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ABSTRACT

We develop a theory of orbits for the inverse-sguare central force law which
differs considerably from the usual deductive approach. In particular, we make
no explicit use of calculus. By beginning with gualitative aspects of solutions,
we are led to a number of geometrically realizable physical invariants of the
orbits. Consequently most of our theorems rely only on simple geometrical
relationships. Despite its simplicity, our planetary geometry is powerful

enough to treat a wide range of perturbations with relative ease. Furtharmore,
without introducing any more machinery, we obtain full quantitative results.

The paper concludes with suggestions for further research into the geometry
of planetary orbits.
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1. Some Qualitative Results

I, Mmtroduction

From junior high school on, students of science are taught that Kepler's Laws
describe the motion of planets around the sun. They are given no hint of how they
themselves can understand the "why" of these laws. By high school the students have been
taught Newton's discovery, that the inverse-square force law accounts for those beautiful
ellipses, but the connection is not yet for their eyes. After a year or so of college it's finally
time to plow through the thoroughly standardized and unmotivated proofs, using intricate

manipulations with differential equations.

In this paper we outline an approach to orbital mechanics which is accessible to
beginning physics students and presupposes no knowledge of calculus, We give an
elementary (yet mathematically correct) treatment of Kepler's Laws and also investigate a
simple first-order perturbation theory for orbits in an inverse-square fI:ElI:'.. Clur theorems
and proofs arise naturally from trying to understand orbits in terms of their physical
invariants. We therefore feel that our treatment provides a hétrer view of “what doing

physics 15 really like” than does the standard route via algebraic manipulations.

The key to the method lies in consdering the velocity space picture for a planet's

motion about the sun. The concept of a velocity space is not normally encountered by the
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student until he or she is presented with phase space in the context of the formalities of
Hamiltonian mechanics. We think there is little reason for this delay because, though it .is
usually considered an "advanced concept”, the velocity space picture of a particle’s motion
lies at the core of Newtonian mechanics. Indeed, the qualitative content of Mewton's F=ma
{for our purposes, mAv=FAt) is simply that physical interactions between ob jects take place
by a modification of velocity, rather than by a change in position. Appreciation of this
fact can greatly assist the development of physical intuition and understanding, and velocity
space {5 a natural tool for exploring Newton's primarily conceptual breakthrough. In Part
I1I, when we discuss perturbations, we shall see what rich dividends can be yielded by

looking at physical phenomena in the right conceptual frame=in this case, velocity space.

In the following presentation, we have tried to walk rather a narrow path between
two extremes. On one hand, a description uF.uur methods and results would take no more
than a few paées if we used the full precision of mathematical apparatus {including
calculus) available to science students after a few years of university education. On the
other hand, we could have spent considerably more space developing a complete and self-
contained course for very early physics students. Since we feel the material can be useful at
both levels of physics education, we have attempted a compromise. We apologize both to
those who find our presentation extended and perhaps verbose, and to those who might

find it sketchy and incomplete.



We gratefully acknowledge the inspiration and encouragement of Seymour
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results described in Sections 2 and 3. These sections closely follow parts of his paper
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mathematics from which this work grew, We would like to thank the editor and referee
from The Amertcan Jeurnal of Physics for many encouraging and helprullmmment.s and
also to thank Suzin Jabari of the M.LT. Artificial Intelligence Laboratory for preparing the

illuztrations for this paper.
2. The Orbit £x Closed

Standard approaches begin with the arduous task of proving that planetary
orbits are precise ellipses. We begin by proving a more qualitative proposition, that orbits
are closed. In doing so we dispense with a great deal of analjtic clutter, and the important

special nature of inverse-square orbits which makes them closed comes into central focus,
We will prove that no orbit like that in Figure 1 is possible.

If @ planet erosses a half-line from the sun twice, then f erosses & at

the same point each time-not further out or closer tn.

We assume two pieces of knowledge:



Figure 1: An impossible erbit.

Figure 2: Opposite pieces of orbit, at radii ry and Fas SwWeep out areas

.ﬁ.1 amnd AE in times ..Eht-l and .&tz.



L The force on the planst, when it is distance r from the sun, Is K/r> towards the

sum.

