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ABSTRACT

A family of symbols is defined by which much of the useful
information in an image may be represented, and its choice is justified.
The family includes symbols for the various commonly occuring intensity
profiles that are associated with the edges of objects, and symbols for
the gradual luminance changes that provide clues about a surface’s shape.
It is shoun that these descriptors may readily be computed from
measurements similar to those made by simple cells in the visual cortex.
of the cat. The methods that are described have been implemented, and
examples are shoun of their application to natural images.
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Summary

1. It is shoun that at least three main kinds of intensity change are
commonly to be found in an image. These are (a) step changes in
intensity, such as exist at well-illuminated object boundaries against a
dark background; (b) step changes in intensity gradient, such as can
exist on the shaded side of a curved object against a dark backgrounds
and (c) gradual changes in intensity over a surface, due to the combined
effects of the surface’s shape, and the prevailing illumination.

2. The characteristics of each kind of intensity edge are noted, and
symbols for each are defined. It is shoun hou the different kinds of
intensity edge may be recognised by an orientation-dependent analysis of
an image. They may most straightforuardly be computed from edge- and bar-
mask convolutions with the image, since these measure appropriate
approximations to the first and second directional derivatives of

intensi ty.

3. In addition to the classification of intensity changes, additional
descriptors are defined to represent properties of "strength" and
“fuzziness". The computation of these measures requires the comparason of
edge and bar mask convolutions made with masks of two or more different
sizes, and a detailed account of methods for doing this is given,

4. The methods that are described have been implemented using serial
algorithms on a conventional computer, and examples are shoun of their
use on selected images. These methods will be successful provided that
(a) the image resolution is generous compared with the distance betueen
intensity changes, and (b) that the image is examined at the appropriate
scale. Methods for discovering the appropriate scale are given, It is
noted that advanced mammalian visual systems are designed in a way that
uwould enable these conditions to be satisfied.

5. Parallel algorithms are available for many parts of the parsing
process.

6. The intensity distribution that one would infer from the symbolic
representation of an image frequently differs from the true intensity
distribution. These anomalies may illuminate the cases uhere our own
perception of these distributions is similarly, and useful ly, deceiving.
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Introduction

I't was argued elseuhere (Marr 1974a) that the object of the first
stage in a general-purpose vision system should be to compute a low-level
description of the intensity changes that occur in an image, from
suitably chosen measurements made upon it. The lou-level description
should consist of a set of assertions and modifiers, that employ
appropriately chosen atomic symbols drawun from a vocabulary of adequate
power. It was also pointed out that the measurements from which the
description is computed should be orientation dependent in a simple way.
This is because the difficulty of computing a symbolic low-level
description is related to the structure of the inverse transform of the
original measurement: if the inverse transform has a complex dependence
on boundary conditions, so must the computation of the description.

This article examines the kinds of intensity change that commonly
exist in natural images, defines a vocabulary of lou-level symbols in
terms of which they may be described, and gives methods by uhich this
representation may be computed. The present vocabulary was based on a
combination of intrinsically important computatioral criteria that arise
in the deciphering of bar- and edge-mask convolution profiles, together
Hith the requirement that the method describes all of the changes that
one can see oneself in the images (apart from features knowingly omitted,
like specularities). In some respects, the system set out here is more
complete than our oun perception of an intensity array, but there may be

others in which it is less. One must however start someuwhere, and if the
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Figure 1. 1la shous tuo of the simple paper surfaces that provided some
of the images shoun in later figures. The camera was placed directly over
the surfaces, uwhich uere lit from the side. The surfaces may be
identified by the profile number that appears beside them. Figure 1b
shous examples of edge and bar masks, with the weights that were used.
Notice that the weights have been chosen to take account of the

rectangular tesselation of the image.



(a)

(b)

FIGURE 1
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terms defined here turn out not to be quite precise enough for very fine
discriminations, one can refine them slightly uhile preserving the
overall method. This question will be raised again in subsequent
articles, as we follow the manipulation of the lou-level description
described here up to its representation in terms of higher level

predicates through which ue are accustomed to perceiving the worlid.

Methods

The pictures were taken using a Telemation TMC-2188 television
camera. When set in log mode, and adjusted appropriately, this camera
delivers a signal corresponding to 2/3 log intensity over a reasonable
range. Care was taken to ensure that the scenes photographed fell within
saturation levels of the camera. Image output was provided by a DEC-348
display unit, and by a xerographic |line-printer on-line to the central
computer installation based on a DEC PDOP-18. The photographs of these
images that appear here are necessarily inaccurate representations of the
under lying distributions, but they preserve and sometimes enhance the
qualitative features with which the programs are concerned. The images
were created by bending and folding pieces of white paper, as illustrated
in figure la, and by photographing various common objects. The
illumination consisted of a roughly uniform component due to diffuse
overhead 1lighting, together with a local source provided by a standard
desk lamp, which was responsible for the shadous that appear in the
images. The grey-level dynamic range of the camera was 8 bits, and that
of a typical picture exceeded 7.
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Edge- and bar-mask convolutions

In the early stages of this study, I had the pre-conception that
step-changes were the only important kind of intensity change in an
image. (We shall not be concerned here with changes due to motion, or to
disparity). Both edge-shaped and bar-shaped masks (figure 1b) are
equal ly good at detecting this kind of change, and it was therefore a
disturbing puzzle that the cat's visual cortex contains both kinds of
simple cell receptive field (Hubel & Wiesel 1962). One possibility was
that one type of mask should somehow be closely related to the detection
of bars in the image, and the other, to the detection of edges. This
cannot be the case, however, because bar-mask convolutions are very
different from assertions about the presence of bars in an image (see
Marr 1974a).

