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ABSTRACT
, The recognition of sharp edges from edge- and bar-mask
convolutions with an image is studied for the special case where the
separation of the edges is of the order of the masks’ panel-widths. De-
smearing techniques are employed to separate the items in the image.

‘Attention is also given to parsing de-smeared mask convolutions into

‘edges and bars; to detecting edge and bar terminations; and to the
detection of small blobs. : ‘ T

~ Work reported herein uas conducted at the Artificial Intelligence

Laboratory, a Massachusetts Institute of Technology research program
supported in part by the Advanced Research Projects Agency of the A
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Introduction

The thesis was advanced elsewhere (Marr 1974a) that the purpose
of lou-level viéiqn should ﬁe‘to-compute a very lou-level symbolic
description of an image. usiné an appropriately bouerful set nf'gumbola
and methods; and that subsequent pfucaaaes should havaAaccesa only to.
that description. An explicit lou-level vbcabplary”uas defined, and
methods were given by which a lou-level symbolic d@scription mau be
computed from an imégek(Narr 19745). Theée methods operated on. the
assumption tﬁat tHe sépahation of thé edges in the image was large
compare& with the size of the masks that were used to measure the first
{edge-shaped masks) and second'(bar~shaped masks) ﬂirbctioﬁal dbrivatives'
of the intensity in the image. In this article, that assumption is '
relaxed, and the recognition of very closmlg—spacg& edges ig cpnsideted;

The methods that are necessary in this situation are somewhat

~ unsatisfactory, and the problem is best avoided by taking a closer look

at the image. It is however possible that higher mamma | i an yisual sgstéms‘
make some éffort to deal Qith‘verg'high resolution informatidﬁ. and this
article is offered maiglg to show what kinds of things may be ekpuctad if
they do. o

The .discussion falls into four>parts. Firétlg. there is the
problem of finding the peaks in a mask response profile (Marr 18745) in
the case uhere they are cldse enbugh'to inferfera uith one-another.

Secondly, the result must be parsed into symbolic EDGE and BAR

~assertions. Thirdly, the detection of EDGE and BAR terminations is
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discussed; and fourthly, a method for detecting small points or blobs in

the image is briefly.mentioned.

Disentangling close peaks

After convolving a given mask with an image, the basic unit of
data that one deals with is a-sequence of numbers, representing the
convoliution at pointsvequallg spaced along a liﬁe perpendicular to the
prcncupal ornentatlon associated with that mask. The sequence is
termunated at either end by an expanse of unvarying |ntens|tg great
enough so that parsing decisions within the sequence are independent of
parsing decisions takén uithout it. An examplie of this appears in figure
1. The mask used there uas bar-shaped, with a panel ufdth of tuo image

elements. It uas thus exactly matched to the size of-tha_“baré” in the
| imagg. The values shoun'ih figure 1b‘uere computea‘across guite a complex
portion of the image, and ueré obtained at éach fmage»poinf,‘Interference
due to the closeness of edges in the image is evideﬁt.

lf one assumes that the edges in the image are sharp, then
profiles like that in flgure lb mag be regarded as belng composed of a
set of lnnearlg smeared point sources. (TheAsharpness of the edges may be
inferred frém the size of and the difference betueen the values at
neighbouring points.) These point sources may be Eecb#gred using |inear
decoding téchniques fn the foliouing uay. Let'the measurements fromAa
mask at poiﬁts along a.line pefpeﬁdicular to the mask's orientation. be
m(1), m(2), ..., m(n)l; and suppose that éll measurements made outside -

this part of the sequence are zero. The set of values in figure lb is an
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Figure 1. The small bar mask shoun on the right, which has a panel-uidth
of tuwo image elements, was evaluated along the indicated path on this B4
by 64 intensity array. The result is shoun in the grabh below. The left-

hand end of the graph corresponds to the bottom of the path of

evaluation.
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exampie of a set of m(i). These values arise from a set of point sources
which we may call {mx(1}, mx(2), ..., mx(n)}}, and the smearing relation
between the m(i) and the mx(i) is given by:

m{i) = 1/2mx{i-1) + mx(i) + 1/2mx(i+1) (1)
which holds at each point i. Isolating mk(i}, the amount of point source
at position i, we obtain:

mx(i) = m(i) - 1/2(mx(i+1) + mx(i-1)) (2)
Solving the family of simultaneous |inear equations represented by (2)
may be carried out by a matrix inversion, or by the parallel algorithm
represented as a netuwork in figure 2. If the distribution of weighting
over the masks is not linear, but e.g. sinusoidal in structure, the only
effect on the decoding network is to alter the coefficients from (1/2, 1,
1/2) to uhatever is approp%iate: the technique is a general one. Note
that this transform, which is reminiscent of (but not equal to) the
inverse of the original measurement, is uéeful only because the image

happens to be composed of sharp edges.