2. Angular momentum is conserved. We use this in the form of Kepler's Law -
that the radius from the sun to a planet sweeps out equal areas in equal times. This can be

easily derived and we remind readers of its simple geometric proof in the appendix.

Mow consider diametrically opposite pieces of the orbit which subtend the same

(small) angle measured from the sun, as in Figure 2. Kepler's law states that

Al - At

Aa Atg

What else do we know about the area or the time? Geometry tells us that

A | 52
1 1
FaY ' z
z r

Those r%'s are too suggestive for us not to make a connection with

F = K/re In fact

F, r, F. A At
= = hence

4
F, r, F, A Aty

and we conclude Flﬂtl = Fzﬁtz. Since?l and ?2 pull in opposite directions,



We can identify these terms: According to Newton's Second Law, on each piece of the
orbit, Ft is precisely AV the change in 'n'-rzll:u::'r;-2 which we call the "kick® associated to

that piece. Thus the last equation says that the change in velocity over one piece of orbit
exactly cancels the change on the opposite plece. Starting on the half-line which the orbit
crosses twice, divide the orbit all the way around into similar pairs of opposite pieces, The
total change in the planet’s velocity between successive crossings of the half-line is the sum
of the changes in velocity over tach.lmli.ll picce; adding these up in opposing pairs, we see
that the total change is zero. Whenever the planet crosses a given half-line, it has the same

velocity.

Mow Kepler's dictum of equal area in equal time allows us to conclude that at two
crossings of the hali-line, not only velocity-bue distance from the sun is the same. Figure 3
shows the areas swept out by the planet in some short time At after successive erossings of
the haif-line through A, B, and O. The velocities at A and B are equal. Therefore the
pleces of orbit AC and BD are both equal to vAt, but Il-u area of AOC must equal the

area of BOD. Then A equals B and the orbit clases.

3, A Theorem In I-"e!n;!i':p 3 pace

The pre:;e:ling proof rested on the fact that the kicks over oppasite pieces of the

_ orbit have equal magnitudes:

Foaty, = Fat,



Figure 3: AC=BD, area AOC=area BOD, therefore OA=0B and A=g,

Figure 4: Part of an orbit divided into equal-angle slices.



But, to derive this equation it isn't necessary that the pieces of orbit be opposite. We need

" only that
2
A 2
2 2

and this is true for any two pieces of the orbit over which the radial angle changes by the
= .

same small amount. So, if we divide the whole orbit into small pieces sublending the same

angle A8 , the "kick” vectors for the various pieces all have the same length (Figure 4). Not

anly are all the lengths equal, but the rotation between sucessive kick vectors is constant and

-

-

equals A

Thus we have a very simple algorithm for generating the changing vc]n;:il:r as
the planet moves along its orbit, Starting at a given velocity vector we add on kick vectors
one after another. Each addition is a step of constant length and successive steps differ in
direction by the constant turn, A8 . It is asy to see that the algorithm: GO FORWARD a
short distance, TURN through a small angle, GO FORWARD the same short distance,

5 We conclude that the kick

TURM through the same small angle,.., will generate a circle.
veclors line up along a circle (Figure 5),
We can interpret "adding on successive kick vertors” by introducing the notion of

velociry space. The velocity of an object is usually described by a “velocity vector”, that is, a



Figure 5: Placing the kick vectors end to end.



direction and a speed (length). In comparing different velocities it is useful to put the tail
of all velocity vectors down at seme comman point, 0, and to depict a velocity by the point
where the tip of the velocity vector lands. With this convention, we can draw two different

pi:tuz;e.; to describe the motion of an ob ject:

(1) the collection of successive positions of the ob ject in "real” space; and
(2 the collection of successive positions ef the tip of the ob ject’s velocity vector, -

This is a path in "velocity space’, a picture of how velocity changes.

The second picture is called the “velocity space path” or “velocity diagram®,
Figure 6 exemplifies these two kinds of diagrams.

