MASSACHUSETTS INSTITUTE OF TECHNDLOGY
ARTIFICTAL INTELLIGENCE LABORATORY

Hemo MNo. 332 Hay 13975

IDEAS ABOUT MANAGEMENT OF LISP DATA BASES
(Revioed versionl

by

ERIE SANDEWALL

Abstract. The paper advocates the need for systems which support
maintenance of LISP-type data bases, and describes an experimental system

of thie kind, called DABA. In this system, & description of the data
base’'s structure is kept in the data base itself. A number of wtility
programs use the description for operations on the data base. The

description must minimally include syntactic information reminiscent of

data structure declarations in more conventional programming languages,

and can be extended by the user.

Tuo reasons for such asyatems are seen: (1) As A.l. programs develop from
toy domains using toy data bases, to more realistic ewxerciea, the
management of the knodledge base becomes non-trivial and reguires program
gsupport. (2] A powerful way to organize LISP programs is to make them
data-driven, whereby pieces of program are distributed throughout a data
baza. & data base managenent ayatem facilitates the use of this
prograeming atyle.

The paper describes and diecusses the basie ideas in the DABA system as
uell as the technigque of data-driven prograns,

Hork reported herain das conducted partly at Uppaala University, Eﬁadan,
#ith support from the Swedish Board of Technical: Developrent, and partly
at the Artificial [Intelligence Laboratory of the Massachusetts Institute
of Technology. Support for the laboratory’s artificial intelligence
reasearch ia provided in part by the Advanced Research Projects Agency of
the Department of Oefense under Office of Naval Research contract
NO0O14-75-C-0643.

INDEX

1.
2.

3.

Focus on the data base
Servicing utility operations
Program/data base integration
Generation of procedures
Other aspects

Acknouwl edgenents

References

page 3

page I3

page 21
page 28

page 33
page 34

page 35

1. Foous on the data base.

In this paper [will amempt to say three things at once. That stylistic experiment is undertaken
not out of choice, but out of necessity: the three topics are intertwined, and none of them can

be discussed without the context of the others,

The first topic regards the atfttude to data bases: T shall argue that the current thinking about
data bases in AL has missed an important point, which can be tersely characterized as the

separate identity of the data base, independently of the programis} that use it.

The second topic is a corollary of the first one, namely the design of systems for management of
data bases in the new sense, in the context of a LISP or LISP-like programming system. A
very experimental management system for LISP data bases is described. The system provides
utility operations on the data base, such as data entry (prompt the user for contributions to the
data base), presentation (nice printouts) and backup {dump a part of the data base on a file).
Additional utilities are planned. All utilities use a description of the data base's structure,
which i3 stored in the data base itself.. The structure description must rnJr'.rlmaII]r contain
syntactic information similar to what one finds in data-structure declarations in conventional
programming languages. It can however be arbitrarily incremented by the user. 5m& it is in
the data base, the description must itself have a description, which is also in the data base, and

30 on until a deseription which describes itself.

This system (called DABA) is motivated partly by the practical problem of maintaining

collections of knowledge of non-trivial size, for use in AL programs, and partly by my

preference for a certain programming style, which is here called data-driven programming.
Only a throw-away implementation of DABA exists currently; the system is described here in
order to exemplify various desirable properties in systems for base management, and nat as an

available tool

The method of data-driven programming 15 the third topic of the paper. That programming
techmique is frequently used but rarely discussed; the reader who has aiready used it will

recognize it by a commen operation in data-driven programs, namely

(APPLY (GET ... 1 ...)

In other words, data-driven programs are those where large parts of the program are
procedures or program fragments that are stored in the data base, in a less trivial sense than

as EXPR proprties. The paper argues for the use of this technique. This is relevant to the

data base topic because program management tools for data-driven programs have the same

requirements as data base management tools. In fact, the distinction between 'prug_rarn' and

'data base’ becomes fuzzy and unimportant.

The remainder of section | attempts to spell out my view of data bases, and the idea that utility

programs are an important tool for working with a data base in the new sense. Section 2

describes the basic description mechanism in the DABA systern; section 3 discusses data-driven

programming in more detail; and section 4 discusses some simple procedure generation

techniques in data-driven programs.

One of the many definitions of 'data base’ in the world of commercial computing, is 'a

collection of data which is suitable for use by a variety of different programs’. It is implicit in

the definition that the data base has an existence of its own, and a non-trivial life-length
(although it may develop and change during its existence). The deflinition implies a need for

separate documentation and separate maintenance of the data base.

This view of the data base is significantly difTerent from what one finds in AL In our field,
the 'data base’ has usually been an appendix to or a scratchpad area for the program, created
during the computation, and later garbage collected, or discarded at the end of the run. But
the separate-identity view of the data base |5 appropriate also in the AL context, in the
following cases:
= a3 the user-provided collections of knowledge that programs use. It has been common
practice te use minimal knowledge bases when programs are run (for several reasons
including memory problems), but the time now seems ripe for working with more exhaustive
collections of knowledge. The problems of setting up, debugging, and editing the
knowledge base then become non-trivial.
= as knowledge generated by or reorganized by programs. Learning programs (in the broad
sense of the word) are only useful if the acquired knowledge can be saved for use d.uring
later runs. As another example, programmer's-apprentice-type programs [see eg. Rich and
Shrobe, 1974] need to analyze the user's input program, and form a medel of it That model
has to be maintained between runs.
= a5 data-driven programs. Since programs have to be preserved between runs, it only makes

sense [0 say that a program is & special case of a data base if the data base is so preserved.

