MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL [NTELLIGEMNCE LABORATORY

Artificial Intelligance May 1975

Memo Mo, 321

A MODEL-DRIVEN GEOMETRY THEOREM PROVER

Ehiman Ullman

ABSTRACT

This paper describes a naw Geometry Theorem Prover, which was implemented o
illuminate some issuses relaled to the use of models in thearem proving. The paper is divided
into thres parts: Part | describes the G.T.P and presents the ideas embaded in it. It
conceéntrates on the forward search methad, and gives two examples of proofs produced that
way. Part 2 describes the backward search machanisr, and presents procfs to a sequence of
successively hardar problams. Tha las! saction of lhe work addresses the notion of similarity
in a problem, defines a notien of semantic symmatry, and compares it to Gelernter’s concept
of aynfactic symmetry.

This reporl describes research done ab the Artificial Intelligence Laboratory of the
kassachuselis Institute of Tachnalogy. Support for the laboratory®s artificial intelligence
recsarch iz provided in part by the Advanced Research Projects Agency of the Depariment of
Defernce under Office of MNaval Research contraet NOODI1L4-75-C-06473.

Table of Contents

T v (14 1 O ——— 4
Part |
L1 General background B
L2 Description of the Systeme e -
l.2a Pre-processing
1.2b Attach.a.nd eiplore
L2c How curious to be?
|.2d Backward search
1.2e Middle-out search
L3 Examples... - B
L% First example
L3k Second example
Part 2
20 The EXperts 2l
2.2 Building a search tree 2%
P = L T ——— 25
b T — 30

2.4a First example

- 24b Second example

24c Third example
2.4d Fourth example

2.5 Difficult problems..... 45

Part 3
31 Semantic and SYNIACHE SFMMEITY . erssssremessnees.

Bibliography.— e S— ..

Imtroduction:

This paper discusses issues in Geometry Theorem Proving as a case-study in problem
solving and in heuristic search. One way of viewing the problem solving process 15 as a
large tree-search: at each itep the problem solver chooses one of the strategies available to
him/her, and then proceeds 1o the next decision point. In such a search the mere existence
of an algorithmic way for reaching a solution is in many cases of no real interest, since the
size of the tree might render it totally impracticable. Rather, the interesting problem is
finding intelligent search methods. This means, primarily, using knowledge of the prablem
domain to direct the search towards the paths with a2 greater likelihood of success. In this
respect the present paper makes a new contribution, as previous G.T.P systems did not
address themselves directly to the above aspects of theorem proving.

The G.T.P. system is described in the first two sections of the paper. For
methodological reasons the [irst ene concentrates on what is known as the "forward search®,
while the second discusses the backward (also known as the "analytic™) method. This
distinction is convenlent, although the complete system should be able to make a flexible use
of both methods, as well as of some others, like the middle-cut search described in the text
The last section of the paper describes a method for dealing with issues of symmetry in
geometry problems. In addition to the ability of pre-creating a list of all the symmetries in a
problem {the way Gelernter did in his synuactic symmetry methed), this new approach
enables one to say something like: “This new goal resembles a previous one. So let me

check whether the same proof applies here too.” Although the treatment of the problem is

somewhat formal, the main intention of this section is to provide a way for dealing with

symmetries in a natural and Tlexible way,

PART I

L1 General Background

T'his section is aimed at describing briefly those issues and concepts discussed in
previous research which reappear in this work, The first, and the mos: well known woerk in
this area, was done by Gelernter. He was interested in general aspects of producing formal
proofs by machine, and the main ideas he discussed were:

L The use of an analytic methed, also called “chaining backwards®™, which reasoned
backwards from the goal to the hypotheses.

2. The use of the diagram as a filter heuristic, that is, rejecting subgeals which are
not consistent with the diagram.

5. Syntactic symmetry: this is an approach to the problem of constructing and
justifying a proof, in which one subgoal is proved formally, while another
subgoal is said to be “similar” to the first.

Two other systems that produced proofs to geometry theorems were implemented at
the M.LT. Al Lab: The first by Ira Goldstein (Goldstein 1973) and the second by Arthur
MNevins (Nevins i!ﬁ'i}. One of Goldstein's main concerns was implementing a system in a
high level and natural formalism that facilitated the representaion of mathematical
knowledge in a program. His PLAMNER-based system had indeed a natural and simple

structure. But because it depended heavily on rigid rop-down tree search, it was doomed to

spend an ever increasing fraction of its time following dead end paths as the problems
became more complex, Nevins, on the other hand, explored the other extreme and
implemented a system using mostly forward chaining. While Goldstein's system use of the
diagram was similar to Gelernter's, Nevins did not use the diagram at all. The next few

sections describe the ways the diagram is used in the model-driven G.T.P.
1.2 Description of the System.

The theorem proving system processes a problem in three phases:
Phase | is a pre-processing; the second stage is an "attach -and-explore” cycle; and phase 3

i5 a backward search.

L.2a Pre-processing.

The First phase is executed before the hypotheses are given to the system. At this
stage the system manipulates the diagram with the ultimate goal of creating what will be
called reference-frames. These frames have "slots” in which relevant data are filled in the
course of the proof. The fnl]ﬁw,]ng' example illustrates our intention. Let (A B C D) bea
paralielogram in the diagram. The system creates a frame for the parallelogram, of the
t‘n]]nl;ving Form:
< (A B C D) (segment AB = segment CDJ (segment AD = sepment BC)

(segment AB parallel segment CD) {segment AD parallel segment EE}.

{angle BAD = angle BCD) (angle ABC = angle ADC)

{ril nil nil nil nil nil) »

The current state of knowledge Being {nil nil nil nil nil n:i]_} means, that nothing is known
yet about this frame. This is an instance of the general structure:
< jobject {eg. parallelogram)
dAmportant facts (eg. opposite-sides or angles equality)
iknowledge (eg. current state of knowledge) >.

Suppose now that in a later stage the system learns that (segment AD = segment BC).
One of the things it will then do, is to atach this fact to the above structure, It will Tind
that the equality (segment AD - segment BC) is the second member of the above frame, and
consequently the current state of knowledge will change to: (nil T nil nil nil nil). That Is,
the second fact attached to the reference frame has been established. The procedure is
reversible, in the sense that the T-NIL list, which constitutes the current state of knowledge,
can be examined, and the fact that (segment AD segment BC) be deduced. We say
therefore that the fact is attached to the frame. A characteristic feature of that structure is
that the same datum might appear (sometimes implicitly) in more than one frame. A fact
also appears once explicitly in the general cata-base, a list called "KNOWN?, that keeps
track of the known facts together with their reasons. Thus, KNOWN might contain:

((Segment (A D) = segment (B C)) (Reason: Given)).

