MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

December 1974
A L. Memo 313 LOGO Mema 7

LOGD MANUAL

by

Hal Abelson
Hat Goodman
Lee Rudolph

ABSTRACT

This document describes the LOGO system implemented for the FDF 11/45 at
the M.I.T. Artificial Intelligence Laboratory. The “system” includes not
only the LOGD evaluator, but also a dedicated time-sharing system which
seryvices about a dozenm users. There are also various special devices such
as robot turtles, tome generators, and CRT displays.

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory's educa-

tion research is provided in part by the National Science Foundation under
grant GJ-1049,

1. INTROCUCTION
Thia document dascribes the LOGD system implemanted for the POP 11745 at
the M.1.T. Artificial [ntelligence Laboratory. The "system” includes not
only the LOGOD evaluator, bul also a dedicated time-sharing system uhich
services about a dozen users. There are aleo various special devices auch
as robot turtles, tome gemerators, and CRT dieplays.

He feel obliged to begin with some disclaimers. This manual is
intended only as a language description and rot as a primer. .I-I.e hope it
will be useful as a reference for users of our asystem and as a3 source of
l:urla:ua-risc.ln tor users of other LOGO systems, Secondly, we believe that the
syntactic detaila of a computer ldnguage are of insignificant importance
corpared to considerations of hou the language im uwsed. Anyome who reads
this paper to find out "what LOGO ie like" should mot neglect the papers of
Papert and Solomon. Finally, the LOGD language is part of an ongoing
research project. It is to be fully expacted that the |anguage
specifications will change with our experisnca.

While there have bean numerous contributors to the development of
the LOGO. language, those specifically .:un-:-urﬂud With the FOP 11
implerentation are: . .

Ron Lebel, time-sharing system; Made Williams, LOGO evaluator; Joa
Cohen, time-sharing inputfoutput; Nat Goodman and Hal Abelsom, display and
mugic boxy FRon Lebal and Roger Hale, filing system. As part of the POP1I
programning project we have developed a POP 11 debugping program which is
similar but more powerful than DEC*s OOT propram. This was done by Radia

Periman. Our display controller was depigned and built by Tom Knight.

There is also an essentially compatible LOGO evaluator which has been
implemented in (M. 1.T."s veraion of) LISP by Ira Goldstein and Henry
Liebernan. UWe nust also cite the contributions of Richard Greennlatt on
matters of system design and, of course, Seymour Papert and Cynthia Solomon
on language specification. .

Hal Abelson

Hat Goodman
Les Rudaiph

2. BRSICS

This section introduces some basic LOGO vocabulary., LOGD
statements are typed in at the console. You type a line of instructions
and the computer executes it lor types an error message). The computer
indicates that it e ready for an instruction by typing a question mark.
Your line ef instructions Will not be executed untll you end the line by
typing a carriaga return.

The basic "built-in" words that the computer understands are called
LOGD primitives. These are described in thie manual. The most important
primitive is TD, which allows you to teach the computer new words. These
private words that you teach the computer are called procedures.

Primitives and procedures often take one or more inputs. For
exanple, PAINT is a prinitive which takes one input and prints it on the
console. .

FAINT fs an example of @ command. A command is an imperative. [t
tells the computer to do something.

Other primitives may output. They provide a value which can be
used as an input for another LOGO word. SUM, for example, takes tuo

¥

numeric inputs and outputs their sum. Procedures which output are called
gherations. -
All complete LOGD statements are inperatives, so that an operation
cannot stand by iteelf. [f you tupe:
=R 17 28
LOGD will respond with the error message:

YOU DON™T SAY LHAT TO DO WITH &3,

in contrast:
FRINT S1H 17 26
is a8 complete atatement. The computer will print &3,

If you make a tuping mistake you can press the "delete” or "rubout®
key., This cavses LOGD te ignore the previous character., 1t indicates this
by retyping the ignored character with slashes around it. Pressing rubout
again uill esuse LOGD to igrore the character before that, and so on.

Another feature is the "panic button” ct!-G leontrol G, Tuping ctl-G
in the niddle of @ connand lime causes the entire |ine to be i grared,
Tuping ctl-G while LOGD is executing a command causes it to stop and
returne contrel to the teletype. This is especially useful i+ You write
procedures which do not atep by thenselves,

Mote: The "ctl” key is |ike
a shift key. In order te
tume cti=0, hold down the
“ctl® wey and type G. In
Ehis manual we sarelines
use ~ to indicate "control.”
Thus *G stande for contral G.

Some primitives have abbreviations, |4 you type the abbreviation as

part of a procedure |ine, LOGOD will axpand it to the full fors.

3. DEFINING AND EDITING LOGD PROCEDURES
3.1 TD and EDIT labbreviated EO)
Both commands put you into editing mode. Their inputs are
restricted as fol lows:
il Ho LOGO primitives
ii) For EDIT--gne input, the name of a procedure
which ia already defined
iiil For TO--variable nunber of inputs: all but
the first are dummy variables which stand
tor eventual inputs to the new procedure:
the first input may be any name which is
not already the name of a procedure.

For more on inputs, see Section 3.7 belou.

3.2 END

Takes you out of editing mode. .

3.3 RESTRICTIONS 1N EDITING HOCE

Hhile you are defining/editing & procedure you can still do most
of the things gou usualliy can do in the LOGD world: use a3 display, a
turtle, a music box, or other device; evaluate procedures--even the one you
are in the midst of defining/editing, Howsver, you cannot define/edit any

other procedure. That is, T0 and EDIT are invalid commands once you are in

editing mode.

3.5 THE EDIT BUFFER

Lines you type pass inte the procedure definition via an edit
buffer. & line is put into the edit buffer if the Firat word on the |ine
iz a line nurber la uhale number greater that @ and less than 327R8). [t a
lime nurber is noi present, what you type in will be regarded as standard
LOGD input, with the above restrictions. Every character and space you
type after a line nurber is put into the buffer wntil you type a carriage
return. [A machine-executed carriage return--uhich happena automatically
if you type too many characters on one line for the conaole, or whatever,
to accommodate-- doesn't have thia effectl. The succeeding carriage return
will then empty that buffer. into the procedura definition.

Harning: The buffer can only accomnpdate 1928 characters and apaces, a
[ittle over three |ines on the teletupe; puttimg im more tham that
will jam thimgs up and leave you mo recourse but “G.

Three other ways to get things into the edit buffer are EDIT LIKE,
EDIT TITLE and ~Y. EDIT LIMNE (acbreviated EDL), a single command despite
the space, takes one input, a line numoer, and if that line exiats it is
put in the buffer, EDIT TITLE {abbraviated EOTI takes no inputs, and puta
the title of the procedure you are defining into the buffer. ™Y putas the
previous line you typed ints the buffer [(handy if you forgot to type a line
nurber, for exanplel.

Hhern you kave something im the adit puffer, wou cam manipulate it
uith these special contral characterad

L prints out and stores the next character in the buffer

“N prints out and atores tha next word

"5 skips--i.e., deletes the next word

“f prints out and stores the rest; and at any time (not just in
editing mode] you can use, besides the rubout or delete key which deletes

the FII‘E'I'-HJLPB characier,

“W which deletes the previcus word,

3.5 ERASING

When you are not in editing mode, ERASE l(abbreviated ER) takes one
input, @ procedure name, and removes that procedure from your workspace.
When you are in editing mode, it does the same, but you are not allowed to
ERASE the procedure you are defining/editing, In editing mode only, you
can use the command ERASE LINE f(abbreviated ERL). 1ts input is a line

mumber, and it erases that line.

3.6 PRINTING OUT

When uou are not in editing mode, FRINTOUT (sbbreviated PO] takes as
input any procedure name, and prints out the definition of that Frm:.e:h.lr'z.
By default, if it is given no input it printe out the definition of tha
last procedure you defined or edited. Hhen you are in editing mode, it
works the same; its default input is the procedure you are
defining/editing,

In editing mode only, the commands PRINTOUT LINE (atbreviated POL) and
FPRINTOUT TITLE (aboreviated POT) cam be used; the first takes ome input, a
line mumber, and prints out that line; the second takes no inputs, and
prints out the title of the procedure being edited. MNeither command |-:|ul:|

anything in the edit buffer.

2.7 DUnAY VARTABLES FOR IWPUTS
After its first input, TO can take further inputs of the form f<words.
Each of these stands for an input which the defined procedure will have to

be given. See ewanples throughout the manual,

3.8 PROCEDURES WHICH EDIT PROCEDURES
It is possible to use any of the commands discussed above within a _
LOGD procedure. They work the same, with a single exception: if the waer,
werking at top level, tupes END to finish defining a procedure, LOGD
replies FOD DEFINED fuhere FOO is the titlel. This is not printed cut when.
the editing procedures are called by other procedures: a great convenience.
Mote, houwever, that the restrictions of Section 3.3 aluays app ly=-you

cannot be defining more than one procedure at a time. (Sem Section 18.2

for more detailal,

3.9 COMMENTS

Text enclosed betueen exclamation points or betueen an exclamation

point and the end of the line is ignored and can be used for comments.

4, HOROS AND LISTS OF WORDS
.1 WORDS
Im LOGD strings of characters are called words. A word may be
indicated by prefixing it With 8 quote, as in:

PFRINT "WHOOPIE
HHOOFIE

The word consists of all the characters between the guote and the
fol louing space. (A carriape return also terminates words.] Therefore a
word may not contain . a space as one of its characters.

The PRINT command [atbreviated PR) can be wsed to print words as
indicated above. FPRINT takes one imput and prints it followed by a
carriage return. A very similar command is TYPE, which acte just like
FRINT except that it doss not inciude the carriage return. A word may
include amy printing character except space, carriage return and left and
right sguare brackets [and 1. In particular, a word may contain guotation
markst

PPRINT "A™
it
E‘FRH‘JT e
A word may alse contain no characters. Such a word is called "the

erpty word" and is indicated by a ouote followed by no characters:

TPRINT "

A percent sign in 3 word Is printed as a space. This is useful in drawing

patterns on the teletype, as

10 80X

18 PRINT =My
£B PRINT "K3zEx
3B PRINT "Xyyx
S8 FRINT “Wyyiw
S8 PHINT "MMXXX
END

70

KN

LA |

¥ X

XX

KK

4,2 LISTS OF WORDS

Urdered cellections of words are called lists, (LOGD also allous
more general lists as descrived in Chapter 15.) A list may be indicated by
giving the words in the list, separated by spaces and enclosed in sQuare
brackets.

FRINT 1 &M & LISTI]
[A1 & LIST

Notice that the words }n the list are not guoted and that the
gurrounding brackets are not printed, The spaces betueen the words ET T
only to separate the words and, atrictly speaking, are not part of the
list. Extra spaces are ignored by LOGO:

IPRINT [EXTRA SPACES)
EXTRA SPACES

A carriage return within a liat is eqguivalent to a space:
PPRINT [MORE THAN
DNE
LINE]
MORE THAN ONE LINE
Going alomg with the empty uord we have the anpty list which con-=

tains no words:

PPRINT [1

Hote that the empty word is & word and the emphty list is a list and they

are not the same. (See& also Section 4.5.)