Let the two kinds of data base be called a 'scratchpad’ data base (temporary data base during

execution of a program) and a ‘perennial’ data base (has separate identity, separate

documentation, etc, is maintained between runs, and is designed o that it can conveniently be
used by several programs). In fact, the difference is as much in the way of looking at and

working with the data base, as in the design of the data base itself.

The 'perennial’ or 'separate-identity’ view of a data base is very similar to the ordinary LISP
programmer’s attitude to his program. Working with a program does not merely involve
running it, but also various types of service work: one may take out a part of the program
and re-write it; ome may take out a piece of another program, adapt it, and insert it in one's
OWR; 0N uses prefy-print programs, cross-indexers and other tools, to obtain readable listings
and documentation for careful study of the program, and 5o forth. The very same operations

on a data base come naturally when it develops to non-trivial size.

The mﬁjﬂr computational implication of the "separate-identity” view of the data base is
therefore the usefulness of wrnility programs, iLe. programs like prefty-printers and cross-
indexers, which serve the .user when he works with the data base, and which are usually called
directly by the user, rather than as subroutines. Utility programs for operations on LISP
programs are in common use, and can sometimes be used for data bases as well (such as pretry-
printers). But a number of additional utilities, as wr.-ill as additional options in existing utilities,
are useful for data base operations. The following are utility operations which I have often
wished I had had, when working with LISP-type data bases, and which exist or are planned

in the DABA system:

== a data entry utility that prompts the user for contributions to the data base. In a simple

case, instead of letting the user type in

(DEFPROP BOSTON HASS TNSTATE)
(in an elementary ob ject-property representation], the system would acquire the information that
BOSTON is a ciry, and then prompt the appropriate properties by typing out for example
BOSTON : INSTATE =
whereup-un the user cam answer
MASS
The difference in convenience and error rate is of course negligible for the extremely small toy
bases that often have been used in AL programs, but significant when one enters more
practical volumes of data. - In practice, a good data entry utility must allow for higher-level
data representations as well, for mixed-initfative dialogue, and for conversational conveniences

such as 'undoing’ [Teitelman, 1974].

== & dumping utility for saving collections of data on files. If we again use an example in the
clementary ob ject-property representation, the filing utility needs a catalogue of carriers (such
as BOSTON above) and information about which properties of this carrier shall be saved, and
it should generate a file which when read will re-create those properties. A basic facility of

this kind exists in INTERLISP [Teitelman, 1974).

== presentation utilities which print out the data base or parts of it in a nice format, so that the
user can work with it easily. Several presentation methods are possible: an indentation-
oriented layout is reasonable when one prints properties which are sizable expressions, and
when when one wants to print properties of properties recursively to some depth. A tabular
layout with several columns is appropriate for atomic properties, and for relation-type data

bases where the data base (s a set of tuples. Such presentation utilities are similar to the

dumper, except that they could also make use of information about the intended structure of
properties. For example, if it is known in a separate declaration that the property under a
certain indicator is 1o be a list which will be used as a set, then an appropriate indentation
strategy could be chosen, and one might sugar the printout with curly brackets. If it is known
that another property is a gensym atom, then ene might want to print it in terms of some of its

properties, rather than as its printname.

== a checking utility, to check that all properties in a collection of data satisfy the descriptions
that have been made. One can check against declarations of the intended structure for each
property (atom of certain type, list of atoms, erc), agains redundancy rules ('if A ¢ getp(B,I1,

then B ¢ getp{A,]T), and 5o on.

== 3 merging utility. Suppose that travel cost between cities has been represented as
EFE’EIJ[EIEIEFEI.I"IJFA‘I'ELEUSFJ = [NYC [AIR 28.37 BUS 13.75]
TORONTO [AIR 189.18 ...] ...]
with the obvious interpretation (Boston - New York § 2837 by air, etc), and that one wants to
merge two files of data with simifar structure. If both files contain properties for the same
carrier/indicator pair such as BOSTON/TRAVELCOST, then one must make the -ul:wmus merge of
the two i:E!IgI‘IEd properties, rather than let one overwrite the other. A fairly general utility

program could de that if provided with structure declarations for properties.

== an excerption utility. The inverse of merging (for obtaining a prescribed subset of the data

base), but needs the same structurs information.

== a utility for shift of representation. Suppose we want to re-represent the travel cost
information above as
getp [BOSTON, FLIGHTCOST] = INYC <US$ 28.37> TORONTD <US$ 189.18> ...]
getp [BOSTON, BUSCOST] = [NYC <US$ 13.75 ...]
either because of a whim when thanging our own primary program, or in order to adapt
somebody else’s data to our program. Such a shift should again be doable by some utility,

provided with descriptions of the old and new structure, and their relation.

The list can easily be continued. It is trivial to write programs for such operations, for each
application or each data base one has. But it i5 a bother, and one would prefer to have access
to more general utility programs. More general programs are slightly harder to write, since
one wants them to be usable for various higher-level data representations besides the
elementary ob ject-property representation. Depending on the desired flexibility of the

program, a utility program may range from a nacking exercise to a hard AL problem.

‘I‘r'l'l.l.'l'l a {general) utility program is used, it must be provided with a parameter-type description
of the data structure that it is to operate on. That description can sometimes be integrated in
the data itsell, but often it is desirable to write it separately, like a st of declarations for the
data representation. In the Ia-tter case, it 15 also possible 1o speed up execution by F;artlalljl_

evaluating the utility program with respect to the parameters as described in [Beckman et al,

19741

If one has to write out those declarations for each utility program, then that also can be a

considerable burden. But it seems that the same declarations or structure descriptions could

serve several utilities. For z:amg::lre, in the elementary representation where properiies are
assigned to typed ob jects, one needs information about:
which properties are carried by each type {used by data entry, dumping, and presentation
utilities);
which structure is expected for the property under a certain indicator {can be used by
almost all utilities, including those for presentation, checking, merging, excerption, and shift
of representation. Also, it would be reasonable to check for appropriate structure during
data entry}.
¢ redundancy rules, for example for property inversion (used by the checker, as discussed
above, and could also be checked or generated on data entryl;
+ if higher-level data representations are used, such as contexts, property assignments to non-
atomic carriers, or relational storage with pattern-directed retrieval, then all utilities need to

know about the storage conventions for that representation.

