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ABSTRACT

This article advances the thesis that the purpose of low-level
vision is to encode symbolically all of the useful information contained
in an intensity array, using a vocabulary of very lou-level symbol s:
subsequent processes should have access only to this symbolic
description. The reason is one of computational expediency: it allous
the lou-level processes to run almost autonomously; and it greatly
simplifies the application of criteria to an image, whose representation
in terms of conditions on the initial intensities, or on simple
measurements made from them, is very cumbersome. The implications of this
thesis for physiological and for computational approaches to vision are
discussed. A list is given of several computational problems in low-
level vision: some of these are dealt with in the accompanying articles.
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Introduction

Our rea&g appreciation of "sketches" indicates that we find a
symbolic representation of the visual world particularly congenial; even
a single stroke can convey a complex meaning with a startling sense of
immediacy. This shous that we are capable of rapid comprehension of
material only very abstractly related to the rau data on uhich our
perceptions are based. It is difficult to believe that the artful
selection and subtle manipulation of powerful visual symbols is a
superficial device; the natural presumption is that it is a fundamental
characteristic of the computations by which we interpret diverse kinds of
sensory information, and combine them to maintain a perceptual model of
the outside world.

In its extreme form, this presumption implies that what we call
the "perception” of an object or state of affairs corresponds rather
directly to the making, in some central place, of one or more abstract
symbol ic assertions about that object; and to the consequent availability
of other knouledge related to that percept. The exact nature of the
assertions that are made in a given circumstance will depend upon hou the
information is to be used, because of the fundamentally utilitarian
nature of the process. Attractive though this vieu is as a starting point
fbr a theory of perception, one cannot argue convincingly for or against
it without having some idea whether a system that is built along these

lines can work at all, and if so, how well. Until one has insight into
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the nature of the computational problems that the nervous system so
effortlessly solves, it is unlikely that we shall understand how it
solves them, except in rare or in simple circumstances. The business of a
theoretical investigation is therefore firstly, to explore the necessary
under lying structure of the computations that need to be performed in
order that high-level assertions may be made about the world; and
secondly, to formulate criteria by which the implementation of such

computations may be identified.

Measurements and symbols

This article introduces some of the early problems that are
raised by this position in the context of the processing of visual
information. It is inevitable that the analysis of sensory information
should start with the making of measurements upon the incoming data; and
one would fike to be fairly cleér about the stage at which a
transformational style of computation ends, and symbolic manipulations
begin. OQur first task is therefore to distinguish betueen the concepts of

a measurement, a symbolic assertion, and the representation in a

computing machine of a symbolic assertion. For present purposes, a
measurement will be regarded as the result of applying a function to some
domain, and it is a number. When one reads a weighing machine, the act of
translating the position of its pointer into a number is from this point

of view an act of measurement. A symbolic assertion is not a number: it

_is a list or sequence of one or more atomic symbols, drawun from a

vocabulary whose power derives from the conventions according to which
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those symbols are used. (WEIGHT 165Ibs) is an example of an assertion for
which the measurement from a weighing machine can provide reliable
evidence; but it is not the only possible one, and it is true only if the
machine is in good order. The measurement that is actually made concerns
the displacement of a pointer, and an assertion about the position of
that pointer is the only thing that a disappointed dieter would be forced
to accept from the evidence.

The representation of a symbolic assertion is a concept that hés
meaning only in the context of a computational machine that can
manipulate symbolic assertions; and in that context, it may be defined as
the form in which an assertion is made immediately available to a process
that can use it. Because the result of any measurement may be identified
with an assertion of the form (VALUE f x), uhere f is the name of the
function that was applied and x is the name of its value, there is aluays
at least one assertion associated with a.measurement: I shall refer to
this as the trivial assertion, and it is the one that a sceptic is forced
to accept. The usefulness of a measurement arises because it leads
either immediately, or after some computation, to a non-trivial
assertion, uwhich in the case of the weighing machine concerns the ueight
of whatever is on its platform. When an assertion follous immediately
from a measurement, the representation of the result of the measurement
may be identified with the assertion that it reliably supports. Inside a
computing machine, these identifications are made when the result of a

measurement is treated by subsequent processes as if it were a non-

trivial assertion. Such identifications are central to the structure of a
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FIGURE 1

Figure 1. The image la shows step changes in intensity. 1c shows the con-
volution of the bar mask 1b with the image. This illustrates why the response
of a bar-type simple cell cannot be thought of as representing an assertion
about a BAR in the image.
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computation; and they are virtually impossible to infer from a working
program unless one has a detailed knouwledge of the nature of the

computation being performed by it.

