MASSACHUSETTS INSTITUTE OF TECHMOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Memo Mo, 309 Hay 1974

COMMEMNT ING PROOFS

James R. Geiser

ABSTRACT

This paper constitutes a summary of a seminar entitled "Commenting
Proofs' given at the Artificial Intelligence Laboratory during the
spring of 197k, The work is concerned with new syntactic structures

in formal proofs which derive from their pragmatic and semantic aspects.
It is a synthesis of elements from Yessenin-Volpin's foundational
studies and developments in Arcificial Intelligence concerned with
commenting programs and the use of this idea in automatic debugging
procedures.

Work reported haerein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research pragram
supported in part by the Advanced Resesarch Projects Agency of the
Department of Defense and monitored by the OFfice of Naval Research
under contract number NODDILE-70-A-0362-0003.

1. Introduction.

This paper constitutes a summary of a seminar entitled
"Commenting Proofs" given at the A.I. lab at M.1.T. during the
spring of 1974. The work 15 concerned with new syntactic structures
in formal proofs which derive from their pragmatic and semantic
aspects. It is a synthesis of elements from Yessenin-Volpin's
foundational studies (e.g. "Ultraintuitionism and the Antitraditional
Program for the Foundation of Mathematics", Proceedings of the
summer Conference on Intuitionism and Proof Theory at Buffalo, Mew
York, 1968) and developments in Artificial Intelligence concerned
with commenting programs and the wse of this idea in automatic
debugging procedures (e.g. Gerald Sussman"s Doctoral Thesis:

“A Computational Model of Skill Aguisition", M.I.T.,1973).

For the most part we shall restrict ourselves to the context
of Peano Arithmetic and the primitive recursive arithmetic of addition,
multiplication, and exponentiation in particular. At the end a few
remarks will be made on how these ideas are to be extended to a

richer deductive environment.

In our work we shall introduce means whereby it becomes possible
to distinguish between formal proofs (a sequence of sentences satis-
fying the usual syntactical criteria) and "real" proofs (a formal
proof constructed by someone with the goal of proving the theorem).

In the latter case each 1ine may be commented by intrinsic (formal-
syntactic) and extrinsic (goal related) remarks. These remarks not

only explain the purpose of a particular Tine, but at the same time

establish comnections with other lines (previous lines and ones yet to be
constructed)--in fact, these remarks point to connections between the very
signs that make up the Tines of the proof. These connections {which shall

be called identificational connections or ids) are the links of a very detailed
syntactic structure which resides implicitly in real proofs, a structure

of "causal” chains connecting the occurences of symbols.

With this sort of information it becomes possible to answer a question
1ike: "What part of the term 11-111 is responsible for the third stroke
in the right hand side of the equation 11-111 = 111111%". Such a part
will be called an ingredient of a term, consisting of a certain form
of 1ist structure whose atoms are the occurences of symbols in the term.
Much of the present work is concerned with characterizing the dependence
of ingredients on the computational paths used to evaluate a term. In the
larger program of which the present work is a part, proofs are seen as the
codification of procedures for manipulating list structures in such a
way as to induce mappings from ingredients to ingredients. This provides
a framework for understanding various traditional phenomena such as con-
sistency and independence. On a higher level it suggests new ways to
formalize such notions as relevant entailment and methods of proof. One
last point before getting into the details. An eguivalence relation is
defined on ingredients so that every ingredient is equivalent to an ingredient
in "normal® form. This form appears to be connected to a notion of computa-

ticnally efficient computation paths.

?. Recursive Arithmetic.

pecursive Arithmetic consists syntactically of terms and equations, and

deductively of computations (contructed by means of the recursion axioms

and the substitution rule).

Terms are expressions formed from 1,+,°,exp,(,) by means of the

following rules.

1) 1 is a term.

2) If t is a term then so is tl.

i) If t and 5 are terms them so are (t + s}, t-s, and exp(t,s).