Furthermore, such a structure description for the data base is also part of the desired user
documentation for the data base. It is therefore a reasonable goal to have one common

description which can be used by all utilities. and for documentation purposes,

All points that have been made so far apply not only to LISP data bases, but also to
conventional, 'bulk’ data bases, and are in fact well recognized in the latter environment. The
LISP environment does however offer some aniniitnmm- possibilities. Most importantly, the
dgescription of the data base can be stored in the data base itsell, and still be used by the
program that operates on the data base. To render this more precise, it is natural to consider

the data base as a collection of dafe blocks, where the description of a data block is a new data

block which is also in the data base. (The regress terminates if some data block describes
itself). The structure description of a data block will be called its meta-block. Utilities can then
usuaily be defined as operations on blocks, which use the meta-block of the argument as

Parameers.

The idea of data blecks is in fact useful not only for distinguishing data from their
description, but also for modularizing the ‘primary’ data {data which serve the purpose of the
system, as uppn-ze;:l to descriptions} in the data base. A data block should then be a chunk of
data which have a common structure andfor are ch:uel]r. related by some criterion. 1t could
consist of a set of tuples (= relatiens) which are sored in the data base, or {in the elementary

representation) of a set of property assignments (= triples of carrier, indicator, property).

A word of caution: the term 'block’ has some connotations in computing which are not
intended in this context. Mo recursive nesting of blocks or scope for identifiers is intended, It
15 In fact often desirable to distribute the properties of an atom to several blocks. The primary
‘intended association of the term 'data block’ is te the practice of organizing LISP function

definitions into 'blocks’ or 'Files' of closely related functions.

An experimental system, called DABA, has been instrumental in developing and testing .mme af
these ideas. DABA is a MACLISP program. The next section describes the data description
and block structure in the DABA system, and ats.n discusses other aspects which would be
desirable in a more developed system. Before proceeding, let us however add some hand-

waving comments about this whole approach,

From the theoretical viewpeint, the central issue in this work 15 data base descriprion. Utility
programs enter the picture because they probably offer the first practical usage of such
descriptions, but there are alio a longer-range aspects to dama base descriptions in AL First,
automatic-programming and programmers-assistant type systems need not only program
descriptions, but also dafa base descriptions, whenever the program they generate or support is

to operate on a data base - and for AL programs that is usually the case.

Another reason for working at data base descriptions is the need for methods of evaluating,
comparing, and relating the many proposed representations of "knowledge’ data, such as
various 'semantic nets’ Again it is natural to compare with the situation for programs: Active
work on the theory of computation for almost a decade, has provided a considerable body of
knowledge about equivalence, complexity, and other properties of programs. Similar
knowledge about data structures would be quite useful. Just like for programs, mathematical

logic can be expecied to be of some use, but not to rake us all the way. A concept of self-

describing data bases might fit well into that picture.

The idea of defining operations {such as utilities) on blocks of data should perhaps be
explored as a programming notation. Matrices {of numbers or other atomic entities) are a
powerful notation in mathematics and in programming languages such as APL [I'un._-rsun. 19621
Alsa, one of the advantages of relational data bases [Codd, 1970] is that they enable one to use
an algebra tm. refations [= sets of tuples], which has also been used for some lormal query

languages. The same idea might be useful for specifying search and other quasi-paraliell

operations in LISP programs.

2. Bervicing utility operations.

The DABA system can be used in at least two modes. In the simplest mode, the user has one
program, here called the primary program, which uses the data base. A question-answering
program is a standard example. As the data base attains non-trivial size, the user wants to use
some utility programs on the data base, He therefore has to write down a structure description
of the dat base he already has. DABA is a system for representing and maintaining such
descriptions in a systematic way, plus a collection of wtility programs which use the
descriptions. In the v:a.se discussed here, the primary program and the data base :x.is.ted before
the DABA facilities were called in. {The other mode of using the system is for managing

data-driven programs, and will be discussed in the next section).

Let us choose a specific example and then describe how {1 structure would be described to the
DABA system. We must here select a very simple example, which uses an ob ject-property
representation, in order to concentrate on the description. The DABA system is however

useful for data bases with a richer structure as well.

Contider a block of p:mpen:,r-hs: data about cities in the eastern United States. The block &3 a
sel of property assignments, or triples, such as

[<BOSTON, INSTATE, MASSs,
<BOSTON, SUBURBS, (LEXINGTON, REVERE,... I»

<NYC, INSTATE, NYs,

<MASS, HASCITIES, [BOSTON, LEXINGTON, ...}
<MASS, FULLNAME, MASSACHUSETTS:,

awa

which of course says that Boston is in the state of Massachusetts, and so on. ("' indicates

continuation and is not intended (o be in the data base). Each data block has a name, which
may be atomic (but does not have to bel. Let the atom US-EAST be the name of the above

Brlock.

