENT <x> <y>

Angle whose tangent is <x>f<y>

[SIN, COS, and ATAN are the corresponding funclions which inpul or outpul in radians)

15.10 Text
SHOWTEXT

Subsequent prinling is moved on the screen Initially, printing begins in the upper lefl
COFMEr.

Display Turtle lor the 348 and GT8 Section 15.18

LISP LOGD MEMD Page 52 March 4, 1375

HIDETEXT

Subsequent printing is no longer displayed. Tex! currently on the screen remains.
REMTEXT

Ary text on the screen is erased and subsaquent printing is not displayed.
SHOWw

A wariable which is T il printing is being displayed, NIL if not. Sel by SHOWTEXT,
HIDETEXT, and REMTEXT. Don't set it yoursalf.

TEXT

Variable conlaiming 1he number of the display ilem which is the fext displayed by
SHOWTEXT, etc.

MARK <x=

(TY PE =x=) is placed at the turtle’s current location, SNAP “ritle”™ MARK Trexi™ creates a
srap of the word "lext”. This allows the word 1o be manipulaled, ie. Moved to any part of the
screen, alc,

STEXTXIIOME
TTEXTYHOME
Variables conlaining coordinates of texf to be displayed on the sereen. Changeable by user.

Imitially ;TEXTXNOME=Q,, ;TEXTYIIOME= 1000, These are in absolule scope coordinates.

15.11 Manipulating Scenes

Flote: :PICTURE is the name of the furlle’s track. Does ol include any snaps displayed via SHOW,
SHWSNAP, etc. :TURTLE is the name of the tirtle, ;TEXT s the name of any text displayed via
SHOWTEXT,
SHOW <gcone>

<geene® is moved o the current position of the turtle and displayved. [t is not copied.
HIDE <scome>

<geene> s hidden bul not destroyed,
PHOTO <scene> [SNAP}

The current picture is copied and named <scene> Any old snap of this name is destroyed.

PHOTO <scone= <line> [SNAPY
The picture drawn by <line® is named <seones.
ENTERSNAP <scene>

:PICTURE is rebound to a fresh display item. The initial state of this item hides the furtle,
Subsequent commands refer to this new ilem.
ENDSENAP

The original :PICTURE is restored.
RESNAFP <peene>

“serne> is made the currenl picture. The only difference belween this and ENTERSNAP
“scepe> is that a mew display item is nol crealed, and the turlle is not hidden. ENDSNAP also
restores the original :PICTHRE.
RESNAP <seena> <lines

The picture drawn by <line> is added lo <acene>. The <line> is executed, referring to the
turlle residing in <seene>. Subsequent commands will refer to the old turtle.,

PICTURE =display commands>

(PICTURE is bound lo a new display item while the commands are executed. The original
:PICTURE is restered following execulion of the commands. Similar fo SNAP <sesne> <pammand s>
except thal no name is given 1o the new ifem Instead, the number af the item is returned. Thus,
the same effect is achieved by;

ENAP <scene™ ccammands> or
MAKE <seene> PICTURE <eommand s>

Except thal <aceme> iz not added to the list of snaps.
SHOWSNAP <seane>
A copy of <sceme> is displayed at the turlle’s current position,
HINDESNAP <scene>
All copies of <seone> are hidden.
ERASE <iconn>
All copies of <sceme> are destroyed,
BNAPS

A list containing all current snaps,

Display Turtle for the 348 and GT48 Section 15.11

LISF LOGO MEMO Page 54 March 4, 1975

1517 Plotter
PIOTTER
The picture currently on the display screen is plolied on a new plotter page. PLOTTER

will ask of arrays from previous plot should be erased The user should bype YVES if his preceding
plal is complele.

PLOTTER 1

Display plotted on cwrrent plotter pags.
MNOPLOT

The plotter is released.
DISPACGE

Dulline of 7x11 page displayed as :PAGE.

15.17 Pots
DIALS <dial-mumber>
Dutputs the value of pol <dial-number> as a decimal fraction between 0 and 1. Careful: the
numbers on the pols are marked in oclal, but LLOGD normally expects decimal numbers as input.
15.14 Points
[Poinis are displayed whether or nob the pan is down]
FOINT
Displays a point al (he turfle’s current location,
POUNT «<p>
Dizplays a point at <p=
POUINT <anap> <p>
Dizsplays a point in <emap> al <p>.
POINT <anap> <x> <y>

Displayz a point in <anap> at {<x>, <y>)

15.15 Global State of the Turtle’s World

For all of these funclions, the first input “<scene=" s oplional. 17 left out, the command refers fo
‘PICTURE by default.

SETHOME <acena>
Resets furtle’s home (o current posilion.

SETHOME <scone> <x= <y>

Resets the turfle’s home to the absolule scope coordinales of (cx>, <y>) Takes effect
immediately by moving the current :PICTUKE %o the new home. (SETHOME <seene> 512 512.)
restores The home to the center of the screen.

MOTION <acena>

Moves <seene> under the control of space war console 1. Button lerminates movement.
The new home is relurned, expressed in absolule scope coordinates, 1f the current home is returped
immediafely ard the space war console is ignored, check that all swilches on the color scope dafa
swilch exlension are in the middke position,

BIINK <spenn>

Blinks <scomnes.
UNBIINK <zoone>

Terminates blhinking,

BRIGHT <geene>

Returms current brighiness of <aceme® as a number from [(dimmest) to B (brighlest)
Ordinarily, :TURTLE and :PICTURE are al maximum brightness,

BRIGHT <acenn> <lpnel>

Sels brightness of <scene® o <lovel>, where <lepel> is an inleger from 1 1o B

SCALE <seomer

Returns current scale of <acene>, Scale is an integer from | {standard scale} to 4 {16 times
slandard scale).

SCALE =seens> <pize>
Sels scale of <aceme> 1o <aize>, where <size* is an infleger from 1 lo &, <size> is a
multiplicative scale factor. Hence, SCALE 2 doubles the size of an ordinary picture, SCALE 3

quadruples it and SCALE 4 mulliphes the size by & SCALE | resteres piclure lo slandard size.
This iz a hardware scaling and affects the current display as well as fulure displayage.

Display Turtle lor the 398 amd GT 38 Seclion 15,15

LISP LOGO MEMO Page 55 March 4, 1975

DECALE <acale>

The length af a turtle step is resel 1o <ecale®. <scale> may be any real number, Resetling
the scale with DSCALE rather than SCALE has the advaniage thal the scale faclor may be any real
number. However, DSCALE applies only fo future display and not the current picture.

Section 16, The Music Box

The music box is a fone generater for from one to four simulfaneous voices, having a range
of five octaves. Because of the limesharing environmenl, music is compiled inte a bulfer, and then
shipped to the music box all al once, tor smoath timing, Wherever possible, these primitives have
been made compalible with both those of | 1LOGO and CLOGD. They made be used with the “old®
{Minsky} music box, or the “new” {(Tharnton box compatible) music box,

I6.1 Plugging In

Te plug in the old music box, find an EXECUPORT ferminal. Plug it into a 300 baud IT5 line,
using the phono type plug on the top right of the EXECUPORT back, or the acoustic coupler, Make
sure the terminal is turned off, and plug the music box into the leff back of the EXECUPORT. (Or find
this all set up in the music roem on the third fleor,) Turn off the music box and attached percussion
box, and put the EXECUPOAT cwilches into the “Tine™ and “uppercase® positions. Turn on the
terminal, type AX and log into ITS. The panic procedure for lhe old music box (symplom: keyboard
dead but [TS nol down) is te swilch o local lowercese mode, turn off the music box, and type b.
Then type 5P,

When using the music box from MULTICS, remember that both carriage refurn and line feed
must be lyped to end a line, when using an EXECUPORT. The lerminal should be in "halt duplex® and
“lewer case” modes. The panic procedure described above is nol recommended, since pulting the
terminal into local moade will have the effect of logging vou ouf of MULTICS,

Plugging in The rew music box is a bit more af a problem due o limitations of present
hardware. The critical item is a small piece of slecironics known as the "ferminal controller card®, to
be had from General Turtle in the basement of 545 Tech Square, This card is o be inserted in the
correct orienfalion in port 4 of a Tharatos box, (0f you have never dome this, ask! Putting it in
backwards will burn out the card) The music box should be plugged into porl 1, 2, or 3, depending
upon which has the music box card. (I should be labelled) Then, plug the inlerface connector of the
Thernton box inlo a 300 baud ITS line, a terminal infe porl 4, and lop into ITS, The panic procedure
for the new music box is [0 gel your lerminal 1o echoe A (control-Q spacel Since the normal
print routines will aclually send <uparrow (> for <control-0, lhis is most easily done with the
"echo” gadgel of the Thornton Box, a small connactor which makes the Therlan Box look like a full
duplex compuler line. {If you want fo make yoursell ene, see General Turtle or Mark Miller; you
probably won't need it}

16.2 Turning On

Assuming you are plugged in and logged into ITS, you may now ren eifher music box in LISP
or LLOGO. LLOGOD will ask you il you want the music box; if so, it will ask vou which one; if the new
one, it will ask you which port it iz plugged into. Alter answering all guestions, type STARTMUSIC.
It will fell you to turn on the music box (the old one will make a lob of noise), and then type OK.
Then, the noise (if any) will stop, and you are ready 1o go.

The music box can alzo be run from a pure LISP. Type (FASLOAD MUSIC FASL DSK

LLOGO), and answer the questions. Type (STARTMUSIC) and the following primitives will behave
like LISP SUBRS or FSUBRS, (If you do ERKLIST hacking, see kark killar.)