An edge-shaped mask can be vieuwed as signalling an approximation
at a certain scale to the first directional derivative of intensity at a
point; and a bar-shaped mask as signalling either an approximation to the
second directional derivative, or to the difference between the left and
right first derivatives. Once one realises this, and also that pure
step-changes in intensity are only one of a number of kinds of intensity
change, it becomes very reasonable to view the convolutions as measuring
the first and second derivatives of intensity. These tuo measurements
convey information about the way intensity is changing at a point (higher
derivatives being much less interesting); and they have the property of

orientation selectivity that is virtually required of the measurements
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from which the lou-level description is to be computed. Finally, it is
worth pointing out that the units in which the derivatives should be
expressed are units of contrast ((1/1)dl/dx), for intensity I); or
equivalently the gradient of log intensity (since d/dx (log I) =
(1/1)dl/dx). This is because the gradients on tuo surfaces, that have
the same illumination but different reflectances, have the same value in
these units, but different values in pure intensity gradient units.

The size of an edge- or bar-mask is characterised by the width of

one of its constituent panels. This is called the panel-uidth, and varies

betuween 1 and 64 in the figures that accompany this article. The length
of a mask .is typically 4 or § tiﬁes its width: the reason for not having
it shorter is that inter-orientation cross-talk is small for masks of
this length. For a given mask, a convolution profile may be obtained by
computing the mask respoﬁse across the image along a |ine whose
orientation is perpendicular to the principal orientation 6f the mask.
Much of the discussion below concerns the peaks and slopes that occur in
such a profile: an example of one appears in figure 3.

The process of computing edge- and bar-mask convolutions is of
some interest. The visual cortex of the cat performs the convolution
directly, using uhat are effectively hard-uired masks scattered at all
positions and orientations over the visual field. Direct simulation of
this on a serial machine is very inefficient: it is much faster to regard
the operation as a‘convolutioq, and to use the Fast Fourier Transform
(FFT) algorithm (Cooley & Tukey 1965) to reduce the convolution to a

multiplication. In the implementation that is described here, the
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convolution is taken over an array of log intensity values. This produces
a measurement that approximates the local contrast gradient, to whose

logarithm simple cells in the cat appear to be sensitive (Maffei &

Fiorentini 1973 figure 8).

What information should one extract from an edge- or bar-mask
convolution such as that shoun in figure 2? There are tuo broad options:
one can either continue transforming the image - for example by remaining
in the spatial frequency domain and applging various convolutions to the
Hhole of the data; or one can extract a feu simple measurements |ike the
position and size of the peaks in a profile, perhaps adding a simple
descriptor of the sharpness of the peak, and parse these measurements
into symbolic assertions about the data. The methods described below
take the second approach, and part of their justification is that they
Work acceptably. But it is important to be aware of the issues that lie
behind the choice, so I include a brief discussion of them here.

Whenever one chooses to make a transformation of a piece of data,
(for example the Fourier transform of an image), one becomes committed to
a notion of similarity that is associated with that transform. In the
case of a Fourier transform, the similarity is defined by some metric in
the frequency domain. It is necessary to ask whether the particular
choice of similarity that the transform introduces is appropriate for the

given application. Experience with line-finding programs shous, for
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example, that algorithme based on Fourier style detection methods fail to
find many of the interesting lines in an image (B.K.P.Horn personal

communication): so that even at the very lowest level, metrics based
rigidly on spatial frequency spectra fail to supply the appropriate
measures of similarity. | have tried various Fourier techniques for
extracting peaks from bar- and edge-mask convolution profiles, but they
-are too sensitive to the exact shape of the peaks to be useful. UWhether
a peak is there or not, its position, size, and possibly its thickness,
seem to be the important factors.

The use of such qualitative features as these rests upon other
assumptions which, if violated, will cause methods that rely on them to
produce nonsense. The assumptions are roughly equivalent to the
assumption that the boundary conditions, for the local restriction of the
inverse transform, may be ignored (Marr 1974a). We may refer to this as

the isolation condition. The isolation condition is violated if tuwo

edges in the image are so close together that the corresponding peaks in
the convolution profile interfere. To allow for this, one has to apply
some de-smearing technique before an accurate assessment of the peaks may
be made. De-smearing is itself a transformation, however, and therefore
brings with it problems related to its oun similarity and stability
characteristics. One does better to avoid such operations if possible.

In the human visual system, the receptors are spaced at a
distance of 28" to 35" apart (see e.g. Cornsweet 1970 p356). Complex
patterns that cover a small number of receptors are not well resolved by

us, and it seems that we perform well only in those cases where the
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Figure 3. 3c shous the intensity distributions of an edge, a wide bar,
and a thin bar. fhese intensity distributions have been convolved with
edge and bar masks, whose panel widths equalled the width of the wide
bar. The results for the edge mask appear in 3a, and those for the bar
mask appear in 3b. Figure 3d shows the bar-mask convolution of an image
in which two wide bars are separated by the width of those bars. The

panel-uidth in 3d equals the width of the bars.

12
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details in the image are sufficiently separated for the highest
resolution masks to satisfy the isolation criterion. Nevertheless, the
study of images in which the detail is very densely distributed is of
interest, and | report some experience with them elseuhere (Marr 1974b).
In a real-time environment, however, the safest strategy would be to take
a closer look if more detail is required, because the necessary

- computations turn out to be someuhat delicate.