A QLISP-like notation will be used, with angle brackets <.> for tuples « lists, curly brackets [..]
for sets, and square brackets [.] for free property-lists. A property-list {il v1i2 v2 _] is a set of
assignments of vk to ik, so the square bracket expression is really an abbreviation for

il vl=i2 w25]
LISP function definitions will be written with round parentheses (). All these types of
parentheses are assumed to map into ordinary parenthesss in the actual implementation. -In
other words, the knowledge that a certain list represents a set rather than a tuple, is not assumed

to be avaikable in that iwem itsell,

It will be more convenient to specify the contents of blocks using the access function
dgetplc, i,nl, where & i3 a carrier, i an indicator, m a block name, and the function returns
the corresponding property-value. The block contents above can therefore be described as

dgetp [BOSTON, INSTATE, US-EAST] = HASS
dge tp [BOSTON, SUBURBS, US-EAST] = ILEXINGTOMN, REVERE, ...

The description of a block in DABA consists of two parts. Consider a data block (of which US-
EAST is a toy example) and a program which uses the block as a data base for question
answering or some similar purpose. One could write down several -:ljf[erent. blocks, using the
same conventions, and the program would then presumably be able to use any of these blocks.
The deseriprion of representation shall contain a specification which is common to these blocks,

and which therefore encodes some of the conventions that are assumed by the program. By

contrast, the description of extent contains a catalogue of the contents of each block, and other
information which is local to the block. There are several reasons for making such a
distinction: economy of storage for the shared part of the description is an obvious reason.
Also, the previously mentioned possibility of partially evaluating a utility or other parameter-
driven program with respect to the data base gescription, 1% anly worthwhile if the part of the
description that is being kept fixed, can be factored out (There are howsver also ways of

avoiding the distinction, in special cases when one doss not want to make it).

The commen denominator for the two descriptions is the sorts. In the present example, one
immediately recognizes different sorts of carriers: CITY, STATE, etc. The description of
extent for a block includes a catalogue of the carriers in each of the sorts, represented as:
ngetp [US-EAST,NDDES] =
[CITY {BOSTON, NYC,...}, STATE (MASS, NY,...l1,...]
while the description of structure includes the information of what indicators are used by ob jects
in each sort, for example that objects of type CITY may carry properties under the indicators

INSTATE, SUBURBS, etc.

The function ngetp is used for getting properties of blocknames, in the description of the
blocks extent. The function may sometimes simply make an access in the property-list of its first
argument, in which case it is synonymous to the INTERLISP getp, but it may also compure its

value by default from an appropriately stored procedure, handle non-atomic biock Names, efc.

The description of extent also includes information about the location of the black, for example

'as global property-lists', ‘as property-lists local to this block”, or ‘as text file with name .., The

firse case i expressed as

ngetp [US-EAST,ATLOCT = GLOBAL

The conventions used in the description of extent are to some degree arbitrary. One might
prefer to split up the NODES property so that the set of sorts is obtained in one access, and the
set of carriers in a sort i obtained in one access for each sort. Such changes would not be

significant.

The meta-block of US-EAST (= its description of representation) is another block, whose name
might be CITIES. The relationship is indicated by
getp [US-EAST,HETA] - CITIES
Some minimally needed information in the meta-block is, first, which indicators are carried .b-,r
ob jects in each sort in the described block. Thus, since BOSTON and NYC have properties under
the indicators INSTATE and SUBURSS, and since they are in the sort CITY, one should have:
dgetp [CITY,CARRPROPS,CITIES] = {INSTATE,SUBURBS,...]
and likewise
dgetp [STATE,CARRPROPS,CITIES] = IHASCITIES,HASCAPITAL, ...}

;ndsuﬂn.

The meta-block should also contain information about the expected siructure of properties. In our
example, we know that properties under the indicator INSTATE thall be atoms of the sort
STATE, that SUBURBS properties shall be sets of -cities, and so on. Such conventions could be
encoded in a straight-forward fashion as

dgetp [INSTATE,PROPSTRUC,CITIES] = <S0RT STATEs
dgetp [SUBURES, PROPSTRUC, CITIES] = <5ET <SO0AT CITYss

In our simple example, all names (block names, carriers, indicators, sort names, etc) have been

atoms. That is however not necessary, and in descriptions of less trivial representations it is

frequently useful to let them be non-atomic,

The meta-block contains infoermation which might occur as declarations in some other
programming languages, and in the data description language of a management system for
large data bases. The important difference is that here the meta-description is a new data
block, so that the user can use and extend that information according to his own needs. For
example, it would be natural to extend the meta-block with information which relates the
primitives for this dawm block (sorts and indicators, in this simple example) to user-oriented

concepts in a model of the intended application.

In the actual system, each block may be associated with a number of ‘satellite’ blocks which
provide additional but optional information. User additions to a meta-block are usually best
organized as a new satellite block, rather than as a change in the original meta-block. Even the

PROPSTRUC property is actually kept in such a satellite block_

Very often one wants to define access procedures for properties, which compute the property
from other data in the system, looks up defaul values, stores properties in alternative locations,

etcetera, The meta-block therefore always contains an accers funetion for each indicator, for

example as:
dgetp [INSTATE,ACCESSFN,CITIES] - XGETP

where xgetp is the default access function which does a trivial (eXplicit) look-up. Suppose

however that one would want 1o define a block US-EASTZ as an update of US-EAST, so that
properties in US-EASTZ use properties in US-EAST as default. The block US-EASTZ would be
described similarly to US-EAST, with the fellowing amendments:
{1} ngetp [US-EASTZ,MODIFOF] = US-EAST. This property assignment belongs to the
description of extent of US-EASTZ.
(2) getp [US-EASTZ,HETA] = CITHOD. US-EASTZ needs a different description of structure.
(In practice, its mesa-block would have a non-atomic name, but we assume an atemic name here
for simplicity).
(3) dge tp [INSTATE, ACCESSFN, CI THOD] =

(LAMBDA IC T NIOR (KCETP C I M)

(DGETP C 1 (NGETP N "ROOIFOFI) 1)

and simllariy for every other indicator that was assigned an access function in the old meta-
block CITIES. This access function takes the same arguments as the function dgetp. It first
checks i the property exists explicitly in the block that is mentioned as third argument, and
otherwise looks it up in the default block. {In the actual system, access Tunctions have a fourth

argument, and can be used fo 'get’, 'put’, ‘delete’, and ‘change’ operations).