Velocity is the thing that chang‘é's position; kicks are the things that change
velocity. To get from an object’s position at one instant, t, to its position at t«At, we add on
the -re-émr VAL Te get from the ob ject’s velocity at one instant to the velocity at a slightly
later time, we add on a kick vector, FAL Adding up successive VAt vectors gives the
Iﬁusitinn space path; adding kick vectors gives the velocity space path. We can now restate

our result as

Cirgle Theorem
For an obfect moving tn an tnverse-square field, the velocity space

fath ltes on @ circle,



POSITION
PATH

VELOCITY PATH

Figure 6: (One object's position space and velocity space paths.



To avoid confusion we point out that the center of this circle is nat necessarily at

the origin in velocity space.

t. The Veloctty 5 pace Parh

Our Circle Theorem tells us that the velocity space path lies on a circle. But is it

a complete circle or just part of it? We can answer that question and a bit more,

We showed that an orbit which does manage to get all the way around thé sun
crosses every half-line from the sun exactly once. Such an orbit s a simple closed curve.
In a complete revolution, therefore, the direction of the planet’s velocity vector must :ha.mge
through 360°. (See reference 4) That means that tn velactty space also the path meets every
half-line from the velotity space origin. It Follows that closed orbits in position space
correspond to complete circles in velocity space, and we have learned, besides. that the

origin of velocity space is inside the circle.

We now have a good qualitative picture of the velocity space path for a closed

orbit. (Open orbits are discussed in section IL} In Part IT, we will extract information about

the position space orbit from our velocity space diagram.



RADIUS

Figure 7: p = radius x A&



It Invariants of the @rbit

5 Angular Momentum

As we have seen, the velocity space path of a planet in an Inverse-square field lies
on a circle. One obvious invariant of a circle is jts radius. How can we interpret this
invariant physicaliy?

We got the circle in section 3 as the result of the algorithm “forward distance D),
turn angle 48, repeat”™ As one can see (Figure 7), this generates a circle of radius D/AB. In
our case A8 was an arbitrary small angle and D was the magnitude of the kick FAt over

the corresponding small piece of orbit. Letting u denote the radius of the velocity circle, we

have

It is not immediately obvious that this s a constant. However, we can simplify the
expression using the fact from geometry that the-area swept out over a small piece of orbit
is

A= =170,
Then u=FA;L = Fr?At We can eliminate the apparent dependence on the non-constant term

6B T3A
r‘iz by wsing F-I{frz-, we obtain

u =

(4)



The term 2A(4t, which tells how fast the planet is sweeping out area, is precisely the
constant called angular momentum, L. (See Appendix.) Therefore
The radius of the velocity circle equals the force constant
K divided by the angular momentum L: u=K/L
For a fixed gravitational field, the radius of the velocity circle tells us the planet’s angular

momentum: a larger radius gives a smaller angular mementum.

6. Orientation

The velocity circle has another invariant so ebvious it is easy o overlook—the
position of its center in velocity space. As we remarked above, even though the origin 0 is
fnstde the velocity circle it need not be ar the center of the circle. Let T be the vector
running from the origin in velocity space to-the center of the vetnc.lt;.- circle, and let U be
a radial vector of the circle (Figure 8).- In terms of Z and U, we can think of the planet’s
path in velocity space as follows: at each moment the "ul'tll:lr:'ltr-"'r is the sum of a constant
vector T ﬁnd a vector U of constant length {equal to u=KEfL), vezsll. The velocity space
path is generated as the radius T sweeps around the tip of the invariant vector 2

There is a quite remarkable relation between the motion of T, the position space
radius vector (tail at the sun, head at the planet), and the motion of this “velocity space

) s
radius™ wu.

Correlation of Angles tn Postiton and Velocity § pace

=&
At each moment the planet’s radial vector v ts per pendicular to the
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Figure 8: The invarfiant Z.



radtus i of the velocity cirele.
To see this we examine how the kicks fit into both diagrams: In position space each kick is
=
parallel to the radial vector r. In velocity space the same kick is tangent to the velocity

circle and hence perpendicular to the velocity eircle radius u,

Hence u is perpendicular tn?._

Correlation of Angles is a powerful principle. It tells us:

(I} Each point on the velocity space path corresponds to a unigue point in the
planet’s orbit. (The planet cannot attain the same velocity at two different points in its
orbit.)