The usefulness of the distinction

Simple cells in the cat make measurements upon an image, and the
nature of the measurement that they make is fairly well understood. Their
receptive fields are either bar- or edge-shaped (Hubel & Wiesel 1962),
and if other parameters are held constant, they signal the |inear
convolution of a bar- or edge-shaped mask with the intensity distribution
currently falling upon the retina, in logarithmic units of contrast
(Maffei & Fiorentini 1973 figure 8). The important question for
understanding the analysis of visual information is whether these cells
represent assertions other than the trivial one associated with the
measurement; and if they do, what are they? Feu investigators have been
incautious enough to suggest that a bar-type simple cell represents an
assertion about the presence of a bar in the visual field. Figure 1,
which shouws the results of a bar-mask convolution with variously
configured step changes in intensity, illustrates why such caution is
well-founded: such a mechanism operating at an isolated edge in the
image, would provoke tuwo assertions, about a light and about a dark bar;
this description is manifestly misleading. Furthermore, to produce even
that misleading interpretation, numerous other problems would have to be
overcome, concerning the neglect of cells at neighbouring positions and

orientations to those giving the largest signals. Figure 2 shous an
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FIGURE 2

Figure 2. The image 2a has an intensity distribution the 1og of whose inten-
sity is a linear function (2c) of the x-coordinate. 2b shows the convolution

of this distribution with an edge mask. This illustrates why an edge-type
simple cell is not immediately identifiable with an assertion about the presence
of a small, sharp edge in the image.
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intensity distribution uhose logarithm is a linear function of the
position coordinate x. A simple cell with an edge-shaped receptive field
would give a constant signal along the x axis, because it measures an
approximation to the local intensity gradient: yet there are no small,
sharp, faint edges in the image.

In order to understand in any deep sense the function of simple
cells, one needs to knou tuo things: firstly, uhat does the vocabulary of
assertions look like, for whose computation simple cell measurements are
used; and secondly, how may these computations be characterised. There
are tuwo extreme kinds of ansuwer to the first question. The first is that
the earliest non-trivial assertions to be computed are very high level
ones, using predicates |ike CHAIR, LION, and so forth. One could conceive
of ways of doing this: one might for example use a battery of specialised
filters in the Fourier domain, as has been done for the recognition of
stereotyped shapes on a printed page. But this technique fails for more
natural images, because the appearance of an object is an inconstant and
ephemeral phenomenon.

The opposite extreme would occur if the assertions that were
computed immediately were very lou-level ones. | take the latter
position, and uill argue that it is computational ly expedient to encode
all of the useful information in an intensity array in symbolic form
immediately. The number of different symbols that are required to cover
most situations is not 2s large as one might have expected Marr (1974a

and 1974b).

The second question is hou to characterise the computations that
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can lead to these lou-level assertions. One can of course specify an
algorithm; but although an investigation of this kind is under an
obligation to describe working algorithms, its more important function is
to provide an abstract characterisation of the computation that the
algorithms perform. I follow Jardine & Sibson (1971) in calling such an
abstract characterisation a method. The particular choice of an algorithm
for implementing a method depends upon one’s resources and circumstances:
~a neurophysiologist may for example be more interested in parallel than
in serial algorithms, whereas this would not be true of a conventional
programmer. The important point is that the distinction between a serial
~and a parallel algorithm is often a superficial matter: a
characterisation in terms of methods allows us to work at a deeper level.
The distinction is an important one, because it is only at the
implementation level that neurophysiological experiments can be carried
out. Such experiments may be able to reject algorithms, but only rarely
Wwill they provide disproof of methods. For example, the deep issue that
this article raises is uhether the nervous system uses edge assertions in
its computations, and by implication, whether it uses other more complex
assertions on its way through the recognition process. Whether such
assertions are coded for by single cells is an interesting, but lesser
issue. Neurophysiological experiment may be able to test the latter, but
it does not at present have the tools even to ask the former question.
Computational experiments, on the other hand, can lead to a proof that a
method cannot work, because they allow one to examine the reasons for its

failure in a particular circumstance. Progress in understanding the
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findings of visual neurophysiologists will therefore depend to a large
extent upon the insights that we are able to provide into the

computational problems that are involved.