The Music Box Section 16.2

LISP LDGO MEMD Page 5 March 4, 1975

16.3 Music Fril_nllivp.i

A great deal of offor! has gone into insuring upward compatibility wilh CLOGO and 1 1LOGO.
It you have programs for either ol these which no longer work on LLOGO, please lat ws know,
Matice that many "intermediate™ level funclions such as CHORLS, which had been writlen in LOGD
code, are supplied as LISP primitives for efficiency. In addition, mew facililies have been added
which should be helpful. [n the following, all such situalions have been indicated. Occasionally, a
single funchion replaces several LOGD funclions; the others are still available, bul may print a
message recommending the newer function for fulure code, Since most music functions are executed
far effect, unless olherwise indicated, the value of a funclion is The stom (word) 7.

BOOM

Relurrs the number which corresponds to a drum beal, Using DEUM is more efficient. No
inputs,

RRUSH <duration N

Takes | input, a izt of derations. Plays (ie. slores in the muosic buffer for the currest
voice) a sequence of brish noles (see GRITCIH) end restc. A duration of / means 1 brush tallowed
by n-1 rests,

CHORUS <form 1>, ... <form 4>

Takes from ane to four inputs, which should be forms [procedures with arguments, or
constants]. CHORLS evaluates each argument in furn, and then goes on to the next voice, in cyclic
order, and evaluates the next argumeni. Exampla:

CHORUS SING 1 10 SING 5 0 SING & 10
M

If the number of inpuls is the same as :NVOICES, sequential calls toe CHORLUS or SING will
da the ewpecled Bhing: if the number of voices used by the argumenis is equal lo :NFOJCES,
recursive calls will also work, For other situalions, just remember that FOICE s updaled alter
evaluating each argument. For example, if :NMVOICES = 3 and you CHORL'S two calls to SING, the
next call to CHORLUS will affect voice 3,

CHORUSE <form 1* <form I*

Version of CHORUS which takes exactly two arguments. For upward compatibilily only.
CHORUSY <form 1> <form 2* <form 3=

Anmalogous ta CHORLSZ,

CHORLUEY <farm [* <form 2* <form 3= <form 4=

Analogous to CHORLTSA.

DRUM <list of dwraiions>
Analogous fo BRUSH for drum nofes (see ROOM).

CRITCH

Feturns the number corresponding to the brush sound of the percussion speaker. More
efficient to use BRUSH.

MAKETLUNE <iune nama>

Takes as input a name, like LOGD MAKE or LISP SET. [t multipleses the bulfer and saves
it as the "thing” of the name. That iz, it slores The tune as data, az epposed 1o procedures. This
allows faster playing (see PLAYTUNE] and easy storage (SAVED with other LOGD variables,) Since
MAKETUNE does nol clear the buffer, allows saving and playing incrementally larger porlions of a
long piece. Tunes made on one music box can be played on the other, with the exception that tumes
wilh exactly three voices can never be played on the new miusie box (see NVINCESL MAKETUNE
did nol exisl in CLOGO or 11LOGO.

MBUFCLEAR

Mo inputs, Clears the music buffer, and staris at voice |. This should be done for example,

after typing AG lo kill an unpleasant song, or alter MAKETUNEing the final version of a song,
before starting a new one.

MIUFCOUNT

Same as FLEN,
MRUFINIT

Mo-op. Prinls message 1o let you know you fried to use this relic of The past.
MBUENEXT

Mo-op. (Soe MEBUFINIT)
MRUFPUT

MNo-op. (See MBUFINIT)
MRUFOUT

Mo inputs, Plays the music buffer. Does nal clear it
MCLEAR

Same as MAUFCLEAR.

The Music Hox Section 16,3

LISP LOGO MEMD Page GA Mareh 4, 1975

MLEN

Returns the durabion of the longest :MINCE created so far (since the last MBLUFCEAR).
Lseful for building procedures such as percussion accompaniments for arbitrary length tunes. (see

VLEN, :MAX)
MODMUSIC <T ar NIL>

Takes one inpul, NIT. or otherwise, If non-NIL, puls music in 8 mode where numbering s
from O fo 59, and note 60. is the same as note 0. (ie, (note mod 60)), so thal one need nat worry
aboutl exceeding the range of the music bos,

NEWWFMUSIC

Mo inputs. Informs system thal you wish to use the new music bow. Asks which port music
bow is plugged info, Normally user will not need to call NEIFMUSIC, a= the questionnaire at load
time sutfices. See: DLDMUSIC,

NOML/STC

Mo-op. See MRELUFPUT. This function may be reinsltaled as a way lo excise lhe music
package, for exvample, when one wanls to load the furtle package instead.

NOTE <pitch* <duration>®

Unfortunately, (through mo faull of LLOGOY, there are minar variations between 1ILOGD and
CLOGEO. The difference befween MITE and SING s one such problem. According fo fhe | ILOGD
User's Manual VMOTE is the basic [LILOGD music command. It takes two inpuls, a pilch and a
duration. It numbers pitches chromatically from -24. to 36, with 0 being middie C. There are also
three special pitches, as follows:

-28. i5 a res
-27. 1% a boom
=26, is a gritch
-25. 15 illegal,

TILOGO NOTE can also take multiple mputs, LLOGD music has implemented all of this for MOTE,
excepl the mulliple inpuls. The numbering is slightly differest from CLOGO SING, which is also
implemented in LLOGD, (see; SING)

NVETCES <pumber-ol-poaires:

Takes one inpul;, hopefully a nember befween | and 4, Sets :NFOFCES to thal number,
clears the buffer, and sets JFONCE to 1. Bemember thal 3 woices is illegal on the new music system,
and will generale an error. [is generally batfer to use four wolces, one Blank, so that tunes will
play on either music box. In MODMUSIC T mode, (ncrmally nal the casel, calling MFONCES with a
number ouiside of [1,4.] will nol cause an error, but seems crazy, The 1+ input mod 4 will be used
instead. SETing NUTHCES or MAKEing "NYOICES" cannal be prevenled, but iz considered a faux
pas. Accessing NUHCES is welcomed, Calls MBUFCLEAR and resets (VOICE to 1. See:
(NVOICES, (VOHNCE, ViICES, MODMIJSIC,

OLDMUSIC

Mo inpuls. Puls syslem in mode for old music box, MNormally nol needed by user, as
questionnaire at load time suflices. Might be used, for example, if you made a mistake answering the
gueshwens. See: NEWFMLSIC

PERFORM {PM}

Mo inputs, Culpuls the music bufier, and then does an MBUFCLEAR, See: MBLUFOUT,
MRUFCLEAR, PLAYTUNE.

PLAYTUNE <tune>

Takes one inpul, which must evaluate to a ture ereated by MAKETUNE. 1t plays the tune,
Doez not clear or otherwise alter the current music buffer. PLAYTUNE iz tranzparent to fhe
current number of vaices, even if the tune uzes a different number, Ses: MAKETUNE, PM.

REST

Mo inpults. Returns the numbers of the nole which generales silence on the music box, (Like
BN and GRITCH, this will win independently of whether LILDGED or CLOGD primitives are being
used; likewise, it will be the correct number for MODMUSIC T or normal stale, even for different
scalebases) Maturally thes ¢bee king 15 less elffecient than just calling SING -25. or NOTE -28. lor the
apprapriale duration. See: SING, NOTE, MODMUSIC, :5CALERASE

RESTARTMISIC

Mo inputs. Like STARTMUSIC, escept re-mniliabzes all syslem wvariables, and runs
guestionnaire as Tar back as asking whach music box, Useful in situations of total loss after panic
procedure. Usually tunes created by MAKETUNE, and user procedures will be intactl, Buftfer will
be wiped cut, In cases of peculiar behavior al login or load time, guaraniees that evervbody thinks
they have the device you think they do. If this does not work, go to "PLUGGING IN,

SING <piteh> <duration>

Bazie CLOGD and LLOGO music command. Takes lwa inpuls, a pilch number, and 2 duration.
It is highly recommended thal durations be integers greater than 0! Very large duralions (each unit
corresponds to a character alom in LISP) are apl to slow down the system a lot, so small integers
are highly advised. Filches are from =25, to 39, with O being middle C, (But ses the remarks aboul
LILOGD's wariant, NOTE, and also SCALERASE and MODMUSIC) Pitch =25, is a rest, -24. a boom,
=23, a griteh, 22, wgrored. {Bul see BEST, BOOM, GRITCH) Duralions are normally broken down
infla M-1 beals of pich and | beal of rest, to avoid slurring the music, However, i the SPECIAL
wariable :INSTRUMENT s "STACCATOY | beal of nole followed by MN-1 beats of rest will be sung.
(e, slored in the music buffer under the current woice), If other phrasing s desired, it may be
added later,

SHNG ﬂpitrﬁn.ﬂ' “duraitona>
Takes two inpuls, a list of pitches and a list of durabions, Calls SING, pairing pilches with

durations until the shorter hst s exhausted. in other LOGDs, this was not a primitive, but was
wrillen a5 a recursive LOGD procedure,

The Mu=zic Hox Sectlion 16.3

LISP LOGO MEMO Page B2 March 4, 1975

ETARTMUSIC

Mo inputs. Should be called to lurn on the music box. Unlike CLOGO, it pauzes {o lel youw
furn &n the box, te minimize the unpleasan! naise genarabion on lhe old music box. (PERFORM alene
will suffice), Clears the music buffer and sets (WOICE to 1, Probably unnecessary with new music
box.