Isolated step changes in intensity

In order to define the parsing process precisely, let us examine
the characteristics of various kinds of intensity change, starting with
the simplest. Figure 3c shous the intensity distribution of an edge at
x=256, a wide bar (x = 512 to 576), and a thin bar (x = 768 to 784). The
bar- and edge-mask convolutions with this intensity distribution, for a
panel-uidth of B4, are given as figures 3b and 3a. The salient
characteristics of the convolution profiles are as follous:

Sharp edge: this gives rise to a single, sharp peak in the edge-mask
convolution. The half-uidth of the peak is d, the panel-width in the
under lying mask. The bar-mask convolution shous a positive and a
negative peak, separated by a distance d, and which decline linearly to
Zzero a further distance d out to the sides.

Sharp bar: provided that the width of the bar exceeds 2d, the bar appears
as tuwo quite separate edge-mask responses. For narrower bars, the tuo

peaks start to interfere, and their apparent amplitude diminishes



lou-level symbolic vision 15

linearly with the width of the bar. Similar observations hold for the
bar-mask responses; here, interference starts at a bar width of 3d, and
the peak response (the "typical" bar response that is shoun in the
figureloccurs at a bar width of d, equal to the panel-width.

Lines: When the width of a bar is smaller than the smallest panel-uidth
in use, the bar- and edge-mask convolutions have a cut-off appearance
(figures 3a and 3b, around x=778). The position of the underlying line is
determined, but the characteristics of the intensity changes at its edges‘

are not.

Finding peaks in a profile
In order to diagnose the presence of a sharp edge (or of anything

else) in an image from the characteristics of the peaks in various bar-

‘and edge-mask profiles, those peaks must first be found. This process is

of some interest in its oun right. First, we define a possible-peak to be
a local maximum whose value is positive, or a local minimum whose value
is negative. This criterion is extremely liberal: it allouws small local
bumps to be called possible-peaks, even if they are close together and
about the same size. The possible-peaks in profiles from’tuo sizes of
mask are then matched, and possible-peaks that occur in both profiles are
called peaks. This point is of some importance, because when one looks
at a profile from a very small mask, it is usually not possible to state
which of the small peaks in it are important and uhich are due to noise.
Combining the information from two (or more) mask-sizes provides a method

of peak-detection that is much more sensitive than methods based on only
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one profile.

Sharp edges

Sharp edges may be reliably detected by looking for sharp peaks
in the edge-mask convolution, or by looking in the bar-mask convolution
for tuwo peaks, of the same amplitude but opposite sign, separated by the
panel-uwidth d. The advantage of the second method is that bar-masks
suffer less from inter-orientation cross-talk than edge-masks: but the
diaa;vantage is that the resolving power for tuo close edges is inferior
unless de-smearing is used. In practise, | have used the first technique
Wwith a stringent criterion for sharpness to extract all of the really
obvious sharp or slightly fuzzy edges. This gives the program more room
to manoeuvre uwhen studying the more difficult cases. The sharpness
criterion that is applied in my present implementation is that at a
distance d/2 auay on at least one side, the value should not exceed 8.55
that of the peak:; and fhat on the other side, it should not exceed 8.8 of
. the peak. [f the latter condition is violated, but satisfied by the point
d/2 further along, the edge is described as slightly fuzzy at that
resolution. In general, sharpness can better be determined by comparing
the amplitudes of the peaks in profiles from masks of different sizes
(see below).

Diagnostic procedures from bar-mask convolutions are somewhat

more complex, and are dealt with later.
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Pure step-changes in intensity are comparatively rare in natural
images. [f the change is spread out over a small distance, the edge
appears to be fuzzy. As one would expect from the spatial frequency
spectrum of such an edge, the small masks give relatively less response
to fuzzy edges. For example, consider two edge-masks M and N, where the
panel-uidth of N is half that of M. If their responses are normalised so
that the response of each to a step function is 1, the response of M to a
linear slope is tuice that of N, because the mean separation of the
panels is doubled. Hence, by comparing the relative sizes of the peaks
obtained from tuo different sized masks, one can assess the spread of the
under lying edge. This is more reliable than trying to characterise the
shape of the peaks, and allows an assessment of fuzziness which uses only
the ability to find peaks and measure their amplitudes.

The amount of fuzziness associated with an edge may be
charaéterised in two steps. Firstly, one finds the size of mask at which
the edge ceases to appear like a step function: this can be recognised by
comparing the amplitudes of the values obtained with successively smal ler
masks, and it corresponds roughly to that region of the spatial frequency
spectrum within which the important information characterising the type
of edge will be found. The second step is to code the relative amp| i tudes
of the peak sizes due to maské of about that size. The order of magnitude
of the result is more important than its exact value: the particular

measurement that we use is da/b, where d is the panel uidth of the



lou-level symbolic vision 18

smalier mask, and a and b are the peak amplitudes due to the larger and
smaller masks. This provides a description that is satisfactory for many
purposes. We suffer from the practical limitation of being able to use
only tuo mask sizes at once, -and this forces us to take special steps to
recognise soft shading, whose principle energy may be concentrated in the
longer frequencies (see e.g. the analysis of figure 7).

As well as its computational merits, the policy of deriving the
lou-level symbolic description from the smallest masks that give a
measurable signal has psychophysical support. For example, in
L.D.Harmon’s wel | -knoun coarsely sampled and quantized photograph of
Abraham Lincoln (reproduced for example in Julesz 1971 p311), perception
of the face is impossible unless the high frequencies associated with the
discretization are removed. One's choice of an operating region in the
spatial frequency spectrum seems to be firmly involuntary. This limits
the extent to which the computation of a rough, overall description of an
image (which may be an important early stage of recognition), can rely on
looking at the image through large masks.