4.3 NANTPULATING WORDS AMD LISTS
There are a nusber of operations for manipulating words and |ista:
COUNT
Takes one input. [1f the input is a word it outputs the number of

letters in the word. [f the input is a list it outputs the number of words

in the lisat.

FIRST f{abbreviated F)

Takes one input. If the input iz @ word 1t outputs the Firat
letter of the word. [f the input i=s a list It outpute the first word of
the list.

LAST (L)

Similar to FIRST. Outputs the last letter (resp. word) or a word

lresp. list)
BUTFIRST (BF]

Outputs all but the first letter of 8 wordy all but the first word

of a lisat.

BUT!._ﬁE-T (BL)

Similer to BUTFIRST. FIRST, LAST, BUTFIRST, amd BUTLAST may not be
applied to the empty word or the empty |ist.

These operations take words and |ists apart. For putting them

together ue hawet

LORD

Takes tuo inputs, both of which must be words and puts them
together to make a longer uord:

PPHINT UORD "NOU "HERE
NOWKERE

SENTENCE {abbreviated SEN

Takes tuo inputs. 1f both are lists it puts them topether to make
@ longer list. |f ene is a word and one is a list it adds the word to the
list. 1f both are words it makes a list out of them:

SENTENCE [THIS [S5] [A LIST] owtputs [THIS 15 A LISTI
SENTENCE "HANGD "CHUTNEY outputs [HANGD CHUTHEY]
SENTENCE [MATH [S] "VECCH outputs [MATH 1S YECCH)

Exarpla:

T0 REPLACE :LET :L1 :L2
18 [F (LET = :L1 OUTPUT :L2 ELSE DUTPUT :LET
END

TO LISP :M

18 IF M4 = " QUTPUT *

28 OUTPUT WORD REFLACE FIRST :M *5 "TH LISP BUTFIAST :M
END

TO MULTILISP =5

18 1F :5 = [] OUTRUT [

28 DUTPUT SENTEMCE LISP FIRST :5 MULTILISP BUTFIRST :5
EMND

PFRINT MULTILISP [THIS IS A RECURSIVE PROCESS)
THITH ITH & RECURTHIVE PROCETHTH

4.4 REQUEST AND TYPEIN; MULTIPLE INPUTS
The LOGO operation REOLEST waits for the user to type in a list and

then outputs that 1igt,

T0 AGREE

18 PRINT [TYPE SOMETHING ¥OU LIKED

Z8 PRINT (SENTENCE [I LIKE] REOUEST (TDDI})
END

PAGAEE

TYFE SOMETHING YOU LIKE

»PICKLE JELLO WITH PEANUT BUTTER

1 LIKE PICKLE JELLO WITH PEANUT BUTTER TOO

In the above exanmple the pronpt character > indicates that LOGO is
waiting for a AEQUEST to be typed inm. The list typed into a REOUEST is not
grclosed in brackets, and is terminated by & carciage-returm,

The above exanple alao illuatratea that the SENTEMCE ocperation can
be made to take more than tuo inputs by enclosing the word SENTENCE and all
the inputs in parentheses. SENTEMCE then combines all the inputs into one
ligt., UWORD, FRINT and TYFE can also take multiple inputs in this way.

Note: Do not confuse parentheses and

sguare brackats. Parentheses indicate
grouping of inputs, Square brackets
are more like guotation marks. They
indicate thal something is to be taken
literally as a list.
FEQUEST aluays outpute a list, even 1f it is a |ist containing cne

(or Aol words. The operation TYPEIN ia |ike REQLEST ewcept that it outputs

a word, TYPEIN is equivalent to FIRST of REOQUEST.

4.5 FPRINT

Under the LOGO printing conventions the empty word and the empiy
liet both print as a blank line. Likewise a word and a cne-uord list print

the came:

TERINT "MUMELE
MUMABLE

FPRINT [FMLUMBLE]
MUMBLE

While this is convenient for writing conversational programs it can
also be misleading, especially uhen tracking down bugs which may come from
EnnFUEI'IfIg- words and lists. To help here, LOCD provides the command FPRINT
(“Full PRINT®F which ia juat |ike FRINT except that it prints the brackets
surrcurding lists,

FFPRINT [MURBLE]
(MUNBLE]

S. NUMBERS AND ARITHHETIC
5.1 INTEGERS
The largest integer that is accepted by LOGO arithmetic is
2,147,483,647, The smallest nunber is -2,167,483.647. (Note. however.

that mumbers are written in LOGO without commas.)

5.2 [INFIX FOAMS

Each of the pasic arithmetic operations has an infix form linfix
because the symbol goes betuesn the operamds)i

+ for addition [42

- for subtraction, 1-2

for multiplication, l=2

! tor the guotient of integer division, 3/6 outputs B

% tor the renainder of integer division, 3\4& outputs 3

- for unary minus, (This is not technically an infix operator, but

"t use is effectively the same as subtracting the operand from zero.)

5.3 PRECEDENCE
=, /.and \ have a higher precedence than + and -3 that means that
./, and %\ are evaluated before + and -:

FPRINT G#5-4ab
is eguivalant to
FFRINT (425) - (4a8)
28 - [&a5)
e = 28
%]
2

As opposed to

TPRINT 4m(S=ir) S
Gx] 5
G w5
2B
28

All these infix cperators have higher precedence than prefix ones which is

why all the arithmetic gets done before any PRINTing happens.

G.4 NUMERICAL COMNDITIONALS
¢, >, and = are infix forms of operations that compare tWo
numbers. < means “less®. < outputs TRUE if the first number is less than
the second, FALSE otherwise. = means "equal®. > means "greater®.
These work in the same manner as < @
IPRINT 180 = 188
TAUE

PPRINT 188 > 188
FALSE

¢ , » , and = have lower precedence than the other arithmetic
operations, so when performing a comparison the arithmetic ia done firat.
These. operations are usually used uith the LOGD conditionals, IF and TEST
{see Chapter 3.

< and » require that their inputs be numbers.

“AFFLE = "PEAR

s eonsidered nonsense and Will gensrate an error.
= , housver, can be used to compare any two LOGOD objects. For example,

“FOOEY = “FOOEY

does make ssnse and will work,

5.5 PREFIX FORMS
Each of the arithnetic operations has a prefix form (prefix because

it comes before the operands):

sun
DIFFERENCE
FRODUCT
DUDTIENT
REHAIMNDER
GREATER
LESS

ECUAL

B AW = T W 1

U amd PROODUCT make wee of the variable number of inpute feature
{gee Section &.40.
FFRINT [5LF 561
3E

FPRINT (S 1 23 4567)
28

5.E RANOOR

Takes no imputs, outputs a single digit randor intager.

5.7 FLOATING POINT NUMBERS

In addition to the integer numeric form already mentioned, LOGO
aleo accepts floating paint nunbers. These nunbers can be expressed in tuwo
different formats tor both input and output. These forms are standacd
decimal motation and exponential motation. Exporential notation is of the
following form:

<number><E or N»<axponents

where <nunbers [called the mantissa) ie either @ floating point Aumber in

standard decimal form or an integar, and <exponent> is an integer

{representing a pousr of 18}, 1f the exponent is positive, the letter E is
used to separate the nunber from its exponent; if the exponent is megative,
the letter N is wsed. There should be no spaces betusen these three
elerents of exponential notation. For decimal motation, a mumber s
uriften in almpst the same form as an integer, but there must be a decimal
point at some pesition in the number. [thia decimal point is not
present, the nunber will be regarded as an integer., Here are some examples

of valid floating peint mumbers in exponential form:

Jeé SN2

3. 6ES 4,563M3
-4E4 -4NS

-2. 532583 -253, 258N2

The following are not in correct exponential form:

3E5.1 IThe experent is not an integer)
2.7E=1 (The letter should be NI
18 El {There should be no space)

The follouing numbers are examples of floating point numbers in
decimal motation:

g

4.56

258,263

. BEDBERREZ5T

The output of a floating point number will aluays be in one of
these two formats, Usually the output will be in decimal motation with
non=significant and trailing zeros renoved. [f the number is too large or
too small to be represented with 7 digites and & deciral point, it will be
autonatical ly converted to exponential notation (with one digit of the
nantissa to the left of the decimal pointl. The maximum megnitude of a

floating point nunter in LOGD is approximately 1.7A14E38. The mininun

magnitude I8 approxinately 2.3387N3Y lhowever, this canmot be entered fron

a console=- the smallest magnitude that can be given as input to LOGO is
1.M381. These limits are the same for both positive and negalive numbers.

All arithmetic operations on floating point nuwbers yield floating
point nunbers. [m order to force conversion of a floating point number to
an integer, the INTECER ocperation is used. [NTEGER takes ome input, a
floating point nunber in decimal o~ exponential forn, and outputs this
number converted to an integer. [(Remember, however, that INTEGER is subject
ko the standard LOGO limite on integer size, and conversion of floating
point mumbers exceeding this size will fail.l In order to force the

eonversion of an integer to a floating point number, aimply multiply by 1..

5.8 WUMBERS AS WOADS

Mumbers are considered to be LOGH words lsee Chapter &4); all word-
panipulating operations work on mumbera, too.

PPRINT FIRST 45678

G

TPRINT BUTFIRST &45&7E

SE7E

FPRINT (UORD 12 34) + (WOAD S& 781

B312

Integers or fioating point nunbers exceeding their respective size
limits are still treated as words but cannot be used in arithmetic. Ewven

though numbers are words they do not have to be quoted whenm tuped in.

.3 MWUMBERP
Takes omne input. [f the input i & number in the allguable range
for its respective type, NUMBERP outputs TRUE. [f the input is a number

putside that range, or isn't a number at all, MUHBEAP ouwtputs FALSE.

&. ARRAYS
Arrays in LOGD are of ome, tue or three dimensions. There are

three types of arraus-—- integer, floaling point, and pointer.

E.1 DEFIMEARRAY

To create an array, the command DEF INEARRAY (abbreviated DEFAR) is
used, [Oepending on the number of dimersions, DEFIMEARRAY takes up to five
inputs: the name of the array, the dinenzions of the array, and the array
type (B for integer, 1 for floating point, 2 for pointer). 1# the array
has more tham one dimension, the command EEFH'EFIH.H? and ita inputs must be

enclosed in parentheses.

E.2 ARRAY SIZE and SPACE ALLOCATION

The maximun size of arrays is dependent upon the current amount of
array space. Array space is normally allocated to allow approximately 2500
elements in pointer arrays, and half this amount in integer and fleating
point arrays. The total amount of space used s dpproximately egual to the
sim of the numbar of elements in each array, with pointer array elements
only using half as much space as integer and floating peint, [However, it
should be noted that every time an array i9 created some extra space is
used to store the description of that array, making it more efficient
regarding space to use single large arrays uhenever possible.)