Computer vision research

The most progress in machine vision has been made in the field of
scene analysis, a line of development that was originated by Guzman
(1368), pursued by Huffman (1978} and by Clowes (1971), and recently
reached what is probably its final form in the work of Waltz (1972) and
of Mackworth (1973). Scene analysis is the process of turning a line
drauwing of a collection of objects into a description of the objects and
their relative positions. Waltz's program is a graphic example of the
truth of an old adage: that the central problem of vision is hou to bring
the right knouledge to bear at the right time and in the right way. It
incidental ly emphasises the fact that the amount of knouwledge that a
working vision system will need is very large. Waltz showed that, when
the line drawings are complete, and wuhen the database of knouledge about
what is and what is not possible in a line dranwing is also complete, the
sum of the constraints imposed often forces a unique interpretation on
tﬂe drauwing.

Admirable though this demonstration is, it is not generally
believed that the development of a full vision system will be possible by
extending the method. There are various reasons for this: firstly, the
line drawing format is very restrictive - it is a lou-level symbolic

language for describing an image, but it is not a rich one. Secondly, it
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has been found extremely difficult to urite programs that can compute
from an image, the near-perfect |line-drauwings that scene-analysis
programs require. Thirdly, the knowledge contained in, for example
Waltz's program, is in a certain sense too compiled to be used flexibly.
The structure of the program makes it very efficient as a module, but
rather unsuitable for interacting with other kinds of information - about
the likely sizes, shapes, and positions of the objects in view. There is,
for example, no way in which a description of the form "smal | object in
the left foreground" can be used to help the analysis of the scene: it
can be used only after the algorithm has run successfully, in which case
its help was unnecessary. This is not an argument against the principle
of modular design: the computational and evolutionary advantages of
modularity need no further emphasis here, and one needs only to point to
the work of Julesz (1971) to find an example of a near ly independent and
impenetrable computational module in the human visual system. It simply
means that the particular modularity represented by the scene-analysis
approach constitutes an inappropriate subdivision of the total task; and
I doubt whether this could have been predicted beforehand with
confidence.

The more complex issues of visual analysis must be reserved until
some ear|ier ones have been dispatched, so let us turn our attention to
the development of programs that are capable of producing a |ine-drauing
from an intensity array. The experience of Horn (1973) and of Shirai
(1973) is that this process is extremely difficult to automate reliably.

Unless the surfaces in the scene are special ly treated, and the lighting
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is arranged with some care, free-standing line-finders tend to fail. This
led to the belief that the idea of a free-standing lowu-level vision
module may in fact be unrealistic, and Shirai's program includes
considerable scope for the guidance by higher-level processes of the
lower-level ones. | shall argue in the accompanying articles that an
almost free-standing unit is in fact realisable: the tuo factors that
make it so are firstly, that changes in intensity are not the only useful
cues in an image; other information, like discontinuities in the
intensity gradient often provide useful, and sometimes the only, cues
that an object boundary is present. Line-finders that ignore such
information necessarily fail.

| The second factor is that in order to make full use of such
nuances in the image, the vocabulary in which the image is expressed must
be expanded to include terms that describe them. This is an example of
what seems to be a general principle of recognition systems, and one
might call it the "art of the weak hypothesis". It is frequently the case
during recognition that there are a number of possibilities for the
interpretation of a particular datum, but that there is not yet
sufficient evidence to distinguish betueen them. Some situations require
complex computations to decide betueen the options - the disparity
compufation is one such example; and there may be another class of
examples uhere a rather specific interaction must be allowed betueen the
data and the goals of the computation (see Marr, 1975a). But there also
seem to be many occasions uhere the selection of one of several options

uwill not be possible until several steps further on. In such cases, one
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should only as a last resort become committed to one of the
possibilities, because of the damage that knouledge associated with that
possibility and not uwith the others can subsequently do. In a natural
fanguage parser, one can simply wait and see (Marcus 1974); but in
vision, the sheer volume of information effectively rules this out
because of memory limitations. The description must be produced now, and
it must be correct.

