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ABSTRACT

The goals of the computation that estracts disparity from pairs
of pictures of a scene are defined, and the constraints imposed upen that
computation by the three-dimensicnal structure of the world are
determined. Expressing the computation as a grey-level correlation ias
shown to be inadequate. A precise expression of the goals of the
computation 18 possible in 8 low-level symbolic visual processor: the
constraints translate in this environment to pre-reguisites on the
binding of disparity valuea to lou-level aymbols. The outline of a
method based on this is given.

Uork reported herein was conducted at the Artificial Intelligence
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. Introduction

Commercial pressures have led to considersble interest In the
automatic extraction of disparity information #rom pairs of pictures of a
scens. Since 1363, there has been available a machine, the Wild-Raytheon
BE sterecmat automated plotter, which can drau a contour map from tuo
aerial photographs. The machine correlates intensity measurements
obtained over local scans made on the tuo images: the acan paths are the
machine's current approximation to the contour limes [i.e. linea of
constant disparityl, and the failures of correspondence betueen tha scans
on the tuo images are used to improve the approximation, Adeguate
#ccuracy, if achieved at all, is reached within about six iterations,

Rachines that seek to assign disparity values to an image by
performing correlations betusen intensity arrays are subject to
troublesome problems due to local minima: Mori, Kidode & Asada (1973)
describe the problems, and have recently implemented some ways of
avoiding them. Their principal ::-l.rraa are (i) to correlate the tuo images
using local averages taken over regions that are initially relatively
large. and which are subseguently reduced in size as the solution |1s
approached; and (ii) to aveid lecal minima traps by introducing a smal i
amount of gaussian noise into the images. These techniques reduce
considerably the incidence of false assignments, but they fail to remove
them altogether,

There has been less progreas in the study of parallel algori thme
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for making use of disparity information, despite considerable recent
interest in the processing of disparity information by the visual aystem,
(Barlow, Blakemore & Pettigrea (1967), Julesz (13711): Julesz (1971
p2Ba), and Sperling (1978) have both suggested posaible schemes. Julesz's
model is informal in nature, being more phenomenslogical than
computational: it is very interesting because despite its great
simplicity, it displays an astonishing number of the properties that are
exhibited by the human disparity processing system. Sperling's modal is
more formal, but it is difficult to tell how well it would work. This is
@ problem with all complex parallel methods; they are very espensive to
simulate, and it is extremely difficult to derive analytically, from a
system with complex non-|inear compenents, quantities that could be
measured experimentally. About the best one can hope to do at present is
to state criteria that distinguish one family of methods from another,
and ask whether those criteria are satisfied by the particular method
that we use.

This note enguires about the exact mature of the disparity
computation. It is in some sense & correlation, amd because that is
common knouledge and fairly precise, a deeper characterisation has not
been sought. But in order to formulate a method of carrying it out, one
needs to be very precise about the goals of t.h" computation, and about
the constraints imposed wupon it by the structurs of the three-dimensional
world., Unless one uses a method that is based on all and only the correct
assumptions, there will be situations in which it will fail

unnecessar i ly.
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Heasuring disparity

If a scene is photographed from tuo glightly different positions,
the relative positions of the objecte in the scene will differ slightly
on the tuo imagea. The discrepancies of Interest arise from the different
distances af the objects from the viewing position, amd measurements of
the discrepancies contain useful information about the relative distances
of the objects. The term binocular digpacity refers to the difference in
the angle from each eye to a point in the scers, measured relative to
some suitably chosen angle of convergence. The central difficulty in
defining what is meant by the process of extracting binocular disparity
from an image is that disparity has to refer to a physical entity - a
point on @ visible surface - yet it appears that ue compute it at a level
far below that at which the world is described in terms of surfaces and
objects (Julesz 1371). |t was probably this fact that made so surprising
Julesz'as conclusion that disparity assignment is a lou-level computation.

In order to compute disparity correctly, the following steps must
be carried out: firatiy, a particular location on a surface in the scene
must be located im one image; eecondly, the identical location must be
identified in the other image: thirdly, the relative positions of the
tuo images of that location must be measured. The most interesting and
most troublesoms part of the process concerns the selection of a location
on the viewed asurface, and the identification of itas two images. The
difficulty is that the choice of a point on the surface must be made from

the images: if it could be chosen in some absolute way - by lighting it
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up at that point for e=ample - the problen would be simple.