It is possible to allocate exira space for arrays by using the
SETASIZE command, SETASIZE takes one argument, the amount of space to be

allocated, in werds levery uord stores one pointer array element, every tuo

words stores one integer or floating point array elementl. The maxinune
input to 5ETA§[EE iz approxinately 11889, which makes it possible to e=pand
array space by 8 factor of three. One important mote about SETASIZE-- the
use of this command involves a re-initialization of the size of the user’s
wWorkspace, which means that a new "HELCOME TO LILOGO" message will be
printed upon completion of the command. Thus, amy use of SETASIZE should
be invoked before using the filing systen in order to save the trouble of
having to read files again, etc.

Arrays are not saved in the filing system {see Section 11.1). They
are autoralically erased when you type FELLD or GOODBYE to LOGD, and so
they must be re-created sach time you wee LOGO. Houever, they cam be
erased at any tine by wsing the command EFASE ARAAY (abbreviated ER ARAAY).
This comnand takes as inmput an array name and erases |1 fron your Workaspace
{see Section 1B.2). The cosmand ERASE ARRAYS (ER ARRAYS) takes no inputs
and erases all arrays from your workapace,

6.3 CET and STORE

Hhen an array is created, all the elements are set to zero. 0o
order to assign values to specific elements of lhu.arrig. the STDHE'cnnuagﬂ
ig wsed, GET is an operation used to reference the value of & specific
element, 5STORE takes the same number of inputs as the corresponding
OEF INEARAAY command; its inputs in order are: the array name, the
coordinates of the desired element, and the valus to be assigned to the
element. GET takes one less input than the corresponding STORE command;

its inputs are: the array nene, and the coordinates of the desired element.

Unlike STORE and E.EFHEAHHFI'I", GET outputs a value. As in DEF INEARRAY, GET
and STORE and their respective inputs must be enciosed in parentheses |f
the af‘ra:g is of more than ore dimension,

It is important to renesber in using the GET and STORE operations
that LOGD uses @-origin indexing, i.e. for any dimension of length n, the
elements are numbered B to n-1. For exanple, the fourth element in a
single dimension array is given coordinate nurtrer 33 the element in the
tourth rou, third coluen of a tuo- dimenaional array FOO is addressed "FOD

32 : and %0 on.

6.4 PRINTING OUT ARRAYS

ASIZIE is an operation which takes one input, an array name
lquoted). and outputs the dimensions of the array. The command PRINTOUT
ARRAY (PO ARRAY) takes as input an array name amd prints out its type and
dimensions. FRINTOUT ARRAYS (PD ARRAYS) takes ng inputs and performs PD
ARRAY for all arrays curently defined in wour workspace,

Exanples of array operations:

*I0EFAR "B 2 2 @)
PROICET "B 1 1)

g :

PISTORE "B 1 1 7}

FR {GET "B 1 1)

7

PR IGET "B 1 2)

INOEX REFERENCE OUT OF BOUNDS
TOEFAR "A ZPBA @

WOT ENOUCH ARRAY SPACE
JSETAS]ZE EPRR

HELCORE TO 11L0GO
YOEFAR “A Z8e@ @

0 ARAAYS

A SIZE Ze@d TYPE INTEGER

7. NARING
7.1 HAKE
The LOGO cowmand MAKE is used for naming. HAKE takes tuo inputs:
the first is the name and the second is the thing being nansd.
MAKE "X Z7
will assign. the name ¥ to 27, & nan; rust be a LOGD word (see Sectionm &,1
about words). 7 is the value or thing, and may be a nunber or 3 word or a

list or anything else.

The use of the synbel : [pronounced "dots") as a prefix to a word

ratrieves the thing or value of a word,

TPRINT ¥
27
TAKE “MYT 27
[The NAME] (The THING)
PPRINT 1MYZ
27

THIMG is an ewplicit LOGD primitive that does what i does, i.@., it
extracts the thing from a word,

PPRINT THING "XYZ
27

PHAKE "RABBIT "HARE
PPRINT :RABBIT

HARE

TRRINT THING :RABRIT

Will generate an error, because the word HARE has no thing.

Let's give HARE & value:

TAKE "HARE [A B C]
TPRINT tHARE
(A BC]

Mo,

TPRINT THING :RABBIT
[a B CH

The backarrow symool [« is an infix form of MAKE

PNAME = "REALNAME
PiMAME = ZT

TPRINT :AEALNAME

Z7

TIUDRD "REAL "NAHME) « 27

works, too. 5o does:

PUNIH + B

7ILORD "ARRAY (KU - "ROGE
PFRINT THING (MORD “ARRAY :KUM)
ROSE

It is alsp possible to use the MAKE command to give multiple names
to the same value. Thig is done in the fol lowing manner: fo give two names .
A and B the sane value, we say
"& "B hfﬂﬂ'ul;
This can be done for an arbitrary nueber of names {subject only to
the limitation on the length of ome lime in LOGD. Hultiple MAKE can be

performed only with the infix forn of the HAKE command (+].

7.2 LOCAL AND GLOBAL NAMES

The inputs to @ procedurs are local names, that is, the name is the
procedure’ s oun private name. For exanple:

770 [KC :&

=18 MAKE "B 1A+l
2B PRINT 1A
=END

IMC DEFINED
MAKE "A 3

7INC 3

4

TPRINT :A

3

m the above example, the name A in the procedure has nothing to do
uwith the name A at the top level,

In contrast, names which are not inputs to a procedure are global.

Compare with the previous example,

FT0 INC

=10 FUEE "& sAs]
=28 PRIMT :&
=EMO

[NC DEFI1MED
THAEE "A 3

TING

4

TPRINT :4

i

Both uses of A refer to the same global variable.

It is possible te cause a name to be local to a procedure even §f
it s not an input, This is dome with the LOCAL command, LOCAL takes one
input, the mare to ba declared local.

Example;

T0 COUNTSOUARES ¢
1B IF :¥ =8 5TOP

2B MAKE M50 :X = :X
38 COUNTSOUARES -1
48 PRINT 1450

END

PCOUMTSOUARES &

1

1
1
1
Here ¥50 is a loeal variable. Compare with

TO COUNTSOLARES :X
5 LOCAL *X=0

18 IF «¥=-8 5TOP

2@ MAKE M50 31X x X
38 COUNTSOUMRES :X-1
4@ PRINT X0

END

FOOUNTSOUARES &
1
&

3
16

Here sach invocation of countsguares has its oun X50.

Wamea local to 3 procedure are defined in that procedure and in all

supbprocedures funless the subprocedwre has its oun local weraion aof the

gane mamal .

B. CONTROL

&.1 0

This command nust be part of a procedurs, [t takes ane input, a

l'ine nunber in that procedure, and transfers contral to that lina,

8.2 5TO0P

This also belongs in a procedure. |t terminates execution of a

procecure and returns control to the calling procedure.

4.3 TOPLEYEL

Thie returna control in a procedure inmediately to the top leval.

&.4 OUTPUT

This command can only be used in a procedure; it returns control to

the calling procedure, and outputs ites argument. By using DUTPUT the user

can define procedures uhich are operations.

3. CONDITIONALS AND RELATED CORMAKDS
9.1 Conditionals are operations which ouwtput either TRUE or FALSE.
You can make gour own, if you want, LOGD has three classes of readumade
condi tionals:
al Numerical conditionals, e.g. LESS. (See chapter 5.) But note
that EQUAL and = can also take non-numeric inputs.
bl Legical conditionals. These take inputs which evaluate
either to TRUE er to FALSE, and perform logical operations on themg thus
they are used in conjunction with other conditionals. They are:
BOTH-- takes two inputs: outputs TRLE if both evaluate to
TRUE, outputs FALSE if one or both evaluate to FALSE.
EITHER-- takes two imputs; outputs TRUE if one or both
nvaiuate te TRUE, cutputs FALSE if both evaluate to FALSE.
WT-- takes one input; outputs TRUE if the input evaluates
to FALSE, and vice versa.
c! Predicative conditionale. These see uhether or not their
inputs evaluate to a specified kind of thing., They are:
WORDP-- outputs TALE if the input evaluates to a word,
FALSE otherwise,
LISTP== putputs TAUE if the imput evaluates to a list,
FALSE otherwise.
.EI‘PT'H'F'-- ouwtputs TRUE if the input evaluates either to the
empty word. or to the empty |ist, FALSE otherwise.
NUMBERP-- outputs TRUE if the input evaluates to 3 number,

FALSE etherwise,

Examples:
MAKE "X [} MAKE "7 37

FPAINT WORDP ;¥
FaLSE

TPRINT LISTP :X
TRUE

PPRINT LISTP 12
FALSE

PRINT ENPTYR X
TRUE

TPRINT NUMBERP COUNT =X
TRUE
9.2 Conditionals can be iterated, that is, their inputs can be
candi tionala:
T ANYOF & B :C
EB OUTPUT EITHER :A EITHER :B sC
MO

TO STACKE :4 :B
18 DUTPUT EITHER BOTH :A NOT :B BOTH :B NOT =&

Farentheses can be inserted, if desired. They might clean up
STROKE

L8 QUTPUT EITHER (BOTH :A NOT :B) (BOTH :B NOT :A)
END

There are also a number of standard conrands which are used in
conjunclion with conditionals: they all demand that their inputs evaluate
to TRUE or FALSE,

allF and ELSE, [F takes one input; if the input evaluates to the uord
THUE, the rest af the LOGD fine is evaluated; if the input evaluates to
FALSE, the rest af tha Hn.g is skipped., Houwever, if ELSE appears in the

line, this behavior is modified in the obvious way.

10 CHECK :M

18 IF WOROP tU PRINT "WORD ELSE PRINT *NOWORD
EMD '

PCHECK “FOO

HORD

FCHECE [THIS LIST]
NCRIORD _

IFs for [F=-ELSE pairs) can be stacked within themselves,
TO BETTERCHECK U
L& |F NOT EMPTYP W THEN (]E WOROP :M THEN PRINT “WORD

ELSE PRINT "NOUORD) ELSE PRINT "EMPTY
END

Here, THEN is a ‘neise word" which does nat in itself affect the
evaluation of the LOGD espression in which it appears, but helps to make
the suntax of the expression more "natural®, The parentheses are also
optional, but help to make the expression easier to read.

BITEST, IFTRUE, and IFFALSE., TEST uwaluﬂlu_itl argument (to TRAUE or
FALSE!D and puts the result in a "test box", Until the next TEST, IFTRUE
labbreviated IFT} and IFFALSE (abbreviated IFF) will look into the box and
cause conditional ewecution of the rest of the Tine in uhi-.-;h they appear.
There -IE.I no device analogous to ELSE which allous conditional esxecution of
only & part of the rest of the line, Sone non-gbvious properties of the
test box are: first, 1f no TEST has been made, the bex contains FALGE by
default: second, the bew is unigue-- & new TEST, althowgh it may have been
executed conditionally, changes the contenks of the box abaolutely.

Each procedure has 1ts own "test box", which ig atrictly lecal to
that procedure. TESTs which are made in & subprocedure do mat afiect the
test box of the calling procedure, and conversely.