Finally, to describe the representation of the result of the
measurement, the modifier FUZZINESS is used, with the numerical value
defined above. This number could of course be replaced by a qualitative
descriptor, and Qill need to be converted to symbolic form before being
passed to procedures that specialise in the shape of curved sur faces.,
Sharp edges have the associated modifier SHARP, and many object
boundaries turn out to be sharp. Shadow boundaries have small fuzziness

values, and those due to gradual curves of the underlying surface often
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have quite large values. The examples given later illustrate these

points.

The analysis of bar-mask convolutions

Sharp edges are easy to recognise using the criterion of sharp
isolated peaks in the edge-mask convolutions, but the analysis of bar-
mask profiles introduces more complex issues. Firstly, the possible-peaks
are found in the tuwo profiles (e.g. from bar-masks of panel uwidths 1 and
2), and they are matched. As before, except in special circumstances,
peaks in neither record survive unless they find matches in the other.
The exceptions are designed to deal with the case where peaks in the
record from the smaller mask are well-defined and not small, but are
closer together than can properly be resolved in the larger mask’s
record. This circumstance can occur, for example, when an edge of small
amplitude occurs very near one of large amplitude and the same sign.

Before the pairs of peaks from the two sizes of mask may be
parsed, it must be checked that they satisfy the isolation criterion.
Accordingly, the pairs are arranged into disjoint groups such that each
member of one group is at least 3d from a member of any other group.
This constraint avoids the boundary condition problems described by Marr
(1974a). If a group contains only one or tuo peak-pairs, it is ready to
be parsed. If it contains more, one can sometimes split it by searching
for typical edge configurations. These satisfy the following conditions:

(i) They contain tuwo peaks, of opposite sign, such that the amplitude of
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one is greater than half that of the other. The reason for the half is
that this circumstance cannot occur if the underlying image configuration
is a thin bar. (This test provides another example of the use of
conservative but reliable constraints to compute the description.) The
actual numerical test applied uses the safe figure of 8.55, because one
needs to allouw for noise in the measurements.

(ii) The separation of the two peaks in the smaller bar mask’s record

does not exceed the separation of the peaks in the larger one's record.

These two criteria are frequently successful in breaking up large groups
into their constituents (see figure 7 at x=724 for an example). If, after
the application of both grouping procedures the remaining groups are
still larger than 3, the resolution of the sgstem has proved insufficient
to characterise the image successfully at that point, and our
implementation calls the result a GRATING. A feu simple parameters are
computed - like the width, the number of peaks (which equals the number
of edges plus 1 in the ideal case), and the average intensity change
associated with the peaks. It can happen that on successive nearby passes
across the image, the lou-level analysis hovers betueen a grating and a
properly resolved description (see figure 8). (Algorithms that glue the
very lou-level assertions together can be made aware of this trouble,
carrying descriptions across GRATING assertions if they match on both
sides of them.) This GRATING assertion should be distinguished from the
larger scale descriptor that one might invoke to describe a grating

pattern spread across the visual field. The computation of such a
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descriptor is not a lou-level operation, in the sense of this article.

Parsing an isolated group of peaks

Provided that not more than three peak-pairs are contained in an
isolated group, one of the following possibilities will be satisfied.

1: Three peak-pairs

If there are three pairs of peaks in the group, they are labelled
CENTRE, LEFT-SIDEBAND and RIGHT-SIDEBAND. Provided (a) that both
sidebands represent peaks whose values are opposite in sign from that of
the CENTRE, and (b) that neither sideband has greater thaﬁ hélf the
amplitude of the CENTRE, the group may be diagnosed as a BAR whose
amplitude is that of the CENTRE peakf If condition (a) is violated, the
group is treated as a combination of types 2 and 3 below.

Assessing the width and the fuzziness of the bar requires very
careful consideration (cf figure 3d). In practise, the peak separation is
the best indicator of fuzziness, because it indicates the distance in the
image over uhich the intensity changes at each side of the bar take
place; and the relative amplitudes are the best indicator of bar width,
because the smaller bar widths produce more interference between the
effects of the edges at each side of. the bar. Finally, the position of
the BAR is given as the position of the CENTRE. Figure 3c shous a thin,
sharp BAR (at around x=778), and figure 4 (x = B57) shous a fuzzy BAR.

2: Tuo peak-pairs

If there are two peak pairs in the group handed to the parser,
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Figure 4. Profile 2 (see figure 1) is accompanied by its bar and edge
mask convolutions, for various values of the pane! width. The low-level
symbolic representation of this image, obtained from edge-mask
convolutions with panel size 16 (E16), and bar-mask convolutions with
panel sizes 16 (B16) and 8 (B8), is the follouing:
EDGE (POSITION 256) (AMOUNT 258) (FUZZ SHARP)
BAR (POSITION 657) (AMOUNT -62) (FUZZ FUZZY) (WIDTH 24)
EXTENDED-EDGE

(POSITION 758) (AMOUNT 27) (FUZZ 17) (WIDTH 38) (DIRECTION +)
LINE (POSITION 535) (AMOUNT 21) (FUZZ SHARP) (WIDTH 16)
LINE (POSITION 6394) (AMOUNT 28) (FUZZ SHARP)
Notice that peak separation is a better indicator of fuzziness for a bar
than the relative amplitudes of the peaks from the tuwo panel sizes (cf
figure 3d). The description ignores the slow changes in intensity that
are present in the image. These are picked up by the method from edge
mask results with a panel size of 8 (description not shoun). The LINEs

that appear above would be subsumed in the description of the slow

changes (see later in the article, and figures 5 and 7).
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and the peaks are of opposite signs, the image contains an edge of some
kind. If the peaks have the same sign, they are treated as two
occurrences of case 3 belou. The first category of edge is the classical
one, wuhere the amplitude of the smaller peak is greater than half (8.55)
that of the larger. [f the amplitudes of the peaks due to the two mask
sizes are equal, and the separation of the peaks in eachrrecord is equal
to the panel size for that record, the profile is that of a classical
sharp edge. The edge’s FUZZINESS is given as SHARP, its amplitude is the
peak size, and its position lies mid-way betueen the two peaks.