We shall use the symbols t,r.s,...,t].r|,51,... to denote terms. We
shall make use of the usuwal conventions for ignoring parenthesis. Also
note that our use of the word "term" doesn't allow for the occurences of
free variables, i.e. they are always to be closed. 1)

Terms of the form 1, 11, ..., 1(n} (n concatenated strokes) are called

numerals.

An equation is an expression of the form t = 5.

The Recursion Axiom 5Schemata:
Addition Al [t + 1) = t1.

A2 (t +s1) = (t + s)1.
Multiplication M1 t-1 = t.

M2 t-(s51) = t-s + t.
Exponentiation E1 exp(t,1) = t.

E2 exp(t,s1) = exp(t,s)-t.

B e e e e e e e S . R N NN RCH (RN NN N NN M NN MM M M M MR R NN NN R MR MR NN NN S SN OEN BN S

1} The notational methods that we shall develop for +,-, and exp, will
serve to handle all other primitive recursive functions.

The Substitution Rule Schema:
Line LA t = s(r)

Line LB ¢ = r
Line LC t = s(r').

Here s(r) denotes a term in which the term r has one or more indicated

occurences, and s(r') denotes the term resulting from the replacement in

sir) of r by r' at the indicated occurences of r in s(r). Note that this

is more general than uniform substitution. We say that LC follows from

LA and LB by substitution.

A proof or computation is formally defined as a sequence of equations
each of which is an instance of a recursion axiom or else follows from two
previous equations by substitution. We consider two simple yet 11luminating
examples.

Example 2.1.

LT 1+ 11

L2 1 +17

L3 1+ 1

1]

(1 +1)N
1
1.

Example 2.2.
LT 1-11 = 1-7 + 1

1
1 +1

1

L2 1-1

L3 1-1
L4 1T+1 =11
L 111 =11 .

3. Commenting Proofs.

We begin commenting these computations by means of intrinsic and
extrinsic remarks (this terminology is after Sussman). Then we pse these
remarks to generate ids between the occurences of symbols in the computa-
tion. By tracing out chains of i1ds we can establish an accountability for
every sign in the computation. This will at the same time make explicit
the semantics of the computation, i.e. which occurences of symbols are

synonymous and what are the computational roles of each sign.

The intrinsic (or formal) corments make note of:

1) if the lime is an axiom,in which case a pointer is generated to the
axfom schema in question;
2) if the line follows by substitution, in which case pointers are generated
to the 1ines from which it follows and to the occurences of the term to be
replaced.

The extrinsic (or goal related) comments consist of:
1) the top level goal statement (i.e. to find the value of term t);
2) the assertion that line L (s = s') is generated in order to simplify
by substitution a term t(s) in a previous line L';
3) the assertion that line L"' is the result of a substitution rule from
lines L, L' whose purpose it was to achieve simplification by means of this
substitution;

4) the assertion that the line matches the top level goal.

Example 2.1 Commented.

The top level goal is to evaluate 1 + 11.
LT 1+ 11 ={1+1)1 (Axiom AZ) (Purpose i5 to simplify 1 + 11 of t.1.g.)

2 1+1 =11 (Axiom A1) (Purpose is to simplify 1 + 1 of r.h.s.
of LT using substitution.}

L3 1+ 11 =11 (Sub. L1,L2) (Purpose is to fulfill the goal
of L2. L3 matches t.1.9.)

Example 2.2 is commented in a similar manner.

4. ldentificational Connections.
We now add a third type of comment to the analyzed computation, namely

we make note of the identificational connections (1ds). First of all each

axiom is to be accompanied by certain ids as follows.

~
Al t+1 =1tl
A

ff“::="§r~ﬁ=
Az t + 51 = ([t +75)1

TN

Ml tT =t

#

M2 £e(sT) =t-s + ¢
U

Ty

E1 exp(t,T) =t

E2 exptgffii:ftii%;;h;??t .

N

For example, in AZ we would say that t and s in the r.h.35. are re-
written from the t and 5 in the 1.h.s5. and this justifies their synonymity.
On the other hand we also make an identificational connection between the
two occurences of 1 and this constitutes our semantical interpretation

of + 1n terms of the sucessor function.