A problem that arises here, is the need for canonic names for geometric ob jects.
This was done using lexicographic order, based on the .Li:p ALPHALESSP predicate, (See
Mevins, <Nevins 1974> and also -:Gul:‘ls:eu_'n 197> for discussion of this) Thus a segment (Z

X) will be rearranged in the data base as (X Z)and (B A)as (A B). The equality between

those segments will be asserted as: (Segment AR = Segment XZ).

A paralielogram (P1 P2 P3 P4) will not be simply rearranged in ALPHALESSP
order,in order to preserve the property that one can go around the parallelogram from Pl to
PZ to P3 to P4. Therefore P, the first point in the canonic name of a parallelogram, will
indeed be the ALFHAMIN point (The least point in ALPHALESSP order). P2 will be the
ALPHALESSP point between the two neighbors of P1, and then we proceed by going

around the parallelogram frem Plio P2 B D

Thus the canonic name of
(CDBAwillbe (ABDC),

rather than (& B C D).

Al c

The reference-frames lists created by the system in the first phase include:
L. A list of congruent triangles (CONGRUDLIST)
2. A list of similar triangles (SIMDLIST)
3. A list of parallel lines (PARALLIST)
4. A list of parallelograms (PARADLIST)
5. A list of triangles-with-bisectors {(BISECTLIST)

After creating those lists, phase | terminates; and phase 2 begins

L2b Attach and explore,
In this second phase, the hypotheses are given to the system. The program handles

them in a rather simple way, which we might describe as "Atrach and explore™

Firstly, it attaches every datum to all its appropriate frames, that is, all the frames
that have slots in which the specific datum lits. Note that during this procedure there are
no interactions between data; in principle, it can proceed in parallel, if one does not insist
on asserting the consequences immediately after they are established.

Secondly, it goss into "Exploration mode”. Some exploring functions are invoked,
which E.Himine the current state of knowledge of the different frames. If the exploring
function finds the list (T nil T nil nil nil) a2 the end of the paralielogram frame of (A B C
D), it a:;cm the lemma that ({A B C D) is a parallelogram) (Reason: Equal and parallel
opposite sides)), adding this new fact to the dara-base (The KNOWN list). Recall that the
ABCD parallelogram frame was created by examining the diagram, and hence the existence

of the frame is not a proof that ABCD isa parallelogram.

L.2c How curious to be?

When new facts are discovered one can proceed by artaching them to their frames,
thus creating a new attach-and-explore cycle. This process can iterate until it (hopefully)
hits the goal. This is, of course, what we called forward chaining, and examples of proofs
produced in this way will be examined later.

Mot all data are created equal: Some are always explored; some never are, and some
are explored only if the system is curious about them, as will be z:p;lained below, If the
system knows that in triangle XYZ, (angle XYZ = angle XZY) it concludes that -l{{s:gment
RY = segment XZ) (Reason: isosceles triangles)), and tries to establish new consequences.

©On the other hand, if the congruence: triangle ABC = triangle X YZ) is established, the

r:unsequem:es:

(Segment AB = Segment XY)

(Segment BC = Segment YZ)

(Segment AC = Segment XZ) etc. are asserted and added to the data base without
being further explered. The rationzle for this is the following: The statement: (triangle
ABC = triangle XYZ) has a different status than the statements:

(segment (A B) = segment (X Y})) or: {angle (A B C) = angle (X Y Z))
It is more powerful than the las: two statements and contain more infarmation, (In fact 8
times as rmuch).

The nation “congruence” constitutes therefore a compact concept. Besides containing
much information, a concept has to eccur frequently enough in order to be a useful compact
concept. For example: the concept super-congruent (triangle-l, triangle-2, triangle-3), stating
' that triangle-l = triangle-2 = triangle-3, and all are isosceles, is compact, but not useful

A reasonable place to stop the forward chaining is upon organizing the data in
useful, compact concepts. In the geomesry domain, "parallelogram” and "congruence” are
examples of :u:h. concepts. The concept “congruence” for instance, should be represented in
such a way, that should some other function search for the segments’ equality, it would be
immediately available from the congruence. However, If no such requirement is made, this
statement will stay still in its compact packing. Thus, we can also make a distinction berween
active versus passive data.

There are cases, however, when we might wish to alter this situation. The following

5 an example of such a case: Suppose we are in a backward search, trying to prove: (Angle

ABC = Angle XYZ). We examine our reference-frames to see if there is any natural
subgoal, like a p;a:'r of diagram-congruent triangles {Le. 2 member of COMNGRUD), but find
nene. We would like to tell the system "Make 3 transition to forward search, and follow the
consequences of some fact unexplored so far™. The way of making the system more curious
about the things it discovers, is by setting the variable "curiosity” to a non-nil value. It is
possible to imagine extentions of such an approach that provides a more flexible control
over the system's tendency towards forward or backward chaining,

* This style of "attach-and-explore” saves future recomputations. For example, suppose
that the fact that (Segment AR = Segment XY) is known to the system. It then tries t:.- find
a pair of congruen: trl:angle:. in which (A B} and {X Y) are sides, and establish their
congruence. It eventually fails, because there is not enouph data as yet for that. If it does
not keep in mind (within the appropriate reference frame) the fact that, say triangles (A B
Cland (X ¥ Z) agree alreacy in ane side, it is forced to re-find them and the relevant data

about them in the data base, when (Segment BC = Segment YZ) is also known.

1.2d Backward search.

As the first stage of forward search is terminated, the system starts backward
chaining, and from now on it might switch from one mode to another. The system's
structure was designed to facilitate such a task, but because a more detailed description of
that phase is presented in part 2, only general remarks will be made here. . The general

scheme of the backward search phase it as follows:

When a goal is set forth, the program examines all the possible subgoals. It then

checks whether one of these subgoals has already been established. This situation might
arise, when the subgoal iz a passive kind of daa, in which case the system did not try to
e;'l:;hLi.'ih any new consequences of it. 1f none of the sub-problems is already proved, the
system solicits the help of a Plausible Move Generator (P.M.G). This decision can be
efficiently reached because the systems keep records of the current state of knowledge (as
opposed to Goldstein's and Nevins' systsms, in which this was done only in a limited way).
Another advantage of the current state of knowledge list has been mentioned already,
namely, that it can save recomputations. For these reasons, this feature probably has a
general applicability and importance.
Suppose the current goal is (segment XY = segment AB). The system is in a position
"0 answer with minimum amount of computation questions like: "Find if (X Y) and (A B)
are corresponding sides of some congruent triangles. Examine those triangles to see about
which of them we have the largest amount of data, and what kind of data.” The system
compares the possibie subgoals, scores them, and then pursues the highest scored subgoal,
(The main function of the P.M.C. is. then, acting as a “Static-Evaluator™) Some
modifications of this behaviour are possible;
‘:I. Upan hitting a very high scored subgoal the systems stops evaluating the other
subgoals and tries that one. (Similar o Conniver “hang™)
2. As mentioned earlier, if the scores are too low the system might wish to switch to

forward search for a while (by setting "CURIOSITY" to T).