[f the amplitudes of the peaks due to the two mask sizes are not
equal, the edge is described as being fuzzy by the appropriate amount. In
such cases, the peak separation will also be greater than for a sharp
edge. The amplitude of the edge is the amplitude currently being
signalled at that point by an edge-shaped mask of appropriate size. The
peaks in the record from the smaller bar-mask must not be significantly
further apart than the peaks in the record from the larger one. If they
are, the two mask sizes being used are probably too large, and details
present in the image are being lost.

The criterion that the smaller of the tuo peaks in a record
should be greater than 8.55 of the larger is an important one, because it
signals that the EDGE description is appropriate. (It is used early on in
the process to split up the groups of peak pairs). The guestion remains
of what to do if there are only two peaks, but the amplitude of one is
smaller than 0.55 of the amplitude of the other. There are two

possibilities. The first one is that there is an edge of some kind in
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the image, whose intensity change has started relatively gently, but
finished abruptly. This situation is quite commonly produced by the
shadow on a curved surface, and the associated edge is called an
EXTENDED-EDGE. The second possibility is that there is in fact a BAR
present, whose second SIDEBAND is missing or is too small to be seen,
because part of the gradient change is very gradual on that side.

These tuwo possibilities may be distinguished in the following
way. If the image contains an EXTENDED-EDGE, the peaks in the large and
in the small bar-mask records will occur at about the same place, because
they correspond to genuine measurements of gradient change in the image.
Accordingly, if this condition is satisfied, the parser assigns the term
EXTENDED-EDGE to the configuration, and as well as the usual parameters,
it is assigned a DIRECTION and a WIDTH. The FUZZINESS is computed in the
usual way, by comparing the peak sizes in the two records. The WIDTH of
the edge is obtained from the peak separation; and its amplitude, from
the lérgest peak in the group. Figure 4 shous an EXTENDED-EDGE, and for
comparison, figure 5 contains a fuzzy EOGE.

If, on the other hand, the peaks in the two records are roughiy
the distance apart of their respective panel-uidths, the under lying image
does not contain an EXTENDED-EDGE. In addition, one expects the ratios
of the amplitudes of the CENTRE peaks of the tuo profiles to be larger
than the ratios of the amplitudes of the SIDEBAND peaks. Using only the
measurements of peak height, one cannot characterise the image more
precisely, and so the parser calls it a BAR, with the usual parameters

being assigned to it. This situation is extremely interesting, for in the
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Figure 5. Profile 6 is a more complex distribution, containing several
points of interest. Its analysis from an edge-mask of panel-width 8 (E8),
and bar-masks of panel-widths 8 (B8) and 4 (B4), is as follous:

EDGE (POSITION 250) (AMOUNT 9@) (FUZZ SHARP)
EDGE (POSITION 505) (AMOUNT -3) (FUZZ SHARP)
EDGE (POSITION 514) (AMOUNT 19) (FUZZ 4)
EXTENDED-EDGE
(POSITION 615) (AMOUNT -9) (FUZZ 9) (WIDTH 18) (DIRECTION +)
EOGE (POSITION 634) (AMOUNT 2) (FUZZ SHARP)
EDGE (POSITION 645) (AMOUNT -15) (FUZZ 6)
EDGE (POSITION B75) (AMOUNT 1) (FUZZ 4)
EDGE (POSITION 733) (AMOUNT 14) (FUZZ 19)
EDGE (POSITION 766) (AMOUNT 1) (FUZZ 4)
EOGE (POSITION 815) (AMOUNT -66) (FUZZ SHARP)
EXTENDED-SHADING-EDGE (POSITION 631) (AMOUNT -4) (WIDTH 23) (START EDGE
675) (MIDDLE) (STOP LINE 718)
EXTENDED-SHADING-EDGE (POSITION 6@1) (AMOUNT -9) (WIDTH 58) (START LINE
5508) (MIDDLE) (STOP EXTENDED-EDGE 615)

This interesting image contains both EXTENDED-EDGEs and fuzzy EOGEs. The
edge at x=634, uhich was discovered by the program from the edge mask
profile, gives rise to what is almost an illusion of extra lightness to
its right (compare the intensity distribution). Notice that even very

small intensity changes have been accurately described by the program.
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right circumstances it can give rise to a BAR assertion where we perceive
a Mach Band. The criteria of peak separation and relative amplitude are
what distinguishes an EXTENDED-EDGE from this type of BAR; and the
difference betueen it and a normal EOGE is that the associated edge-mask
peak is less sharp, and one of the tuo bar-mask peaks has less than half
the amplitude of the other. Figure B shous a Mach Band whose BAR uas
obtained in this uay.

One other point of interest is worth mentioning in connexion with
figure 5: it is that the apparent lightness of the image (especially
betueen coordinates 688 and 658) seems to be more closely related to the
computed description of the intensity distribution than to the intensity
distribution itself. This observation, and others (e.g. figure 6),
suggest that one should look closely at methods for computing |ightness
that operate on a lou-level symbolic description such as the one that is
described here. Interestingly, methods for doing this are subject to
simul taneous contrast phenomena if they are handed contrast measures of
relative brightness, but treat them linearly as if they were
straightforuard measures of intensity change. In such circumstances, a
method would for example tend to ascribe a greater apparent |ightness to

a grey square if its background were black than if it were uhite.