(2} The planet’s position vector sweeps around the sun at the same rate and with
the same direction (clockwise or counter- Ef:l-ckwjm} as its velocity sweeps around the circle
in veloeity space. The two are always 90 degrees out of phase. (Figure 9)

Now we can_give more meaning to thz-; vecter. The planet's EF.EEI:', v, is
greatest when the Ul and Z vectors are lined up, least when they a.rt opposed: v su-z,
Venax=w+z. Therefore t_Ha_f vector points in the direction of maximum speed and
opposite to the direction of minimum speed.

The points of greatest and least speed occur where the velocity vector is parallel
to U, and so perpendicular to the position space radius T, It is not hard to show then
.Lhat the point whe.re speed attains its maximum (respectively, its minimum) corresponds to
the minimum (respectively, maximum) distance from the sun. The reader can fill in the

details of the proof sketched below:
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Figure 9: Snapshots of position and velocity over an arbit T.?J_?.



Step I: At a maximum or minimum distance the velocity '1-!: must be

perpendicular to the ran:ijus}t.
Step 2. The velocity diagram shows that there are precisely two points where this

€an ooour.

Step 3. Conservation of Angular Momentum implies that Fmax Corresponds to
¥min 209 Tnin 10 Vo

Mow we have some more qualitative information about the shape of the orbit:
there is precisely one point of maximum distance from the sun, and one of minimum
distance. They occur on opposite sides of the sun since the l:nrresp-nndlng'ﬂ vectors point
in opposite directions. The T vector determines the orientation of the orbit. It points in
the direction of maximum speed. (Figure 10)

-

e

1. Shape and Symmetry

What more does the length of T tell us about the orbit? Consider what would
happen if T vanished. There would then be no direction .piEkEﬂ out for maximum speed
or distance from the sun. The planet would have to travel around the sun in a circle at .
uniform speed. (Another way to see this: v would be equal to T and therefore always
perpendicular toT and of constant length--the characieristic of uniform circular mation.)

This suggests that 7 indicates how the orbit deviates from a circle. We can
make this precise. One obvious measure of the non-circularity of the orbit is the difference

in the extreme distances from the sun,



Figure 10: Z determines the orientation of the orbit.



Frmax ™ min-
If we want an invariant that depends only on the shape and not the size of the orbit it is -

better to see how much the ratio

"max!Tmin

differs from I. The length ur?, relates the maximum and minimum speeds:

Tmi.l.'l:'u_: ¥ =LitT

max

To relate speed to distance from the sun we use angular momentum. If the angular
momentum is L then
L=v . xr

min * Tmax®max * Tmin

because at these places in the orbit v is perpendicular to r (Section 6). Therefore:

Mmax _ Vmax - U+ z
min Vmin u-z
-

Since u=K /L we can also write

Fmax _ K+ Lz
Vimin K-Lz

But K depends only on the nature of the gravitational field so we see that our "shape

invariant” is determined by Lz. The larger Lz, the more the orbit deviates from a circle.

In section Il we will derive the analytic result that the orbit is an elltpse and Lz determines
is eccentricity.

In fact, knowledge of K and the velocity diagram essentially determines the

. planet’s motion. The maximum velocity. can be read off the diagram immediately, as can

o W=KJL;" 50 we know L. The shortest radius in position space has length Tmin~L/ ¥ may 2nd



is perpendicular to _'"‘rn:l:-: {Section ). Having this one v::mr,"'r‘mjni we can generate the
orbit starting at the position determined b;.r'?m-m with the following alzorithm.

L Travel a short distance ¥At in the direction of 7.

2. Measure the change in angle, 48, in position space.

3. Find the velocity at this new angle (by mtaling'l} through &4f and consulting
the velocity diagram),

4. Return to step . This generates the entire position space path.

Maotice that the velocity diagram is symmetric about the line determined by 7
The above algorithm transiates this fact into a symmetry of the position space orbit.
Starting at the nearest point to the sun, construct the orbit in the forward direction for a

while, along *1 for .ﬂ.ﬂl, then along '%2 for ﬂ.ﬂz, and 50 on. Now go back to the

velocity diagram is symmetric we generate the same small segments of orbit, except that they
have been flipped about the line perpendicular to . Therefore the entire orbit is

symmetric abouit this line.