He are mew in a position to understand why the disparity
computation is not the same thing a@s a grey-level correlation. The reason
is that grey-level measurements correspond to properties of the image,
rather than to properties of the objects being viewed. An (x, yl co-
ordinate pair on an image is an artefact of the transducer, since it does
not define a point on a physical surface in a way that allows it to be
identified on the other image. The most glaring exanple of the failure
is the case where an image point corresponds to tuo surface points, the
nearer of which is transparent or translucent: a goldfish in & pond ia
one such case, where the water surface and the goldfish are
simultanecusly visible. Other examples are provided by figures 5.7.1 and
B.3.2 of Julesz [1971). But the argument applies equally well to the
case of a single visible surface, and its consequence is that grey-level
-matching methods are incorrect. On simple images, the method will
succeed, because it is close enough to the right idea: but as MHori et al.
(1373} have found, it will not succeed on complex images because it ie
based on incorrect premises. Their technigue of introducing local
smearing may be viewed as a way of beginning to identify & point in the
image uwith a point on the physical surface (by adding additional
constraints on what is matchedl: in so far as it does so, the method will
become more refiable, but it is probably better to attack the under lying

issue directiy.
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Im order to formulate the disparity computation in a usable Hay,
He therefore need to be able to identify surface points from the tuo
images, and match them up. 1t is clearly fruitiess to try te label points
of a smooth featureless surface, but if that surface containa a acrateh,
boundary, or other fdentifying physical mark which produces a local and
fairly sharp change in reflectance, that change in reflectance may be
used to define the surface point. Provided that the change in reflectance
has been identified and described separately in the two images, the
resulting descriptions will correspond to an underlying physical reality.
The computation of such a lou-level description from one image has been
dealt with at length elsewhere (Marr 137%a & 1976b), and is called the
lou-level symbolic representation of an image. Hence we see that provided
sterec matching takes place betuween two lou-level synbol ic descriptions,
it is a well-founded operation.

Finally, we need to ask whether any reasonably complex
measurement could be used - or |4 there something special about a lou-
level symbolic description? Simple cell-like measurements are for ewxample
nearly suitable, because they are sometimes gquite near to lou-lovel
assertions: but when assigning disparity values to sinple cells, one
meets all the usual problems associated with measurements - 8 whole set
af gimple cells, al neighbouring positiens and orientations, corresponds
to the underlying scratch or whatever in the image, and It is that
conplex which needs to be matched againat the correaponding conplex

darived from the ather image. [f the Important matching atep is carried
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Figure 1.

] ) L denotes the collection of left-image symbols, and R the collection of
right-image symbols. These are connected through the set D of disparity value

symbols. The sets DU and Dr referred to in the text are shown in the figure.
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out on mach individual simple cell measurement, the computation becomes
very uneconomical. Hence one may expect that when disparity is actually
assigned, the process operates on a very lou-level symbolic description.
This method will fail only when the lou-level decriptions obtained from
the tuo images are very different: but this is comparatively rare, and
one seems to notice it when it happens., In any case, this circumatance
cannot be dealt with at the same very lou lavel,

The problem has now been reduced to the comparason of tuo lou-
level symbolic descriptions, and the assignment of disparity values to
pairs of symbols, drawn appropriately from each image. We turn now to
examine briefly the rules and constrainte to which this process is

gub jact.

We have seen that an element of a lou-leval symbolic description
of an image corresponds to a physically identifiable entity in a way that
an image co-ordinate does mot, and In uhich measurements made on an i mage
only approxinate. This allous one to state the first condition that
controls the matching of two low-level symbolic descriptions., It is that
each louw-level symbol should be assigned exactly one disparity value,
which in turn implies that it should be associated with at most one
symbol computed from the other image. This is called the "use-once®
condition, and it is non-linear,

The use-once condition may be implemented in the following TETTR
Let L. ba the set of all left-image lou-level symbols, and let A be the

set of all right-image low-level symbole. To each element x in L, there
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correspond several elements in R, one for each of the possible disparity
valuea; and for each element y in A, there i3 a carresponding set of
elements in L. This situation ia illustrated in figure 1. The matching
of one element from L with one from R corresponds te the assignment of a
single disparity value to both elements, o let us introduce @ third set
D that consists of collections of elenents representing all of the
possible disparity values that may be bound to each lou-level sigabal. In
principle, one needs one such collection for each lew-level symbal,
though members of L and A share elements in D in the appropriate way (see
beloul. The use-once condition tramalates into the constraint thal each
element of L and of R may be bound to at moat one element of 0.

In practise, the get D will pe very large unless ateps are taken
to economise on the nusber of units that are necessary to represent the
disparity values; so let us consider how disparity representing units may
be shared betueen several elements of L [sayl. O has to be large enough
a0 that (al each low-level symbol cam find am wnused collection in D that
can be used for representing ite disparitu; and [b) the correspondence
betueen L and A through O is well-defined. To accomplish this, the
collection of left- lor right-} image symbols that share a given
disparity-representing unit should have the property that it is very rare
for tuo to be provoked simultaneocusiy by the image.