VLEN

Mo inputs, Retorns duration of current bullfer, Ses: MBUFCOUNT, -MAX, MLEN. Usaful
when chorusing a tune with an accompamimenl. 1f the accompamimen! iz the lasl argument lo
CHORLS ard contains a nfﬂp Ll IihE,

IF VLEN = MLEN TIIEN STOP

the accompaniment can be vsed with arbitrarily lomg funes
VIHCE <oaica>

Sets FIHCE ta its one wmput, provided that ipput 15 a posifive integer less than 5 T
greater than the current number of woices, NVOTCES 5 called to increase the nember. Al music
from mow until the nest call fo VOFCE (or a primilive like CHORLS which calls FOICE) will go into
this woice. Al the woices in wse will be moitiplesed pror fo PERFORMing the buffer, In
MODMUSIC T mode inpuls greater than 4, do nol cause errors, but are simply cycled through the
allowed voices. MK Eing (LLOGO) or SETing (LISP} :FOICE is nol nice.

VIICES

Mo-op. See NTMMUEIC. If anyone has a use for Lhis which is reasonable, e.g., symonym for
NEONCES, we will be glad fo implement it

dNSTRUMENT

Cpecial sysiem variable which is user seltable. [ts value delermines the behavior of NOTE
and SING as above. Current meaningful modes are LEGATO and STACCATO. Anvihing else is
considered STACCATO Tor now
MAX

This pseudo variable s actually a call to WLEN, above, It exists for compatibility with
CLOGO.

iNVOICES

Special syslem varigble, mol 1o be changed excepl by calling AWIHCES. It tells you the
number of volces beirg lilled or played at present. Delault is 2,

VOICE
Special system variable, o be charged only by calling FOJCE, Tells you the current voice

that iz being filled. MRUFCLEAR resets to 1. Always initiglized to 1. Can be changed by call fa
CHORLS.

SCALERASE

Special system variable which may be changed by user. It tells the offset from middle C lo
be used in renumbering noles o ones taste, Defaul! is zero.

The 1ILOGD music functions MUCKTL, MUTY(D, and MUWAIT are not implemented in
LG,

The Music Box Section 16.3

LISP LDGD MEMD Pap= B March 4, 1575

Section 17. Display Turtle for the Knight TV Terminals

In addition te the display lurfle package for the 240 and GTA0 displays, LLOGD also
provides facilities for graphics on the Knight terminals, raster sean televisions cenirolled by a PDPLL.
These terminals provide a number of advantages for LOGD graphics over vector-mode refreshed
CRT's like the 330, Since the picture which appears on a user's screen is slored in the 11 memory,
one bit per point, the user can pul up arbitrarily complicated piclures conlzining any number of
vectors, without causing flicker, [t is possible to use patterns of points 1o create “shading” effects.
Commands which deal more direclly with displayed images, rather than through display lists can be
implemented, Programs may tes! individual poinls being displayed, withoul necessitating compulalion
of interseclion af vectors. The lurlle is supplied with an “eraser” in addilion to a “pen”, a capability
which would prove difficult to implement in a vecler display. A splil screen mode is provided to
facilitate interaction hefwesn graphic output and character output from pregram typecut and error
MEessagns,

As is the case with the other LLOGD special packages, the TV lurlle is available as a sal of
LISP functions which can be used in an ordinary LISP, wilhoul the remainder of the LOGO
anvironment, The TV turtle can be obtained in a slandard LISP by doing (FASLOAD TVRTLE FASL
DSK LIAGOL

The primitives available are designed fo be as compalible as possible with LLOGO turtle
commands for the 340, and 1 1LOGO%. Some deviance from prior implementations of the LOGD turtle
was necessary, however, to lake advantage of the unigue fealures and respect the limitations of the
device. Most of the incompalibilities are noted in the descriptions of the primilives below.

STARTDISPLAY 15D)

Initializes the sereen. The user is supplied with a single turtle, located at the center of the
sereen, with its pen down and an initial heading of zero. STARTDISPLAY puts the user in split
screen made. Program outpul appears at the boltom of the screen, and pictures drawn by the lurlle
commands appear within a displayed box in the upper portion of the screen. The sizes of beth the
program and display area are changeable by the user. This command is also uselul az a means of
reinitializing and restarting everything when things get hopelessly fouled wp. STARTDISPLAY
should restore the entire state of the turtle’s world to what it was inilially,

NODISPLAY {ND}

Announces the uses's intention to stop using turtle primitives. NOIMSPLAY terminales split
screen mode, so that printed culpul may occur in any parl of the screen. Turtle commands executed
after a NODISPLAY will cause graphic oulpul fo appear, bul no assurance is given thal graphic
output and printed oulpul will not interfere wilh each ofher. NODMSPLAY alsa clears the screen,
Use CLEARSCREEN if you want to relurn to split screen mode alter executing 2 NODISPLAY.

SAVEDISPLAY {5V}

1f you exit from your LLOGO or LISP by ~Z while drawing pictures with the TV turlle, you
will lose the picture drawn on the screen, as well as possibly leave the program in an inconsistent
state. To prevent lossages of this type, the primitive SAVEDISPLAY can be used to exit gracefully
from the program without losing a picture drawn, SAVEDISPLAY will leave you in DoT, and when
the LLOGO or LISF is continued, the display area will be redrawn and execulien continued from the
paint at which it was inferrupted.

17.1 The Turtle

The turlle marker is displayed as an isoceles Iriangle, with a line from the center to the
verlex beltween the equal sides; this line points in fhe direchion of the heading, The triangle turlle is
XOR'ed in with the displayed piclure to show or hide the furlle: points which are displayed when the
turtle is not over them are turned off, and pointz where nothing is displayed are furned on when the
turtle is over them. This allows the turtle o be more wisible agains! a background consisting of a
complex piclure, or shaded area. LLOGOs TV furfle provides an extra bil of information to the user
aboul the turtle’s state: The cenfer of The triangle indicales whal will happen if The turlle is moved.
If the pen is down, a filled=in boy is displayed at the center of the triangle, If the eraser 5 down, an
outlired bow appears, It XOR mode 15 in effect, an "X" is dizplayed at the cenler of the turtle. [f XOR
mode is nob i elfect and bolh the pen and the eraser are up, only the friangle will be displayed.
This state indicales Thal the turlle will not draw or erase lines whan moved.

HIDETURTLE {NT]

MBakes the turtle disappear. Only lines drawn by the tertle will be seen, and no marker will
be drawn to imdicate the turlle's position and heading.

SHOWTURTLE [ST)

Brings the furlle back to life. A turlle marker will be drawn to indicate the stale of the
turtie.

SEETURTLE .

A global variable which is T if the furtle is being displayed, else NIL. Dont modily this
variable woursell wsing MAKE or SETQ. The wvalue should only be changed by calls to
HIDETURTLE and SHOWTURTLE. Unless ewplicitly stated otherwise, the global wvariables
mentioned in this sechion, such as XCOK, :NEADING, and :PENSTATE, should not be directly
madified by assignment, Use instead the funchions which are provided for thal purpose. Mote that
MAKE will not let you modily a variable that is used by the LLOGD system.,

MAKETURTILE <dra m-tur!!r-pﬂu’.rdurﬂ" {nrnjr-lu.rt!n-;rpmd'urel

This allows the user 1o subslilule procedures for drawing the fturlle marker, fo be used
instead of the cystem’s defaull triangle turtle, This fealure could be used to substitute a more lifelike
piclure 1o represenl The lurtle, 1o prinl stale intormation on the screen instead of drawing a picture,
or to recard the turfle’s wanderings. MAKETURTLE 1akes as input the names of lwo procedures,
the first to be called whenever the system wants the turlle fo appear, the second to be called when
the system wants the turfle marker to vanish, These procedures will be called in SEETURTELE mode
when the turtie’s stale changes, Le, by FORWWARD, RIGHT, PENDOFEN, elc, The procedures shauld
exarminge the turtle siate variables, such as :XOOR, :YOOR, :NEADING, :PENSTATE, elc. lo decide
how ard where the furtle marker s 10 be displayed The procedures will be executed with
SEETURTELE bound to NIL, o prevent infinite recursione Al turfle slale variables are rebound
during the execution of user suppled furfle marker procedures, so thal you can change them in the
course of drawing a furlle.

If there is more than one turtle, each furtle can be given a separate set of procedures for
drawing and erasing ifself,

Display Turtle for the Knight TV Terminals Section 17.1

LISF LOGO MEMO Page BB Mareh 4, 1975

DRAWTURTLE

Global variable confaining the name of the procedure being used lo draw the current turtle.
NII. means the standard system triangle turtle is in use. Set by MAKETURTLE,

ERASETURTLE
Like :DEMETURTLE, but contains procedure used 1o erase the turtle,

TRIANGLETURTLE

The procedure used to draw the standard system friangle turtle. If you wanl to do
something just slightly differen! than the standard turtle, you mighl have & procedure which calls
TRIANGLETURTLE., Since TRIANGLETURTLE draws the lurtle in XOR mode, the same procedure
is wsed both lo draw and to erase the turlle.

17.2 Moving the Turtle

FORWARD <stepa> {FD]
Moves the turlle <steps> in the direction it is currently pointed.
BACK <steps> {BK}
Moves the turfle <steps> opposile 1o the direction in which it is pointed.
SETX <x>
koves the turtle fo {<x>, YCOR)
SETY <y>
Moves the turtle fo (XCOKR, <y
BETXY =x» «y>
Moves the turtle be (<xx <),
DELX <dy>
Mowves turtle to (XCOR+<dz>, FOOR)
DELY =dy>
hoves turtle te (XCOR, Y CORs<dy>).
DELXY <dg> <dy>

Moves turtle to (XCOR+<dx>, YOOR+<dy>).

HOME {H)

Moves lurtle home to ifs starling state, at (0, 0) with a he ading of 0,

HFRAP

Movement of the turtle past the boundaries of the screen by FORIFARD, SETXY, elc. is an
error, unless WRAP is done. This causes movement ofl one edge to result in the turtle's
reappearance al the opposite edge, az if the screen was a tarus,

MNOIF R AP

Turns off wraparound mede. NOWR/AP makes sure that the turlle’s coordinates are within

the boundaries of the screen. Any subsequent attempt to move beyond the boundaries of the
screen will cause an error,

WRAP

A global variable contamning T iff wraparound mode is in effect, NIL atherwise.