I.2e Middle-Our Search;

Upon examination of human methods of proving geometry problems, one observes
that a "middle-out search” heuristic is sometimes used, especially in difficult problems. The
idea is to find an “interesting” figure in the diagram, like a parallelogram, or a pair of
congruent triangles, {those “interesting figures” are closely related to the compact concepts)
and try to establish that property. In doing so, the problem solver is rékyrlng on the
assumption that coincidences are not likely to happen: A parallelogram in the diagram is
probably significant and not merely accidental,

Note, that this heuristic {the middle-out search) can also be incorporated quite
naturally into the system's structure, for the same reasons that the P.M.G can. Namely, the
questions the systems would like to ask while applying the heuristic are easily answered

through the use of reference frames.

13 Examples.

In t-hi_l-iﬁ:t'il:ln two examples of forward-chaining proofs produced by the system are
presented. The input to the program consists of two kinds of lists: The first contains the
Cartesian coordinates of the points, and the other is the list of lines in the diagram. After
the system finishes the first stage (phase 1), which creates the reference-frames, the “givens®
are presented o it. As the proofs were produced using forward search (curiousity = T), the

main thing to be inspected is the KNOWN list at the end of the proof. This list contains

all the facts discovered by the system, and therefore it is possible to determine from this list
what precentage of the effort was fruitful. The staze of knowledge lists of the the different

frames at the end shows also, indirectly, what deductions the system had done.
L3a Example L.

The first example is Gelernter's second problem which is rather trivial, Theonly

change made, was to introduce another point, O, to complicate the diagram somewhat .

c

iven:
(Al AZ) = (Bl B2)
(Angle (C Al O) = Angle (C Bl Q))

{Line A2 Al O Bl B2)

Prove:

{C AZ) = (C B2)

1 1

L) T
AZ Al o] Bl B2

Under "phase I” thase lists created in that stage are shown. Note that some of the
triangles appear twice in the CONGRUD list. The reason for this i3, that those triangles
are isosceles. Consequently, their vertices can correspond in more than one way.

The way facts are attached to corresponding triangles is different from the T - NIL

method described earlier. Rather, each pair of congruent triangles have a numeric value

which gets higher when more is known about the pair, and codes that knowledge. For the
sake of simplicity, however, the actual facts known about each pair of triangles {eg: a. a. 5}

will be explicitly ststed, instead of the scoras.

GELERNTER 22 Given:
1 {Segment (Al AZ) = Segment (Bl B2))
2 (Angle (C Al O) = Angle (C Bl O))

Goal: {Segment (A2 C) = Segment (B2 C))

Phase |:
List-of-triangles: { (C B2 BI) (C B2 O) (C B2 Al) (C B2 AZ) (C Bl O} (C B Al) (C Bl AZ)
(C O Al (C O AZ)(C Al AD))
Congruent-triangles:
{ {(C B2 BI) (C A2 A1)} {{C B2 O) (C AZ O} ((C B2 Al (C AD B1))

((CT B2 AZ) (C A2 B2)) ({C BI O)(C Al O)) {(C Bl ALVIC AL BL))

The Proof:

List of all known facts found in the course of the proaf:

((Segment (Al A2) = Segment (EI B2)) {Reason; given))
({Angle (C Al Q) = Angle (C Bl O)) (Reason: given))

{{Segment (Al C) = Segment (Bl CJ) {Reason: isosceles triangle))

((Triangle (Al A2 C) = Triangle (BI B2 CJ) {Reason: s a s))
{{Angle (Al A2 C) = Angle (Bl B2 C)) (Reason: triangle (Al A2 C)
= triangle (Bl B2 C)))

((Segment (A2 C) = Segment (B2 C)) (Reason: isosceles triangles))

QED.

Facts attached to triangles:

{{Al A2 C, Bl B2 C) match in zas)
((Al B2 C, Bl A2 C) masch in 5)
{{AIC O, BICO) maich in s3)

{{Al B1 C, Bl Al C) match in ss)

List of all the segment-equalities explored:

{ {(Al A2) = (BI BZ)) (A1 C) = (BIC)))

List of all angle-equalities explored:

{{(C Al O) = (C Bl O)) ({C Al AZ) « C Bl B2)} {{Al A2 C) = (B1 B2 C)})
The "equivalence-ceils™

< (Segments: {[Al A2) = (Bl B)) ({Al C) = (BI CJ})

{(Angles: ((C Al O) = (C BI O)) ([Al A2 C) = (B] B2 ch =

Ceomments: [The equivalence cells are the way transitivity is handied. All the equal

segments, {or angles etc) are put into the same cell

2. The system deduced (angle CBIBZ = angle CALAZ) although it did not assert it, for a

reason irrelevant here,

3. Some of the facts were not attached to all the possible triangles, because the attaching

procedure stepped upon hizing the goal,

L1k Example 2.

The second example is Gelernter's fifth problem, which is about as far as Goldstein's

system can go. The problem is:

Civen:

BC is parallel to AKD.
EP = PD.

AQ = OC,

(All the lines.)
Prove: -

AM = MB

{Actually, line CPK should be a construction.)
And the system's solution is:
EMOWMN:

<{{LINE (B C) PARALLEL LINE (A K D)) (Reason: given))

{{ANGLE (CB D} = ANGLE(A D B {Reason: interior alternate anghes))
((TRIANGLE (B C P} » TRIANGLE (D K B))
(Reason: a a))
{{ANGLE (B C P) » ANGLE (D K P)) (Reason: triangle (B C P) ~
triangle (D K P)))
((SEGMENT (B P) = SEGMENT (P D)) (Reason: given))

((TRIANGLE (B C P} = TRIANGLE (D K P}) {Reason:a s al)

((SEGMENT (B C) « SEGMENT (D K)) (Reason: triangle (B C P) = triangle
(DK B

((SEGMENT (C P) = SEGMENT (K P)) (Reason: triangle (B C P) = triangle
(DK P

((SEGMENT (A O) = SEGMENT (O CJ) (Reason: given))

((LINE (A K D) PARALLEL LINE (M O P}} (Reason: line (M O P} is a bisector))

(SEGMENT (A M) = SEGMENT (B M) (Reason: line (M O P} is a bisector
and parallel to (A K D)) »

QED

Mow let us inspect some of the reference-frames, and the Cells list at the end of the

proat.
The list of equivalent cells is:
< (Segments: (B C) (D K)) (CPYK P)) (B P)(DP) ((AOHCOY

(A M) (B M)

(Parallels: {(B C){M O P} (A K DI}

(Angles: (CEBD)(ADB) (BCP)DKP) »
Note, that (B C) (M O P), and (4 K D) are all in the same parallel cell, therefare they are
known to be all parallel.