IFTRUE and [FFALSE can appear anyuhere in a procedure, and they do

not have to be on the same line (indeed a command such as IETRUE "FOO

[FFALSE "BAR can never cause BAR to be avaluated,)

3.3 TRUE and FALSE are LOGO words. It ia perfectly valid to gay
TEST "TRLE
or .
TEST WORD "TR “LE
Remember that all words which are to ba taken literally must be
guoted on typein (except $or numbers):
TEST TRLE
Will expect you to have 3 procedurs maned TFME.. Alag
TEST [TRLE]

in an error. (The input to TEST must be a word,)

18, WRESPACE

Hhen you defing a procedure or create a name by wsing MAKE, it
pecomes a part of your workspace. You can think of your workepace as a
chalkipoard or 51:;at|:hn-a|:| containing all the procedures you are uvaing, The
LOGO file system allows you to atore everuthing that is in uyour workspace
and retrieve it at some later time {ses Chapter 11}, Bsfore a procedure or
name can be used it must be in your workspace. To get something into the
workapace you must either typs it in at the conscle or read it in from a
LOGD file. There are also commands for examining and getting rid of

various parts of the workspace.

18.1 UHAT'S TN A HORKSPALCE?

PRINTOUT (abbrevizted PO) is & command swhich prints out various
parts of your workspace. To see tha text of a procedure, type PRINTOUT
followed by the procedure name. (The procedure name is not gquoted.)

PRINTOUT TITLES (abbreviated PO TITLES or POTS) prints out the
titles of all procedures in your workspace.

FRINTOUT NAMES (abbreviated PO NAMES) prints out all the names in
Your wLorkspace. .

PRINTOUT PROCEDURES (PO PROCEOURES) prints out the text of all
defiped procedures.

PRINTOUT ALL PO ALL) primts both names and procedures.

(The PRINTOUT LINE and PRINTOUT TITLE commands are discussed under

editing. PRINTOUT FILE and PRINTOUT [NDEX are discupsed under filing, The

FRINTOUT AARAY and PRINTOUT ARRAYS commands are discussed under arrawys.)

The operation CONTENTS outputs a list containing the titles of all
procedures in gour workspace. MNote the distinetion betuesn CONTENTS and
PRINTOUT TITLES. The former is an ocperation, whila the latter is a
coammand.

A similar distinction exists betueen the comnand PRINTOUT and the
operation TEXT. TEXT takes one imput, a procedure name [(not guoted], and
outputs the text of the procedurs as a list. The lines of the procedurs

appear a5 sublists, The END statement is not included,

18.2 GETTING R10 OF PARTS OF THE WORKSPACE
The basic command is ERASE (aboreviated ER). ERASE followed by 2
procedure nane (not guoted) removes the procedure from the workspace.
There are also:
ERASE ALL Gets rid of all names and all
procedures.

ERASE PROCEOURES Gets rid of the procedures-- leaves the

nanes,

ERASE MAMES Gets rid of the names-- leaves the
procedures.

ERASE NAHE Takes one input, & name (quoted)!, and

gets rid of that particular name.
[ERASE LINE is discussed under editing. ERASE FILE amd ERASE [MDEX
are discussed under filimg, ERASE TRACE and ERASE STEP are discuased under

debugaing. ERASE ARRAY and ERASE ARRAYS are discussed unmder arrays.)

18.3 BUAY

The BURY command effectively "hides® a procedure and protects it
from accidental deletion, BLRY takes one input, the name of the procedure
to be buried {the conmand BURY ALL can alsc be used). Once a procedure has
been buried, it will naot appear in any PRINTOUT command unless it iz named
explicitiy. For example,a #ile FOO which has been been buried will not
appear under the commands POTS and PO ALL, but the command PO *FOO will
print I::u.t the contents of FOO. Thia property also holds for ERASE
commands. ERASE ALL will not erzse buried procedures, but [the name of a
buried procedure is specified in an ERASE command it will be erased. Ta
unbury a procedure. the command ERASE BURY folloued by the procedurs name

lor ALL) iz used.

11. THE FILE SYSTEM

The LOGD file system allows you to save (on disk) what is in oL

workspace and read it back at a later time. A yser may have many files at

once. The files are distinguished by the fact that they are named, A1

files belenging to a single user are grouped under that user's indes,

11.1 USE, REA&D, and LR[TE

The command USE specities the index wnder which LOGO gheu | d

reference files. All subsequent READ or WRITE commands will refer to that

index, until the next USE. USE takes one input, the quoted name of an

indew, which is @ uord of up te ten characters, For exanple, to reference

the files under the index ELOISE, type
USE "ELOISE

The LRITE comnnand creates files. It takes one input, the name of

the file to be created (2 word of up to ten characters). Into the fils

goes everything that is currently in the user’s workepace.
This is a common source of confusion. Hany users often think that
if they have, for example, a procedure named BEETLE, them
HAITE "BEETLE

will somehou save omly that one procedure.

Thias is not the case. All the

procedures in the workspace will be saved. The file will reraly have the
same name 33 one of the procedures in it.

1# the user already has a file with the same nane as the one to be
created, LOGD will first ask 1f the eld one should be erased and then wait

for a response 1Y or NI to be typed in. The old file nust be erased before

a ned file mith the same name can be created.

The READ command fahuu a file name as input and reads the contenta
of the file into the workspace. All procedures and names saved in the file
will then become defined in the workspace. [f the werkspace already
containg a procedure with the same name as one of the procedures in the
file, the procedure will not be redefined and the definition in the file
dill be akipped.

SHAPS [see Section 12.3) cannat be saved in files. If PIC, far
example, 15 the name of a snap, then writing out the workspace and reading

it back will cause :FIC to becons the empty word,

11.2 POl and F'EF'

These are commands which allow you to H!ﬂliﬁl.fi|!i uithout readinﬁ
them into the workspace.

FRINTOUT INDEX (abbreviated POI) takes ne inputs and pri-l'lt: the
rames of all the files in the index. (The index is specified by the |
previous USE command.) PRINTOUT FILE (PO FILE) takes a file name as input
and tupes the contents of the file. [t does not read the file into the
workspace, i.e., procedures in the file will not become defined in the
Workspace. |

ERASE FILE (ER FILE) takes 2 file name as input and gets rid of the

fila,

11.3 FILE SUBTLETIES

The description af the filing system so far, though accurate and

adequate for ordinary use, is incomplete. In fact, the LOGO file systen
has a tree structure. The commanda I/3E, REBD, HRITE, etc., as described an
tar, make use of that structure only implicitly. But they can be made to
use the filing tree nuch more explicitiy, and there are other commands not
yet discussed which allow a user to manipulate the treg -- pruning it,
adding bramches, stc.

Each user's index can be the root of a general tree structure of
files. This means that the index may not only contain files, but alse sub-
indices which centain files and sub-indices and so on. For example, the
index ELDISE might contain the files DAYL, MARBLE, and the sub-indes
DISPLAY which contains files dealing with Eloise’s display projects. In
this case, the file structure would be:

| ELOISE

OAY1
HARBLE
I DISPLAY
HALE
ORay
POLY

ete.

The I's specify indices., (Normally 3 nunber will appear after each
file name. This is just the number of storage blocks that the filae
occupies.) This tree structure is printed out by the PO TREE command,
(Mote that the tree ies actually upside doun, with the root at the top. For
this reason. the root of a tree ie often referred to as the "top level” of
the file system, while the branches are called the "lower levels", whers -

Bach sub-index represents 3 ned level.] POl does not print out the

contents ef subindices. In the above case, it would print:

ELOISE
DAYl
MARBLE

[DISPLAY

{The roat index doss not have an [printed before it.)

Each file in this tree structure is specified by a list starting
with the user name. This list gives the "path” down the tree from the wuser
name to the file., For example, to read the file DAAY in Elcise’s sub-index

DIZPLAY we could say:

USE "ELOISE
READ [OISPLAY DRAL]

or wa could say,

USE [ELOISE DISPLAY]
READ "ORAM

In general, the imput to the AEAD command 1s added onto the input
of the previous USE command and the uhole atring becomes the file
specification. [Hhat happena is that the USE command utahliahau-tha level
from which all following conmands are to be carried cut. Thus, if the USE
command refers only to the user nane, the path to a file contained under a
sub=index will be longer than if the USE command referas to the the desired
sub-index, We will see later hou this level can be changed without
repeating the USE command.] The inputs to WRITE, POF, and ERASE FILE all
work in the same way, MWhile POl prints out the index specified by the
previous USE comnand, FO TREE prints out a nore compiete version,
consisting of all of the tree contained below this index, including sub-
indices,

To create a sub-index, the CRINDEX command is used, This adds on

to the branch specified by the previows USE. For example, ELDISE'S sub-
index DISFLAY was created by typing:

LSE “ELOISE
CRINDEX "DISPLAY

To then create a sub-index of DISPLAY named PLOTTER, we could
sinply say:

CRINDEX [DISALAY PLOTTER]

Te get rid of an index use the ERASE INDEX command. This takes one
input which specifies, in the same manner as the above commands, the index
to be erased. An index may not be erased unless it is emphy, i.e,. .
contains no files or sub-indices.

Once an indes has been created, it is possible to adjust the root
of the file tree =o that all filing commands refer anly to those files and
indices contained in the tree below a specified index. The command which
does this is SETIMIEX. SETIMDEN [(acbreviated SETI) takes one input
speci fying an index uhich will be the root of a new tree forming some p;rt
of the uhole file tres of the workspace. MAs before, the input aspecifies
the path taken down or up the tres from the current root to reach the
desired index. [f mare than one level of indices is involved in the path,
a list is mecessary to specify the whole path. However, if the desired
index is just one level above or below the current root, a single word is
sufficient to specify the path.

' Once an index below the user name has besn eatablished as the
current root, all commands refer ;rllg to that part of the tree belouw this
ned index. For exanple, let’s consider Eloise’s file system again, only

thig fime with a feu more branches added:

ELOTSE
[DOISFLAY
ALK
DRAM
POLY
[ALGEBAA
FACTOR
I HATRIX
IHMYERSE
In order to make ALGEBRA the new root index, the command SETI “ALCEBRA s
used. The neu tree lpeinted out by PO TREE) looks like this:
ALCEBRA
FACTOR
[MATRIY
INVERSE
Hotice also that files not in this part of the tree cannot be read
Hithout going back up the "branch” and down another until the appropriate
index under which the file is contained is reached. For example, tuyping
READ "POLY will return an error message. "FILE MOT FOUND", since the path
name has not been ful ly specified.
In order to move the current root back up the tree towards the main
directory name, the input ** is uwsed. The up-arrou can be used in liats
just like index names, so that 3 list containing n *'s used as input to

SET] moves the current root up n levels. Thus, in the above example, in

order to read FOLY, the command READ [POLY] l1a used.

11.4 OPEN FILE MANIPULATLON
+OPENH takes one imput, a deaired file name lguoted]l. [This file
does not have to already exiat im the flle system.) .OPEMJ opens the

selected file lor creates one if it does not already exist) and alious it

to be written into, atarting at the beginning of the file. [f the filae
already exiats in the filing system, the user will be asked to delete it
before writing, since the old infarmation contained in the file will be
Hritten over by the new input to the command +FILEP, .