Currently, the turtle always draws veclors in a preferred direction; it draws a line between
two endpaints the same way regardless of where the turlle is. This is just an efficiency hack; it's nof
even noficeable when drawing shorl vectors or on those rare oceasons when system load is light

and the turtle is drawing rapidly. If this peculiarity proves annoying to many people, it will be
changed 1o draw always in the direction of the turlla’s movemen.

17.3 Erasing the Screen

WIPE

Erases the piclure on the screen, excepl that it does nol affect any turtles which are being
displayed.

CLEARSCREEN [C5}

Equivalent to HOME WIPE, but faster.

17.4 Turning the Turtle
RIGHT <angle= {RT)

Turns the turtle clockwise <angle> degrees.
LEFT <angle> {LT}

Turns the turlle counter-clockwise <angle degrees.

Display Turtle for the Bnight TV Terminale Section 17.8

LISP LOGD MEMD Paye BB March 4, 1975

SETHEAD <angle>

Tha turtle is turned to a heading of <argle=.

17.5 The Pen
PENDOWN (PD)

The turtle’s pen is lowered. This means that if the turtle is moved, a line will be drawn
belween the turtle’s old and new positions. A filled in box is displayed at the center of the turtle if
in SHOWTURTLE mode, to show the vser that fhe pen is down
PENUP [PLT)

The pen is raised. The turtle will not draw a line when moved. If SIHOWTURTLE mode is
an, the filled in box displayed al the center of the turlle to indicate PENDOW N will disappear.

PENSTATE

A global variable which is T ilf the pen is down, else NIL.

17.6 The Eraser

A urigue feature of the TV turtle is thal as well as having a "pen” which can be raised or
lowered to control drawing of lines when the turtle is moved, it also has an "eraser”. When the
eraser is down, if the turtle retraces a line which has been previously drawn with the pen down, tha
line disappears. This can also be though! of as "drawing in the same color ink as the background”.
Mote that this means thal if a line is drawn with the eraser down, any point lying on that line will be
turmed off, even though anolher line might have passed through the same point.

ERASERDOWN [ERD|

The eraser is lowersd. When 1he turtle moves, lines are erased which were drawn with the
pen down, Mote that the pen and the eraser canl be down atl the same lime. ERASERDMF N
therefore will aulematically do a PENUP, and PENDOIFN will do an ERASERUP. An outlingd box ia
displayed at the center of the turtle when in SHOWTURTLE mode as long as the eraser iz down.
ERASERLUP [ERL

The eraser is rased

:ERASERSTATE

Giobal variable which is T iff the eraser is down, NI otherwise.

17.7 Drawing in XOR Maode

In addilion te drawing with the pen down, which turns an points along the line being drawn,
and drawing with the eraser down, which furns off poinls along the line being drawn, there exisis
another oplion, useful in cerfain circumslances. The turtle can be used o draw in XOR mode --

points aleng the line being drawn are furned on if they were previeusly off, and off if they were
farmerly on, Thiz mode of operation is used 1o display the triangle burlle in SHOFTURTLE mode. [f
allows the same procedure to draw a line and erase il, leaving whal was there betore it undisturbed.

XORDINWEN (XD}

XORUP (XU}

:XORSTATE

Analogous to the corresponding primitives for the pen and the eraser.

17.8 Examining and Modifying the Turtle's State

:XCOR -

A global variable containing the furlle’s current X location. X coordinates increase rightward,
and the origin is in the center of the screen [bul can be changed via SETHOME] This variable is
always a floaling point number. [! wraparound mode is in effecl, this variable indicales distance from
the origin as if on an infinte plane. If the right edge of tha screen is 500, and SETX 600 is done,
sXCOR will be 600.0, but the turlle will appear 200 units fo the left of the origin,

¥COR

Like :XCOR, but holds the value of the ¥ coordinate. ¥ coordinales increase upward,

HEADING

Halds the value of the furtle’s heading, in floaling point. A heading of zero corresponds to
pointing straight upward, and heading increases clockwise, This variable always gives the absolule
heading, nol reduced modulo 360, After SETHEAD 400, HEADING s 4000, not 40.0, although the
turtle is pointing in the same direction es SETITEAD 40.

XCOR

Dutputs the X coordinale of the furfle as an integer. If wrapaound mode is in effect, this
function will output the position of the tertle as il appears on the screen, After SETX 600, XCOR
wiould relturn -4040
YCOR

Like XCiJR, but cufputs the ¥ coordinate of the turile.

HEADING

Oufputs the headieg of the turlle as an inleger, module 360, After SETHEAD 408,
HEADING would return &0,

Display Turtle for the Knight TY Terminals Section 178

LISP LOGD MEMD Page 780 March 4, 1975

HERE

Cutputs (SENTENCE XCOR YOOR HEADING) Uselul for remembering the turlle’s state
via MAKE 'TURTLESTATE NERE. A& tertle stale saved in this manner can be restored using
SETTURTLE.
SETTURTLE =state> [SETT}

Sets the state of the turlle to <seie> <eteie® i a sentence ol X coordinate, ¥ coordinate,

and heading. The heading may be omitled, in which case it is nof affected, SETTURTLE is the
inverse of IfERE.

17.9 Multiple Turtles

Initiglly; the user is supplied by LOGO with one unique turtle, which remembers its position
and heading, and iz capable of drawing or erasing lines when moved. The ability fo create any
number ol these creatures ard lo switch the atfenton of the system between Them makes possible
such things as assigning a lurlle locally 1o each one of several programs,

HATCH <twrtle-nenme>

Creates a new turtle, christened <tarilo-name=. The turtle created by WATCH sfarts oul in
a stale identical to that of the original turtle precent after a STARTIISPLAY: It is located at its
home, at the center of the desplay area, its heading points siraight up, and its pen is down, The
newly created turtle becomes the current turlle, and will respond ta all turtle commands. The state
of any previously crealed turfle, including the one originally supplied by STARTDISFLAY, remains
unaffected by IATCH, or any turtle command referring to the new furthe,

LSETURTLE <twrtle-name> [T}

Selects the named turtle fo be the current turlle; this means that all subsequent furtle
commaends [FORWFARD, RIGHT, . ..], and turtle stale variables ZINEADING, :XCOR, :YCOR,]
now will refer 1o the selected turlle until changed again by anather call to USETURTLE or a call to
HATCH. The state of the previously selected turlle is preserved so that if it is ever selected again,
its state will be restored. The turtle which is provided initially by STARTDISPLAY is named
LOGOTURTLE,
iTURTLE

Global variable which conltains the name of the currenily selected turtle,

:TURTLES

Glabal variable which contains a list of the pames of 8l the furtles in existence,

17.10 Global Mavigation

ﬂﬂ-ﬂ"fﬁ'ﬂ, BANGE, and TOWFARNDS refurn in‘l‘:E:IrF i all inpuls are intaggrg, olherwise

they relurn floaling point Aumbers, The numbers returned are always positive, and BEARING and
TOW ARDS returs headings modulo 360,

RANGE <> <y
RANGE <senteonce-of-r-and-y>

Dutputs the distance from the turtle fo a pont specified either by two inpuls which are x
and y coordinales respectively, or by a senfence of x and v coordinates,

BEARING <x> <y>

BEARING <sestence-of-r-nnd-y=

Outputs the abselute direction from the furtle to a point specified in a formal acceplable to
RANGE., (SETHEAD i REABING <x> <y=)} poinks The turfle in the direction of (x> <y,

TOW ARDS <x> <>

TOW ARDE <sentence-of-x-and-y>

Dutputs the relative direction from the turtle fo the point specified. (RIGHT (TINFARDS
<x* =y=]] points the turtle in the direchon of (x>, <yl

17.11 Trigonometry

COSINE <angle>
Cosine of <angle> degrees.
SINE cangle>
Sine of <angle> degrees,
ARCTAN =x= -"C_-rl‘ {ATANGENT:
Angle whose fangent 15 <x>f<y>, in degrees.

[SIN, CO8, and ATAN are the corresponding funclions which input or oulput in radians]

17.12 Text
MARK <pexi>

Similar fo the LLOGD command T¥ PE, excepl thal the text is printed in the display area,
beginning at the turlle’s current location. When running the TV turtle from LISP, PRINC = used to
prinl the text instead of TY PE.

17.13 Points and Circles

[These are displayed whether or nol the pen or the eraser is down]

Display Turtle for the Knight TV Terminals Sextion 17.13

LISF LOGD MEMDO Fage 72 March 4, 1975

POINT '
Displays a point at the turfle’s current lacation,

POINT <T or NII>
Turns the point al WERE on if its input is not NIL, off if it is NIL

POINT <x> <y> <T or NIL>

Turns the point al (<x>, <y*} on or off as specified by ils input. The third input is oplional,
and defaulls ta T [eg., turn the point on] if omitled.

Mote: These conventions for POINT differ slighlly from those used in the LLOGD 340 turtle,
ta accommodate the capability of turping a point off as well as an

POINTSTATE

Returms T or NIK, depending on whether the point at the turlle’s current location is on or
off. The turtle marker is hidden temporarily during the execution of POINTSTATE, so that display of
the turtle will not interfers with the point being tested. POINTSTATE will return whether the point
being tesled is on, regardless of how it was caused 1o appear -- by a line drawn by the turile, text
|;|1'|nh_'-|:.|,_ ﬂhadm-g, el

POINTSTATE <x> <y>
Testz the point al the specified coordinales.
ARG <radius™ <degrees

Draws an arc of a circle of the given radius, and extending for the given number of degrees
around the cirele cenlered on the turtle's current location. The arc drawn begins at the point on the
gircle where lhe turlle’s heading is pointing, and is drawn in a clockwise direction [in the direction of
increasing heading],

CIRCLE <radiwa>

Equivalent to ARG <radius> 367,

17.14 Scaling

Two funclions are provided for changing the size of the graphic display area al the top of
the seresn and the area for bypein and typeout at the bottom of the screen, and the dimensions of
the display area in turtle coordinales. TVSIZE controls the actual size of lhe display area, and
operates in terms of raster display peints. TURTLESIZE is used to establish the mapping from the
specified TVSIZE into turtle coordinales - the numbers given to and returned by the turtle
primitives. It does not have any effect on the visual size of the area used for graphic display output.