3: One peak-pair

Finally, there is the case where only one peak-pair is present in
a group. This corresponds to places in the image where the second

directional derivative is discontinuous, without any immediate change in
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intensity. Such places are often important, because they can correspond
to things like a crease on a(surface, or the nearer edge on a frontally)
cube. Of course, one may be lucky and have some step change in intensity
too, even if it is only a thin BAR caused'bg reflexions from the edge
itself. The problem is how one should symbolize a change of intensity
gradient: it is easy enough to recognise. It cannot be called an edge,
because the strength associated with it would not reflect accurately the
fact that there is no overall change in intensity at that point. Any
intensity changes associated with it have to be symmetric, which commits
one to coding it as a BAR of some kind. This is not unreasonable.
Specular reflexions from sharp edges on an object can sometimes make them
appear like very thin bars; and the accentuation of a boundary wWith a
very thin line can make a painting look particularly realistic. Single
bar-mask peaks are therefore coded as LINEs.

Although it is often senéible to treat LINEs as thin BARs, because
they correspond to boundaries of objects or to segmentation points on a
surface, such a description of the image will not accurately reflect the
intensity distribution. The discrepancies correspond again to Mach Band
illusions, but they differ from the failed EXTENDED-EDGE type because in
this case, there is only one peak in the BAR mask profile. LINEs have to
be quite strong before one perceives them as a band, but one certainly
can.

Conventional thinking connects the Mach Band illusion to the

centre-surround receptive field organisation of the retina, (see Ratliff

1365). There is no doubt that the measurement underlying the illusion is
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Figure 8. The intensity profile contains an example of the Mach Band
illusion. The parsing by the program using an edge mask of width 8 (E8),
and bar masks of widths 8 (B8) and 4 (B4), is as follous:

BAR (POSITION 258) (AMOUNT -48) (FUZZ 6) (WIDTH 5)
EXTENDED-SHADING-EDGE (POSITION 2639) (AMOUNT 2@8) (WIDTH 130)

(START BAR 258)
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a measurement of the second derivative of intensity, but it is perhaps
worth asking whether it might not be due more immediately to bar-shaped
simple cells than to retinal ganglion cells. The present theory of low-
level vision favours this view, and attributes the responsibility for the
illusion to the mechanism that parses simple cell-like measurements of
the second directional derivative of intensity into lou-level symbolic
descriptors. The existence of tuo distinct cases uhere the illusion may
arise (a failed EXTENDED-EDGE, and a LINE), suggests that the particular
implementation with which we are provided operates by trapping all of the
alternative descriptions first, leaving BAR as a default for whatever
bar-mask measurements remain.

The parser that was used to describe the images for this article
keeps LINEs and BARs distinct. LINEs are fuzzy, because they correspond
to the measurement of the second derivative (see earlier remarks about
the relative ampiitudes of bar-mask convolutions in these circumstances).
They are assigned a width which is based on the smallest size of mask at
which their presence is detectable { > 1% maximum value); but this width

is not a uell-founded measure.

If one uses only the methods and terms described so far, slow
changes in intensity would tend to go unnoticed, even if they were quite
targe in amplitude. This may be seen in figure &4, whose representation

fails to include a description of the slow intensity changes that
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accompany the BAR. On some occasions, one may draw upon the measurements
at a larger mask size in order to detect these changes, but in general,
it appears that more immediately useful measurements arise from smaller
edge-masks (measuring local gradient). (In figure 4, edge masks whose
panel width is 8 provide the relevant measurements.) The reason why
larger masks are of only limited help is that there is often a sharper
intensity change nearby. Hence the large mask measurements fail to
satisfy the isolation criterion, and their peaks will be a misleading
indicator of the changes present in the image. For this reason, one has
to use a high resolution analysis of gradient, and I summarise hou slow
changes are detected and described in our present implementation.

To detect slow changes in intensity, the program goes back to the
edge-mask convolution. It splits the convolution into segments, by
finding connected regions in uhich the result is either aluays positive
or aluways negative. Small segments, and ségments that correspond to items
that have already been described, are removed. The remaining peaks are
found, and those segments whose peaks have smal | amplitudes are ignored.
The survivors correspond to items in the image that have not been dealt
Wi th properly elseuhere, and which cannot be ignored because their
amplitudes indicate that something of note is present. The peak
position, the peak value and the segment length are computed for each
one, and wherever possible, LINEs and EDGEs are associated with a
segment’s beginning, middle, or end. These last associations are
particularly important, because the start of gradual intensity changes is

often picked up as a faint LINE by the central parser, and this allous
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important features of the intensity change to be located precisely., In
such cases, the LINEs in question are expunged from the main descriptijon.
The segment is classified as an EXTENDED-SHADING-EDGE, and the
information listed above is included in its description. Such an edge may
be thought of as an EXTENDED-EDGE, except that the DIRECTION parameter is

unavailable. Figure 7 includes examples of such an edge.