Parallelograms list: No paralielogram was found. The frame of (A K P M) for
example, has one T in its current state of knowlege list, indicating that AK is parallel to
MP.

List of triangles with bisectors:

Bisectlist at the end has the following form:
(D K A)(D P B){C P K)(AMB) (nil T nil))
(AMBIAOCI(MOPIBC)H (TTTH
(BMABPDIMOPI(AKD) (TTT)
(COACPEIMOPHAKD) (TTTH

This means, that the system had found 4 triangles with bisectors in the diagram, and

established this relation in 3 cases, using the following bisector theorems:

L A line bisecting two sides of a triangle is parallel to the third. |

2. A line bisecting one side of a triangle and parallel to the base bisects :In:-. the second side,

Consequently, the proof produced was short and natural. (Note especially the last two Steps.)

Part 1T

In this part we describe how proofs are produced using the backward chaining
mechanism. We shall try to focus on issues of general interest, rather then on details of
implementation. Some details are needed, however, to follow the discussion. After
presenting the backward :e:ar-:h. solutions 1o & sequence of successively harder problems are

discussed.

21 The experts

The building blocks of the backward search are, using Goldstein’s term, the experts.
For each possible goal, like segments or angles equality, triangles congruence, bisestors and
parallelograms, there is a special structure which connects the goal with the different
strategies for proving it Such a structure, which may be thought of as a branch of the
search tree, is called an expert. It consists of a main node, which is the expert’s top-level
goal, and "daughter-nodes” which are all the possible subgeals, or strategies, for proving the
main goal. The experts work hand-in-hand with the P.M.G. (Plausible Move Generatar).
When a new subgoal is added to the search tree by one of the experts, the P.M.G associates
with it a numerical value, called the score of tha goal. This score is intended to measure
the plausibility of the goal, thar is, o glve some Indication of the a-priori chances to satisfy
the geal Goals are scored according to two criteria: a structural criterion, and a current-
state-of-knowledge criterion.

Structural criterion: Suppose the current goal is

(segment AM = segment MB) and the diagram
looks like [21 1

In this case, the subgoal (bisector MN) M N

is added ro the search tree with a score

of 80, based only on the fact that the

structure in the diagram suggests the B
applicability of that subgeal. 2.1

Current state of knowledge criterion: If, in addition to the structura) information, it s also .

known that MN is indeed paraliel to BC, then the score will raise from &0 to 80 points. In
the case of congruent triangles, the basic score is 30, and each additional known equality
adds 20 points to the score. 'We summarize the congruence score as 30 « 20k, where k is the
number of already known facts,

The scoring scheme was based on sub jective impression rather than on accurate
computations or experiments. Consequently, the scoring function cannat, in its current state,
malke the fine distinctions one might, perhaps, want te have. For example, one might argue
that the equality of one side and one angle gives a somewhat better support to triangles
congruence than the equality of two sides. The rationale is, that in the latter case one of
Lwo subgoals is to be established: either the included angle or the third side. While in the
first case, there are three possible subgoals, each of which is enough to satisfy the

CONgruence.

22 Building a search-tree,

In this section we deal with two problems related to search trees in general, and
present the way they wera dealt with in the system. The first one has to do with the
inefficiency of And-Or trees, and the other with the order of the search.

In the backward chaining, the top level goal constitutes the first node of the search
tree. The exper! of that goal is then invoked, adding the subgoals it found, as well as their
scores, as new branches to the tree. One of the subgoals is then selected as the new current
goal, its subgoals are added to the tree, and 50 an.

The simplest structure that can be created in this way, is known as an "And-Or tree”.
The name follows from the observation, that it can be represented as a tree in which each
goal stems from either an "and” or an "or” node, as shown in figure [2.2 1 Such a structure
makes it easy to determine whether the top level goal is implied by the proof of a given
subgoal. All one has to do is try to "climb” up the tree to the top level goal following the 2
simple rules:

I An "or” goal is established if at least one of its subgoals is proved.
2. An "and” goal is proved when all its subgoals are.

However, a pure And-Or tree is not very efficient. Consider, for example, the

problem ef proving a congruence. Even in the case of a simple triangle, (not a right angle

of an isosceles one) the produced subtree will have a 13-branches "or”, each terminating in a

" S-branches "and". [221

triangle ABC = triangle XYZ

AND AND AND AND AND AND AND
AB=XY AB=XY ACeZ¥ AB=XY ABaXY BCaYZ AC=XZ
BC=YZ BCwYZ BCaYZ ACwiZ A wX A= X A=X
AC=XZ Bal Cul Awl BaY BwY Bat

AND AND AND AND AMD AND

4 o= K Aw Y A= N BE =Y B =y B =Y

Ad=KY BC=YZ AC=XZ AS=KY BC=YZ AC=}Z

Figure 2.2: The congruence and-or tree

That is, 38 branches, while there are only B distinct subgoals: 3 angles and 3 segments
equalities.

As we already have at hand some forward search mechanism, it is reasonable to
make use of it to overcome this difficulty. In addition to "and” and "or” nodes, a new kind
of node, called “try-all” was introduced. For example, the goal {triangle ABC = triangle
XYZ) can be replaced by the try-all of its & different subgoals. All the § are then searched,
and when one of these equalities is established, it is asserted, The assertion of a goal
initiates an amach-and-explore cycle, namely the :.}.I.s:em switches for a while to forward
search, and it watches to see whether the main goal will be deduced from the newly made
assertion.

Instead of 39 branches, we now have only & The use of the forward mechanism

insures that, whenever enough subgoals are established, the main goal will aiso be deduced.

2.3 The order of the search: Best First.

After attaching a new branch to the search tree, the next decision to be made
concerns which of the subgoals is to be sslected as the next current goal. The natural
candidate is the highest scored subgoal However, there are two different ways to do this.

Consider the following search tree

Each node represents a goal,
and the numbers are the scores.
We first select B as the highest

subgoal of A. D is the highest

subgoal of B, and will be chosen
if we simply iterate the procedure
“follow the highest scored subgoal”. One might, however, prefer to back up at this stage,
choosing G instead, because goal B did not turn out to be as promising as it first appeared,
iﬁd G 15 now the highest scored subgoal. This latter approach is the one used by the
system. However, it will not back up if the score of C = score of D or E.