LFILEF is used, once the file has been opened for uriting, to
perform the actual uriting, .FILEP takes as irput a list containing the
desired information to be written into the film. Each time .FILEF is usad,
a ned line {uith a maximum length of 198 characters) is created in the
file. The input to .FILEP can alse be a procedure nare [unguoted), in
uhich case the procedure is exscuted and its output is written into the
file. [f there is mo output, nothing is written.

-OFENA opens a file for uriting much like .OPENY, but all
information uritten is added [appended) to the end of the file. None of
the original contents of the file are altered. .FILEP works in the same
manrmer as before,

UPENR i8 used to open a file for readimg. 1t takes one input, the
desired file name [guotedl. The command used uith .OPENR to do the actual
reading ls .FILER. Unlike .FILEP, .FILER takes no inputs buf returns on
output. This output is the current line of the file being read. Ewvery
time & file is opered for reading, an internal pointer is set to the first
line of the fila. Each time .FILER is used, this pointer is incremented as
that the next line will be read with the next use of ,FILEA. When the end
of the file is encountered, one Blank line will be printed out by .FILER,
and then the file uill be automatically closed. In order to read the fila

again, .OPENA must be used again. [f the current |ine of the file is a

procedure name, that procedure will be executed. [(This fact emables a user
to ewecute procedures “implicitly® while reading a file. It is utilized
py the INIT file: see the LOGIN command.) Any word encountered uhich is
not part of a procedure definition or is not a LOGD command is assumed to
be a procedure name. 1f such a procedure does not exist, an error will be
returned,

LCLOSEF is used to close any open file, ,CLOSEF takes nmo inputs
and closes the file currently open lonly ene file at @ tine can be openl.

If no file is currently open, the command is ignared,

11.5 LOGIN

LOGIN taxes one input, your user name (guotedl, This "tells the
system uho you are”, and this infornation is used by the PEEE command.
LOGIN also performs an automatic LSE, Housver, LOGIN is most useful for
initializing certain conditions in the uurhupécu and for printing out mail.

Hhen LOGIN is used, the system locks in the user's filme system to
see if there is a file named INIT in the top level of the file tree. |f
this file exists, the system reads the file and per forna all :l;llrﬁﬂl"ﬂ:!ﬂ-
written directly into the file [through the use of the commands LOPEMU,
-OPENA, and .FILEF). This facility allous the user to do many wseful
things. For instance, the INIT file can be used to read all the files in
the wser's file system "automatically” when legging in, or to print |.:n_.|'t
messages upon logging im.

The LOGIN comnand also causes the system to search for the file

nmamed RNAIL. 1f this file is found, the contents are printed, and the user

is then asked if the mail should be daleted.

11.6 PAFER TAPE

LOGD procedures may also be stored on paper tape. The user may
pass information betueen paper tape and the workspace using the fol Inulnﬁ
primitives,

KRITEFTP punches out the contents of the workspace onto paper tape.
It does not involve the file system.

READPTR reads into the workspace from the paper tape reader.
Neither READPTR nor WAITEPTR take any inputs.

You should have someons show you the nechanics of using the reader

and punch before you use the paper tape commands.

12, TURTLES
This section is about the physical turties that rum around on the

floor. (5ee Chapter 13 for display turtles.)

12.1 You must tell the system which turtie you want to use before issuing
turtle commands.

TURTLE

~ Takes one input which should be the nusber of the turtle you want

to use. The numbers are marked above the plugs on the controller box, and
are 1, 2, 3 or & Normally enly | and 2 have turtles plegged into them,

NOTURTLE

Takes mo inpwts. NOTURTLE releases the turtle from your contral ao

someone &lse cam use it.

12.2 BASIC TURTLE CORMANDS

FORWARD (FO)

BACK (BK)

These commands take ome input which muat be & nusber betueen -32768
End'EIET-‘ET" inclusive. They command the turtie to move <input> units forward
lin the direction it is pointing) or backuard.

RIGHT (RT)

LEFT (LT}

These take one input which must be a nunber betwesn -32768 and
32767 inclusive. They conmand the turtie to retate <input> degrees

Clockuise or counterclockuiase, respectively.

FENUP (P}
FENODWN {PD)
Faises or lousrs the pen holding mechanism of the turtle. Hhen the

pen is down the turtle Will draw a line as it moves,

12.3 SOME TURTLES HAYE A HEADLIGHT
LAMPON
LAMPOEF

Turns the headlight on and off.

12.4 SOME HAYE A WHISTLE
ToaT
Takes one input which must be & number betueen -327E8 and 32767

inclusive. 1t blous the whistle that number af times.

12.5 TOUCH TURTLES

There is a variety of turtles that have sensors that can tell when
the turtie ie bumping againat an object. The follouing primitives are used
to test whether sensors are on or off.

FTOUCH |

Outputs TRUE it the front of the turtie is touching something:
FALSE otherwice.

BTOUCH means back touch

RTOUCH means right touch

LTOUCH means left touch

Here's a procedure to bounce the turtle betwsen two wallis:

T0' BOUMCE

18 TEST FTOUCH

28 IFTRLE LEFT 128 ! TURN AROLMD
38 FORWARD 1@

&8 BOUNCE

END

I the turtie iz hitting an object at an obligue amgle tuo teuch

sensots may be THUE at the same time.

12.E SEEING EYE TURTLE

He have a prototype turtie-with-an-eye. The eye is extremsiy
simple - it tells the amount of light it is seeing in @ very narrou field.

LIGHT

Outputs the light level. This is a nunber betuesn B and B3.

LARPON

LAMPOFF

Seeing eue turtles don't have headlights lut:ﬂ._ These commands
currently enable and disable a node whereby the eye can rotate. LAMPON

enables this mode, LAMPOFF disables it, .
FORLARD, BACK, RIGHT, LEFT
Hhen in the mode described above thess commands change the angle of

elevation of the eye. Hhen not in that mode these commands perform their

noragl Functions.

12.7 THE LIGHT BOX
It is convenient to use the light box in conjunction with the

seeing-eys turtle. The light box can supply current to any subset of up to

six light bulbs {at the moment only four light bulbs are plugged inl. The
Pight box is controlled by sending it a number via the .TYD command {see
Chapter 190, The 1ighj box i8 specified by the input "LIGHT , so ta send
the number Z8 to the box tupe

.T¥D "LICHT 28

Hhat the box does when it gels 3 nunber is determined as fol lowa:
Urite the mumber in binary. Then the

1" place specifies whelhar light mumber 1 is to be on
or off, the Z'a place light nunber 2, the &"s place
light number 3, etc.

Note: The controller te which the light bow

is attached traps 17 loctal 21) as its reset
character. Thus 17 sent to the light box

Will not be seen. | you desperately want

te send 17 {to turm on lights five and one

tegether] you can wse the fact that the light

box ignores more than six bits and semd it
i+l 7eE] lockal 1310,

12.8 THE SUITCH PANEL

The suitch panel is a "blue box" which has on its front 16 amall
light bulbs. Each of these lights represents the status of ome of 1B
Harduare suitches. Hhen 3 suitch ie set, the corresponding |ight is turned
on: wnen it is cleared, the light is turned off. The following LOGD
primitives can be used to test and manipulate the ata'h-: of thess guitches,

SUITCH

Takes one argument, the nunber of 3 suitch (B-15] and cutputs TRLUE
if the suitch is set, nﬂ.‘mruiu FALSE.

RELAY

lakes tuo inputs, the number of a suitch and a value to be assigned

to it (@ o L), IF B, the suitch is turned off, 1F 1, it is turned on.
BITOUT
Takes one input, 3 number which is converted into a 1E-digit binary
wvalue. Each digit of this valug is then used to determine the comdikion of
the corresponding suitch 1E{fenlivnli the same as performing & RELAY for

each suitchl,

13. DISPLAY TURTLES
The display screen is 488 turtle units high by 4088 wide, The.
center of the screen has coordinates (B,8); the bottom left hand COrmer i3
{-208,-2881: and the top right hand cormer is (208,280], When the turtie

is peinting straight up its heading is @, Heading is measured clockwiase

li.e. RIGHT) from that position.

13.1 INITIALTZING THE DISPLAYS
CLEARSCREEN (CS)

Erases everything on the display screen and places the turtle at
the center of the screen pointing up. You should do CS firat, before
igsuing any other commands to the turtle.

HIFECLEAN (UC)

Erases everything on the display screen but leaves the turtle where

it is.
NODISPLAY
Turns off the display.
STAATOISPLAY '
Takes one input, which must be B or |, B starts up a half-aize

display, 1 starts a full size display. STARTDISPLAY 1 is the Same @
CLEARSCREEN.

13.2 BASIC COMPIANDS
FORMARD (FO)
BACK [BK)

Takes one input which must be either an integer or floating point
number. [oves the turtle <input> units foruard (in the direction it is
pointingd or backward.

RIGHT fRT[

LEFT LTI

Takes one imput which must be either an integer or floating point
pumber. Rotates the turtle <input> rumber of degrees clockuise or
counterclockuise, respectively.

PEMDOUN (PO}

PENUFP [PUI

Lowers or raises the turtle's metaphorical pen. 1f the pen is doun
the turtle draus a line as it moves,

FENR

Outputs TRUE if the pen is down. FALSE if it is up.

LRAP

NOURAR

URAF enables a mode so that if you try to meve the turtle beyond
the edge of the display it waps arcund to the other edge. WNOWRAP turns
off this mode: if you try to move beyond the edge you get an error.

HIDETURTLE (HT)

SHOWTURTLE (5T)

HIDETURILE tells the computer to stop showing the little tr;iang%:
that represents the display turtle. The turtle will still draw lines (if
the pen is dounl even though you carnot see him. SHOWTURTLE brings the

turtle out of hiding,

13.3 SNAPS
Shinp
Takes no inputs. Dutputs a reference to “the stuff on the display
screen. " For example:
MAKE “PIC SNAP
cauees (FIL to refer fo whatever is currently on the screen. Later you
can cause another copy to appear by saying:
DISPLAY :PIC
pr oerase it by saying:
HIFE :FIC
Each SNAF has associated with it a "starting location™ which g

mormal ly the center of the screen (but see alao MEUSMAP). GNAPS cannot be

saved with the HRITE command (see Seetion 11.1).

DI1SPLAY

Takes one input which nust be a SNAP {i.e. a reference craated by
SNAFY. The SNAP is displayed at the current turtle position and the turtle
is then moved to the end of the SNAP, as if the turtle had just draun the
SNAP explicitly, The -turlle's heading has no effect on the displayed SNAP,

The SMAP aluays appears im the orientation in which 1t was original ly

or @Hn.