TVRIZE

Feturns a list containing the horizonfal and vertical sizes of the display area in raster
points. The defaull size i 300 x 300, The dimensions of the entire TV screen sre 455 [vertical] =
576 [horizontal].

TVSISE <pewm-size>

Sels both the horizontal and verlical sizes of the display area lo <mew-size=. Modifying The
TVEIZE causes a CLEARSCREEN to be performed. The size of the area at the botlom of the screen
for typein and typeout is adjusted to fake up as much space as possible on the screen not being
used for graphic outpul. Changing the TVSIZE will nat have any effect on pictures previously saved
by MAKEWINDOW [see Sechion 17.16]

TVSIEE <powm-s-pize® <acie-y=size>

Sefs the horizontal and verlical sizes independently, |f either of the two inputs is NI, the
corresponding size remains unchanged,

TURTLESIZE

Returns a list containing the horizontal and verfical sizes of the display area in turtle
coordinates. These are in floating point. The initial defaull is 1000 » 1000, and the origin is always al
the center of the screen -- so turlle coordirales initially range from -500 to +500. If wraparound
mode is in effect, turfle coordinales are allowed above and below the range sel by TURTLESIZE,
and will be mapped to appropriate points on the screen

TURTLESIEE <pewo-niges

Sets the dimensions of the screen in turfle coordinates to <new-size> turtle steps. If the
display area is not square [that is, if the horzontal and verlical TV size parameters are not equal],
then <new-size> is faken to be the number of furtle steps for the minimum dimension of the screen,
and the other dimension s adjusted accordingly. In particular, you can't specity TURTLESIZE
independently in each direction, so that a turlle step always corresponds to the same number of TV
points. Changing TURTLESIZE has no effect on the picture currently being displayed, or on any
pictures saved by MAKEWINDOIF,

SETHOME (TURTLENOME)}
SETHOME <now-x-home> <posr-y-hame> {TH)

Changes the origin of furfle coordinates fo the specifred location, defaulting to the turtle's
present position, Thal position on the screen will then correspond to an XCOR and YOOR of zero for

all subsequent turtle commands, The home location is local to each turble, so that each of several
furtles may be assigned different homes on the screen.

17.15 Sereen Color

The Knight lerminals have a facility for easidy changing whelher bils which are on in the TV
memory will be displayed as dark or ligh! on the user’'s screen. By analogy with a photograph, in
“negalive” mode, pointe which are on [graphics and lex!] will be displayed as light on a dark
background. In “positive” made, they are displayed as dark on a light background. The current state

Display Turtle for the Kaight TY Terminals Section 17,15

LISP LOGO MEMD Page 74 March 4, 1975

of a user's terminal can be complemented by lyping <ESC> C. The following funclions allow it to be
examined and confrolled by a usar program.

COLORSTATE [CLST)
T iff the wser is in "positive” mode, NIL if in “negative”™ mode.
COLORNECATIVE |CLN|

Puts the user in negative mode, ie. light text and lines on a dark background. This is lhe
rade in effect in'rhal‘l':,r at |E:|Eil'| i,

COLORPOSITIVE [CLP)

Puts the uzer in posilive made; dark text and pictures on a light background,
COLORSWEITCH [CLAWF}

Complements the COLORSTATE; if the current made s negative, swilches to positive mode,

or vice versa. This has the same effect as typing <ESC> C on the terminal,

17.16 Saving Pictures

In creating pictures which consist of repealing palterns of smaller piclures, and creating
anmimated cartoons, it is often useful to be able lo save deplayed pictures drawn by a series of
turtle commands, and operale upon them as a unif, displaying and erasing them, moving them to
elhar parts of the screen, etc. The LLOGD TV turtle provides such a facility, allowing the user lo
save rectangular porlions of the screen as arrays of points. These arrays can be displayed and
erased at any location on the screen, although thay cannol be aulomatically rotaled.

This facilily is somewhat different from the SNAP command in the LLOGD 340 furlle and
11LOGO. The SNAP operaltion saves the plcture as display lists, essentially a vector representalion,
whila the TV turfle window saves an array ol points, For large, sparse piclures, the wvector
representation consumes less space, while the point array represenfation favors small, complex
pictures. Saving point arrays makes it possible 1o redisplay pictures much more rapidly than
redrawing them with the commands used to originally generate the piclure, since recomputation of
points lying along vectors is unneceszary. It is therefore ideal lor programs which wanl 1o make only
few, spatially localized changes o a picture, bul need the maximum possible speed for dynamic
updating of the screem. It also has lhe advantage that the amount of space and time used for
creating and redisplaying piclures is insensilive to the complexity of a piclure within an area. These
characterislics make an array representation more suitable Than a veclor representalion for, say, a
space war program, where the space ship must be redisplayed rapidly, and consists of perhaps a
large number of vectors confined o a small area of the screen. It also provides a “clipping” facility.

Saving point arrays has a property not shared by LLOGD's SNAP for the 340 -- "What you
cee is what you gel". Everything within the designaled area is included, regardless of how it was
caused to appear -- veclors, loxl, points, other WINDOWs, etc. This means that you can always tell
what will be included in a saved picture simply by looking al the screen,

HAKEW INDOW <window-rame> <size> [MIF]

Creales a "window®, e, an array of points, and names it <windoi-remes. The <mindpm-
mame> should be a word, and should be chosen so as nol to conllict with existing funcltions or
arrays. The window is centered on the furfle’s current location, and exiends for <size> turtle steps

harizontally and verlically from the cenfer, The location of the cenler of the window and ils size are
remembered,

M AK EWFINDENF <windoie-name> <harfzonal-size> <pertical-size=

_ '!_Zreahzs a window centered on the turfle’s correnl location, but sefs the horizontal and
ver_tu.al sizes of the window independenily, so the area saved can be rectangular instead of sguare,
a% ia the one inpul made.

MAKEW INDOW <window-name> <conier-x* <eenter-y* <horizental-size™ <pertical-gize>

Creates a window cenlered on the specfied localion, of the specified size. If the <vertical-
mize> s amitted it 15 assumed identical fo 1he <herizontal-size®,

ERASEW TN <windaw-name> {EIF}

Cestroys the window specified by <windew-reme>. [f the window is no longer needed, this
permils the space That il occupied to be reclaimed.

ERASEWFINDOMFS [EIF3]

Erazeq all currently delined windows,
W I NDOW S

Glabal variable which containg a list of all currently delined windows,
WININNF FRAME (IFF]

Tawes inputs bke WAKEWINDOWE, excepl for the window name. Thal is, if fakes from one
to four inpuls specifying a cize and oplionally a center location, IFTNDOIFFEAME displays a box on
the screen which indicates lhe exien! of The picfure which would be saved by a MAKEF INDOW of
the corresponding size and localion. This is uselul in deciding how large a window iz neceszary
before using MAKEWRINDOW. The box iz XORed into the screen, so thal giving the
WINIMIFFRAME command again will cause the box lo disappear. If no inpuls are given to
W ININF FRAME the size and location dafaull to The last ones specified.

SHEW I NI <windoiw-name= (ST]
Causes lhe specified window 10 be displayed at the location at which it was originally
created, Currently, wraparcund is not allowed; display of the pecture is nol allowed 1o cross the edge

af the display area. Changing TVSIZE and TURTLESIZE have no effect on the size of saved
pictures.

Display Turtle for the Knight TV Terminals Gection 17,16

LISP LOGO MEMO Fage 76 March 4, 1375

SENOWIF ITNDOW <eindsp-name™ <ppw-cenfer-x> Snew-ceptorsy>
Causes the window fo be diaplayed at the new localion specitied,

HIDEWINDOW (HWF}

Bocapls arpuments like SHONFIFITNDOW, bot displays the window terning off any poinl
which was an in lhe windsw when if wat created. The affact of thiz iz as if the piclure were
redrawn in eraser made, [0 a call to SHOWFWINDOIF displayed lhe window on a blank area, a
similar call to WIDEWINDOWE will erase il If SHOWIWF TN superimposed the window on
something already displayed, the old picture is rob guarantesd to remain intact afler the window is
hidden,

XORWININNE [XIF)

Like SHOEWINVON and I0TDEF TN DOW, but X0 the picture into the screem,

WINDOW HOME <windoi-name> {1}
W INDOW HOME <windeic-maeme> <pew-g-kome* <mow-y-home>

Charges the home localion associated with a window 1o the specilied location, defaulling to
HERE. This is the lacalion where The center of the window will be displayved if only the mame of lhe
window 15 given as input to SHOWWWFITNDOW, HIDEW INDOWF, eic,

SAVEWFINDOTS <filespee> (SH7S)

Craates a file on the disk which saves all currently defined windows in bimary. They can be
reloaded al a later time with GETWINDOWS. The file specification follows the same formal as other
LLOGO file commands such as READFILE, and LISFs UREAD. The filenames are not evaluated.
GETWINDOWS <filespee> [GIF)

Reloads windows (rom a disk file created by SV EW TN S,

1717 Printing Pictures on the XGP

Fictures drawn with the LLOGO TV tertle may be printed on the Al Lab’s Xerox Graphics
Printer ta ablain hard copy. The following primitive creates a file which can be printed by the XGP
conirol program SCRIWS,

XCP <file> area>

Creates a file saving the picture in the designated area of Ihe screen. The file can then be
prinfed on the XGP. The file specilication lollows the same formal as other LLOGO file commands —
from one Ea four words, & rectangular area limiting the piclure saved is specified in the same formal

accepled by the window commands == from one to fowr numbers, [f omitted, the area defaults to the
entire screen. Example;

X PICTURE = 200 500 oo

saves the picture extending for 100 turtle steps horizontally and vertically from the point (200, 300)

in the file PICTURE = on the current directory. Caplions can be printed on the screen using the
MARK command and will appear an fhe printed peclure, The piclures will be nppraximately lhe same
size as they appear an the TV screen, Currenily piclures saved are limited o 300 by 300 TV points.