Running the parser on a two-dimensional image

In order to illustrate the application of the method to a real
image, figure 8 shous the results of running the whole process on a
fairly complex image at two orientations. Isolated assertions (i.e.
assertions that could not be glued to at least one neighbour at the
appropriate orientation) would normally be ignored, but they have been
included here to give a true idea of what the method finds in an image.
LINEs that would normally be deleted because of their association with an
EXTENDED-SHADING-EDGE, have also been included in the figure. The
sensitivity of the process is not much in doubt: the very small circular
indentations receive a fairly good analysis {the other orientations are
missing here}: and the very faint horizontal edges in the centre of the
picture (at y = 73 and 75) have been noticed easily without, of course,
the use of any high-level knoiiledge. The sensitivity can be set very
high, because the parsing routines must be satisfied about a number of
qualitative features of a profile before they make a choice about its

description. interest, because it was recognised by the EXTENDED-

SHADING-EDOGE routines.
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Figure 7. Profile 5 (see figure 1) is similar to profile 6 (figure 5),

but contains extra features. The description, obtained using an edge-mask

of panel-uidth 8 (E8), and bar-masks of panel-widths 8 (B8) and 4 (B4),

is as follous:

EDGE
EDGE
EDGE
EDGE
EDGE
EDGE
EDGE

(POSITION 188)
(POSITION 312)
(POSITION 392)
(POSITION 535)
(POSITION 544)
(POSITION 564)
(POSITION 538)

EXTENDED-EDGE

(POSITION 682)

(AMOUNT
(AMOUNT
{AMOUNT
(AMOUNT
(AMOUNT
(AMOUNT
(AMOUNT

136) (FUZZ SHARP)
3) (FUZz 4)

2) (FUZZ SHARP)
-3) (FUZz 4)

25) (FUzZz 5)

2) (FUZZ 4)

1) (FUZz 4) .

(AMOUNT -12) (FUZZ 9) (WIDTH 14) (DIRECTION +)

EDGE (POSITION 724) (AMOUNT -28) (FUZZ 6)

EOGE
EOGE

(POSITION 776)
(POSITION 784)

(AMOUNT
(AMOUNT

3) (FUZZ 4)
-4) (FUZZ 4)

EXTENDED-SHADING-EDGE (POSITION 678) (AMOUNT -14) (WIDTH 67)
(STOP EXTENDED-EDGE 682)

EXTENDED-SHADING-EDGE (POSITION 491) (AMOUNT 4) (WIDTH 36)
(START LINE 486)
EXTENDED-SHADING-EDGE (POSITION 433) (AMOUNT -8) (WIDTH 73)
(START EOGE 392) (MIDDLE LINE 444)

Notice once again the detail that the method has described.
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The dark shadow in the centre of the image is of interest,

because it was recognised by the EXTENDED-SHADING-EDGE routines. 1t
extends over a considerably larger region than the panel widths of the
masks (which were 1 and 2 for the parsing that is shown). There are
certain aspects of the EXTENDED-SHADING-EDGE process that are
unsatisfactory: this is partly because we are forced to use only tuwo
sizes of mask, and partly because very extended edges are too spread out
to be dealt with entirely at this low level. They need to be treated
almost as if they were a local texture (Marr 1975).

Finally, the reader will have noticed that a number of issues
arise when one contemplates the interaction of information at different
orientations. For example, should the interaction take place before or
after parsing? What are the rules for carrying it out, and how are they
arrived at? These are important questions, whose answer is not

straightforuard, and they will be dealt with elseuhere.

Completeness

The theory behind this article is that the purpose of lou-level
vision is to compute a very lou-level symbolic description of the
intensity changes in an image, which is sufficiently expressive that
subsequent processes need have access only to this description (Marr
1974a). There is a sense in uhich this process resembles an inverse of
the original measurements, and one can therefore ask how faithfully the

image is described. We have already seen that the process is not
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Figure 8. To illustrate the application of the process to a two-
dimensional image, horizontal (8a) and vertical (8b) parsings have been
computed for the image that appeared in figure 2. The assertions have
been represented in by the follouwing conventions: E = edge, L = line, X =
extended-edge, O = extended-shading-edge, and G = grating. The full
parsing along for example the line x = 58 is the follouing:

EDGE (ORIENTATION 4) (POSITION 58 19) (AMOUNT 43) (FUZZ 1)
EDGE (ORIENTATION 4) (POSITION 58 24) (AMOUNT 26) (FUZZ 1)
EXTENDED-EDGE (ORIENTATION 4) (POSITION 58 36)

(AMOUNT -1@) (FUZZ 1) (WIDTH 2) (DIRECTION -)
EDGE (ORIENTATION 4) (POSITION S8 44) (AMOUNT -7) (FUZZ 1)
EDGE (ORIENTATION 4) (POSITION S8 56) (AMOUNT -112) (FUZZ SHARP)
EXTENDED-EDGE (ORIENTATION 4) (POSITION 58 61)

(AMOUNT -34) (FUZZ 2) (WIDTH 3) (DIRECTION -)
EXTENDED-SHADING-EDGE (ORIENTATION 4) (POSITION 58 65)

(AMOUNT 28) (WIDTH 4) (STOP LINE 67)
EDGE (ORIENTATION 4) (POSITION S8 73) (AMOUNT -7) (FUZZ 1)
EDGE (ORIENTATION 4) (POSITION S8 75) (AMOUNT 8) (FUZZ SHARP)
EXTENDED-EDGE (ORIENTATION 4) (POSITION 58 81)

(AMOUNT -19) (FUZZ 2) (WIDTH B)
EXTENDED-SHADING-EDGE (ORIENTATION 4) (POSITION 58 86)

(AMOUNT -22) (WIDTH 9)
EDGE (ORIENTATION 4) (POSITION S8 93) (AMOUNT -2) (FUZZ 1)
EDGE (ORIENTATION 4) (POSITION S8 111) (AMOUNT -9) (FUZZ 1)
EDGE (ORIENTATION 4) (POSITION 58 117) (AMOUNT -6) (FUZZ 1)
{LINE (ORIENTATION 4) (POSITION 58 67) (AMOUNT.16) (WIDTH 1)
LINE (ORIENTATION 4) (POSITION 58 121) (AMOUNT 7) (WIDTH 2)
LINE (ORIENTATION 4) (POSITION 58 31) (AMOUNT -6) (WIDTH 2)}