HIPE

Takes one input which must be 3 SNAP. [t erases all appearances of
that SNAD drom the display scresn,

MELISHAP

Takes no inpute. 1t causes the image currently on the screen not

to be part of subseguent SNAPS. Also sets the starting location of
gubsequent SNAPS ta the current position of the turtle rather than the

center of the acresn,

13.4 LOCATING THE TURTLE

HERE

SETTURTLE {SETT)

HERE outputs a list of the -c—::n-nrdinau-. y-coordinate and heading
of the turtle. You can wuse HZRE to name 3 place on the display. SETTURTLE
takes one input, a list of thres munbers betueen -32768 and J27E7
inclusive, The first 19 assigned to the x-coordinate, the secomd to the y-
coordinate and the third to the heading. You cam use SETTURTLE to move the
turtle to a place that was named waing HERE. [t will draw a line if the
pen is doun.

HOME

XOOR

YCOR

HIBE is eguivalent to SETI (B 8 Bl. XOOR outputs a number which is
‘the current w-coordinate of the teetle. YCOA ouiputs a number which is the
current u-coordinate of the turtle.

BETK

BETY

SETKY

SETK takes one nunerical imput and moves the turtie horizontally to .

that X-coordinate. SETY takes one numerical input and moves the turtle

vertically to that Y-coordinate. GSETHY takes two mumerical inputs and
noves ihe turtle to the designated position. Each of these commands wil |
draw a lime if the pen .in dasan,

HEADING

SETHEADING

HEADING outputs a number which is the heading lin degrees) of the
turtle, i.e., the direction in uhich it ie pointing. SETHEAOING takes one

murber as input and poainta the turlle in that direction.

13.5 PLOTTER

The plotter is often used in comjunction with displays. To use the
plotter, type PLOTTER. UWhen you are theough using the plotter, type
NOPLOTTER. A1l othar plotter commands are the same as display commands.
Houever, certain display commands do mot apply to the plotter and will be
ignored i f fyped ko the plotter. These are all fairly obvious; they
include: CLEARSCREEM, WIPECLEAN, WRAP, HIDETURTLE, SHOWTURTLE, SMAF, WIPE,
and DI5FLAY. The plotter also has a more restricted argument ranmge tham

the displays.

13.6 MULTIPLE CEYICE COMTROL

It is possible to control more than one device at at time on LOGO.
This can be done through the use of the commands ALSO and CHTRL. [f you
are already using one device and wiash to use ancther without giving up the
firet. type

BLE0 edevices

uhere cdevice> is the device you Wish to use. ALSD gives you access to
additional devices, but it is Hucusnaru to specify to which device a
specific command is directed, This is done with the CNTRL command. CNTRL
takes one input, the mame of a device which you currently “own®, and
specifies that device as the object of the next command you tupe. For
exanple, suppese you are using a display and you decide you want o use @
floor turtie also, First type
ALSD TURTLE <nunber>
Howewver, 1f youw nouw typs
ToOT
LOGD will respond
TOOT OMLY VALID 1F YDU HAVE A TURTLE
Before you can direct commands to the turtle, it is neceasary to
type
CNTRL TLRTLE <nunbers,
A1l walid floor turtle commands will now oe accepted. [f you wamt to use
the display again, you must say
CNTRL OISPLAY
LOGO mow will accept display commands, but not floor turtle
conmands, Each time you want to change between devices, the CNTAL cosmand
referring to the device that you want to use must be typed. Houever,

subsequent commands cam only refer to one device at a time.

1&. MUSIC BOX
LOGD has primitives which supply output for the music bow. A LOGO
user can specify parts for up to & simultaneous voices, sach voice having a
range of five chromatic octaves. Im order to avoid timing problens the
mugic is compiled into temporary atorage and then output to the box at a

constant rate, rather than plaued in "real tima®,

14.1 KOTE

The NOTE command generates one note of music. MNOTE takes tue
numeric inputs, the firat specifies the pitch and the second the duration.
Fitches are numbered chromatically from =26 to 35 with B being niddle C.
There are also three special "pitchas”:

-28 i a silence

=27, =26 are the percussion sounds "boom” amd "ssh"

-25 is not a valid pitch

Durations must be between B and 127 units. Each unit is normally
about 1/8 second (but see NYDICES below).

The actual output of NOTE :P :D is determined as follous:

[f :0 = B NJTE generates nothing. ‘

[f :0 =] NOTE generates a pitch 1 l.-'n.it long

¥ :0 > 1 NOTE generates a pitch :0-1 units long followed by 1 unit
of rest. Therefore, music will not sownd "slurred®.

If iF is -Z&6 o~ -27 NOTE generates a sound for one unit Pnl||-:|r_|E|:| by
t0-1 units of rest. This makes it convenient to wee the percussinn sounda

to "generate a beat®.

HOTE can also take multiple inputs . The format ia (NOTE :P1 :01
1P2 :02 etc.) where sach pair specifies the pitch and duration for one

note., (The total nunber of inputs must be even,)

14,2 PH

The cormand PR (stands for PLAY AUSICY takes mo inputs. [t causes
the output of previous NITE commands to be played on the music box. As the
music ig played i§ is erased fron tanpur'il'.y astorage and must be regenerated
if you wish to hear it again. Typing a ct!-G while nusic is being played
causes an inmediate break and also clears out temporary storage. HCLEAR
can be used to clear out the music buffer, (Temporary storage is allocated
in the same area as the user's procedures, variables, etc. The amcunt of
mugic thai may be conpiled at one time depends therefore on how much other

stuff iz in the user workspace.)

14.3 VOICE
The music system can generate up to four simultaneous voices. The
VOICE commnand directs the output of subsequent NOTE commanda to the various
voices. PH then plays the voices aimul taneousiy.
Exanple:

TO SEVENTH :TONIC :D

18 VYDICE 1 NOTE :TONIC :D

28 VOICE 2 HOTE :TOMIC+2 :D

38 VOICE 3 NOTE :TONIC+E :D

&@ YOICE NOTE :TOMIC+3 :D

58 PH
END

will play a chord.

VOICE tawes one input which must be a number bBetween 1 and 4. This
becomes the current voice until the next voice command is given. If no

VOICE command is given, the aystem outputs to voice number 1,

1&.& VLEN anmd FLEN

These are operations which take no imputs. VLEN putputas the total
length of the nusic compiled for the current voice. MLEN outputs the
lemgth for the largest voice.

For irstance, it ue have generated a melody in voice nember 1 we
can provide it With an accompaninent:

T0 QOMFAH
1@ vOICE 2

28 INOTE B 4 (-5) 4)

3@ IF VLEN « HLEN STOP ELSE GO 2w
ERD

This will generate pempahs for as long as the melody lasta.

1.5 WNYDICES

The musiz system normally multiplexes output among four woices,
Yoices for which no output has been generated are fed silences. It is also
possible to send output to only one o tuo voices. Thia is dere with the
NYOICES command:

NYDICES 1 output only to veice 1

NYDICES 2 output to vplces | and 2

NYDICES & ocutput to all four volces (the nornal mode)

Since the music bow is fed at 3 constant rate NVDICES 1 (resp.

N¥DILES 2] causes the basic unit of duration to be one-fourth fresp. half)

ae long ae with WVOICES &4, NYDICES also clears out temporary storage and

resets the current wvoice ta voice |,

14,6 NOHUSIC
ODnly one user at a time may have access to the music box. Uhen a
user gives 3 music command, LOGOD assigns the music box to him if no one

elese it using it. A user may release the music system by giving the

NIAUSIC conmand.,

14.7 HUTYD AND MUCTRL

These commands are & contibution toward redl-time music gemeration.
They anahll.z the user to bypass the muusic buffer, and the PH commard, and
hence have 3 chance at least to generate real-time music,

MUTYD takes 2 inputs, each one a music box pitch, and makes the
music box play the pitches, Pitches to FUTYD are the same nunbers as
pitches in the regular music systen -- middie is B, rest is -28, and =0
forth. MITYD automatically converts those pitch numbers inte the nu:nber!
the music box harduare reguires,

FUCTRL stands for music control. [ts main purpose is to specify to
the music box harduare how many voices you wieh to load. This is similar

to the NVDICES command in the regular music gystem.

4.8 SYSTEM CONSTRAINTS
The music system has been designed with specific uses in mind.

(See, e.g, the papers of Jeanne Bamberger.) Users whe are hampered by this

should bear in mind that the .TYD command can be used to output arbi trary

characters to the music bow. (See Chapter 19.)

15. LI5TS
LOGO is equipped to handle general lists, i.e. lists whose elements
may themselves be ligte. For exanplet .
[[THIS [S) A [LIST STRUCTURE]]
is a iiﬂg aé throag mlements, two of which are lists.
PRINT does mat print the outer brackets around a |ist.

PPRINT [(THIS 15] A [LIST STRUCTURE]]
[THIS [5] A [LIST STRUCTURE]

A1l of the liat operations described in Section & work with general

lists, @.g.t

HeKE “A [ITHIS I5] A [L15ST STRUCTUREI]
COUMT & output 3
FIRST :A outputs [THIS 15]
BUTFIRST A ouwtputs [A [LIST STRUCTURED]
LAST ¢A outputs [LIST STRUCTURE]
BUTLAST & outputa [[THIS 15] Al

SENTENCE generalizes as fol lows:

[f all af ite inputs are |ists, .it puts their elements together to

make onre big list:

(SEMTENCE [FIECES OF1 [A BIGYI ILISTHD
outputs [FIECES OF A BIG LISTI

1§ any of the argumenis to SENTENCE are words it first conver ts
each word te @ omne-word |ist and applies the above rule:

[SENTENCE "PIECES [OF] "A "BIG [LIST])
outputs [PIECES OF A BIG LIST)

LOGO has sewme other list operationa. LIST takes two inputs and

outputs a Z-element list:

LIST [THIS 15} [A LIST]
putputs [[THIS [S) [A LIST]]

LIST cam also take multiple inputs. 1t outputs & list whose

elememts are the inpuis::

(LIST [LOTSY "OF [L1STSH)
outputs [[LOTS] OF [LISTS]]

Motice that if all inputs to LIST are words, then LIST is eguivalent to

SENTENCE.

FPUT is another |ist operation. 1t takes tuo inputs of which the
second must be 3 list. [t sticks the first input onto the front of the

gecond to make 3 new ligk:

FPUT "THIS [15 HOW FRUT WOBES]
outputs [THIS [5 HOW FPUT WORKS]

FPUT [THIS 151 [HOW FRUT WORKS]
putputs [[THIS [S] HOW FPUT LORES]

LPUT is similar. [t sticks its first input onto the end of the
list,

LPUT *THIS [15 HOW LPUT WORKS]
outputs [[5 HIW LPUT WORES THIS]

LPUT [THIS 151 [HOW LPUT WORKS)
outputs [HOW LPUT HORKS [THIS 1511

FPUT and LFUT can also take multiple inputs. The last input must
aluays be a liaks

[FFUT "MAKE [THIS] [& LISTI)
outputs [RAKE [THIS] A LIST]

(LPUT "HAKE [THIS] [A LISTI)
outputs [A LIST MAKE [THISI

Lists may also contain SNAPS ae elements, e.g.t
MAKE “& SENTENCE "HOW SHAP

then it is perfectly valid to say:
FRINT FE-HST th

or

DISPLAY LAST :A
out

PAINT :h

will give an error,

16, DEBUGGIMG FEATURES
LOGD imcludes features uhich aid users in debugging their pro-
grams. The simplest such feature is ctl-G. Pressing ct!-G will stop
execution of any program. [f it i=s not nuch help as a debugging feature,

it at least can serve as a panic buftfon,

1E.1 PAUSE, COMTIMNUE AKD et1-Z

When the PAUSE conmand is ewecuted in a procedure, the procedure is
terporarily halted and control is returned to the console. [nstead of
typing only 7 as a prompt character, LOGOD also indicates at what level it
currently ia. Level refers to "hou many procedures deep” current esecution
is. [Commands given from the console are at level B. Commands given in
procedures called from the coneole are at level 1. Conmands given in
procedures called by level 1 procedurss are at level 2, And se on.) Uhile
in @ PAUSE the user can access any names which are local to the procedure.