Two warrings concermang XGP pictures: First, the XGF has a2 problem common to all Xerox
machines == an ihabiht:,-' by reproduce Iarge bBlack TEEIONS, fin aﬂ‘empt te priml a piciure wilh areas
filled in black will cause the black regions lo "white oul”. Piclures created by wsing the SHADE
cammand 1o shade repgions with denze patlerns will not be printed correcily on the XGP, Also, it s
best to fry to limit the area ol the screen saved [0 as small an area as possible. Since piclure files
musl be oulpul to lhe XGP fast enough fo insure that one line is printed belore the nect one s read,
large files may lose when the syslem is crowded. The symplom of this sort of lossage is blank
horizontal bands in the middle of the picture, More elficient XGP commands o be implemented soon
will reduce lhe likelihnood of this cort of lossage, Images on the TV sereen drawn by the TV furtle
can alsa bhe prlh‘ltd Ligirg the Tektroniv hard tdpy machine,

17.18 Shading

A unigue advantage of the TV displays over veclor oriented displays is that in addition to
the display of line drawings, they make feazible the crealion of pictures wiing shaded areas,
Patterns of poinls of varying densilies can be used to 1l regeons, crealing the effect of a “gray
scale”. The TV turlle’s shading facility s aimed boward creating a convenient and eflicient means of
specifying areas fo be shaded, and patlerns to be used in shading, The basic idea is thal regions to
be shaded are indicaled by drawing a closed curve ground them in PENDOTN mode, and placing the
furtle inside the region before ssuing the SITADE command, anth an argumgnt dgigrrnlrung thm

pattern to be used. Several simple palterns are supplied by the sycotem, bul the wser has the
opportunity of defining new ones,

SHADE <paitern name>

Shades the area enclosing the turtle’s currenl localion. The input is a pattern to be used in
shading the area, and defaulls to the SOLID patiern if omitled. Tha turtle must be sitting i an
emply area [not on a line or in a filled in region], or an error rezults. The effect of this primitive is
ta fill in the region surrounding the furtle's localion with The shading paltern given [by inclusive
ORimg it in with the existing picture]l The region to be shaded muzt be bounded by a closed curee;
SIADE works by bling in the patiern starfing from the tortle's location, and slopping when a
boundary is reached. [f the region is nol closed, the enlire screen will be shaded!

17.1% Shading Patterns

Shading patterns are represenied as fuschions whaeh tell the SITADE primitive how to
shade am area. The system provides a group of predefined shading palterns, described below. These
will probably be sufficiest for most simple uses of shading, e distinguishing a few neighboring
regions with different shading patterns, etc. Those needing more sophishicated capabilities can define
their own patterns, The predefined shading patterns currestly available are:

SN

A shading pattern which fills im every point. This pattern is the defaull used if no argument
is given o SITADE,

Display Twrtle for the Knight TY Terminals Section 17.19

LISF LOGOD MEMD Page 78 March 4, 1975

CNECKER

& pattern whech Nills in every ather point, in checkerboard fashion,
HRTELINES

A pallern consisling of horiganlal lines, allernaling lighl and dark,
VERTLINES

Like HORIZLINES, excepl lings arg verbcal,
GRID

Bath herizantal and vertical lines, superimposed,
TEXTURE

& paftern which turns an painls randomly, ereating & testure like sffect. An average of half
the points will be furned an.

DARKTEXTURE

LIGHTTEXTURE

Like TEXTURE, butl shade using ditferent densities of points. DARKTEXTURE turns on an
average of 3f4 of the points, created by ORVing bwo random numbers, LIGHTTEXTURE averages
1/3 af the points, oblained by ANDENg fwo random numbers.

Mew shading patterns concisting of arbitrary piclures can be defined by using the following
prirmitive:

MAKEPATTERN <pattern-naime® <idindoie-name> |MP]

The first argument is a name for the new pallern. The second & the name of a window,
constructed by the MAKEWFININIF command, This ereates a new patfern, which consisls of the
picture saved in 1he window. The paltarn name may then be given as inpul te STADE, The eflect
will be to il the closed curve to be shaded with the picture specified by the window. If area
bevord the extent of the ariginal picture s 10 be shaded, the picture will be repeated horizontally
and wvertically as many times as is necessary 1o fill the area

Altermatively, 8 shading pattern may be constructed by the user directly as a funchion, [This
can resull in faster shading than by using a patfern consirucled by MAKEPATTERN, although it"s
more difficul! te write, sspecially lor - comples patterns.] A patlern iz a2 funclion of bwo inleger
argurments, X and ¥ coordinates of a word in the TV memory [#s for the inputs to TV, See Section
17221 It returns an integer, which indicates the stale of 32 bits of The screen, lefl justifed.

17.20 Invisible Mode

When a program does bolh a considerable amount of graphics as well as nen-graphic
computation, it often becomes comvenient fo be able to debug these components separately. An

“invisible™ mode makes it possible lo debug the non-graphic parts of a program contaning turtle
commands, withoul incurring the overhead of drawing on the screen. When the system is heavily
loaded, code run in "invisible” mode will run much faster, allowing the user fo run a procedurs il he
is nol inferested in the piclure drawn, then refurn to "visible” mode o debug the pictures drawn by
the program. Piclures drawn in invisible mode are not saved and returning to visible mode requires
thatl programs be re-cveculed 1o observe the picture drawn.

INVISIRLE

Enlers “invisible™ mode, Any primilive thal would cause changes to pictures on the screen:
mavement of the turlle, display of saved pictures, points, elc. will not cause anything on the screen
to change while running in invisible mode. Execution of procedures containing lurtle primitives will

proceed much faster; this permils running of procedures containing turlle primitives for the purpose
of debugzing ther non-graphic behavior,

VISIRLE

Heturms to "wisible” mode, Turlle funclions have their useal effect, as well as their wsual
slowness, VISTRLE causes a CLEARSCREEN.

17.21 Extensions

One possible source of estensions to the TV turtle package would be the inclusion of
picture-saving capabililies similar to the SNAP command of the LLOGO turtle for the 340, or to
THLOGD s SNAP. This would differ fram the “windows® describad abowve in thatl it would be a lower-
level representalion of the picture in terms of veclors 1o be displayed, rather than an array of
poinis. Because the TV terminals da nol have hardware for display of vecters, necessitating the
compulation of points lying along a vector to draw if, redisplay of a snap would be very nearly as
time-consuming as re-executing the LOGO procedure which drew the picture. [n contrasl, redisplay
of a window bypasses that recomputation, and requires much less time 1o redisplay than the original
drawing procedure required. However, a vector represenlation does provide several advantages. It
is less space-consuming for piclures which occupy large porfions of the screen, but confain few
veclors. 1t can be used more sasily with pictures for which a descriplion in lerms of rectangular
portions of the screen would be inconvenient; for example, an irregularly shaped picture surrounded
by drawings not to be included in the saved piclure. The window representalion makes it difficult to
assign independent names 1o the saved graphic output of each of several programs if the pictures
overlap. Cerlain transformations such as rotations and scaling might be more easily performed on a
veclor representation tham on poant arrays,

An additional difficully in providing a srap facility in tha TV turtle similar to that possible
wilh wvector oriented displays would arise in implementing the ERASE SNAP command. If several
lines all pass through a single poini on the screen, the paint must mof be turned off until all lines are
erased. If one line is erased via an EKASE SNAP, and other lines slill pass through the paint, the
point must not be turned otf. This requires keeping track of how many lines pass through each point.
Such information could be obtared fram compuling the intersection and averlap of vectors displayed
whenever a wveclor is drawn or erased, or by keeping & "reference count” for each point,
incremented whenever a line passing through the point is drawn, decremented when such a line is
erased. The “eraser mode™ of the TV turtle turms off paints along lines drawn regardiess of their
previaus state, This makes it comewhat less comvenient than ERASE SNAP for erazure of one of
several overlapping pictures, although the same effect can be achieved by saving the previous

Display Turtle for the Bnight TV Terminals Sectian 17,21

LISP LOGO MEMO Page BB March 4, 1375

contents of an area in a window belore drawing over it In some cases, ¥OR mode can be used
instead, so that the same procedure cen be used belh ta draw a picture, and fo erase il

Another allernalive represeniation for picture elements would be rum lenglh encoding, This
would record the contenls of an area of the screan, as daes the TV furtle “wirdow®”. Each line of the
area is represenled as a sequence of numbers, The numbers in the sequence alternately specily
how many consecutive points are on, and how many consecubive poinis are off. Like the window
operation, this lechnique is capable ol being used with pictures conlaining shaded arcas, which
would not be possible with a representalion consisting solely ol veclors, Although it would require
somewhal mere compulation time fo redisplay then would a window, of would not prove quite as
space consuming for large and sparse pictures, It is not clear whether the lime and space tradeotfs
involved would juslify the use of this representation,

Each alternative representation for picture elements carries with it unigue advantages and
disadvantages, in lerms of lime and space efficiency, ease of modification, ete. Rather than becoming
commitled lo a single representation, a better goal is to provide Hlexibility by making available many
ophiors and allowing a wser or an intelligenl syskem to choose the representation according to the
requiremeants of the applicalion,

An allernative to the TV tertle’s approach o pictures involving shading 15 (o exiend the
LOGO concept of the burtle’s "pen” and “arazer” 1o a "painlbrush”, & "paint™ consisting of a partlicular
shading pattern and a width for the paintbrush would be chosen by the wser, When the turtle is
moved after the execulion of a BRUSITINICN command, the shading pattern is drawn in an area
extending for the specified width on either side of the path of the turtle’s movement. Howewver, this
method has the disadvaniage that programs to shade even very simple geomelric figures can become
quite complicated, This mode migh! be useful however, if it were possible o move the brush under
control of some analog inpul such as a light pen or mouse. Another possibility is to supply the
system with specific knewledge about shading common shapes, such as circles.