A fast straight-through recognition process will therefore have
be based on conservative principles. Nothing can be assumed unless it is
reasonably certain, and adequate descriptions of the data have to be
available at each level using symbols at that level. If a system is
unable to describe the data at any stage without using concepts that
imply more than can reasonably be asserted at the time, then the system
does not have enough concepts for fluent recognition: and the way to
achieve fluency is to increase its vocabulary until it does.

One other factor has contributed significantly to the distraught
attitude of computer vision projects to their lou-level probléms. It is
that the analysis of a reasonably sized image in real time requires
prodigious computing power, probably four orders of magnitude greater
than that of a conventional general-purpose machine. This forces
computer vision research into one of two paths: one can either accept the
limitations of present machines, and expend one’'s energy and ingenuity on
devising fast, specialised routines without any expectation that they
Hwill generalise. All of the current advanced automation projects take

this path, and in many cases the prevailing conditions can probably be
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controlied adequately: the great success of insect visual systems is but
one piece of evidence for the value of special-purpose mechanisms. A
second approach is to look for a more general-purpose scheme, in full
knouwledge that it will run slouly without special-purpose harduare, and
that a working visual system will require several special mechanisms in
addition to it. It is to the ‘computational issues that arise in this
second approach that this investigation is directed.

Finally, it is perhaps worth mentioning the considerable body of
literature that comes under the general heading of picture-processing
(see e.g. Rosenfeld (1969), and Rosenfeld (1973) for a bibliography).
Some of this literature describes special purpose machinery designed to
extract well-defined properties of an image; and some, called non- ‘
purposive vision, is more concerned with the design of a general purpose
visual pre-processor. With those special-purpose mechanisms that work,
no-one can quarrel: but the difficulty with much of the non-purposive
vision literature i§ that unless a technique is based on some kind of

theory, or forms a part of a larger computation, it is hard to evaluate

it.

Some simple fallacies

Let us return to the problem of computing symbolic assertions
about an image from measurements made upon it. The application of a bar-
shaped mask to an image does not, as we have seen, lead directly to an
assertion about the presence of a bar in the image. The underlying point

concerns the relation betueen computing the bar assertion, and the
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inverse transform of the originél measurement, and it is a point of some
importance. To illustrate it in another context, let us briefly consider
the computation of an assertion about the presence of a blob in the
visual field. A way of computing this assertion that immediately springs
to mind is to take a circular mask, that has a positively ueighted
central region, and a negatively weighted surround, as illustrated in
figure 3a. One might conjecture that a blob exists in the image at a
point P provided that the mask gives a value k (say) at P, and a value
-k/6 at the neighbouring points. These conditions are certainiy
necessary for the presence of a blob, but they are far from sufficient.
Figures 3b, c & d give counter-examples of various kinds. In all of
these, any additional intensity applied to the central point would give
rise to the specified conditions at that point. The reason for the
failure is that the inverse transform to that produced by a centre-
surround receptive field depends critically on the boundary condi tions.
(It is the same one that was used by Horn (1974) and by Marr (1974d)).

- Any method that computes a blob assertion infallibly from the centre-
surround measureménts is in a sense computing part of this inverse, and
so must take account of the boundary conditions. There will often be
short-cuts: the frog’s retina seems to use the conjunction of the
condition defined above with the condition that the item in gquestion be
moving (Barlow 1953, Lettvin et al. 1959), This is apparently good
enough, but it is not infallible, and should be easy to fool. Similar
observations hold about the use of "tongue"-shaped and "corner"-ghaped

masks for the detection of tongues and corners. One might have imagined
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that a tongue-shaped mask could provide a sensitive detection mechanism
for a tongue assertion, but if one tries it out, one quickly discovers
that it is not. A tongue-shaped mask measures only the total intensity
distributions over the positive and negative regions that it contains,
and is insensitive to the distribution of intensity over these tuo
regions. To include conditions on the distribution of intensity, one must
take into account the structure of the inverse transform, and this
depends in an intricate uay on the boundary conditions. Using it to
detect tongues in the image is therefore expensive. The overall
conclusion that one may draw from these considerations is that for a
general purpose vision system, the measurements from uﬁich assertions
about the image are computed should be such that their inverse is easy to
compute, (even though it is not explicitly obtained). In particular, the
boundary conditions should be as unimportant as possible. The use of
measurements that have an orientation sensitivity makes very good sense,
because the boundary conditions for their inverses are B-dimensional,
(consisting of two points), rather than l-dimensional as they aré for a