8. Summary

We have so far obtained the following information from the velocity diagram.
- l. The radius of the velocity circle determines the orbit's a-.ngular momentum:
u=K /L.

2. The center of the velocity circle determines the orientation of the orbit (7



points in the direction of maximum speed) and its "shape” (Lz determines Tenase! Trmin

3. From the velocity diagram, we can algorithmically determine the whole orbit.



1Tl Perturbations

9. The Perturbation Formule; Radial Thrust

It is in the study of perturbations, or how orbits change under small kicks other
than those given by the sun, that our use of velocity diagrams rea_ll',r pays off. It pays 1:.-t‘t‘
for a very good reason, which we mentioned in the introduction as a qt.l:aUtatiH:E form of
Newton's Second Law of Motion:

Force acts on the paths of particles by changing veloctty and not
fositton.

If we fail to take account of this fact we may be faced with situations that appear
counter-intuitive. For example, suppose a spaceship in a circular orbit around a planet
applies a small outward thrust (Figure lla)-~
How will the orbit change? "Intuition” may suggest that the orbit will elongate in the
direction of the thrust, something like Figure Iib. In fact, the orbit will elongate, but in a
direction perpendicular to the kick as in Figure Il

To understand this we consider how the kick changes the velocity diagram. The
spaceship started in a circular orbit whose velecity diagram is centered on the origin,

Since force affects velocity and not position, it is reasonable (and we shall show below) that
the effect of the kick in velocity spué really is just to move the velocity circle in the
direction of the kick (Figure 12 The corresponding change in the position space orbit is
the “counter-intuitive” effect described above.

Qur strategy for studying perturbations will be to see how kicks change the



Figure 11: Will the outward kick on orbit (2) produce (b) or (c)?



POSITION BEFORE POSITION AFTER

e
.

VELOCITY BEFORE VELOCITY AFTER

Figure 12: The perturbation induced by an outward kick.



velocity diagram. More precisely, we know that the shape and orientation of the orbit is
determined by LT, the 7 vector times the angular momentum, so we want to find the change
in Lz, A{LZ), produced by an arbitrary kick.

The basic velocity space equation, ¥ = 7 + 1, gives LT = LV - LU Since i has
length K/L we have LU = K3, where T is a vector of unit length whu.sc direction is
determined solely by the object’s position. (It s perpendicular to the radial vector ¥) To
compute the effect of a kick A% on L} = LY - K2 notice that since kicks do not affect
position, s is unchanged. K is also unchanged. Therefore the changein L1 is the same as
the change in L¥, and the first-order approximation to the change in a product of

changing quantities gives
Perturbation Formula: A{IF) = TAL +« LAY

We can use the Perturbation Formula to tidy up our ulsa:uar;s:lnn of the “radial
thrust problem™ (Figure 14). Since AV is in the radjal direction, the angular momentum
does not change (AL = 0), 5o the formula implies A(LE) » LAV. This means that the
velocity diagram changes from a T vector of zero to a7 vector in the direction of AV
{Figure 12),

Intuitively, the velocity circle is "pushed” in the direction of the kick. Mote that an inward

kick at the bottom of the position space orbit would have the same effect.
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Figure 13: The perturbation induced by a tangential kick.



I0. Tangential Thrust; Solar Wind; :"‘u"'*:I Lews

In this section we apply the Perturbation Formula to some other orbit problems.