Ch)

(M43 ottt ol %1 &l ol (A1 i 1] [N]
3
1
3
13333333331313333333)
3333300 3333333333 1
30 80 8 3333133313)133NNNN 3
M uuuuuuuau
n
™ 1
prescicsep] 33333333333 pay
mn x3_3 3 L)
37 WPIDBN N3 3 3 1M ’ M3
0 ™3
) o 1 1 m 3
X
m 3
\ m
k)
3
1
3 LU T |
X X m
k)
3 3 ! ' 1 ]
33
x 3 I 1333
3 i3 39 aw
3 3 33 38
3 33 08333 3 13313
? 1
3333333333333323333331333
331331333333333303333_ 3IM
FEREEERTS] 33 3
1 3133113 3 331
3 1 333313333 Yoo 33133
] 3335333333333333333 ) 1
T m mm
ARt
13
39 33 x
n
nu
3 b 0000013
m T
n o
mmm N
¢ 3 N
3 Al I 1 INUIM
3¥INBNH Al 3339 13
833 3 13313333173
X 1 3133333333 NN uN
0033133 u
Al (I ]
33000 33IN
113
X Al
1M 1a
33331331 1
3119 03
33333333 x L3R 1 0003
9 333333313
3 uu 3
X 3 3 kIR ]
(3R] 3
1o
n B
1 X
3 3 x
3 ?
3 A
3 bl
1 LE I ] n
13 Al h]
u_ m ]
1 73 3u 3}
ARE]
1INIMNM B
FEREEERREXREEXEERIINNE] auUBuuuuuuwuuwuuuauuuuuuuuu 3
FIEXEEREE] 1 3
L BEEXEEERERERKEE RN B £ )
m
Al 1
i am
mm

et

8 3HNOI

0. (43

-‘-‘-‘-‘--l.l.a-l

el

"-uhﬂ-ﬂd“u L

()
-

)

P

-

weuss o

Py

W

vos

b ]
3

- S

(e)

or

—
-

>
——— e
- wwwww
et T9I0)
—ooone -
e
e
wie
-
IR
-

-
-
-

)
-
-
Wi
o
I

woww
e

-
pr—
00"-‘.‘
-

oo
b D St

-
00 www www g

-

wa-

-
o osoo

U,—U

W W

s

L

-
(AT

)
a4 -
W W P

»~

Wt ke

o

.

[ 3}

——

peyT

[ER R}

[

-

-

= i

el

e
=
we -

o

"““uo-

ooooo
-

wB
-

it

Buwiww

.t



lou-level symbolic vision 49

sensitive to changing the image at isolated points, but this is not a
disadvantage if one assumes, as we are, that the interesting intensity
changes occur over groups of several image points. (It also protects the
system to some degree against uwhite noise). Nor is the process sensitive
to changes in the image that cause changes in the shapes, but not the
positions or amplitudes, of peaks in the mask-response profiles, It is
however very difficult to produce a change in the shape of a peak in one
mask’s convolution profile that does not affect the size of the peak in
the profile obtained from a mask of a different size.

The question uwas raised in the introduction of whether the family
of descriptors introduced here provides a fine enough covering to allou
adequate shape discrimination based on shading alone: until the later
programs are completed, there is no satisfactory way to test this. Of
the inverse property one can however be more confident: provided that
there is a sufficiently isolated change of intensity, or of intensity
gradient, that involves several nearby image elements, it will show up in
the convolution profiles, and will therefore be described in some way by
the subsequent parsing process. [f the intensity change is sharp and not

too small, one can relax the isolation condition (Marr 1974b).

This article sought to establish the following points: firstly,
that edge- and bar-mask convolutions with an image may profitably be

thought of as measuring the first and second directional derivatives of
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intensity in an image. Secondly, that the process of interpreting such
convolutions is not trivial. Thirdly, that they may be interpreted by
converting the measurements immediately into a lou-level symbolic
description of the intensity array. Fourthly, that although specular
reflexions and certain other kinds of intensity change are not treated
here, it is already apparent that this kind of description does not
require a great number of primitives. Fifthly, that it can be
accomplished by methods which use only rather simple features of the
original measurements, like the sizes and positions of peaks, and whether
they are positive or negative. And sixthly, that a parsing algorithm
based on the methods described here runs about as well as could be
expected on natural images. In addition to these points, it is noted that
a full explanation of the Mach Band illusion must include an account of
the relationship between measurements of the second derivative of
intensity, and the symbolic interpretation of those measurements.

Within the frameuwork of the method itself, certain operations may
be isolated as being of especial importance. The following perhaps
deserve special mention: the use of different mask sizes for the
detection of peaks in the convolution profiles; the comparison of peak
sizes and positions obtained using those different mask sizes; the
precedence of certain peak configurations (for example the classical EDGE
peak-pairs) and their ;sefulness in decomposing larger groups of peaks;
and the importance of using only conservative and uell-founded procedures
at all stages during the analysis. This last point requires a sensitivity

to hidden issues, |ike those that concern the boundary conditions of the
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related inverse transform. Finally, it is important for a vision system
to have an adequate range of mask sizes available: this feature is
unfor tunately extremely costly to implement in a general-purpose
computing installation, though it seems to be available in advanced
mammalian visual systems.

The broader computational justification for this approach to
vision uill rest upon the extént to uhich a vision system that uses the
lou-level package defined here actually works. This question is taken up

el seuhere (Marr 1975).
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