centre-surround organisation,

The importance and unimportance of linearity

Whether or not a lou-level vision mechanism is |inear or non-
linear is a question that is of some practical, but less theoretical
importance. The reason for its practical importance is that in higher
mammalian visual systems, the initial convolution measurements are taken

by a discrete grid of simple cells, scattered over the space of possible



Figure 3

Figure 3. 3a illustrates the centre-surround mask that is described in the
text. 3b, c, and d show intensity distributions that give a null response
over the central seven positions. Hence any extra intensity placed at the
central element would cause the simple algorithm for detecting a BLOB to
assert that one was present there. These examples illustrate why such an
algroithm would be inadequate.
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positions, orientations, velocities, and so on. Because of this, values
that lie betueen those of two nearby simple cells will be coded to some
extent by interpolation. The same may be true of the representation of
symbolic assertions, and of modifiers to those assertions. The advantages
of linearity to this kind of interpolation are considerable. For
example, the computation of fuzziness, a modifier associated with an edge
(Marr 1975b), involves comparison of values derived from convolutions of
the image with masks of different sizes. In a discrete harduare
implementation of the process, the comparison must operate accurately for
all nearby positions of the edge in the image. This means that the
discrete units through which the values are represented should have a
relation to one another that is fixed, and independent of the precise
position of the edge in the image. For this to be possible, the system
must be locally linear. The system cannot of course be globally linear,
because the suitch from one description to another is not a |linear
process and because few of the constraints imposed by the real world on
the structure of the description are linear: but the argument does shou
that one may expect many of the components of the low-level symbolic
descriptor to consist of locally linear sub-systems, between uhich
switching takes place. One example of this is the observation that if a
sine-wave grating is presented to one eye, and another of three times the
frequency is presented to the other, they are perceived as nearly a
square-wave if the phase relation is correct, and one can adjust the
relative amplitudes uhile maintaining this perception: but if the phase

relations are urong, there is rivalry betueen the images (Maffei &
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Fiorentini 13972). The system is locally linear, under the right

conditions: but only locally.

Bindings

The lou-level system that is described in the accompanying
articles is based on descriptions of intensity changes, but there are
clearly a number of other qualities that need to be associated with
contours and regions in an image during its analysis. Obvious examples
are velocity, orientation, position, binocular disparity, colour,
descriptors of surface texture, and so forth. It is natural to subpose
that these modifiers exist in the form of symbols that are bound to the
appropriate shape descriptor..Thus the perception of the colour of a
sur face would correspond to the binding of a symbol for that colour to
the symbol for the shape, rather than to a crude contour approximation
analagous to that uhich occurs uhen one of the images in a colour-
printing process is displaced relative to the others. (The implementation
of the binding may of course use rough contour description as an
addressing technique - see Marr 1974c).

The representation of such parameters as colour, disparity, and
80 on, by means of symbolic assertions that modi fy the underlying shape
descriptors, makes a number of illusions easy to understand at least in
general terms. The well-knoun waterfall effect, in which there is
apparent movement without change in position, would correspond to an

assertion of non-zero velocity becoming bound to the relevant item, but

With the position binding (perhaps represented by using a naming scheme
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for the directions round the viewer) remaining constant. The illusion of
Fuchs (1923 figure 6) is another interesting example:_nine small circular
blobs are arranged in a 3 by 3 grid. The central blob is coloured
yel lou-green; the four corner ones are blue-green, and the four at the
centres of the sides are yellow. [f the central blob is seen as part of
an x that includes the four corner blobs, it appears blue-green: if it
forms part of a + with the blobs in the sides, it appears yellow. It
seems to depend to what shape descriptor the colour value is bound. On
close examination, the colour of the central blob can of course be
diagnosed accurately.

The process of binding a value can be very simple, as it is in
the case of binding a velocity value to a contour. At higher levels, a
value may have to satisfy many prerequisites before it can be allouwed to
occupy a particular slot: but there are reasons for believing that
extreme complexities may exist at the lower levels too. For example, the
conditions under which a disparity value may be bound are extremely
complex. | shou elseuwhere (Marr 1974c) hou the constraints that the 3-
dimensional world places on an acceptable assignment of disparity values
to an- image can be accurately represented as pre-conditions on the
binding process. The same constraints cannot be accurately represented
outside a discrete symbolic environment, which probably explains why
methods that use grey-level correlation techniques for measur ing

disparity fail to work very well (Mori et al. 1973).
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T computational problems in low-level vision

[t is an interesting reflection on the primitive state of vision
research that so very feuw of even the most basic lou-level computational
problems have been settled. The following list illustrates some of the
more important ones, but it is not exhaustive, and some of the terms
reflect a modularity that may turn out (as scene analysis did) to be
inappropriate.