Linear interpolation betueen evaluation points

It will rarely be true that the édges in an image are
conveniently positioned relative to the points at which the convolutions
are obtained, and so it is important to ensure that an edge positioned
betueen adjacent measuring‘poinfs is represented in a sensible way (Marr
1974b). In the present case, intermediately positioned edges are
represented by linear interpolation betueen adjacent measuring points,

because de-smearing is a linear process; but the point is of sufficient
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importance to warrant en explicit proof.

interpolation lemma: Let the distance betueen measureﬁents be 1, and
suppose that there is a real edge of strength s in the image at a
position d from one evaluation point P, and (1-d) from its
neighbour, 0. Then the output from the de-smearing process will placeA
sources of strengths p at P, and q at Q, where p + q = 8, and
d: (1-d) = p:q.
Proof: Let the measurements made at P and at Q be m and n respectively.
Because the process is linear, it suffices to anélgse the transform in
the case where the‘edge of strength s is the only item in the image. A
mask of Half—uidth 1, placed at a distance x auay from the edgé, will
record a response of size s(2-x)/2. In particular.vthe measurement at P
Will be s(2-d)/2, and that at O will be s(1+d)/2. The total contribution
of the sources at P and at Q to the measurement at P is (p+q/2):.ahd at
Q, if is (g+p/2). Hence we see that |
P+ q/2 = s(2-d}/2, and
p/2 + q = s(l+d)/2.

Hence s = (p+q), d = q/s, and the lemma follous.

This result enables one to relate the distance betueen measurements

directly to the resolution available from the results. On the assumption

that between any two points at which measurements are taken -there is only

one source (i.e. edge) in the image, the position and strength of that

source can be recovered exactly from measurements by masks of that size.

Notice that if the decoding and parsing system were locally non-linear.
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Figure 2. This network gives a parallel algorithm for solving the de-
smearing problem (equations (2)}. The conventions are as follows: unless

otheruise stated, all connexions are |inear. Open circles denote +, and

filled circles, - inputs. The diamonds containing the fraction 1/2

indicate that the quantity passing through it is halved. m and mx are as

defined in the text.
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the apparatus for dealing with arbitrarily placed features in the image
would have to be special.

The de-smearing process, and the reconstruction of point sources
assuming linear interpolation, have been carried out on the profile of
figure 1b, and the result éppears in figure 4. One added piece of
complexity was used to obtain the point sources Ai; it affected only A7

and A8, and is described next.

Parsing the de-smeared data

Once the list of point sources has been obtained, the guestion
arises of how to parse them into a symbolic representation using the
predicates BAR and EDGE. In the limiting situation that we are
diécussing, a BAR will be an edge-pair whose separation does not e#ceed
‘the panel ufdth of the smallest available mask; and otﬁer intensity
chanées uill be deécribed as EDGEs. There are problems with this
definition, because if there are more than tuo very close edges, one runs
info what are essentially figure-ground problems in assigning the
descrfption (figure 3 has two parsings, for example), and the choice
Aneeds to be sensitive to a number of other factors. 1f one ignores this
difficulty for the moment, and simply aesigns a method that will produce
a sensible description of the image when such a description exists, or
that is satisfied bg-all descriptions uhen more than one exists, one
arrives at something |ike the fol lowing |
-NETHUD: Let A = {Ai} be the point sources obtained as described above. If

the points sources are derived from "edge"-shaped masks, they correspond



FIGURE 3

Figure 3. This image has two parsings: either there are two black bars to the
right, and a black-to-white edge on their left; or there are two white bars to
the Teft, and a black-to-white edge on their right. In this kind of situation,
parsing decisions taken at one point have consequences that propagate across the
image. -
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to edges in the image, and so EOGE assertions may be associated with each
source in a one-to-one manner. lf the point sources are derived from
"bar"-shaped masks, they uwill be parsed into tuo patterns of sources,
that corresponding to an edge in the image (-x, +x), and that
corresponding to a very thin iine or bar (-x, +2x, -x}. The canonical
method of parsing a bar-mask convolution is to use only the EDGE symbol,
breaking the profile into (-x, +x) patterns only. This avoids the figure-
ground problem, and produces a unique output (provided that the

under lying edges are sharp).

This method may be used to parse figure 4. 1f one uses the more
complex parsing technique, the profile shoun there is seen to contain, in
order, an EDOGE (arrous Al & A2), a BAR (A3, A4, & AB)}, a shadow EDGE (AS
& A7), a dark BAR (A8, A3 & AlQ), and finally another EDGE (All & Al2).