The block CITIES, which is the meta-block of US-EAST, should also in its turm have a meta-
block and a catalogue {description of extent). The sorts in the block CITIES are SORT

(containing the carriers CITY, STATE, etc) and INDICATOR {containing the carriers INSTATE,

- SUBURBS, HASCITIES, etc). This structure is correctly described if we have

getp [CITIES,META] = OMEGA

dgetp [SOAT, CARRFROPS, OMEGA] = INARRPROPS]

dgetp [INDICATOR, CARRPROPS, OMEGA] = {ACCESSFN PROPSTRUCH

plus the appropriate properties on ACCESSFN and PROPSTRUC. It is then correct to define

getp [OMEGA, FETA] - OMECGA
so that OMEGA describes itself. In general, proceeding from a blocks to their meta-blocks, one
always eventually reaches OMEGA, but often the path is longer than in this example. - The

definition of the NODES properties for CITIES and OMEGA are straightforward,

What has been described 5o far is a basic description system, which might be sufficient for data
blocks that use simple representations. In an environment where the user has already designed
his primary program and his data base, he has o set up the description ef representation as a
post factum description of the conventions he has made. If he needs non-trivial access
functions, he has to write them himself, although with skill and luck he may be able to define
them as small interface procedures that call appropriate parts of his primary program.
Similarly, the NODES property (= the catalogue) in the description of extent can sometimes be
computed when needed, from information that has already been set up by or for the primary

program, and otherwise the user has to create it

Such a basic description is what is needed by utility programs as discussed earlier. The intended
purpose of the DABA system is partly to provide a coordinated set of such wtility programs, aml.
partly to provide 'canned’ higher-level descriptions. For example, in specifying the block
CITMOD in the last example above, the user should only has to specify that it modifies
CITIES (expressed by an appropriate property assignment e the atom CITMOD), and that the
meta-block of CITMOD is eg. MODIF, where MODIF would be a meta-meta-block which
imposes the appropriate defaults for access functions, NODES properties, ett. in CITMOD.

Similar meta-meta-blocks are or should be available for other common operations inside and

between data blocks.

3. Program/data base integration.

The DABA system is not particularly heipful for developing conventional programs. It is
however believed to be uselul when one uses an often used, but litte recognized programming
technique that T call data-driven programming. In this section [argue that data-driven
programming is a significant development, and much more than a hack; and also that a

DAB A-type system can Tacilitate the use of this method

A common model for a program in LISP (and most other languages) is that the program is a set
of procedures which call each other. Each procedure has a name. A call from a procedure
FOO to a procedure FIE is manifested in that the definition of FOO explicitly mentions the
name 'FIE. Such a textbook model of programs is not always applicable. Many programs are
organized as a collection of procedures each of which is attached to data items in a data base,
plus perhaps one part which is an ordinary program. In such a program, a procedure { may
SOmMELImes process its input data by calling procedures which are attached to them in the data
base. This constitutes an indirect or data-driven call from the procedure f to a procedure g.
Usually the procedures or program fragments are stored as properties of atoms, but they may

appear anywhere in the data base.

A data-driven program then consists of some ordinary’ procedures, and some 'data-driven'
procedures which are invoked through data-driven calls. In most programming languages it is
dif ficult or impossible to implement data-driven programs, except of the very restricted kind
that are obtained in case statements where the driving data are integers (Fortran, Algol 68) or a

set of items that have been explicitly declared in the program (Pascal) It is easy and

straightforward to implement data-driven programs with full generality in interpreted LISP, but
this programming practice i3 not fully recognized: INTERLISP's makefile system [Teitelman,
1974] provides a fot of service in keeping track of compiled code, but assumes that it is stored in
the function cell' of the atom. In MACLISP [Moon, 1974] the compiler has only very recently
been provided with an option that allows it to compile functions that are not EXPR or FEXPR
properties. One should not treat data-driven programming as ‘hack’, thereby 1r'n]:|-h§,ring. that it
should be discouraged, or that it lacks research interest. It is a powerful programming method

and program structuring method for the following reasons

-~ Procedures obtain fruly meaningful names. In data-driven programs, each procedure is
identified net by a single name, but by a combination of such. For example, procedures that
are stored directly on property-lists are identifled by pairs of atoms. Therefore, the identifier of
a procedure can be more than ‘'mnemonic’ it can state the purpose of the procedure in a

fashion which can be used by other parts of the program.

For example, McDonald's bibliography pregram (McDonald, 1975) assumes that each biblio-
graphy entry is associated with a number of properties such as AUTHOR, ;I‘ITLE, etc., and
each property name has on its property-list procedures for reading, printing, etc. that property.
The procedure that is identified a3 gefAUTHOR.PRINT-UP-FN] has such a better-than-
mnemaonic name. The routine which goes through all desired properties of an item and applies

the reading procedures of each indicator, uses the meaning embodied in the name’.