{1} A vocabulary for the primary parameters associated with an item in a
(tuo-dimensional) image.

The primary parameters are velocity of movement, local
orientation, and position. The computation of these parameters is the
easier part: uhat is more difficult is the design of a vocabulary that
allous efficient manipulation of the relation betueen these variables.
For example, if position in the image is represented by a family of names
for directions, and orientations are represented by another set of names
for orientations, then the orientation of the line between tuo position
names must be readily available. The eventual computation of three-
dimensional predicates |ike ABOVE, BESIDE and so forth will also rely to
some extent on the ease to which questions about two-dimensional
configurations can be answered. The design of a lou-level vocabulary for
these primary parameters is therefore not as easy as it at first sight
appears.

{2} Intensity changes

The lou-level description of intensity changes in an image is
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discussed at length by Marr (13742 and 1974b).
{31 Disparity

The work of Barlow et al. (1967), and of Julesz (1971), has
provoked much interest in the characteristics of the human mechanism for
assigning disparity values to an image (disparity being one kind of
information that can lead to assertions about distance from the viewer).
But there has b;en little progress in the study of parallel algorithms
for performing the computation (see Marr 1974c).
{4} Lightness and colour

One of the more easily formulable problems is how one computes
perceived colour. The method of Land & McCann (1971) (see also Horn
(1974) and Marr (1974d)) appears to work acceptably in the model world of
Nondrians for uhich it was developed: but because of the Qreat extra
complexities that arise in natural images there are some grounds for
believing that this method needs considerable modification before it can
be made generally reliable.
{5} Fluorescence and brilliance

The detection of sources of light in the visua! field is an
important ability, and the illusion of Evans (1974) seems to imply that
the nervous system has an interesting and special method for doing it.
Evans created tuo slides, transparent except for a small black square
that appeared on the left of one slide, and on the right of the other.
The positions of these squares did not overiap, The twuo slides were
projected, one using red and the other using green |light, and the tuo

images were super-imposed. Most of the resulting image was yellou,
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except for the two squares, one of which was red and the other, green.
These squares appear to be more brilliant than the background.

Ullman (1975) has noted that measurements of local contrast
gradient over a surface may be used to detect fluorescence. If a sur face
is illuminated by a source that is not too distant, the illumination
gradient produced on the surface will be measurable. Two adjacent
sur faces of constant but different reflectances will have the same local
contrast gradient across them. If one of the surfaces is also a source,
the local gradient there will however be smaller than on parts of the
surface that are not sources, because a contrast measure involves
dividing by the DC luminance in a region. This fact allows one to
construct a sensitive and autonomous detector of fluorescence.

{6} Sﬁrface texture

One of the more vexed questions of low-level analysis has been
the description of surface texture. Some kinds are not too difficult:
glossiness is probably one of the simpler ones to detect, (and should
probably be thought of like colour as a quality that is bound to the
description of a surface)l. Textures like a grass laun, or a woven
fabric, seem at first sight to be inaccessible; but there are some
grounds for believing that the analysis of textures with some order to
them is not in fact too difficult (Marr 1975b). Very irregular patterns
like cork-board seem to pose a rather different kind of problem; but the
difficulty we have in describing them may simply reflect the fact that we
do not possess very good internal descriptors for them ourselves, and so

vacillate betueen several ways of describing it, none of which is very
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successful. (Brodatz 1372 contains an interesting selection of visual
téxtures).

Highlights, specularities, and their associated intensity peaks
are difficult to study with conventional cameras because of over |load
problems. They are however of clear importance for tuo reasons. Firstly,
the computation of qualities |ike metal, glossiness, glister, uetness,
and oiliness seems to depend in part upon them; and secondly, if they can
bé recognised at a lou level, their description can be excised from that
of the rest of the image quite early on. This makes the recognition
problem a great deal easier.