Mher evlensiens te the TV turtle could center on providing facilities oriented towards
animation, LOGD as a graphics language is primarily orenled loward the display of stalic pictures; il
is weak in some of lhe capabilities nesded for convenient generalion of movies, & more extensive
vocabulary of transformations which can be appled to piciures would be helpful. This could include
rotation and scaling of saved piclures, three dimensional coordinate fransformations, as well as a
comvenieni way of incorporaling user defined transformations. Some means of ewplicitly contralling
the time in which changes happen o the displayed piclure should be provided, Extension of the
confrol structure to allow parsllel execution of procedures would facilifate programming
independently changes la the piclure which should occur simullaneowsly.

Anather capability which the system should have is some provision for analog input, such as
from a light pen, joystick, tablel, or mouse. This would allow the system to oblain and manipulate
freehand skelches, Convincing drawings of people or objects that would be difficull lo construct
from turlle programs could be readily inputl and then manipulated by programs. Objects om the
screen could be selected by a user inferaclively using a rubber band veclor, which s often more
comvenient than typing, especially for children,

——

The POPL1 which controls the TV terminals mainlans the user’s screen in ils memory, ane
bil per paint, &n 175 system call allows the L1's memory 1o be mapped inlo the address space of a
program running on the POP10. &n initialization routine writlen in LAP assembly language performs
thiz syetem call, and sats up an array header which convinces LISP that this area of memory is really

the data for a LISP twe-dimensional integer array. This array is accessible directly by the wuser whao
fimds the supplied turlle primitives Aot suiled fo his needs, AN changes to the display screen are
performed directly by LISP STUREs, and the remainder of the display package is written entirely in
LISP.

The fallowing primitives are prnEabl:,r rol of general inferest, but are internal to the TV
turtle package, and mighl conceivably be of use to a user desiring nonstandard applications.

TV =line> <eolump-toord>

This is the array which holds the user's TV buifer, A call to TV returns a 36 bit fixed poink
Pumber, which contans two 16 kit PDPLL words, lefl justified. STORE' into the array will cause
the array and the user’s screen fo be modified as described in the discussion of DREAWF MIDE,
below. Any such STORE's should keep the low order four bits of each word zero. The first irpul
counts pumber of lines frem the lop, from © te 454, The second selects a word on the line, lefl to
right, from O te L7 [for a total of 18 # 32 = 576 bils per line].

DRANFMODE <made>

The POFL] has a feature which enables any attempt to wrile a word in the 11% mEmory
from the PDPLD lo result in a spesified bosclean function of the word being written and the word
previously there. DRANW MODE changes that specificalion according to <made>, which should be an
infeger representing the mode chosen frem the values of one of the tollowing atoms: NIF, X0OR,
ANDC, SAME, COMP, EQY, SET0, SETZ, SET. For edample, STORE TV @ 0 18 will turn the low
order bit of the secornd 16 bit word of the TV buller an if J0OF maods is in effect, off if ANDC mode
is in effect, and complement whatever is there if in XOR mode. DRAW MODE returns the number
describing the mode previcusly in effect

DR AW MODE

A global variable containing the current mode number as set by the last call to
DR AW MODE,

Display Turtle for the Knight TV Terminals Section 17.22

LISP LOGD MEMO

SENOWTLURTLE mode BE, bY

1L 208,10, 12, 13, 37, 64, 74, 79
11LOGD User’s manual 12,37, 60

240 13, 38, 47, 64, 72, 74,79
abbreviation
abbraviations
altrnaid e I
ambiguily 15
analog input 80
Ample brackets 12
animation 20

APL 7]
arithrmetic
ARPANET
fArray L, 37
ASCIH 7
associativity

21, 2
L8

3, 15
a9

15
background 6E, 73
BIBEOP 28
block siruciure
braces 1z
brackets a5
breakpoint 9, 24, 25

bursied procedures 21, 22, 23,30

i

canmed loop 1
carriage refurn
Character display
character synlax
cirgle 72
clipping T
CLLOAGED 13
CLOGO 24,45, 10, 12,17
closed curve I7

ChAL 40

colon 35

comments
COmMparisan
cormpile
compller
conditionals 4 &
CONMIVER 1,7
Control character
contral structure

6,7, 12, 19, 24, 35, 36,3
1, 13, 41
7

36
15, 16
22,30
7

12, 19, 20, 24, 39, 40
31

Index

Page B2
DATAPDINT terminals 13
decimal point 36
defining 5, 13, 19
degrees &7, 71
device 32
devipes 7
direclion 71
directory 32, 38
Disparity 2
display area B4, 72
display lists B4, 74
dollar 35
dotled pair 3,7
double quole 34
edit mode 19
Editing 3, &, 13, 19, 35, 40
editing characters 40
Englizh 2, 4,5
Braser &5, 68, 69, 71, B0
grror handling 24, 34
error inferrupt 249
error inferrupl handlers 3
grror messapes & 9
evaluator &
exclamalion painfs 36
exponentiation 16
file 76
file specification 32, 38
fived point 1, 3, 4, 37
Floating point 1, 36, 70, 73
food supply 43
FORTRAN 36
fraction 3, 36
funchional arguments 17
garbage collector 28
generation 43
GERRLAND L0, 13, 38, 20, 4]
plobal wariable &5
global wariables 29
GTa0 13, 28, 47, 64

March 4, 1975

heading a2 &, M0, 72

hama b7

hormory ms B, 8, 17

How To Get On the Syslem 1z
hungry 43

1Bt 2741 39

identifiers 7
implementation 7,10

infix 5,7, 8, 15, 16, 17
initialization file 14, 38, 40
inpuls b, 8, 28

intfegers 10

Interim LISP User's Guide 12
interning 10

Interrupt 1, 20, 35, 40
invisible mode 79

Jaystick &0

Lap B0

light pen g

line Aumber 4, 4,6 B 38
Line arienied input &
link 28

LISP 36, 64, 71, 76, 80
ligks g

legic 6, 15, 18, 35
login 12

logout 14

BAACLISF Refersnce Manual 12, 38

minus Sign 17

mislyping 9

mnemanic &, 4

moLse 20

MULTICS 11, 17, 30, 32, 38,39
music 7,000, 13, 34,38, 40

Maturalness)
negative mode 74
negative rumber 17
MLLOIGO 13

FeisE wirds d
rumerical input Ak

Imdex

obarray 7
ohatacle 42
Or o
aulpyl 36

paintirush D

parentheses 5, 6, 8, 15, 35
parzer 4,5 8,15, 17, 28
parsing properly B

pathname 38
POP-& 47
PRI L aa

pen &85, 68, 69, T1, BD
Percenl zign a6

PLANNER 1,7

point T2

point arrays 74

posilive mode 74
precadencs 15

predm 5.4, 15,17

pretly prind 4

primitives 7, 8, 22, 30, 34
printimg &

program form 3

program undersfanders B
prompler 19, 4]

Properly list 1,8 18 36
pure L

radians 71

roaader 7

reaadbable)

Ll 0y 1,2

rotafion 79

roundgdf 3

rubout 20, 35

run fength encoding 20
run lime error 9, 24

sealing 79
SCRIK® T

Self-modilying procedures 3]
cemicolon |
sanlences Z

shadng 77
shading paltern o
sharp sign 25, 29, 35

side eflects 28

LISP LOGO MEMO Page B4

Simplicily 2
single character object 7
single guale 34

size 10
SRap Ja
space war 7

spead a 10

sphl screen x4

sfack Q, 25, 28

shring 10, 35
super-procedure tres q

Tektronix 7

TEMNSD I, 32, 40

TEMEX 11

et fl1, 74

Thoraton bow &Y

THE 29

top level 29, d6

triangle turtle 65

turtle 7,00, 21, 38, 40, 47
turtle coordinales 72,73
turtle marker 65

lurtle state 70

TV buffer gl

TV screen 73

TV furtle Bd

lvpe checking 29
tvping errors 19

unparser g 17

variables G, 21, 29, 33
wectors &7, 74, 749

windows 79

words 2

wraparound 67, 73, 75
wrang number of impuls 28

XGP 78
¥OR 65, 68, 75, 80

March 4, 1375

LA
L
LYy
Pl
Y
ok
e
a0l
II".ll"lll
AP
~R
Al
AlF
AX
Y
¥

L1y

14, 30, 40, 59
25, 40

47

20

20

20

33

14

a7

12, 57, 64

25, 27

20

20

LAREFUL 17
LOMPIHLED 30
LONTENTS 30
DRAFMODE 81
DRAFTURTLE L1
sEDITMODE 19
:EMPTY a7
EMPTYW 37
(ERASERSTATE 6B
:ERASETURTLE 66
ERRBREAK 24, 26
WLERM 45
WLRIDSIEZE 45
AFEADING 43, &5, 69, 70
JdTISTORY 20
JAHUNGRY a5
ANFIX Ir
ANSTRUMENT &2
ISPHEEAK 26