Now consider MZ2. We say that both t's in the r.h.s. are rewritten from

the 1.h.s. t. Similarly the s in the r.h.s. is rewritten from the s in

the 1.h.s. However we associate the second t in the r.h.s. with the stroke
1 of the 1.h.5.--this is part of our semantical interpretation of - . Thus
we are looking at m-n as saying add m to itself n times; in this computation
n acts as a counter for the n different rewritings of m. The strokes of n

are control elements in this case.

Let A be an axiom and id(A) the set of ids associated with A. More ex-
plicily: if a stroke p on the r.h.s is simply rewritten from a stroke g on
the 1.h.s. (without & control element) then put id(p,q) in id(A}; if, on
the other hand p in the r.h.s. is rewritten from g in the 1.h.s. under the
control element q' and using an axiom for the operation f (either - or exp)

then put id{p.{q.,9".f)) in id{A].Ij

Ids come from the substitution rule in accordance with the following
schema.

LA t

ris) {These 1ds actually come from the extrinsic
comments associated with these lines: LB's
purpose is to simplify the indicated 5 in

rF.h.s. of LA. Hence the 5 in the 1.h.s.

LC t

1}

-
—

(4]
-
——

of LB is rewritten from the s in the r.h.s.
of LA. LC achieves the goal of LB; hence
the context r in the r.h.s. of LC is re-
written from the context r in the r.h.s. of LA and the s' in the r.h.s. of LC

is rewritten from the 5" of the r.h.s. of LE. Also, the 1.h.s. of LC is rewritten

from the 1.h.s of LA.)

1) A set of ids 1ike id{A) is usually taken symetrically,i.e., if id{u,v]
is in 1d(A) then so is id{v,u).

Fully commented by ids Examples 2.1 and 2.2 look 1ike the following.

Example 2.1 (Commented by ids.)

L1 f’:mm

L3 1 +11 =111

Example 2.2 (Commented by ids.)

e
LT 111" = 1"1 +1

,_t///

L (1 7=

11

L 1-1

We can now trace out paths of ids, thereby diagramming the computational
relations between the different occurences of strokes in the proof. For
example, in Example 2.1, if we denote the occurences of strokes in L3 by
p.p' W P".9, 9',8" (left to right) then we can see that p is connected to g,

p' is connected to q' and p" is connected to q". Furthermore these are the
only connections between the strokes of L3. This yields a very nice correspon-

dence between the 1.h.s. and the r.h.s. strokes of L3.

The case of Example 2.2 is more complicated im that some of the occur-

rences of strokes act as counter elements and when in this role do not

get rewritten. To present a complete analysis of ids in Example 2.2 we

shall lable all occurences of strokes and to the right of each line we shall
list the id associated with it. Between the 1ines we shall put the interline
fds comming from the extrinsic comments.

LIl - 11 =11 +1 {id(ay.by), fd(az.bz), 1d{(a.a5.").b3)]
a1 agay by by by

{1d(bq,cq), dibyacy)]

21 -1 =1 f4d((cy.e2,*)vd7) }
€1 €z Oy
{1d{ai,ei] for i = 1,2,3, id{dy.fy), 1d{b3.f2]j
L3111 =1+1 [id{te],eg.'hfﬂ, '|'d”E"|:Ejs'}sf2]|]

E!'l EEEE f-l 'FE
{1d(fy,97),1d(f5.92)]

L41+1 =11 {idlgy.hy), dlgphy)]
9 9 My
{id(eq,p3) for i =1,2,3, idlhy,q7), id(hp.95)}
L51-11 =11 [id((pyoppsc Doty) 1d{{pgapg.)ap)]

Py PzP3 9z
The ids in sguare brackets are derived from other ids. For example,
id((ey.e,,"),f7) of L3 is derived from:
1d({c,c07)0dy), Td(by,eq), Td(by,c,), idlay,by), id(az,bp),
id(aq.ey), id(ag,ep) and id(d;,f,).

The rules to derive ids will be formulated in section 6.