Hhen one considers how to construct a parallel network that
implements the use-once condition, it ia apparent that at least three
variables must be accomodated: ascension and declination in the visual

field, and disparity. A satisfactory arrangement Is shoun In figure 21 In
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Figure 2. One possible geometrical arrangement of the set D of symbols
for disparity values is to arrange 0 in stripes of constant disparity.
The figure shous hou this may be done. The stripes rurning nearly
horizontally contain units with constant disparity di. The x-coordinate
in the image is represented by the sx-coordinate in the figure, and the y-
coordinate in the image corresponds roughly to the y-coordinate in the
figure. The y-axis is magnified in the figure because a given y
coordinate in the image needs to be represented at each disparity. The
point of the figure is to show how low-level left- and right-image
symbols share elements of 0. The sets 01 and Or, that are described in
the text and shoun in figure 1, are arranged to cross one another, and
divide 0 up in tuo different ways. The connexions that implement the use-
once condition run along these two directions. The conmexions that
implement the suggestion interaction run more near |y parallel to the
stripes, and they join stripes corresponding to the same disparity (di)
in neighbouring positions in the visual field. Tha connexions that

medsure local goodneas-of-fit would have an undirected distribution.
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this, the units Fepresenting disparlty values are arranged in stripes of
constant disparity. The collections in 0 that represent disparity values
for left-image symbols (L} lie along the diagonal lines marked O1; and
those for right-image symbols lie along the opposing set of 0ines Dr.
Thua O is divided up in tuo ways into disparity representing unita, which
are simultansously shared in an appropriate fashion by L and R. The
connexions that implement the use-once condition are clearly marked: they
run along 01 and OF, joining places that contain representations of all
possible disparity valuea that could be bound to a given left- or right-
generated symbol. (Inm a neural implemsntation of this schems, such
connexions would be inhibltory.)

There are intereating differences betueen the implications for
neurcphysiology of thess ideas, and of the model of Juleaz. Firstly, the
important part of the computation invalves constraints on the disparity
values that may be bound to lou-level symbols, The magnets in Juleasz's
mode | ssem however to correspond to rather unspecific local disparity
values, and we sauw earlier that the disparity computation cannot be
accurately expraessed in these terms. The second point reats on the way
in wuhich disparity-representing seta in D are assigned to L and to A. The
most economical way of forming the collections of lou-level sumbols, that
are to use the aame diasparity-repressnting unita, |s probably to group
togather all symbola that describe a amall region and 8 amall orlentation
range. Only very rarely will tuwo such symbole be wsed simul taneously. If
some acheme of this sort were being waed, it would account for the

exiatence of cells that behave sensitively to disparity, but are
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ralatively telerant te position and orientation (Hubel & Wiesel 1978).
Furthermore, it uould be within thase units that the main disparity
computation is being carried out, and between which the governing
connexions should be made. One would pat expect to find other cells,
expreasing a free-floating disparity value in a “region® of the image,
because the essence of the computation requires that it be carried out on
bindings to lou-laval sumbale, The model of Julesz would, 1 think, lead

ona to ewpeact such calls.

Disparity is continuous almoat everyuhers

The use-once condition must be satisfied by the final assignment
of disparity values to the lou-level symbolic descriptions, but it is not
much help in finding it. When applied to @ random dot stereogram, it
Will ensure that the description of each dot, or group of dots, in one
image i= mated with not more than one aimilar description computed from
the other image; and a solution that satisfies this and |eaves very feu
dots out will probably be correct (ses the ne=t condition). But there is
another useful property of the real world that can be introduced with
advantage to speed the analysis. It is that #xcept at object boundaries,
disparity is a functien that variss smoothly over the image. Fine
texture, uwhich is the best source of disparity information about a
surface, will be represented at the lousat |evel by assertions about very
small features; and excent at object bowndaries, the disparity values
that become bound to neighbouring symbole will be about the same. Thise

fact allous the existence of an interaction that “proposes” the disparity



symbol ic disparity computation 14

used at one point as a strong candidate for the value at neighbouring
points: it corresponds in Julesz's (1971} model to the lateral coupling
provided by the seall springs that join adjacent magneta. The
implementation of this constraint in Sperling’s (1978) wmodel is obecure.
The implementation of a suggestion is one of those guestions that
it is not profitable to pursue in detail, because of the difficulty in
testing, either physiologically or computationally, the conclusione to
which one may be led. | shall therefore make only three points about it.
The first is that, in principle, one would like 3 suggestion to influence
the route to a solution, without disturbing the values in the solution
once they are found. This implies a time-dependence in the interaction.
Secondly, in order that the solution may be stable, one would probably
#lao need to add a amall O component. The third point, and oPe which
may actually be useful., concerna the geometry of the suggestion
interactions, and this is shown in figure 2. There are connexions betueen
all disparity units that represent similar disparity values, and that
rafer to symbols in nearby portions of the visual field. [n a newral

implementation, they would be excitatory.