Tangential Thrust: Suppose again that a rocket starts in a circular orbit, but this
time provides a tangential kick (Figure 13). To determine A(L) = VAL » LAY we note that
VAL is an impulse in the direction of AT since AL is positive and V is parallel to A%,
Then the newly created 'f*.-'ectur must be in the direction of the impulse (Figure 13). The
elongation in position space is again perpendicular to the kick.

| The Solar Wind? Assume the rocket is affected not only by the ﬂanet’s gravity
but also by a small constant force (Luehrmann's "solar wind"). If the perturbing force is
small compared to gravity, each revolution of the rocket will be nearly a:.1 ellipse. We can
therefore think of the orbit as an ellipse which varies through time. To compute how the
ellipse changes we view the wind as providing impulses all along the orbit (Figure 14) and
sum A(LT) = VAL + LAYV over one revolution,

The LAY contribution is a net change in the direction of Av. To compute VAL
we natice that AL is positive on the bottem half of the orbit and negative on the top half
as shown in Figure 150, We can sum the VAL' by exploiting the symmetry of the orbit.
The vertical components of the VAL's on the left cancel the vertical components of the
VAL on the right, Ie.al.ring only a harimﬁ:a! component in the direction of AV {Figure
15c). This adds with LAY ta produce a 7 vector in the direction of the wind. Intuitively,
the velocity circle gets “blown” in the direction of the wind. The orbit elongates

perpendicular to the wind as in Figure |5,



WIND

Figure 14: The solar wind.



Figure 15: The vectors Vv (a) and VAL (b) for the salar wind. In (c)
we see that the vertical components of VAL en the left

cancel the vertical components on the right.



Figure 16: Position space change in the orbit under the solar wind.



Since the wind does not affect the symmetry of the orbit about the vertical axis we can
apply the same analysis as above to show that the L7 vector continues increasing in the
direction of the wind. From this we conclude that the orbit becomes mare and more
eccentric while the direction of T remains constant, and the orbit continues to elongate
frer pendicular to the wind,

The orbit becomes closer and closer to a straight line, and it eventually reaches a
point where the "small® wind can have farge qualitative effects over a timescale of less than
one revolution (the orbit in fact reverses direction), and our method of averaging over an
entire revolution becomes inappropriate,

The +(2*%) Force Fietd: It e is a small constant (we will ;ake it to be positive), we
can treat the central force field of magnitude 28 asa perturbation of the e fieﬁ. The
perturbing force is some force (positive orfiegative) in the radial direction. To understand
how this perturbation affects the orbit, we make the impaortant observation that the _r.hape
of a 12 gr 12+ orbit does not depend on the scale which we use to measure radius,
Therefore we can determine shape by using any scale which makes it convenient to
compute the effect of the perturbation. For the orbit shown in Figure 17, we scale to make
the distance OF equal to one. Since et < I.fr'm"] for r<land Ujr® » HT{E"} for r > | the
perturbing foree is as shown.

For this perturbation the .ki:iu are radial, so L is constant. This means A{LY) =
LAZ, but from the perturbation formula, AL = 0 implies AL = LAT Hence AT = A7
Now we can sum A7 <A7 over an entire orbit. The left-right symmetry of the orbit and

perturbing force means that the sum of herizontal components of the kicks must cancel,
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Figure 18: AT perpendicular to Z.
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Figure 19: Precession of r orbit.



and the net ﬂ.i?ls downward, that is, perpendicular to the original 7. Subsequent ATs will be
perpendicular to the current Tand this results primarily in a rotation of Z, not a change in .
length (Figure 18). The "major axis” of the position space orbit, by the consequences we

derived from Correlation of Angle, must follow this counter-clockwise rotation. Though

the orbit retains its shape LT, it precesses (Figure [9),

Warning: It should be remarked that in the preceding two examples we looked at
the _Fh VECLOFs a5 representing AV for the perturbation formula. OF course we should have
used ?Lﬁt, but, because of the symmetry involved, the At factor can be ignored in those two
cases. In more complicated situations, though, this does becorme an issue. For example, we
invite the reader to use the techniques of this section to treat the perturbation induced by

an oblate sum.

IV. Analytic Results

IL T he Orbif ir @ Conle Section

An ob jection that is sure to occur to some of our readers goes something like this:
“All these intuitive methods are fine, but if you want useful quantitative information you
have to return to the standard differential equations you've been trying to get along

without”



OF course there are orbit problems our simple methods won't handle. As for the
standard results, however, we are able to derive the orbital equation directly from our

velocity diagram wsing no more than trigonometry:

The orbit is described in polar coordinates by the equation

o L
u -z cosfl
The proof is a natural correlation of the basic quanttties,‘r’:"\r. T and L using

the definition of angular momentum. At a point in the orbit when the § vector and the Z
vectar differ in direction by an angle # we construct the angular momentum triangle (see

appendix).