For exanple:

TO BLA :A

1@ FORLARD :A
28 PALSE

END

A is a local mane. Rumning BLA will cause LOGD to pause. MHe can
then access the value of A,
TBLA Z8
FAUSE AT LEVEL 1 [N LIME 28 IN BLA
L1ZFRINT :4
28
L1?
There are tuo ways to get out of a pause. Typing etl-G uill, as

usual, return the user to the top level.

The CONTINUE command labbreviated CO} will continue executing the
procedure. starting with the mext lime after the PAUSE, [Mote that for this
reason PAUSE should be the last command on a lime 1f the user wishes to
continue, |

Hhile it is legal to give any LOGD comnand in 3 PAUSED situation,
the user may get into trouble if he or she erases or edits the procedure
and then tries to continue.

Ctl-Z is aimilar to ctl-G except that it generates a pause rather

than a break at the top lewel.

1E.2 DEBUG

The DEBUG command changes what LOGD does when an error is
_encountered in & user's program. Normally, an error prints @ message and
terminates execution. The DEBUG facility causes errors to -gensrate PAUSEs.,
The user can then exanmine local variables and CONTINUE with the next |ine
of the procedure. [DEBUG is @ command uhich takes no i:hpul:s,: [ta use

suitches this feature on and off.

1E.3 TRACE

The TRACE command takes one input, which is the name of @
procedure. _The procedure mame is not guoted. Every time a TRACEd
procedure is run, LOGO prints out a nessage to that effect and tells what
the inputs to the procedure are. LOGO also indicates 14 the procedure
outputs.

To get rid of a TRACE, use ERASE TRACE as inm:

FERASE TRALE <procedure nanex
It is possible to trace all procedures by saying TRACE ALL. There

is also ERASE TRACE ALL.

1E.& STER
STEP is like a "super TRACE". Mot only is the procedure TRACEd but
before each line of the procedurs is esecuted, LOGD tupes out the line and
waites for the user to respond. There are three ocptions:
f1} Tupinmg a carriage return causes the line to be esecuted
and goes on to the next line,
(2) Typing cti-G terminates execution as always.
{3} Typing cti-Z generates a PAUSE as described
Fbove, The wser may then execute other commands and later
CIONTINLE,
The syntax for STEF is like TRACE. ERASE STEP, STEP ALL. and ERASE

STEF ALL @re also avallable.

I7. ERAOR HANDL ING
The error handling facilities allow you to modi fy the way LOGD

treats errors.

17.1 ERSET ang ERCLA

The ERSET command takes one input, 3 procedure name. As with TO,
EDIT, TRALE, etc., the procedure name is not guoted., EBSET causes the
procedure given as input fo be executed every time an error occurs. The
procedure Will also be run every time cti=G or etl-7 is hit. After the
procedure has been executed, LOGOD takes the fol lowing action:

(1} 1f the procedure does mot output, LOGO prints the narsal error
message.

(2) If the procedure outputs, LOGO prints the putput instead of the
normal error message.

If an errer oocurs in the ERSET procedure itaelf the ERSET will not
happen, The various SYSTEH BUG errors cannot be overridden by an ERSET.

The ERCLR command, which takes no inputs, deactivates ERSET,

17.2 ERRET and ERLIN

Az described above, an ERSET can provide personal error iaagages.
but still terminates execution. Another use of ERSET is to allou the
possibility of modifying the condition that caused the Brror and Enntinuing
ewecution. The command ERRET takes one imput, a line fiunber, and returns
exgcution to that line of the procedure in which the EFFOF Occurred,
Useful im conjunction uith this is the EGLIN operation which outputs the

lime number in which the error pccurred. Thus, for mxanple:

ERRET ERLIN
in an ERSET procedure will re-esecute the |ine in which the Brror occurred.
Example:
Here is a way to move a ball back and forth acoss the BCrEEm,
Supose :BALL ia a SNAP of 3 ball and we move the pal | by
TO MOVEBALL
18 FORKARD 28
28 DISPLAY :BALL
28 HRIT &
48 WIFE :BALL
&8 GO le
END
Run MOVEBALL but firat ERSET the follewing procedure:
0 TURN
18 LEFT 138

28 ERRET 18
END

Wow every time the "0UT OF BOUNDS" error occurs TURN will turn the
turtle around and keep going.

But this simple scheme has a bad bug. TURN will be run whenever
any error octwrs. Even worse, it will be run when we hit cti-G. There is
no uélg to stop MOVEBALL! Uhat we really want is to only execute the ERRET

in the case of the particular error "0UT OF BOUNDS®.

17.3 ERNAM, ERBR¥, and ERPRD

To help overcome the above-mentioned bug, LOGO provides the ERMAH
operatien. = The easiest way to find out the name of an error, is to

generate the error and then PRINT ERNAM. We can fix the bug in TUAN above:

10 TUAN

1® TEST ERNAR = "00B

J8 [FFALSE STOP

3@ LEFT 1P

4@ ERRET 1P

END '

("0UT OF BOLMNDS" has erroe name OOB)

ERFRD outputs the name of the procedurs im which the last error
occurred, so if ue uould like TUAN to only take effect during HOVEBALL we
cam TEST to see if EAFRD - "MOVEBALL.

ERBAK handles ctl-G and ctl-Z. It is an operation which outputs:

L if the "error® was caused by pressing ct1-G
=1 if the “"error” uas caused by pressing ctl-2Z
A atheruise,

Sometimes it is useful to set things wp so that pressing ctl-G
during 8 REOUEST re-does the REOLEST rather than stopping the program.
Here is an sxample of how that can be done:

TO SPECIALREDQUEST

1® ERSET THYAGAIN

28 NAKE "X REOQUEST

38 ERCLA

4 OUTPUT 1

END

TO TRYAGAIN

18 |F ER8AK = | ERRET ERLIN
EHD

Hith TRYAGAIN we can still atop the show by hitting ctl-Z.

17.4& ERNUM, ERTOK, ERLOC, ame ILINE
ERMUM Each type of error has a number as well as a name. ERNUA

outputs the number of the error,

ERTOE outputs the "token mumber® at uhich the previous err-or
pecurred in the line. This gives some indication of exactly where in the
lime the error occurred, but 1t is hard to uae unless you are initiated
into the mygsteries of the LOGD evaluator.

ERLOC outputs the location in the POP1l's core at uhich the error
oocurred. 1t is useful mainly to sustem programmers. .

ILINE outputs the last line typed in at the coraole. 1% i9 useful

for doing analysies of errors that occurred while the user was typing in

"direct commands®.

18. EVALUATING TEXT
18.1 RAUN
It is often useful to evaluatle cowmands that have besn computed
rather than typed in. The basic LOGD prinitive uhich does this is RN,
BN takes one input, a list, and evaluates it just as if the list uere
buped in at the console:

TAUM [FRINT "WOWD
Ol

If the input to AUN specifies an operation, then RLN putputs:

FFRINT RUN [5UR 18 5]
&3

Of course, the input to AUN need not be typed im literally: '

7PRINT RUN (SE "5Uf 1B 5)
23

For exanple:

TAKE "X "PRINT

MUN SE (K 5

&
Another exanple:

| f ue have procedures called, say, STRATEGYl, STRATEGYZ, and

STRATEGYZ, one way to invoke the proper one is to say:

RUM (SE WORD "STRATEGY :N)
if tN is 1, 2, or 3. He use 5E with one argument since AUN's input must be

a list,

There 1% a3 tricky point here, AUN executes the liat juat as 1§ the-

ligk were byped in. In the sxampie

RUN [PRINT “WOW]

the firat character in the second word of the imput is @ guots. To

generate the 1is! we would say
AUN SE "PRINT *"W0W
In contrast the command
AUN SE "PRINT "W
is equivalent to
RUN [PRINT HOWI

which would be an error unless there were a procedure named WOW.

18.2 PROCECURES DEFINING PROCEDURES
[t is valid in LOGD to have a procedure which defines another
procedure:

0 DRIB

18 TD ORAB

20 18 PRINT "WHOOP[E
J2 END

END

Aunning ORIB defines the procedure:

10 OR4B
12 PRINT "WHOOPIE
END

Maturally., we can use AUN in this context:

T0 DEFINE :PROC :N

18 RUN SE *TO :PROC

28 RUN SE (1@ PRINT] :N
38 END '
END

Will cause

OEFINE “WHARD 7
to create

70 WHAMD

18 PRINT 7
END

LOGOD MANUAL 74

In a gimilar manner, procedures may edit procedures.

13, RISLELLANEOUS COMMANDS
19.1

BELL takes me inputs. Rings the bell on the consclea.

CLOCK takes mo imputs. Outputs a number which is incremented every
1/ER secondes.

DATE sutputs a 3-element list containing month, day, year.

TIME sutputs a 3-elenent liat containing hour, minute, second.

WAIT takes ome imput., Causes LOGD to wait for that many 1/38
sacond intervals,

HELLO clears out workspace; "restarts” LOCD for you.

GODOBYE same as HELLD.

LEVEL takes no inputs. Outputs a number which tells "hou many
procedures deep” current exscution |s,

PEEE prints out system status information.

RAIL The HAIL command enables users to send messages to other users
on LOGO. MAIL takes ome input- the user name {guoted] of the person to
yhom the mail is to be sent. The computer responda with 8 beck-arrou (=)
Which indicates that anything typed in on the console is regarded as mail,
To end the message, type 3 line with a single period followed by a carriage
return, The coppleted pessage is then placed im the {iling systen of the
user to whom it is sent, contaimed in a file named AAIL. The mall can be
read either when logging in, or by printing the file using the POF command.
It is helptul to be logged in when sending mail, aince the user's login

name i3 used to identify the source of the mail to the person who receives

it.

SEND takes two imputs, The first is the nunmber of 3 console, and
the second is @ |ist which is printed out as a message directly on that
console.

SYSPH takes as imput a list which is printed out as a nessage on
all consoles currently in use.

SIN takes one number (representing degrees) as input and returns
the sine of that angle.

CO5 takes one input in degrees and outputs the cosine of that

angle.