{7} The inference of boundaries

Changes in intensity or in intensity gradient are not the only
useful cues that indicate the presence of an object boundary in an image.
I't is well-knoun that certain kinds of movement (Julesz & Hesse 1970),
disparity, texture, "hatching" and various other changes can provoke the
impression of a boundary in an iﬁage. For example, we have no trouble
describing the overall shape of a tree in winter, when the only cues are
bare and sparselg scattered tuwigs at random orientations. As far as | am
auare, there has been no progregs in the study of methods capable of
achieving this.

{8} Transparency

One of the feu areas that has been studied with some success in
the question of diagnosing traﬁsparencg (see Metelli 1974). There are
houwever many awkuard transparent objects - |ike a Coca-Cola bottle -

which raise a number of problems simultaneously in a rather complex uay:



lou-level vision 25

Metelli is perfectly aware of the difficulties, and it is apparently not
known hott well his method performs in such cases.
{9} Symmetry

Julesz (1971 ppl28-136) emphasised the fact that our perceptual
apparatus seems to be sensitive to symmetries. Presumably, we do not
contain complete representations of the important symmetric groups, but
achieve our sensitivity by the use of a small number of tricks. The
examples that he gives, though composed of random dot patterns, do not
prove that we carry out a general symmetry test. It would be enough for
those examples if we used the few, unusually shaped clusters of dots that
appear by chance at various places in the image; this observation is
houever far from a precise definition of a working method.
{19} Figure-ground

The importance of figure-ground lies in its ability to select out
of an image sub-parts that may usefully be included in a single
descriptive unit. One would expect it to be implemented very soon after
the computation of a very lou-level symbolic description of an image,
Given a low-level symbol asserting the presence of a vertically oriented
EDGE with posftive sign, there are tuo ppssible symbolic descriptions of
this edge at the next stage: one can either regard it as a black border
Wwith the background on the right, or as a white border facing to the
left. Selection of one of these is forced if it is knoun (e.g. from
disparity information) that one side is closer than the other. Because
figure-ground distinctions may be made in artificial nonsense images, it

is generally thought that the underlying computation, though capable of
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taking a number. of aspects of the image into account, is a lou-level one;
yet there has been no attempt at a precise study of methods for carrying

it out.

Some of the traditioﬁal issues cease to be important probiems for
a system that relies from the stért upon symbolic manipulations (see
Minsky & Papert 1972). The transiational invariance of a description is
one such problem: the symbol LINE does not have a dependence on position
and no problems arise in deciding uhether tuo |lines are the same kind of
thing when they appear at different places in the image. The same holds
true for LINEs at two orientafions. but'more‘comp|ex issues become
involved in the description of configurations of lines at different
orientations. Provided that the symbolic representation of a
configuration is constructed in terms of intrinsic predicates (e.g.
PERPENDICULAR LINE1 LINE2), or relative to axes set up locally in the
image, the representation will display rotation invariance: and one would
expect many aspects of the description of three-dimensional shapes to be
computed in such terms. The use of predicates that rely on the vieuer’s
frame of reference (ABOVE, TO-THE-SIDE-OF) or on templates that consist
of fixed point-configurations in the visual field, would however result
in a representation with little invariance for large rotations.

A symbolic system will further not have size-constancy, in the
traditional sense of using a size-invariant representation. The ability

to recognise objects at different sizes arises for a variety of reasons.
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Firstly, the grosser aspects of an object’s description do not change
very fast as the size of the image changes; and secondly, any competent
recognition system must have available a large amount of information
about the possible appearances of an object. The changes induced by
lighting an object differentlg can be spectacular, compared with the

changes in the description of its image produced by halving its size.

The scope of this article has purposely been !imited to very lou-
level issues in a computational approach to vision, because its immediate
purpose is to prqvide a background for the accompanying detailed
investigations. Higher level issues are of course abundant, and in a
sense more interesting than the somewhat pedestrian details with which
lou-ievel studies must concern themselves: but if the computational
approach to vision has any value, it ties in its ability to separate out
of the family of potentially useful ideas for visual processing those
methods that actually work on real images. Until one tries to deal with
a natural image, there is a tendency not to appreciate how complex and
aukuard they are. High level problems cannot be investigated
experimentally without a fairly secure lou-level system, because they
need to be tested on natural data. A robust, low-level system is

therefore a prerequisite for higher-level investigations.
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