To be sure, before a subgoal is added, the subgoals list has to be inspected to verify
that it is not there yet. A goal whith has no new subgoals gets a 0 score and is never chosen
as the current goal
K.eeping track of the tree structure: The internal representation of the search tree is a list of
all the subgoals. With each goal 3 numbers are associated: the first is the goal's own
identification number. The second is its parent's node number, and the last one is its score,
Thus, if MN is a bisector, it might appear in the subgoals list as:{ (bisector MN) 9 4 80),

meaning that it is goal no. 9, a subgoal of goal no. 4, and with a score of 60,

In the following 3 pages, some of the experts are graphically represented,

Each node bears a name, under which, the name of the list the expert inspects, (if any) and

the scoring schema are shown.

Sepment equality expert,

gagnent AB = gegmant KY

If it is KNOWW or CELLS |ist - dona.

f

— 0

I
bisector cnngr]uenu 1 tran 51 tivity
Bisectlist congrud| ist - calls
B8 + 2B% 32 + 28k S5 (25)
isosce|es-2 pal lelagran
- paradliat
= 38 + 28k

{arithmetich, (nadian)

Comments: Isosceles-a means that its subgoal is angles-equality. The angle equality expert
has an isosceles-s subgoal, which is later reph;:n:! by the appropriate segments-equality goal,
Transitivity means finding a segment CD st AB = CD = XY {in the diagram). If CD is
already known to be equal to AB or XY, the score is 55, otherwise it is 25,

Segment equality methods based upon theorems invalving arithmetic or median are not yet

implemented,

Angles equality expert:

angle ABC = angle NYZ

If it ie in ENOWN or inm CELLS - dona.

£ __F

| I
parallels similarity parallelogran
calls gimidliat parad|iet
25 38 + 38k 38 + 2w
COngruance isosceles

comgrud| st

38 + 28k =8

transitivity
cells

5@

larithmalich

Parallel lines expert.

lime (limel] parallel line (lineZ]

[f it is already in KNOWN ar CELLS = dona.

e

| I
angles paral lelogram bisector
cells paradlist bisectliet
b=} 3B o+ 28 EE + 2Bk
transitivity {arithnatic)
cells

1)

24 EXAMPLES.

In this section we present solutions to a sequence of successively harder problems,
with the goal of getting a more concrete impression of the system's abilities and limitations.

The backward-search part of the system was not implemented as an autenomous
theorem prover. Instead, the search algorithm was written as an interactive system. The
user has to state his top-level goal, then the system starts asking him questions, to which he
responds by typing in the answers. For example: Suppose the goal is= (line line] is parallel
bo line line2). the system will present the Paradlisz, which is the list of all parallelogram in
the diagram, and ask whether the two lines are opposite sides of some parallelogram. The
system does most of the bookkeeping, scoring, finding the next subgoal ete. The solution to
the third example includes excerpts from such a dialog with the system, while in the other

cases only the search-tree will be presented.

24a Example 1. |

This first example is not really a geometry problem. It is only used to dmm'lr:true
the inefficiency that results fram a rigid structure of control. Suppose there is a congruence
expert, which tries to satisfy its main goal by applylng its strategies in a fixed, pre-
de:erminad_nrder. Let the order be like in Goldstein's B.T.P. (the version with no P;.H.G.

and which creates almost pure And-Or trees)

This expert is illustrated on the next page.

triangle XYL = trangle UV

|

[t the triangles are identical - dona.

! T 1
1. s.s.0 3. a.a.s i §. transitivity
XY = LY any side
YZ = VW angle ¥ =angle V
M o= U angle 2 = angle 4
2. 8.3.8 &, naming
KY = UV YIX = VHU
Y = WH 2oy = WY
angle ¥ = angla ¥
Thhe praoblem is:
Given: Prove
L angle ZKY = angle WUV triangle XYZ = triangle UVW
2. angle XYZ = angle UVW Y v
3. segment XY = segment UV
X u

The expert begins by:
Trysss XY =UV succes

YZ=VW failure
Some computation is needed here, The segments equality expert is
invoked. As the only subgoal it finds, is (triangle XYZ = triangle
UVW), it fails. |
Trysas XY =UV success (already known)

YZ = VW failure
This time it fails immediately, as it rcmer;'ub-ers past failures,
Tryaas XY «UV succes

angle Y =angle V. success

angle Z = angle W failure
The angles expert is invoked, and fails. The Congruence expert now tries "naming”, that is,
{triangle YZX = triangle VWU), but fails. It succeeds only with the last strategy, (a.as) and
the last pern';utatiun. {triangle ZXY = :rl:ngllz wuw),

This is indeed a trivial case, and things will get worse in cases where each subgoal

requires a considerable amount of computation. As mentioned in earlier sections, the try-all

method, and the incorporation of 3 P.M.G will help solve this difficulty.

2.4b Example 2.
Given: BE = ED
BD =DC
AB = DC
MND parallel to AC

Prove: angle CAD = angle DAE

The complete search-tree is

fransitivity BB
angle AQM = angle OAE

|

I o -_i

isosceles-g 50 gongryent 7@
triangle ADN triangle ADM = triangle ADE
try all
AE = OM an., MAD = an., AQE an, AN = an. AED
gongruence /8
triangle AEB = triangle OHB
try=-all

| l

82 = B0 &n. BAE = an. MIB an. AEB = angle OMB

Comments: "an.” is an abbreviation for "angle".
The underlined subgoals are the ones chosen by the system.

In the forward search phase, the ful.hwlng was discovered:

segment AM = segment M B (reason: bisector)
Consequently, and with the help of the Cells list, the following segments are known to be
equak AM - BM = BE -« DE

angle CAD = angle ADM (reason: parallels).

Note, that the above tree is not just the proof tree, but the search tree; all the
possible subgoals are presented. Goals that are already established, or that appear higher in
the tree, are not considered as new subgoals, therefare some of the “try-alls” have only 3, not

&, subgoals.

2.4c Example 3,
Given: CQ and B are angle bisectars.

QL, QM, QK. are perpendicular to the corresponding sides.
Prove: AQ isalso an angle bisector,

(The thrm'angie bisectors of a triangle meet at a point.)

While the previous problem took Nevins' system about 4 seconds to solve, this one

invelved many more computations, and took about 40 seconds. The reason is, that the
backward search mechanism made some fruitiess attempts that were time consuming.

To give a better description of all the steps the system must follow till it reaches the
solution, the greatest part of the search protocol is also given.
Search protocol, using the interactive system.