MAX

62

(NVOICES 62
PENSTATE B3, B2
FPICTURE 55
SHCALERASE 63

Index to LLOGO Primitives

SEETURTLE 65

SJion 52
SBNAPS B3
TEXT R

TEXTXHNOME 52
TEXTYINOME B2
TURTLE 48, 856, 70
TURTILES 70
JOICE BR

AP INDIFS 75

W EAP 6r

M EAPAROLUIND 48
XCOK 49 65, &9, 70
XOBSTATE 69
FOOR 49, 89, 70

“ESC>C 74

ABBREVIATE 18
ACCESSINLE a4
ALLBCATOR 14
AND 4,16

ARC T2

ARCTAN 71
ARREAY a7

ASCH 37
ASSOCIATE 16
ATANGENT 51,71

BACK A4, 48, 66
BEARING 51,71
fik a4, 43, &6
BLINK 55
BooM 5a

faTIl 4, 16
BREAK 25
BRIGHT 85
RRLUSIH 58
HSIDE a5

LG 14, 40
BURY ALL, 33
BUTFIRST 2,3, 4
BUTLAST 2
RYE 40

Ingex to LLOGD Peimilives

LISP LOGO MEMO Page 86 March 4, 1575

CALL P2 EITHER 4,16
CAR 2,34 END 19
CATCH 25 ENDsNAP 53
CnR 2,34 36 ENTERSNAP 53
CHECKER 78 EoUAalL 5
CHORUS BE ERaA 22
CHORDE2 S8 ERASE 22 33,53
CIIORIEY 58 ERASE ARRKEVIATION 18, 22
CHORILS4 B2 ERASE ALL 22,33
CIRCLE re FERASE BURY 23
CLEARSCREEN 49,67, 79 ERASE COMPILED 22
CLY 74 ERASE FILE 22,33
CLP 74 ERASE LINE ¢
CILST 74 ERASE NAMES 22
Clsw 74 ERASE PRIMITIVE 22
(] 27 ERASE PEOCEDURES 22,33
COLORNEGATIVE T4 ERASE sNAP 79
COLORPOSITIVE Fa ERASE TRACE 23
COLORSTATE 74 ERASERINIFEN &8
CrHARSWITCN 74 ERASERLF &B
COMPHLE 30, 33, 40 ERASEWINDOW 75
CONS 3,28 ERASEWFINDOWS 75
CONTINDE 24, 25, 26, 27 EER 23
CosivgE 51,71 ERD BB
] a5, 67 ERF 22

ERL 22
DNARKTEXTURE TE ERN 22
nor Bd ERP 22
NERLG 26 ERREIST 57
NECLARE 30 ERTE 2
DELETE 22 ERL 6
DELX a3, 66 EVALFRAME 9
NDELXY 48, 6h EW)
DELY 485, k& EFs 75
NESTRLULT 45 ExiT #7
nraks 54 EXPLODE 35
DISPACGE 54
SPLAY 17 FALSE 6,35
] 4,17 FASLOAD 47,57
I Ly 28, 27 . Fi 44 48, &6
DEAWMODE 2l FILLFMID 43
DRIM 59) FIRST 2. 14
DSCALE 56 [S

FLI 30
EASTP il FlLUSHOOMPILED 30
EAT 43 FILUSHINTERPRETED 30
EMIT 17,19 Foon 43
EDITLINE 19 Fine 93

EMNTTITLE 19, 28 FOODSUPPLY 44

FORWARD 44, 48, 66, &7, 70

FRONT a5
FSIDE a5

CERM a4
CERMDEMOS 4l
CET 17
CETSQUARE 43
CETWINDOWS 76
co 4
COODEYE 14
GRID 42,73
CRIDE 42
CRITCH 59
w76

i 49, &7

FrATCH FiY)
HEADING 44,50, 69
HERE 80, 70, 72, 76
HIDE ®2
fITDESNAPR 53
HIDETEXT &2
HIDETURTLE 47,65
FETDETE TN DO 76
HISTORY 20
HOME 49,67
HORIZLINES 78

nr a7, e5
i il
FBASE 36
e g, 16
IFFAISE 4
FFTRLUE q
TLINE 0

INFIX 16, I7
INSERTLINE 37
INVISIRLE Fik:

Is 5
kil a4
LAST 2,17

LASTFORM 20
LASTLINE 20
LASTY ALLE 20
LEFT 43, 49, 67
LEFTSIDE 45

LEVEL 35
LIGHTTEXTURE

7B

LINEPRINT 21, 40

LISFRREAK 25,
LIST 17
LIST FILES a0

2!

LLOGO ONIT) 14

Locar 37
IOCORREAK 25,
LOCOTURTLE 70
menouT 40
L5IDE a5

LT 45, 4%, &7

MAKE 16, 32,35
HAKEPATTERN
MAKETUNE 5%

eh, 27

, 65
78

WAKETURTLE &5

MAKEIF FNDOW
MAKTURTLE 48
MAFCAR 4
WARK 52,71
MINFCLEAR 59
MBUFCOUNT 59
MRUFINIT B9
MHUFNEXT 59
MHUFOLT B9
MHUFPUT &BS
MCLEAR 59
MIEN &0
MODMUSIC &0
MOTInN . 55
MiveE 42

MP 78
MUCRTI - &3
MLTYD 63
MUwaIT B3
ir 75

NDoa7, &4
WEWFMUSIC 60
VEXT a4

73,75,78

NODISPLAY 47, 64

NOMUSIC &0
MIPLOT B4
NOIPRECEDENCE
NORTITE 43
NOT 16

NOTE 60

Index 10 LLOGE Primitives

17

LISF LOGD MEMD

NI RAP 42, 46, &7
NVOICES 80

(HSTRUCT a5
OLOMISSTC &l
(LOTURTLE a8
(4, 16

PAUSE 25

Fn 50, b8
PENDOWN 50, 68
PENP 50
PENSTATE 50
PENUP 50,68
PERFORM 61
PHOTO 52,53
PICTURE 53
PLAYTUNE &1
PLOTTER 54
PLOTTER I 54

P Gl

Fil 21

P A 21
POF 33
P 33, 40

POINT 54,72
PIMNTSTATE 72

Pl 21

PN 21

POPR 2l

mar 21

P{ITs 21
PRECEDENCE I6
PRINC 71

PRINT 17

PRINTINHFN 27
PRINTGRID a2
FRINTOUT 5,17, 19, 20, 21
PRINTOLT ARRREVIATIONS
FPRINTOUT ALL 21,32, 33
PRINTOUT FILE 2}, 33

PRINTOUT INDEX 21,33, 40

FPRINTOUT LINE 2]
PRINTOUT NAMES 21
FRINTOUT PRIMITIVES 22

FPRINTOUT PROCEDURES 21, 33

FRINTINT SNAPS 21
FPEINTOUT TITLE 21
PRINTOUT TITLES 21,33

Page BB

FRINTUP 26
PROC 8,37
Pl 50, 68
PUTSQUARE a2

HANDOM 17,37
RANCE 50,51, 71
READ 17

READFILE 17,30, 32, 80, 76
REAR 45
REMSQUARE 43
REMTEXT 52
REPEAT 41

RESNAP 53

REST 61
RESTARTMUSIC Bl
RF 32

RICHT aa, a3, 67, 70, 71
RIGHTSIDE 45
ROUNDOFF 37
RSIDE a5

RT 44, 48, &7

RUN 17

RUNGERM 4]

SAVE 17,32, 33
SAVEDISPLAY 64
SAVEWINDOWS 76
SCALE 55

5D 47, 64
SETHEAD a9, 68, 71
SETHOME 55, 63, 73

SET) 65

SETT S50, 70
SETTURTLE 50, 70
SETY 48 66
SETXY 48, 66, 67
SETY 48 66

SHADE 77,78

Siionwr 52

SHOWSNAP 53
SIHMFTEXT 51, 52
SIHFTURTLE 47,65
SIFWwINDOWw 75, 76

SINE 51,71

SING Bl

SNAP 52,53, 74,79
sarm 37

SONG Bl

March 4, 1975

sSouTHER
EPECIAL
ST a7 &5
ATARTIMNEPLAY
STARTMUSIC
ATEP a2
STORE 37,81
S 8

SV e4

sw 75

S5Ws 76

a4
20

17, 47, 64, 70
57, 62

TEST 4, 16
TEXT 36
TEXTURE
TH 73
THEN q
THISFORM
TH ROW

TIME a7
TG 4,5, 19, 22
TOPGERM a4l
TOLCH a8

TOWARDS 51, 71
TRACE 9, 28

TRIANGLETURTLE
TRUE 35

TURTLENOME
TURTLESIZE
TURTLESTATE
TV 78, &8l
TVSIZE 73
TYPE 52,71

78

20
25

13

K
73
a8

UNBLINK BB
LNGRID 4]
L'MSPECTAL

UPF 26,28
UREAD 76
LEE 33
USER-PAREN 9
USETURTLE 70
Lr 7o

30

VERTLINES
VISIRLE
VILEN
VililcE
VOINCES

TE
79
G2
62
62

WL a9
WESTP

i #)
Wi 76
wirar a3
IFIERE 43
FINDOIFFRAME
WINDOFIIOME
IFIPE &7
WFiPE
IFIPECLEAN
WRAP a¢ &7
WRITE 32,33

a4

a3
49

XCOR

X 69
XGP T
XIOME
XORDOIFN &9
XORUP B3
XORW INIW
Xt/ &%

X 7e

yYoor
YCoR
YHOME

50

Th

&6, 69, 73
a5
a0

Indrx to LLOGD Primitives

49, 66, 69, 73