18.2 IMPLEMENTATION DEPENDENT PRIMITIVES

The tollouing are prinitives which refer specifically to this
inplerentation of LOCD,

.TYD takes two inputs. The first specifies a device. Thie may be

glther 8 device nunber or mame. The names fhat LOGD underatands for

devices are:

"L1GHT for the light box

*TURI for turtle 1

*TuR2 for turtle Z when it is plugged in
*HUSIC for the music box

"FLOTTER for the plotier

TTY for you own console.

The second input specifies a number uhich is relayed to the given device as

output.

The obvious use of this feature is with regard to the |ight box.

.T¥Ding to @ turtle is slightly useful; certain commands that can be done
by the turtle hardudre have never been implemented in LOGO sof tware Imainly

because they are only very slightly usetul), The turtie can, for instance.
waddle inatead of walk,
Try this program:

TD WADOLE :STEFS

18 1F :5TEFS = & STOF

28 .TyD "TURL 94

8 .TYD "TLRL 35

48 WADOLE :STEFS - 1

END
The interested reader is referred to the TURTLE GEMERAL Engineering
Hamdbook, Appendix & for more detalls.

-TY] takes orme input which specifies a device in the same manner as
T¥D. The next piece of information (interpreted as a rnumber) received
from the davice is given as outpul.

LCLOSE T you use .TY] or .TYD, LOGD assigns the device to wou so
that no one else can wse it, To release the device the .CLOSE command is
used, taking as its input the given device specitication.

LLT¥1 and .CTYD are similar to .TY] and .TYD ewcept that the
cpecified device ia the user’s console. .CTYD takes ame input, .CTY] takes
al=tgl

CTYOUAIT and TYOLALT

These comnamds are a species of WAIT command —- like WAIT BB -- but
instead of waiting a fixed amoun? of tine, they wait uniil a teletupe has
finished typing out.

A simple use of CTYOMAIT is to synchronize a procedure that drawus

on the display and also prints stuff out. Suppose you wish to draw a POLY
ard print the turtle’s heading at each corner. WNormally in sech a program
the displaying gets further and further ahead of the printing. But,
CTYOUAIT will force the procedure to wait for the printing to be coepleted
befare going ont
10 POLY :SIDE :&MG
IR FORUARD :5I10E
28 RIGHT :AMGLE
I8 PRINT HEADING
48 CTYOMATT L@ !'The mumber 18 how much time to wait in
addition to waiting for the teletups.
5B POLY :SIDE :ANGLE
END
TYOWALT im like CTYOUAIT, ewcept that you specify which device to
wait for. TYOUAIT understands the same device names that .TYD and company
understand. |t also accepts teletype nusbers. A good use for TYOUAIT is
to synchronize the floor turtle with the dispiay turtle,
+LUN takes one input, a user nueber, and restarts that user’s LOGO-
leguivalent to typing HELLD at his consolel. This is used uhen someone’ s
consle gels hopelessiy hung wp,
LCASESH On consoles equipped to handle lower case, LOGD normally
converts characters to upper casa. LCASESUY s a command which takes no
imputs and turne this featwre on and off.

LECHOSH takes mo imputs. Turns off and on a feature which inhibits

echoing of characters typed at the conscle.

ZB. MATNLY FOR SYSTEM PROGRAMMERS
The following prinitives deal with the maintenance and debugging of
the LOGO system. They are wseful mainly to system programmers.
LSTF and .CTF set and clear a trace of the evaluator,
LSOCF amd CCCF set and clear @ featwre which causes 8 garbage
collection sach tine a node is al located.
LSPNE and .CFWF set and clear printing the number of free modes
left when garbage collections are run.
LSTATUS wumlock protected commands
FURCLA o @ reset of the PO 11 and all devices.
Mot to be used casually.
LRLUG halt LOGO and start the debugger
LEETTY set the system time variables
LGEOLL run @ garbage collection.
LEXAHINE examine location in POPL] core.
LOEPOSIT deposit into core.
-HODES output nurber of free nodes.
LVERSION output which version of LOGD this is.
WALLE output the item on top of the 5-POL.

LSATIME output the amount of user time run by the system.

cl. AN INDEW OF LOGD PRIMITIVES
The pages that follow are a listing of present LOGD primitives,
Wifth the ewception of the special commands lieted in Chapter 20, Along
“Wifth gach primitive is the following information:

ABB. == Abbreviations and infix forms. [mfix forms are indicated by

WUNEER OF [NFUTS-- The indication ¥ means the primitee nay use the
variable input feature (See Saction &.4), where n I8 the standard number of
irputs,

OUTPUT== ¥ means it doss output, N means it does not.

PAGE (5)== The primary pagels) on which the primitive is discussed,

plus any important Eupplﬂentru'infn—-alim.

PRIRLTIVE ABB HUMBER OuTPUT PAGE(S]

OF [KPUTS
ALST 1 M 25-0k
ASIZE 1 Y 23
BACE BE 1 W 66, 48 51
BELL B N 75
BOTH 2 Y a8
BTOUCH a ¥ &7
aURY 1 N 6
" ALL [N 36
BUTFIRST BF 1 Y 12,62
BUTLAST BL 1 ¥ 12.62
LCASESUY 1 N 77
CLEARSCREEN CS A N &l
CLOCK P Y | 75
LCLOSE B N Th
.CLOSEF a H &4
CHTRL 1 N E5-5h
CONTENTS B N a5
CONT I KLE Co] | =5
Cos 1 ¥ 78
COUNT 1 ¥ 12.2
CAINOEX 1 M Gf-41
LCTY]) ¥ 77
LCTYO 1 N 7
CTYOMALT 2.1l N 77
DATE 5] ¥ 75
OEBLIG 5] N G
DEFIMEARAAY OEFAR 1.4,5] 21=24
DOIFFERENCE - (i) 2 ¥ 16-18
DISFLAY 1 H 53
JECHISY 1 1] 78
EOIT ED 1 H E.73
" LINE EDL 1 N 7
" TITLE EOT %] N T
EITHER) ¥ 28
ELSE] L 31-3z
EHPTYPR 1 ¥]
END 2] H [
EQUAL sl 2 ¥ 17=18, 3@
ESASE EA 1] &,.35
" OALL .] L] ki)
" ARRAY 1 M 22
" ERAAYS B N 22
" BLAY 1 M |
" 8URY ALL B | JE
" FILE _ | N 38
® LIKE ERL 1 N .
® HAFE 1 N 35

* WAMES : B N 5
* PROCEDURES 8 | 35
" STEP 1 N &7
= STEF ALL 2 N &7
" TRACE 1 N EE-E7
" TRACE ALL g H &7
ERBEL g Y TR
ERCLR B N =]
EALIN A ¥ EE-E3
EALDC . 8 ¥ 71
ERMAN) Y 71
ERKLIA 4] Y Ta
ERFRO B ¥ TR
ERRET 1 L] BR-E3
ERSET 1 N BE
ERTOK 3] ¥ 7871
.FILEP 1 N 43
FILER B ¥ G§1-64
FIAST F 1 ¥ 12,62
FORWARD FO | N 46,48,51
FPRINT 1y | 14-15,48
FRUT v ¥ 63
FTOUCH B Y &7
GET 2.3,4 ¥ 22,24
G0 | N 29
GOOOBYE 8 | 75
GREATER » i) 2 Y 17-18
+GUN 1] 78
HEADING] ¥ E4-55
HELLD B N - 75
HERE 8 ¥ Gk
HIDETURTLE HT] N 52
HOME] i 54
IF 1 ¥ 31-32
IFFALSE - IFF] H 32
1FTRUE ©TFT 8 N a2
ILIME 1] i K
[NTECER 1 ¥ |
LAMPOFF] H 47,48
LARFON . B H 47,68
LAST L | ¥ 12.62
LEFT LT i ¥ 46, 48,51
LESS- « Til 2 Y . 17-12
LEVEL i Y 75
LIGHT 8 ¥ %]
L15T Fal ¥ 52-63
LISTF 1 W 1}
LOCAL 1 A 27

. LOGIN 1 h &4
LPUT 2 W El

LTOUCH

FallL

HAKE = {il
HCLEAR

HLEN

HUCTAL

AUTYD

MEHSHAP

NOOISPLAY

NOAUSIC

NOPLOTTER

NOT

NOTE

NITURTLE

NOLAAR

NUMBERP

NYOICES

«OFENA

. OPENR

- OFEN

DUTPUT

PALISE

PEEK

FENOOUN PO
FENP
FENUP
PLOTTER
P
PRINT PR
" PRINTOUT PO
" ALL

P

" RRAAY
" ARAAYS

" FILE

* INDEX POl

* LIKE FOL
* NAMES

* PROCEDURES

* TITLE POT

" TITLES FOTS
" THEE '
FROOLCT = (i}

QUDTIENT /oLl
RANOON

READ

READFTR

RENA]NDER AT
REQUEST

RILHT AT
RTOUCH

:ﬁﬁmmﬂﬁﬂ'—"—"'—'h—“'—"—'ﬂﬂmi—"mﬂmm”l—*mmﬂv—m

ﬂ'—'ﬂ”'ﬂ"-‘ﬂmr_‘gl—'@ﬂﬂﬂ'—'ﬂ"—'ﬂ'—'ﬂl—'

o
=
o

L EA o ool mf EFFEE L E R E EEA EEEETEEETEALAEETEXEEZEZEEE < Fuy E <

ome i mes

=

Eﬁ?“?ﬁ“%ﬁ?EEFPEH
m

—-
o

-
oo oo oo

13
38,4842
45

le-18
13-14
46, 458,51
47

AN 1 sonatines T2-Th
cERD 2 H - TE
SENTEMCE © SE ¥ ¥ 13,82
SETASIZE 1 N 21-22
CETHEADIMG 1 M EG
CET]IMDEX: " SETI | N hl-42
SETTURTLE: = SETT 1 N B4
SETK ! 1 N =1
SETXY 2 H B&
BETY 1 N 54
SHOMTURTLE ST 4 N &2
SN 1 ¥ 76
SNAR e ¥ - 52-53,38
STARTOISPLAY 1 N g1
STEF 1 N B7
" ALL] N E7
STOP * 8 H 29
STORE 3,4,5 L P22
SH + (il Fi Y 16=18
5YSPR 1 N TG
TEST 1 ¥ 32
TEXT 1 Y 35
THING : 1 ¥ 5
TIFE B ¥ 75
0 1 or more H B.T3
TOOT 1 N 57
TOPLEVEL 8 N 25
TRACE 1 H E&
" ALL 2 H =19
TURTLE ' ' | N 14
LTY1 -1 ¥ Te=T7
.TY0 2 | 77.69,61
TYOUATT 1,2 H T8
TYFE ¥ N 18
TYFEIN B i 14
LISE 1 N 37,68
VLEN B N 88 -
YOICE 1 N EE
HATT -1 H 7=
WIPE 1 N 56
HIPECLEAN W B N El
HORD FA ¥ 13
WORDP 1 b 28
URAP 8 N 52
HRITE 1 H 37

_ WRITEPTP] H 45
¥COR B ¥ 55
Y¥COR A o B4