Observe that it is possible to trace out a path from the stroke g, or
9o of L5 to a pattern of strokes P1sPg.and pa of L5; this is exactly the
contents of the square brackets accompanying L5. Thus we are lead to say

that qy is rewritten from py under the control of p3. (py.pz.) and

{p],$3,=} are the patterns in 111 of LS "responsible" for qp and gy re-
spectively in this computation. These patterns we call the ingredients
of 1-11. Generally speaking when a term t is evaluated (i.e. proved equal
te a numeral Ltl) we may identify the ingredients of t responsible for
each stroke in |t|. We want to show that the value of t is independent of
the computation path. We shall also determine the way in which ingredients

depend on the computation path.

5. Computation Paths.

On the previous pages we have presented two examples in some detail
inorder to give an intuitive picture of what is happening with proofs,
corments and ids. We shall now turn to a2 detailed study of the possible

computation paths from a term.

We shall restrict our attention to computations which have the
(standard) form:

L1ty = tp

L2i-1 t1 = i+l
LZ21 54 = 54
LZi+] ty = L2

L2n-3 t; =t .
where L1 is an axiom and for i = 7,...,n=2, L2141 follows from L2i-1 and
L2171 by substitution. We shall assume that these compuytations have been

commented and the appropriate ids have beenm made.

The sequence of terms t (=ty), tpz,...ty is called a computation path

from t to t .
n

Consider a step of the computation {called a simple reduction].

LAt =r(s)
d
LB | =
\:
LC t=r(s").

Define ID{r{s) — r(s')) to be the set of derived ids between the signs
in r(s) and r{s'). Specifically:
1) If p is an occurence of a stroke in r(s') which is rewritten from g in
r(s) via id a then id{p,q) is in ID{r{s} — r(s')).
2) If p is an occcurence of a stroke in r(s') which is rewritten from g in
s' of LE via c and q is rewritten from g’ in s of the 1.h.s. of LB,(1.e.
id(g',q) is in id(s=s'),see p.7}, and q' is rewritten from q" in 5 in the
r.h.s. of LA via b , then id{p.gq") is in ID(r{s)— r{s'}).
3) If p is an occurence of a stroke in r(s') and i5 rewritten from g in
s" of LE via ¢ and g is rewritten from g' in s in the 1.h.s. of LE under
the control of g" in the 1.h.s. of LB for the funtion f (1.e. id{a,{q",q".f)]
is in id(s = s')), and q' and q" are rewritten from g and g% respectively

in 5 in the r.h.s. of LA via b then id(p,(q°,q9°",f)) is in ID(r{s}—r(s']).

Every ocurrence of a stroke p in r(s') of LU is associated through
I0{r(s)=—=r{s')) with a unique stroke g in r(s) of LA or a unique pattern

(q%,q°%,f) of strokes g® and 9°° in r(s).

If t {=t1]. toaeoaty is a computation path P and th is a numeral then

P is called an evaluation path and t, is called the value of t w.r.t.F.

Define T(t } to be the set of all terms occuring in computation paths
from t; the relation s—==r determines a partial ordering of T(t) which we
will now investigate.]J

The notation s--+r denotes a computation path from s to r. We say

that ty---»t, 1s a subterm path if non of the reductions ty—=ti4p involve

the main function (outer most function symbel in polish notation).

Definition 5.1. A loop consists of two different computation paths going

from a term r to a term 5. A diamond is a Toop which has either form I or II

below. We illustrate this using - as the main function.

Form 1. E*r (where the two indicated paths
{ } are subterm computation paths)
HE
Form II. g‘rt (where both broken paths are subterm
5'-F:- .HHHE;P + 5 paths. We may assume that each involves
H;*-r'*: 5' the same associated subterm paths s-ag' p-ar’.

Definition 5.2. Two computation paths are simple variants §f they differ by

a diamond, i.e. they look Tike

-

rrk = = <F L — ¥
", _ s

Two paths P and (are homologous 1f there is a sequence of computation paths
P1,P2,...,Pn such that P = Pl and (0 = Pn and for i = 1,...,n=1, Pi and Pi+]
are simple variants. MNote that homologous evaluation paths assign the same
value to a term.