(ealltng angle expert)

(Angle-expert is ready, please type your goal)

- ({angle KAQ = angle LAQ) 000)

Comment: As explained in 2.3, (page 25) (0 0 0} indicates that this is the top level goal.
(Is the goal in the Known or Cells lis:s? the Cells list is)

<{parallels:)

(segments: (cm = cl} {bm = bk} (gl = gm = gkl)

(angles: (deq = ecq) (mbq = kbg) (cgm = cql) (bgk = bgm) (gka = gkb = gla = glc = gmb =
gmejle

- ne.

(Try parallels: are the angles known to be equal as a consequence of already established
parallel lines? (search paraliels in the Cells list))

- mo.

(Try isosceles: are they in an isosceles triangle?)

- no.

(try congruence: are they corresponding angles of a pair of congruent triangles in the
diagram? the Congrudiist is:)

dakglmfalg (cigielcmq) (bkgl=(bmgs

== eL

{Type the congruent triangles.)

= (AKQ ALQ)

{score = 30 + 20k please type the score)

Comment: k is the number of known egualities, as explained in 2.3

-7 T

{{congruent AKQ ALGQ) 1070)

(Try similarity: are they corresponding angles in similar tria ngles? Simidlist is)
nil

- ne.

(Try parallelograms: are they oppesite angles of a parallelogram? Paradlist is:)
nil

> M0

(Try transitivity: check whether at least one of the two angles appears in cells)
{Cells list is displayed again)

== no.

(Search the parallelist. Is there a pair of parallel lines that might imply the angles equality?
parallelist is:)

nil

== mg

(end of angles-expert)

The subgoals list at this stage is

{(fangle kaq = angle lag) 000} ({congruent akq alg) 10 7o)
(calling congruence-expert)

fﬁangruenne expert is ready. Please print your goal)

=> ((trtangle AKQ =triangle ALQ) [0 70)

(Type in the first triangle)

- (A K Q)

{Type in the second one}

= (ALQ)

(I will now print out the possible subgoals. If the subgoal appeared already in “subgoals”
print 'ne’. If it is already in Known print . Otherwise print 'yes', indicating that you
accept it as a subg-uiﬂ}

{ak = al)

.> YL

(kg = 1)

== yeL

lag = ag)

== T.

(angle AQK = angle AQL)

=> jeL

(angle QLA = angle QHA)

=x T

{As it happens to be already in Known.)

{end of congruence exper. Expand now all the try-alis)

the subgoals list at this stage is:
<({angle kag = angle lag) 00 0)

({congruent akq alg) 1 0 70}

try-all: {{ak = al) 2 | yes) (kg = bg) 3 1 yes)
(lag =aq) ¢ 1 th {{angle agk = angle agl) 51 yes)
tangle gla = angle qka) 6 1 £) end-try-all)=
Comment: In the case of "try-all” all the subgeals are to be expanded. This is indicated in
the system by the flag “yes™ replacing the numeric score.
(calling segments-expert.)
(segment-expert is ready, print your goal)
((segment kg = segmens Ig) 3 1 yes)
(is it in known or in cells? the cells list is)
<{parallels:)
{segments: {cm = i) (bm = bk} (gl = gm = gk}
{angles: (deq = ecq) (mbyq = (kbg) (cqm = cql} (bgk = bgm) (gka = gkb = gla = glc = gmb =
gmc))»
== yei
(subgoal proved)

The entire search tree is:

angle KAl = angle JAL

gengruent 7B
triangle AKQ = triamgle ALQ

try=all

A = AL QK = Ol angle AQK = angla AOL

Comments: Subgoals which are known to be true, like (angle QKA =angle QLA) are not
shown as subgoals,
In the forward phase, the following was established:
triangle CMQ = triangle CLQ
triangle BMQ = triangle BKQ.
The search was quite short, so that this problem should not be more difficult for the system

than the previous one.

24d Example 4.
This is the m;m difficult problem solved by MNevins' system.
Given: AM = MC DN « NF Brove AC =DF

BM = MP EN=NQ

AB=~DE BC«EF

EM = EN

Diagram for problem 4.

A

In the forward search, the system discoveres that ABCP and EDQF are
paralielograms. It also discovers all the congruent triangles within each parallelogram. The

backward search tree is larger this time, threfore it will be listed rather than shown

graphically.

Backward search: Top level goal is AC = DF
The goal has two subgoals:
L. triangle ABC = triangle DEF, score = 70, (Two sides, equalities already known).
2. triangle ACP = triangle DFQ, score = 70, (Two sides, found in “cells™)
The first one is chosen, and replaced by its "try-all"s
3. angle ABC = angle DEF.
4 angle BAC = angle EDF,
5. angle ACB = angle DFE.
{The other subgoals are either known or previous goals.)
Now, the "try-all’s are searched and scored.
Subgoals of 3
B. Transitiviy, score = 50
Subgeals of 4
1. triangle ABM = triangle DEN, score = 70,
B Transitivity, score = 50,
Subgoals of &
8. triangle BMC = triangle ENF, score = 70,
Th_e system now chooses geal 7. It does net back up to an equal-score subgoal
Subgoals of 7 are the "try-all™s:

i0. angle ABM = angle DEN.

Il angle AMB = angle DNE.

The system also tries AM = DN, but this is not really necessary. It does not deal with
arithmetic, leaving it to the forward search. But if it did, AM = DN would have been one
af the first subgoals, and therefore not considered here,
Subgoal of 10 is:

12. triangle ABP = triangle DEQ, score = 70,
And of 11 15

13, Transitivity, score = 50.
When 12 is picked, AP = DO is found in Cells and BP = EQ by arithmetic. When they are
asserted, a forward search cycle is initiated, and the top level goal is also deduced.

Similarity is used only when two triangles which are similar, but not congruent are
found. The rationale is, that the system might as well try to establish congruence. If it
discoveres that they agree in 2 angles, similarity will be deduced anyway.

The main dif ficulty in this problem is the symmetry involved. Symmetry is also the
reason that the system chooses a current subgoal in the case that both it and a previous goal
have the same score, In problems with much symmetry many subgoals at the same level
might have the same score, and it is not advisable to explore all of them. Mote also, that
because of that the system is not geared toward finding always the shortest proof. To
produce the shortest proefy, it should follow the "best first™ rule, but also have the ability to

deal with symmetries.

2.5 Difficult problems.

The issue of solving difficult prablems i3 closely related to some other topics of ten
raised in Al research, such as abstraction, planning and learning. Upen attacking a
problem, especially a hard one, one often begins by generating some abstract plan, and it is
not until a later stage, that one worries about filling in all the details. The ability to analyze
the problem in not-too-detailed terms is, at that stage, of great importance. Abstraction also |
plays an important role in learning. For example, & crucial problem in the geometry
learning process is the extraction and representation of the new knowledge gained in the
course of finding a proof to a theorem.