== Facliitates automatic program generation. 1f program generation is to go beyond the level of

oy programs such as trivial sort routines, the generator must use a model of the program that is

being generated. The task of specilying the model, and even more the fask of relating the
model to the program, are particularly simple for data-driven programs. The actual program
generation can then often consist of generating individual data-driven procedures or code
fragments. The latter case arises if each data-driven procedure has the form
(LAMBDA (X _¥FOO (code) (cods 2).. {code n}})

where each expression (code i} has been generated separately, and where the function FOO s
the 'glue’ between the programs and is responsible for communication between them. (FOO
may be a built-in function such as OR or PROGMN, or a function written for the purpose). The
PCDE system [Sandewall 1971, Sandewall 1973, Haraldson 1974] uses this method for program

generation.

— Uses the applicarion language, and makes if easily extensible. The notation that is input to a
program is or should be a language which is natural to the application of the program. The
same holds for the potational conventions that are wsed in a data base. In both cases, a
program which is organized around such an application-oriented notation is likely to have a
good structure, and extensions to the program immediately reflect extensions to the application

Tanguage’.

Interpreters are a classical example of data-driven programs. Interpreters for conventional
languages are data-driven with respect to procedure names (ie. data of the interpreter). Recent
language features such as pattern-directed invocation and demons also assume that procedures
are indexed from data structures, although in this case the data of the interpreted program.
The apparent power of the latest generation of AL languages [Bobrow and Raphiel, 1973] is

perhaps largely due to the fact that they made data-driven programming available to users who

did naot think of using it explicitly. Ti‘le claim here is that it is often better for the user to
develop his own scheme for organizing his program (in the sense of storing the procedures in
the right places) instead of using a single package of high-level devices, There are also several
examples of successful data-driven programming around. The SHRDLU program [Winograd,

1972] can be used in support of many claims; it is also data-driven in ssveral parts.

The reason why this whole discussion is brought up in a paper about data base description, is
that data-driven programs aliow procedures to appear in arbitrary positions in the data base.
There are often plenty of relationships between procedure items and other items in the data
base: procedures may have been generated from other data, and program analysis programs
may often generate data about programs that should be stored in the data base, so that it does
not have to be re-generated repeatedly. It is then natural to use one’s data base management

system for managing programs and program descriptions as well

The contrast between the situation described here, and the situation described in the previous
section, is characterized by figure 1. In l:llagr.am (al, the large triangle is the primary program,
the small triangle the utility programs, and the data base is described by the DABA system for

the utility programs. In diagram (b), the primary program consists mainly of data-driven

‘procedures which are also managed by DABA,

There is also another reason: the data that data-driven procedures are associated with, can
sometimes be 'object’ data for the system, but very often it is natural to choose them as items
that appear in the self-description of the data block, for example indicators or soft names.
Thus the descriptions of a data block are often an appropriate framework for organizing the

program,

Most utility programs can with advantage be data-driven. For example. a presentation utility
could be driven by printing procedures associated with property indicators. This i3 a
commeonplace idea, but raises some practical problems. Consider the following scenario: we
have acquired a large data base (large by AL standards, that is), consisting of several blocks
with different structures. We are also using a number of different utilities, each of which
drives specialized procedures for all or some of the blocks. Furthermore, descriptions of the
data blocks sit around n;ru:l are directly interpresed by several of the utilities, and are used for
generating specialized procedures for some others. Suppote now that we want to move this
battleship a bit, for example: (a) modify the structure of some data bleck, (b) delete a data
block, (c) discard a utility, The first operation implies a number of other cha nges in the system;
the other two enable non-trivial garbage collections. In a large system with a considerable life-
length, such garbage collections are necessary (even If one has infinite memaory, he still wants to

know what is garbage so it does not have o be updated).

In order to support such such simple operations, and also in order to support the user who wanis
to understand the system, so that he can perform more complex operations on it, one needs a

medel of the structure of the system. Here again the block structure and other concepts in

DABA are useful

Let us exemplify that, again with a simple example. Consider a pretty-printing utility program
P, which operates on a data block B whose meta-block getp[B,META]l = M, The program P
makes use of specialized printing procedures and other parameters which apply to all blocks
which like B have the structure described in M. These parameters together constitute a data
block AP. (They might be included in M itself, but it 15 not desirable to clobber M with auxiliary
procedures for all utilities, and therefore we prefer to let each utility define its own “satellite’

block ta M)

The block AP has the .samr: sorts and the same catalogue as M, but uses different CARRPROPS
assignments. For example, in our initial geography example, the block M contained PROPSTRUC
and .AI:EEEEFN properties, for HASCITIES and other indicators used in B. The block MP would
contain a PRINTFN property for HASCITIES, which P then uses. The relationship between HP
and M should be expressed by a reference such as

ngetp (MNP, DESCRIBES] = M

This reference should imply a default value for the NODES property of P,

The meta-block for HP must be a block which describes the structure of the parameters that the
program P assumes, ie. it is part of the dotumentation of P.. In the present DABA system,
utility programs are integrated with their specification, so a data-block P contains both the set
of procedures that make up the wtility program, and the information that makes P a suitable
meta-block Ilur AP. For example, P contains a reference to the knowledge about how to compute
the NODES property of NP from its DESCRIBES property. {Actually, that knowledge is conveyed

to P by ity meta-block). The structure of these blacks is illustrated in figure Z.

P& META MP

' DESCRIBES

FIGURE 2 S -

can be aEp'I_'IE'd T T

This example illustrates how blocks of data are not merely clusters with dense internal
connections: there are also relationships beween blocks, such as the META relation, the
DESCRIBES relation, the NODIFOF relation {used in an example in the previous section),
Several other relations are important, such as the relations between a program, the biock of data
that was input to it, and the block of data that it produced as result. Relations between blocks

are macro-level descriptions, which complement the micro-level, declaration-type descriptions

such as CARRFROPS or PROPSTRUC properties.