1) If s =s' is an axiom then we shall also wright s—ss', and call it
a simple reduction. In this case ID(s—>s') is taken as id(s = s').

Lemma §.3a. A split of the form

i or r

o EI ll
.r"' T & H\"SI
SI'T"I EII-r,II S'rr"]. E'T""-I
can be resolved into a diamond. (The dotted paths are subterm paths. Multi-
plication is just serving as a paradigm case.)

Lemma 5.3b. Any split can be resolved into a loop.

Lemma 5.3 is an anologue to the Church-Rosser theorem for the Lamda-
calculus. The proof of this and other results is by inducticn on the rank
rk(t) of a term,where rk is an integer valued function (primative re-
cursive) defined so that a) if s is a subterm of t then rk(s) £ rk(t),and
b) if s =t then rk(t)zrk(s). The existence of such a function shows us
that any computation path from t has less than or egqual to rk(t) steps.

If we were using all primitive recursive functions instead of just +, -,

and exp then such a rank function could be general recursive but not primi-
tive recursive (e.g. 1ike Ackerman's function). The organization of the
proof is to dovetail 5.3a and 5.3b, first proving 5.3a for rk(t) = n and
then 5.3b for rk(t) = n.

Theorem 5.4. Any two evaluation paths for a term t are homologous.

Thus the value of a term t is independent of the evaluation path; | t|

will denote the value of t .

If we' restricted substitution to uniform substitution then T(t)

would have a much simpler form, namely splits t would resolve to t
N Ly

t] tE £
A

t

t2

La M

This would simplify much of our work. However since our eventual goal
is the study of general proofs such a restriction would have to be

relaxed.

6. Ingredients.

Definition 6.1. Let qq,....0, denote the occurrences of strokes in the

term t. Ing(t) denotes the set of 1ist expressions obtained from qy.....09;,.
and - ,exp according to the following rules.

1] 0y s+« 20y, ATe in Ing(t).

2) If i and j are in Ing(t) and f is - or exp then (i,j.f) is in Ing({t).

The members of Ing(t) are called the abstract ingredients of t, and

Q7s. a0y, are called the simple ingredients of t; Ingﬂ{tj is the set of

simple ingredients of t. In (i,j,f) Jj 15 called the control element and

i 15 called the raw materiai.

Definition 6.2. H : Ing(t)=—+Ing(s) is & homorphism (hom) iff for all

(1.3,f) in Ing(t),
H{(isdsF)) = (H{i).H{i).F).

Ei;ts dbout homomorphisms:

6.3a. If H,G : Ing(t)=—=Ing(s) are homomorphisms which agree on Ingntt}
then H = G.
6.3b Any map H : Ing,(t)—+Ing(s) extends to a unigue hom from Ing(t)

into Ing(s).

6. 3c Hom H is 1-1 on Ing(t) iff H is 1-1 on Ingg(t).

We associate with a simple reduction t—=s the following hom H{t—s].
Let ID{t-—+s) be the set of ids accompanying t—s as defined on p.l11.
H[t—+s] is the unique hom from Ing(s) into Ing(t) determined by (for g in Ing (s))
if id{p,q) is in ID(t—s),
(p,p'.f) 1f id{(p.p'.Fl.q) is in ID(t—=s5).

Hlt=*s] 15 1-1 on Ingy(s) and hence is 1-1 on all of Ing(s).

Hlt=s](q) =

Definition 6.4. Let P = ty,...,t; be an evaluation path for t; thus |tl = t,.

Define the hom H[P] = H[t1~+tE]nH[tE—+t3]a---aH[tn_I—*tn], The set of

(real }ingredients w.r.t. P is the set H[F]{Ing,(t)) and is denoted by Ing(t;P).

Note that H[P] is a 1-1 map from Ingy(lt]) into Ing(t). So the cardi-
nality of Ing(t;P) is equal to the integer denoted by the numeral It] . We
think of H[P](q) as the unique “computational pattern” in t which is "re-

sponsible" for q via P,

7. "Invariance" of Ingredients.

How does H[P] - depend on P? Consider the following example.