Goodness-of-fit
The final important aspect of disparity measurement is the
guestion of how satisfactory a solution s, Julesz emphasised the nesd
for such a measure, and in his model, it corresponds to the total

potential energy in the tuo, superimposed assemblies of magnets. Sperling

(1978) also used a potential energy measure in his formulation. Julesz
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showed that in an ambiguous stereogram, ue perceive the better-correlated
solution even if both have quite high correlations. This is good evidence
that the matching process is parallel rather than serial, and that the
goodness-of-fit medsure is computed on a local basis.

In an implementation of the kind that we are discussing, the
goodness-of-Fit of a solution may be measured by the proportion of left=
and right-image symbols that become bound to disparity values. In a
perfect solution, the proportion will be 1.8; and an imappropriate
disparity binding will have the effect of depressing the proportion of
correct bindings in its reighbourhood. The local goodness-of-fit function
would atfect the confidence with which disparity assignments are made
locally - i.e. the atrength with which they are asserted - which in turn
would affect the potemcy with which they are suggested to nearby regiona.
The goodness-of-fit function would therefore be implemented by a unit
that depressed the local disparity-representing unite by an amount that
depended upon the proportion of image synbols in the vicinity that have
been assigned disparity values. | do not see how to test for the prasance

of such unita, except by trial-and-error.

Summary of the disparity interactions

The interactions described above are nouw draun together, and the
conditions that are necessary to an implementation of this kind are made
axplicit.
(1) The disparity assignment is made as a result of a matching operation

performed on two lou-level #ymbol ic descriptions, computed | ndependant ly
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from the left and right images.

(2} The matching is ih:llanente-d by applying conditions to the process of
binding symballe disparity descriptors to the lou-level synbals. Thesa
constraints are the use-once condition, the suggestion interaction, and
maximining the goodress of fit,

(3] The use-once condition requires interactions uhose geometry appears
in figure 2. Thess interactions inhibit the confidence of those
assignments that they connect.

(4) The suggestion interactions have the geometry shoun also in figure 2.
They connect disparity descriptors that represent similar disparity
values, and that are capable of being bound to low-level symbols
referring to neighbouring positions in the visual field. Such
interactions would probably have a time-dependent component as well as a
OC component.

(5) Maximiaing the goodness of Fit of & solution would have to be
implemented by a local goodness-of-fit function, that measures the
proportion of lou-level symbols that have successfully been bound to a

disparity value, and which affects the confidence level of the bindings

in that local region.

Discusaion
I shall not attempt in this note to derive any properties of the
dbove system. [ have been unable to make much progress with an analytical
approach to the FIFII;H:I'H, and the amount of time required for a

computational study ia very large. The approach set out here does however
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iHlustrate (al how the disparity computation may be well-founded; (b) the
importance of |low-level syrhals in the fornulation: and lc) hou tha
important constraints may at least in a general uay be represented by
connexions with a straightforuard gecmetry. This Kind of geome trical
arrangement is one that it is becoming possible to detect,

The second large iasue concerns tha way in which disparity
information may be used. [t is one thing to aseign disparity values to
low-level symbols, and quite another to divide up an image into regions
on the basis of disparity information alene, and conpute a description of
the spatial extent of each region. For example, in any stereogram, the
orientation information associated with the small BgUares or groups of
sguares that are actually matched bears no relation to the orientation of
the edge at which disparity changes. One way of computing the higher,
induced edges would of course be to treat disgparity like intensituy, and
subject its values to a process |ike that used to obtain a lou-level
symbolic description from an intensity array [Marr 197éb). This method
seems somewhat clumsy, hovever, because disparity is not the only kind of
information {excluding intensity) from which directions and boundaries
may be cemputed locally. Texture changes are another exanple, and so are
mara atl-stlract outlines, like the envelope of a sparse tree in Winter, or
the boundary defined by a rou of snall, separated bushes across a garden.
One would |ike to know whether all of thess problems may be dealt with by
4 gingle method that can describe configurations of “places” in an image
- these places being identified by a rather simple kind of local

measurement made on the relevant type of information. There seems to be
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clear evidence (and a definite computational need) for such a mechanism -
oneg of its main functiona being to set up an crientation in the image at
a point, to describe configurations of places relative to that
orientation, and to influence the direction relative to which local
shapes in an image are described. [t is however far from clear whether
one such mechamism would suffice to service all of the demanda of this
kind, or whether the alightly differing computational requirements force
the existence of a number of separate, but similar mechanisma. The

guestion will be raiased elsuhere [(Harr 19750,
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