. This profile contains one further point of interest: A7 and A8 are so
close that the value of the de-smeared output at the point lying betueen
them is the sum of the contribution of each, and hence is very small. The
neighbouring peaks cause the parsing algorithm to reconstruct A7 and A8
to be the correct size, because A3 and Al8 force the existence of a BAR,
which in turh requires A8 at the spécified position. A7 is'then defined
because of the requirement that the point sources be compatible uith the

output from the de-smearing process.

Terminations
Ue have seen hou to take account of the interactions between an

edge or bar mask, and others of the same orientation that lie in a
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Figure 4. This figure gives the correct parsing of the sequence shown in figure
1. The A1 are the point sources, and their description is as follows: EDGE (A1,
A2); BAR (A3, A4, A6); EDGE (A5, A7); BAR (A8, A9, A10); EDGE (A11, A12). The

open circles show the original data.
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direction perpendicular to that orientation. The interaction that ranks
next iﬁ importance is longitudinal, betueen bars and edgesiéf the same
orfentation that.lie along that orientation.

The predicates EDGE and BAR may be regarded as signifying the
amount of edge or of bar that i; present in a region. We are interested
in detecting terminations of edges and of bars, but to do this is not
straightforuard using EDGE and BAR assertions. The reason is that such
assertions, as defined earlier, iﬁdicate the average amount of edge or
bar over a considerable length, (the length of the mask in the originaf
measurement), and a small gap in a bar would, for example, caﬁse oniy a-
momentary dip--in the strengths associated with the néarbg BAR- symbo!s:
indeed, in the case of a strong:bar separated from a ueaker one by a
small gap, it is very unclear from the distribution of the bar values
that this, rather than a gradual fading away, is what is actuallg'
happening. Ii is however possible to analyse longitudinal interactions
precisely, and in order to do this, it is convenient to regard an
assertion, like those obtained earlier, as being composed of the sum
along its length of elemental bér_assertiohs which we shall denote by
b(j): figure Sa illustrates the idea. The new function 6 is in fact
defined as follous:

BAR(if = bli-r) + b(i-E+1) + oo + bli+r-1) + bli+r) 3)
uheré BAR (i) stands for the stfenéth of the standard kind of BAR-
assertion made at the point i. The advantage of these neu varlables is
that because they represent small pueces, terminations are easulg

characterised in terms of them. Notice that this kind of trick is only
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Figure 5. -For the detection of terminations, éach BAR assertion is 1mag1ned to
be composed of 3 (or more) mini-assertions, b(i). The network of 5b g1ves a
parallel algorithm for recovering the b(i) from the BAR({).
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possible because we are dealing with assertions: itruou|d have a
complicated expréssion in terms of the original ﬁeasurements. In
principle, at a termination, one or more of the‘b(i) is zero. (Gaps that
are short, compared with the length of the b(i), will give the same
trouble with the elemental bars that larger gaps gave with the ofiginal
bar assertions.) The length of the elemental bar units b(i) therefore
decides the size of gap that can be detected by this ﬁethod. and this in
turn is determined by the distance apart at which measurements should be
made from which the bar assertions are-computed. Extracting b(i) from
(3), ue obtain:

b('i) = par (i) - Z b(i+j) (4)
Thesé tuo lndependent sets of sumultaneous equations are solved by a
netuwork like that of figure Sb. The assertion BAR-TERMINATION at thls
smal | scale may be defined by examining the values of the b(l). and
searching for places where b goes to zero. Similar techniques may be

applied to EDGE assertions.

Recoqnisinq blobs

It was polnted out elseuhere (Narr 1974a) that methods for
detectlng blobs that rely upon masks with a centre-surround uweighting
distribution are either expensive or fallible. If the convelution from a
bar-shaped mask is used, its sngnals uill be difficult to |nterpret' but
.i f BAR assertions are first computed and termlnatuons are derived from
them, the result may be used rather easily to detect the presence of a

very small blob. The criterion for the presence of such a blob is that a

»
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short, doubly terminated BAR be present at all orientations at that point
in the iﬁage. Notice that, as in the preceeding case of the computation
of terﬁinations. this operation may easi!g'be formulated in terms of BAR
assertions, but it would be extremely clumsy if set out in terms of the
original mask measurements.

The available evidence suggests houever that we are unable to
perceive small blobs that occupy less than about four receptors on the
retina, (Cornsueet 1978 p356) and above this size, it becomes possible to
talk in terms of the boundary of the blob. Further analysis of methods
for detecting very small blobsg is therefofe almost certainly irrelevant,

and I have not pursuedvthe matter.
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