In this section, the system’s features that enable it to generate some plans are
discussed. In the particular domain of plane geometry, the most difficult problems are those
which require clever constructions. The question of Incorporaing construction heuristics in a
geometry theorem prover was addressd by R. Wong in his M.Sc. thesis, <Wong 72> and
here are two of his heuristics.

I situation: AB is parallel to CD.

AB is not equal to CD. Alr B
goal: AB+XY«CD.UV. fa"
construction: II|I'

line AP parallel to BC.

2. situation: angle ABY = angle CBY.
A and C are on the A C

same side of XY,

goal AB + BC = some PQ, ¥ B X
— S,
gonstriction: K\\
segment BC' s BC = BC', and A B C" are collinear, .
HE:‘

Mote, that in checking the applicability of a goal, certain structural relations are to be
verified. In Wong's heuristics, relations like "same side” or "inside” are often to be
determined.

But the role of the diagram does not end here. Even preconditions like segment or
angle equalities are often verified only in the diagram (as opposed to being proved),
following which a construction is made, and only then the formal proof follows. Take for
example the condition "AB is not equal to CD" one s net supposed to prove this statement
befare applying the construction, but rather, o verify it in the diagram. It seems plausible,
therefore, that if a system is to have powerful constructive capabilities, it should include
semantic processes (that is, analysis of the diagram) interacting with its other parts. In this
respect the approach represented in the described system might be a step in the right
direction.

The diagram pre-processing and the creation of the reference-frames, are also useful
for getting a global picture of thn. probiem. That is because they enable the system to notice

the important relations in the problem, and Organize them in compast concepts like

paralielograms, bisectors or congruen: triangles. To make this paint clearer, a “plan” was
praduced with the help of the sysiem, by using the following procedure:
I Malke a backward search from the top level goal to depth 2,
2. State the 2 highest scored subgoals in each of these 2 Jevels.
3. Examine the different frames, find the highes: scored one. (middle search).
Return, for example, to example 2, and examine the produced plan,
In level 1 there was only one subgoal, transitivity. In level 2 there were 2 subgoals,
congruence and isosceles. The highest scored frame is {triangle ABE = triangle DBM) (the
bisector is not to be counted, because it had been already proved). MNow put all this into a
more human-like form, and the result is something like:
"In arder to show that angle DAN = angle CAD, I have to prove that angle DAN is
equal to angle ADN. To do this, [ran sither establish the congruence of triangles
ADM and AED, or that AND is isosceles. I'll try the congruence first. It also seems
plausible that triangle ABE = triangle ADM, s0 1 might try to establish and use that™.
The above procedure is not intended to work as a plan-generator, but rather to show
that due to the diagram processing stage the system acquires some capability of attacking the

planning problem in a rather natural way,

PART Il SEMANTIC AND SYNTACTIC SYMMETRY.

Cine of Gelernter's primary concerns in his original work on Geometry Theorem
Proving was the problem of symmetry in mathematical proofs. The problem is to clarify
when, and on what grounds, a mathematician is justified in giving only one part of a proof,
and claiming that the other part is done in a similar, or symmetric, way, Gelernter had
implemented an algorithm that was executed before the beginning of the proof search,
producing all possible symmetries in the problem. Then, when the system was about to
establish some subgoal, it First examined the list of all symmetries to check whether a similar
subgoal had already been proved or searched. His purely syntactic definition of symmetry
will be explained in the next paragraph. We will, however be interested in a somewhat
different problem. Rather than pre-creating all possible symmetriss we shall address the
issue of similarity between two given goale. In section 3 we shall see how this problem can
be solved in our system. The solution will be based on the notion of semantic rather than

syntactic symmetry (The term “semantic” indicates that the diagram is used.)

Syntactic symmetry .
The definition of symmetry embodies the idea that two geals are similar if it is
possible 1o prove one of them by re-naming the variables in the proof of the other.
Let Hw [HL A HZ A +.s ..un Hn) be the conjunction of all our hypotheses,

GOALI be our goal, and = be the set of all variables appearing in H. Another goal,

GOALZ is said to be similar or symmetric to GOALI if there exist a permutation n of the
variables « such that:
L GOALI (naj = GOAL?D
2. H (ma) = H
where no is the permutation n of the variables o
Example: Suppose we are given the following:
L. Segmet (A B) = Segment (Al BI)
2. Segment (A C) = Segment (Al CI)
3. Segment (B C) = Segment (Bl CI)
and GOALI is (Angle (A B C) = Angle (AL BI ClJ). br If we are also given:
la. Segment (X Y) = Segment (X1 Y1)
2a. Segment (X Z) = Segment (X1 Z1)
3a. Segmen: (Y Z) = Ezgn.'mnl‘ (Y1Zl)
and GOALZ is (Angle (X ¥ Z) = Angle (X1 Y1 Z1)), we can say, according to the above
definition, that the two goals are similar under the permutation Pl:
XeA Y<«B IZI<C
Kle Al YleBl ZleCl
However, goak (Angle (X Z Y) = Angle (X1 Y1 Z1)) is not to be considered similar to
GOALL
What Gelernter's algorithm did, was to produce all the permusations n such that
Hina) = H. Then, if the system sets up a subgoal SUBGOALL it can search whether it had

already proved or searched the same goal under different variable naming.

Semantic Symmetry.

For the purpose of the current section we shall slightly change the format of the
reference frames described in part 1. Each frame will be a list whose first element is a
geometric figure and the rest are all the relations between pairs of its elements, all of them
in .Iﬁ.nurl.'ll: form. The frame of parallelogram (A B C D) will thus be:
<{A B CD)(AB = CD) (AC =« BD}} {.AIE Parallel CD) {AC Parallel BD)

(Angle DAB = Angle BCD) (Angle ADC = Angle ABC) »
Some deflinitions:

NEIGHBOR of a goal GOALI is any goal that is found in a frame in which
GOALL Is also found. In the above example of a parallelogram frame (AB = CD) will be a
neighbor of (AC Parallel BD).

The frames are to be constructed in such a way, that if there is a rule of inference in
the system of the form Q1 » 02AOn > GOALL} |, then () to Qn are all
neighbors of GOALLin (at least) one of the frames. Therefore, if the system knew the rule
that equality of diagonals in a quadrilateral implies that the quadrilateral is a paralielogram,

the relation between the diagonals, or (AC « BD) in our example, should have been added

to the paralielegram frame.