The area of the triangle OAB in Figure 20 is by definition L/2. If h is the height

of the triangle tHen

1 1
— L - h
2 & "
Since u and r are perpendicular, the height of the triangle is given by h = u - z cos 8.
Therefore
. Lerhe=r{u-zcosf)

Here & represents the angle in veloctty space between o and the fixed vector Z Correlation

of Angles implies that & also measures the angle in position space from Ttoa fixed vector



=z cosf

Figure 20: The angular momentum triangle 0AR.
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Figure 21: Sample orbits in position and velocity space.



perpendicular to2. Therefore r and & are polar coordinates in position space.
The above equation describes a conic section. When the origin of velocity space
lies within the ;:urclr. u>z and the orbit s an ellipse. When the origin is outside the circle, u
< z and the orbit is hyperbolic. When the circle passes through the origin, u = z and the
.

orbit is parabolic (Figure 21).

Writing the equation in the form
5 -

/: i
T“(%)tusﬂ = I_(L%) cos

Lz
we get the "standard form" for a conic section and see that K is the eccentricity, and

L2/K is the radius of the orbit when the eccectricity is zero.
o

12, Conservation of .Eu,-.'rgy

Energy conservation does not arise naturally using this geometric approach

although we can obtain the result as a simple application.

Apply the law of cosines to the velocity diagram in Figure 22 to get
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Substituting z cosft < - = {from Section Il) we obrain

2= 2 EEUL

v I —u4
¥
and hence (since u = /L)
2 L1
v K _ 70 u?
2 r 2
z°—u?® .

Since z and u are constant for the orbit, 2 is @ constant, the total energy, E. It is .

interesting to note that when the planet crosses the semi-minor axis {T perpendicular toV) T,
- - . . 9 9 9 vZ
Z,and v form a right triangle with v*=u“-z%; hence the kinetic energy /2  is exactly the

negative of the tofal energy there,
13. Kepler's Third Lew

We can use the relation of angular momentum to area swept out, 2A=LE, to
compute the period of the planet's revolution. In one period the planet sweeps out the
entire area ol its elliptical orbit. The area of an ellipse of semi-major axis a and .

eccentricity e is given by A « x @ 1=8% For the orbit we have



u—z U=—z
= _L__;J__ = _K
-z u'— 2%

Then the peried is determined by

LT=2ra2{1-062 = 2ra% K

.ﬂl"
ETE%JE — 2r :ﬂé
Lu vk

In terms of quantities appearing in the velocity diagram we pet

T = 2K Lo 2rk

u? - 22 - E-EE}%

I14. Open Orbits

Rather thar treat the hyperbolic case in detail, we leave the reader to verify the

fnl]uwing:

L For an open orbit, the arc of the velocity circle which is actually traversed is the
part shown below, bounded by the tangents to the circle through the origin of velocity

space. Veloclty space geometry gives the correlation of energy with limiting velocity, v



Figure 23: The velocity diagram for an open orbit.



Figure 24: Deflection angle for an open orbit.



=dz°-u® =] 2E (Figure 23),

2. The deflection angle (angle between the two asymptotes of the hyperbola) can
be easn].r- found as a function of energy and angular momentum: tan % .Lfﬂ_ﬁ_ (Figure

24)

15, Suggesitons for Further Research

We have by no means e:-:ha:;s:e:i the study of the geometry of erbits in this
paper. The geometry of orbits, particularly the perturbation theory, is a rich source of
problems, even of mini-research projects of the type described by Luehrmann®. Below we
make some suggestions for .prnblem.': and :;;ld}' topics.

An Instructive paradox: The Galilean transformation requires the relation between 'I.I'EII:H:]UE..
measured in two different frames of refrence moving with relative velocity #ﬁl tobe V' =V
“_‘"ﬂ' This it is a simple matter to move into a frame with relative velocity 2 and transform

thez vector for an elliptical orbit to 0. Why then does one not observe a circular orbit in

the new frame? In particular, what fails in the algorithm of Section 8 which dpes generate
a circle In position space given a circle centered about the origin-in 1n'-e-1|:=l:it]r space?