Example 7.1. 919z 95949 HgH7
(r1 -1 I.J)} - 11
(T1+11+11)-11 £f$f a‘r§11 AT 4111717
rirz riry rerg rIra ‘HH"‘.‘ J},—""I 5152 535455 ﬁﬁﬁ? SESQSI{I
&

T 1111111
Py Pa Py Py P5 Pg Py Pg Pg PrgPpiPy2
Computing H[P}{pg} and H[Q]{pg] we get

HLPI(pg) = i = ({ay.94,").95. Jand HLQ1(pg) = J = ({ags95:7)u 00,4850 007)

The basic difference between i and j is the temporal order in which
the control elements q; and q, are operating and not in the ultimate

control relationships.

The relation between i and j is made into a basic equivalence relation.

Definition 7.2. Let i and j be ingredients in Ing(t). i = j iff there is

a sequence of pairs (iy,J,),....(1,.,) of ingredients in Ing(t) (this

sequence would be called a derivation of i = j) such that i=140 3 = dpe

and for k = 1,...,n , either

DAt b

2} there exists ingredients u,v.w and function symbols f,q such that
i dgb = {0y flwa), ((u.w.g).(v.w.g).f) } o,

3) there exists k', k" less than k such that

i = fik"ik”‘f} and j, = {igr'lk"lf}~

7.3. Facts about =.

7.3a) = is an equivalence relation on Ing(t).
7.3b) If i=jandi' =3' then (i.j.f) = (1'.4'.F).
7.3c) If iy = Jp for k=1, 2, 3 then

”li] :12-1;]'-1_3191 E “:i] :ia:ﬂ}:flz.j_gﬂ;] .f).

Theorem 7.4. Let H : Ing(s)—=Ing(t) be a homomorphism. Then H preserves = ,

f.e.,if 1 and j are in Ing(s) and i = j then H{i) = H(j) .

Theorem 7.5. Let G,H : Ing(s)—=Ing(t) be two homomorphisms and suppose that
for all p in Ingy(s),&(p) = Hip). Then G(i) = H{i) for all 1 in Ing(s).

A subterm computation P: s-t--»s'.t' can be decomposed in a natural

way into two computation paths P(s) : s--»5' and P(t) : t--#t'. If we
identify the strokes of s' with the corresponding strokes of ' in 't
then we may consider Ing(s') as a subset of Ing(s'<t'),and likewise for t.
The hom HLP] may then be decomposed into two homs H[P(s)] and HLP(t}].
We formulate this in the next Temma.
Lemma 7.6. Let P, P(s) and P{t) be as above. then

HLP] restricted to Ing(s') equals H[P(s)], and

H[P] restricted to Ing(t') equals H[PF(t)].

An ingredient in Ing(t) is called a real ingredient if it 15 equal

to H[P1(q) where P is some evaluation path from t and ¢ is in Ing,(ltl).

Theorem 7.7. (Invariance of Ingredients.) Let P and O be two evaluation

paths for t. Then for all p in Ing,(t), H[PI(p) = H[Q](p).
This is an immediate consequence of the next lemma.

Lemma 7.8.Let t be any term with rkit) less than or equal to n.

[. If Pand Q are computation paths from t to t° forming a diamond and

i in Ing(t') is real then H[P](i) = H[Q](1i).

[I. If P and § are computation paths from t to t' and iis in Ing(t') and is real
then H[P1(i}) = H[Q1(i).

The lemma 15 proved by induction on n and dovtailing I and II. Lemma 5.3

plays a major role.

g. Final Remarks.

The next step in this investigation extends our analysis to general

18

proofs in first order logic and full Peano Arithmetic. This means associating
with logical axioms the appropriate sets of ids (e.g. consider AD{E2A))

and determining the interline ids assocciated with the extrinsic commenting

of proofs. These ids will provide the means of constructing 1ist manipulating
procedures from proofs which will give rise to semantic interpretations for

these proofs.

It is also striaghtfoward to apply these ideas to other deductive-compu-

tational systems such as the lamda-calculus and Curry's Combinatorial Logic.