4, Generation of procedures.

The DABA system as such assumes that data base descriptions contains procedures, mamely
access Tunctions, and specialized procedures Tor various utility programs. In addition, many

applications may involve dama-driven programs as discussed in the previous section.

Where do these procedures come from? The simplest case is of course where they are always
written by the user. There are however several ways whereby the user can be relieved of this

responsibility, or at least of some of the drudgery involved.

One obvious method is by default computation. If the procedure does not exist, then it is
computed by a procedure which may derive it from other data, ask the user, etc. This is
accomplished in a simple and uniform fashion in DABA through a recursive access-function
mechanism. T he function Elnttp which was wsed in section Z to obtain dara from the block
USCITIES, is defined approximately as
dgetple,i,nl =

if n=0MEGA then getplc,il :

elae applyl dgetpli, ACCESSFN, getpin,METAI], listle,i,nll]
In cther words, in order to dgetp the HAEi:I:T.TES property of MASS, one retrieves and uses the
ACCESSFN property of HASCITIES in the meta-block. But for that, he must retriﬂr!- the

ACCESSFN property of ACCESSFN in the meta-meta-block, and o on. (At least thmrer:icélt]r: the

recursion i3 sometimes shortcut). The recursion terminates at the ultimately ‘meta’ block DNEGA.

This mechanism is a flexible way of defining appropriate access functions. For example, in

section 2 we discussed the modified data block US-EASTZ, which modified the block US-EAST,
and where

getp [US-EAST,META] = CITIES

getp [US-EASTZ,META] = CITHMOD

ngetp (US-EASTZ, MODIFOF] = US-EAST
Here the user should mot have o write out the access functions for CITAOD. Instead, there
should be a data block MDD which describes modification blocks in general, so that
getp ([CITHOD,META] = MOO. The access functions in CITAOD are obtained as
dge tp [ACCESSFN, ACCESSFN, MOD], and might be the one outlined in section 2, or (improved)
‘the following: go and get the access function for the same indicator in the block CITIES. Try

uzing it in the current block (in this case, US-EASTZ). If no result, then make an access im

dgeiplcurrent block, MODIFOF].

In Tact, all other system properties, for example CARRFAOPS, are acce'ssel:l. in the same way using -
dgetp. It is therefore not necessary to invent a new atom as a name for CITROD. Its name is
chosen as (MO0 CITIES), whereby it is implicitly specified to be a block whose meta 15 MOD and
which modifies the block CITIES, (The actual DABA notation is slightly different). In
general, the method of defining properties of blocks through access functions in the meta block,
complernents well the methed of using non-atomic ('molecular’) names for blocks, where the .
contents of the block, or at least some of the contents, are implicit in the name of the block.
The advantages with non-atomic biock names are analogous to the naming advantages of data-

driven 'pmgram&

Utility programs which use specialized parametric pmf:edure:s also access them with the function -

dgetp, which means that the same kinds of default mechanisms can be used for their

parametric procedures such as PRINTEN. The recursive access mechanism is quite powerful, and
enables one to implement a number of desirable facilities with a very small kernel system. Its
ma jor drawback is that higher-order access functions of access functions are usually less than
transparent to read and understand. Efficiency may also be a problem, which hopefully can be
handled by saving access functions so they only have to be computed once (memoization'’), and

using automatic simplification of the lower levels of access functions,

Sometimes a procedure is o be built up and modified in several successive steps. It must then be
initialized in some way (for example by its meta-level access function), wh.ereupun it can receive
aduise which successively modifies it. For example, if a data-driven procedure contains or

refers to a set of theorems or demons thal are to be triggered by the indexing data, then each

advise might contribute one more theorem or demon to the structure. A program for

simplifying LISP expressions might associate with each LISP function a simplifier procedure
for forms where it is the leading funcrion. A new simplification rule, such as

(CAR [LIST SK $8Y1) -» 8X

would then be sent as a message to the simplifier for CAR, (The REDFUN program [Sandewall
1971, Beckman et al. 1974] works in this fashion). - Sometimes the advise that i given to a

procedure is less uniform. INTERLISP [Teitelman [974] contains facilities for user-specified

advise to the entry and exit parts of arbitrary user procedures. In the DABA system, it is

frequently desirable to et various items send advise to an access function or class of access

funcrions, telling it where to find explicit and default data, whether and how to 'memoize’

computed data, and so on,

Several of Hewitt's actor ideas [Greif and Hewitt, 1974] carry over to this purpose. What we

have called advise is a kind of message. Giving advise is like an actor ‘handshake’: the
receiver of the messages must be the one who knows how to incorporate it into his internal
structure. There is a need for actors in the sense of ob jects which both receive and send
messages. But chains of messages which trigger each other are here only a secondary purpose;
the primary purpose of a message is to modify a procedure or other data item. Also, it is
mandatory in our case to have an option for saving a protocol of which messages were sent
where, 50 that later changes early in a message chain can perpetuate along the chain. Such a
protocol should of course be stored as another data block, in line with the general philesophy of

the system,

Im fact, the data structure becomes cleanlier if messages are sent to blocks, rather than to
individual procedures. Thus a simple meta-block might receive messages saying "tell all your
access functions to pick default values from the block B® or "tell your access function for
SUBURBS to get the explicit value, and filter away from it all proposed suburbs which are not in
the same state’, The structure of the blocks involved should be as follows:

B biock to which messages are sent

M getp (B, META]

BA block of messages that have besn sent (o B

i getp [BA, HETA]
Here A should contain the infermation about how to interpret incoming messages, and it should
be on the same level as M. In other words, if B and B' have the same M, and BA" is Hk;t BA but

for B', then BA and BA" should be able to share the same meta-block A (Figure 3).