An Atd to Asrrogation? Suppose we had to pilot a spaceship in a gravitational field (such as
simulated in computer "space war” games). Would a velocity diagram be a useful addition

to our instrument panei? For example, to change from an elliptical orbit to a circular orbit



we need only consult the velocity diagram and apply a force to cancel the T vector. On the
other hand, lots of information is lacking if we use only the velocity picture. Intercepting
another spaceship is a tricky problem involving timing. (Although merely matching its
orbit is easy.) What other instruments should supplement or possibly replace a velocity
diagram?
Geametry of the harmomic osciliator: A Tundamental geometric property of solutions to the
Ir? differential eguation Is that they have a vector constant uf.n'u;ltlun (for the maximum
velocity, or the Runge-Lenz vector are all possible choices for this constant). The two
dimensional harmonic oscillator with tqu-al mode frequencies has a similar structure,
Solutions have an obvious axis which may also be assigned a magnitude in any number of
ways. Can one develop a useful velocity space geometry for that system? Can one treat
simple perturbations, as with orbits? -
More Solar Wind: A further discusston of the solar wind phenomenon could make use of -
the Faet that L1'.|t force field is conservative and therefore the energy of the orbit is constant..
This implies that the angular momenturmn decreases as the orbit becomes more eccentric.
T'hu.s the velocity circle is not enly "blown by the wind” but also tl';c radius becomes larger
and finally infinite when the orbit degenerates to a line. Show that the changing velocity
:ln:1_e always passes through two fixed points in the plane. (Figure 25)

Qwur method of averaging over entire orbits is only a first-order perturbation

theory whereas the formula

d(L3) . d v L e ML

ds d s ds
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Figure E_E: Changing velocity eircle under solar wind.

e



(s is any parameter) is exact. One would like to have a treatment of the solar wind which

works near the turnaround points, 2/u approaching |.

Finally, is there a complete perturbation theory based on the geometry of orbits?

In particular how can one treat perturbations out of the plane of the orbit?



fAippendix: Angular Momentum and Kepler's Second Law

Throughout this paper we have been assuming Kepler's Second Law. There is a
simple geometric proof of this which we place here in an appendix because it did not

originate with us. It can be found in Mewton's Principia!

The angular momentum, which we denote by L, is defined to be twice the area of
the triangle determined by the velocity vector and the radius vector from the sun to the
planet. As shown below L is constant if the velocity doesn't change — the triangles have
equal areas since they have equal bases (the length of ¥) and equal heights (Figure Al),
More remarkably, L remains constant if we chenge the velocity by applying any kick in the
radial direction (towards or away from thesun). The effect of a kick &V on the angular
momentum triangle is illustrated below {Figure AZ). The kick changes ¥ to¥', but triangles
OPQ and OPQ' have the same base, OP, and the same height (h.in the diagram) since OP
and QO are parallel. Therefare OPQ and OPQ' have the same area, and. angular
momentum is unchanged.

A planet moving about the sun, subject to no force but the sun's gravitation, has
every kick applied in the radial direction. Mone of these change the angular momentum,
which is therefore an invariant of the planet’s orbit. Te find a geometric interpretation of
this fact, we examine the orbit-at time intervals At small encugh that the velocity u.:iues not
change much over each interval In each interval the radius vector sweeps oul a small

triangle. The area of one of these small triangles is



Figure Al:
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Pigure A2: Area OPQ = Area ORQ'
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{h as in Figure Al). The total area swept out over some long time
T -ﬁtl * ﬂ.tE o

s the sum of the areas of the small triangles

1 1
A= :Lﬂ. tl+?L.ﬁtE-1-...

1
— Lfat At o+ )
2 ( ! 2
LT

2

11

This gives Kepler's Second Law:
For a body moving in a radial force field, the radial vector sweeps
© out équal areas in equal times.
It is unfertunate that this proof is not more often .prl:renm:l in physics courses (although

& 7 *

Feynman * discusses it and there is 2 movie demanstrating this argument).
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