SAME-POSITION (GOALI GOALZ): Two goals GOALl and GOAL? are said to
be in the same position in the frames if for sach frame GOALI is in, there is a frame in the
same list in which GOALZ is a member, and vice versa. Note that one of the lists is the

ENOWN list, the list of all statements established so far. Therefore Same-position (COALI

GOALRZ) implies, among other things, that GOALI has already been established if and only
if GOALZ has been. Informally, (AB = CD) and (XY = UV) are in the SAME-
POSITION, if they are members of similar geometric figures, and if we have about them
the same amount of information, This is, however, not enough: we wish to assert that their
neighbors, which are their possible antecedents in the proof, are also in the same-position.
For this end the EQUIVALENCE relation s defined.
EQUIVALENCE: Two goals, GOALl and GOALZ, are said to be eguivalent of

order 0 (COALI 2 GOALZ) if there exists a permutation r such that:

a. GOALL (na) = GOALZ

b. Same-position (GOALL GOALZ)

n
COALL is eguivalen: of order n to GOAL? (GOALI ~ GOAL?D) if there exist a

permutation i such that

a. GOALI (na} = GOALZ

b. For each Pi, a neighbor of GOALLI, there is a P'i, a neighbor of GOALZ, such
that Pi“;rP’i- {Under the same permutation.)

GOALL is equivalent to GOAL? if they are equivalent of any order.

Lemma:
n
If GOALI has a proof of length n, and GOAL2 ~ GOALL, then GOAL? as well has

a proof of length n. (Which is the same proof as that of GOALI, with the permuted

variabies).

Proof:

By induction. For n = 0: GOALI has a proof of length 0 only if it is in the
KNOWN list. GOALI ~ GOAL? implies that they are in the SAME-POSITION,
therefore GOALZ is also in the KNOWN list and therefore has a 0 - length proof.

The induction step:

Let GO AL]“JIGD.-’LLE. and GOALI has some proof of length nel. The last step of
this proof is of the form: P1 & P2 A... ...a Pn 2 GOALL. From the definition of
equivalence, there exist a permutation n such that Plins) = P'l P2(na) = P'2.. ...Pnina) =
P'n. when P'l. ..P'n are all neighbors of GOALZ and, by the induction hypothesis, all
have proofs of length n.

PPL A F'2 .o. <oon P'n > GOALZ will be the n+lth step in the proof of GOALZ
Corcllary:
If GOALI ~ GOALZ, then GOALL is provable if and only if GOALZ is and the

proofs are the same, except for the variables naming.

Comparing Semantic and Syntactic Symmetries,

Cne basic idea was common to the twe nations: two proofs are symmetric if they
have exactly the same structure but deal, perhaps, with a different set of points,

There are, however, two significant differences:
- L Incorperation of semantic predicates, thereby constraining the possible permurations.

By checking that SAME-POSITION (GOALI GOAL?) (a predicate which cannot be
used in a proof) we verify things like: Both { AB CD } and { XY UV) are corresponding

sides of of CONGRUD (congruent by the diagram) triangles. If this test fails, (AB = CD)

and (XY = UV) are not to be considered symmetric goals.
2. Restriction of the requirements to the relevant points. In the syntactic symmetry definition
it was required that the con j;un:n.nn of all the hypotheses will ransform into an equivalent
senténce. In the semantic symmetry, on the other hand, we inspected only those predicates
which are connected to the goals through some chain of neighbors.

The two differences stated above have the following implications:
A. Efficlency of the search.

The main step in showing symmetry is finding the right permutation. Consider the

following diagram and set of predicates:

B1

Segment (A B) = Segmen: (Al Bl)

Angle (D A B) = Angle (DI Al Bl)
Angle (A B C) = Angle (Al Bl CI)

Line (A D C); Line (41 DI CI)

The goal is to show Segment (A C) = Segment (Al CI).

If goal2 is to prove Segment (X Z) « Segment (X1 Z1), we know From the requirement
that goallian) = goal2, some constraints on the permutation. A possible such permutation is:
A is transformed to X, C -» Z, Al -> X1, Cl -» Y1, But to what does D transform?
{remember the diagra.rﬁ 15 not to be used),

Proceeding on syntactic grounds, we notice that D appears in the predicate LINE .{.ﬁ.
D C). Therefore we look for a predicate LINE (X 7Y Z), and the value of 7Y will be a
possible candidate for nD. The problem is that we might have many such points satisfying
LINE (X ?Y Z). The use of semantic predicates , namely predicates about the diagram, will
limit the number of candidates in the same way that it does in the proof search. Suppose
we have for example a predicate CONGRUD (A B C X Y Z) which is TRUE if triangle (A
B C} is congruent in the diagram to triangle (X Y Z). The number of points satisfying

CONGRUD (A B C X Y 72) should be quite srmaller then LINE (X Y 72).

B. Weakening a too-strong requirement,

The requirement that H (na) = H, when H is the con junction of all the hypotheses is
too sirong. Suppose we have [figure 311 a predicate (between A K L), stating that A is
between K and L, as part of the given. In that case, the transformatoin of A to X makes
the predicate false, (and there are no other candidates for K and L). Consequently GOAL?2
15 mot to be considered syntactically symmeric to GOALL However, as there |5 no chain of

neighbors from the goals to the predicate (between A K L), GOAL? s still semantically

symmetric to GOALL

Finally, the question of incorporating the notion of symmetry into the system is to be
considered. Producing all possible symmetries a priori is computationally explosive. An
alternative way is to filter cur these goals which are "rathel.' similar®. Using the above
definitions, we can note, for example, the equivalent goals of order |, and put them aside.

If proofs for two such goals are required at a later stage, we might either check
whether they are indeed symmetric or prove one of the goals and then try to apply it to the

other one, and even modify it if it almost works but not quite.

BIBLIOGRAPHY

Eubank, Porter. "The Geometry Strategist: a Program for Proving Geometry
Theorems.” Unpublished paper. August 30, 1972
Gelernter, H. "A Note on Syntactic Symmetry and the Manipulation of
Formal System by Machine” Information and Contral 2 (1961), 80-59.
Celernter, H. "Realization of Geomesry-Theorem Proving Machine” In
Feigenbaum and Feldman (eds), COMPUTERS AND THOUGT, 134-152,
Gelernter, H. et al "Empirical Exploration of the Geometry-Theorem
Proving Machine." In COMPUTERS AND THOUGHT, 153183,
Goldstein, I. "Elementary Geometry Theorem Proving.” Al Mema No.
280, MLLT April 1873
Nevins, A.]. "Plane Geometry Theorem Proving Using Forward Chaining™
Al Memeo No. 303 M.LT January 1974
Wong, R. "Construction Heuristics for Geometry and a Vector Algebra
Representation of geometry.” Project MAC technical memorandum

28, M.LT, June 1972,