M

™

¢ i
|
N/
¢ B
<

En'

PoINTS FROM BLOCK TO ITS META-BLOCK.

POINTS FROM A MESSAGE-HISTORY BLOCK TO THE
BLOCK, THAT SENT AND RECEIVED THE MESSAGES,

FIGURE 3

The previously mentioned methods for defining blocks through their meta-blocks, sometimes
using non-atomic block names, are useful for protocol blocks as well, Protocel blocks are
actually given nen-atomic names such as [PROTOCOL B) rather than BA. The META of this
block is then implicitty PROTOCOL. If M has an idiosyncratic structure, then a correspending,
tallored meta-block for protocols will be needed, 1o PROTOCOL is really (PROTOCOL= M), and
what we used o c.a.ll BA has a name of the form [[FROTOCOL= A) B). The meta-meta-block

PROTOCOL* computes parts of the protocol meta-block (PROTOCOL= MY from M.

Protocel meta-blocks such as PROTOCOL or (PROTOCOL= M) also contain the decoders for
incoming messages. Each transmission of a message is called an event. An event knows what
message It conveys, i3 source, and it destination (where both of the latter are block mames).
The event is also a member of the protocol blocks of its source and its destination, although
with different properties in those two, A simple executive keeps track of a queue of events, and
for each event looks up the decoder in the protocol block of the destination block of that event,

and applies it

This message-sending Fau'.ilit‘,.I is net intended as some kind of programming system. If the
DABA system is used as in section 2 of this paper, then it does not affect the user's primary
program at all. It is intended as a mechanism for performing and kesping track of updates to
the data base (including data-driven procedures), so that later changes in the data base (in the
separate-identity sense of the word) obtain appropriate secondary effects. Also, messages are

only sent to procedures’ (loosely speaking) for changing them, not for invoking them.

5. Other aspeects.

Some aspects of the DABA system have been more or less ignored in this paper. We have
remarked that each block nesds a description of structure, and a description of extent. The
description of structure is the meta-block, and has &1 meta-block, and 0 on. The description of
extent, or ‘catalogue’, is at least in simple cases the set of properties of the blockname, But it
also needs a meta-block, where for example the access function for the name's NODES property
Is located {in the cases where the NODES property is computed from other information). The
meta-block of a block B, and the meta-block of the catalogue of B are not in general identical,
but the latter is derivable from the former. Also, the catalogue block of the catalogue block is
computed as needed (storing it explicitly would lead to an infinite regress). The resulting
structure is powerful, but unfortunately also tends to become fairly complex. Later generations

of the system will ittem-p-t to simplify it.

Another aspect which has not been covered is the relationship between the description structure
of DABA on one hand, and problems in the representations of knowledge, such as 15-A link
problems and frame systems [(Minsky 1974] on the other hand. Information in DABA meta-
blocks such as CARRPROPS and ACCESSFN information :ﬁrrﬁpnnds vaguely to what one

needs in those cases, but the correspondance is not trivial

DABA s presently a MACLISF program, although it should be refatively easy to transfer it to
other LISP dialects. It contains simple utilities for data entry, checking, dumping, and
presentation. The utilities are data-driven and their structure is described within the system, as

described above. The current system also contains facilities for keeping track of all blocks; and

a few general-purpose facilities such as comment blocks (for arbitrary other blocks) and update
blocks. The message-sending facility for updates of procedures has been specified and is
probably the next to be implemented. After that, the present implementation will probably have

served its purpose, and the next generation of DABA will be due.

Acknowledgements.

Several members of DLU in Uppsala and the MIT Al group have taken the time to experiment
with the DABA system, discuss the issues raised in this paper, and look over the manuscript.
Special thanks are due to Dave McDonald, Charles Rich, and Gerry Sussman of MIT, and to

Anders Haraldson and Jaak Urmi of DLU.

References.

Beckman, L. et al. A partial evaluator, and its use as a programming tool. Datalogilaboratoriet,
Uppsala university, memo 74/34,

Bobrow, D. and Raphael, B. New Programming Languages for Artificial Intelligence. Computer
Surveys, Vol 6 Noo 3 (September, 1974),

Codd, E. A relational model of data for large shared data banks. Comm. ACM 13, No. 8, June
1970, pp. 377-87.

Haraldson, A. PCDB - a procedure generator for a predicate calculus dara base. IFIP 74
proceedings, pp. 575-70,

Greif, I. and Hewitt, C. Actor semantics of PLANNER -T2, MIT AL Lab, working paper 81
(November, 1974),

Iverson, K. A programming language. Wiley, 1962,

Minsky, M. A framework for representing knowledge. MIT AL Lab, memo no. 306 { june 1974)
McDonald, D. Private communication,

Moon, D. MACLISP reference manual, MIT Project MAC, April 1974

Rich, Ch. and Shrobe, H. Understanding LISP programs: tewards a programming apprentice.
MIT AL Lab, working paper £2 (December 1974)

Sandewall, E. A programming tool for management of a predicate-calcubus-oriented data base.
IJCAL 197 proceedings.

Sandewall, E. Conversion of predicate-calculus axioms, viewsd as non-deterministic programs, to
corresponding deterministic programs. 1JCATL 1972 proceedings.

Teitelman, W. INTERLISP reference manual, Xerox Palo Alio Research Center, 1974,

Winograd, T. Understanding natural language. Academic Press, 1972

