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Summary

Understanding how the visual cortex analyzes natural images is
one goal of visual neurophysioclogy. At some slage, we need lo confront the
information processing problems that are involved. A series of computational
experiments on natural images was therefore undertaken, and a visual pre-
precessor emerged with the following structure:

{1} Approximations to the first and second directional derivatives of intensity are
measured everywhere. They are computed by convelving the image with "edge-
shaped” and "bar-shaped” masks.

(2) These measurements are parsed into an orientation-dependent description of
the intensity changes present in the image. The parsing process consists of
discovering and matching peaks and troughs in the measurements, and roughly
classifying local palterns of peaks into EDGEs, LINEs, SHADING, elc.

(3) The descriptions oblained at each orientation are combined, termination points
of edges are discovered, and small blobs are isolated and described.

This pre-processor computes what is called the primal sketch of
an image, but for most images it is large and unwieldy. By examining our ability te
interpret certain simple drawings, it is demonstrated that a variely of abstract
grouping processes and related facilities are present in our visual systems. It is
shown how, if applied to the primal skelch, these processes are capable of
successfully analyzing many kinds of visual texture, and of extracting perceived
“figure” from ground. It is conjectured that these operaticns can account for the
entire range of texture discriminations of which we are capable, and the analysis
of several real images is given in its support. The conjecture relegates the
influence of higher-level knowledge on visual processing to a much later stage than
is currently found in machine vision programs, and it implies that such knowledge
should influence the controi of, rather than the actual computations in, the earlier
stages of analysis.



Preface

The work of Barlow (1953), of Mountcastie (1957}, of Lettvin et
al. (1958), and of Hubel and Wiesel (1962) initiated what is widely regarded as a
breakthrough in visual neurophysiclogy. But despile the subsequent accumulation
of a wealth of anatomical and physiclogical information about the mammalian visusl
cortex, our knowledge of its infermation processing function, or even of how
difficult are the problems that it solves, remains rudimentary,

This is no accident. Physiclogy has always been concerned with
how organisms work. Its goals are to unravel the local mechanisms within an
organism and to understand their place in the functioning of the animal as a whole.
While the concerns of physiclogy lay with mechanical, or even with chemical er
physical phenomena, the physiologist’s background knowledge and everyday
experience sufficed to provide him with the necessary insight into function. As
physiclogy has turned to information processing problems, however,
neurophysiclegists have lost the reliable background intuition that has been
fundamental to the success of the discipline in the past. The situation in modern
neurophysiology is that people are trying to understand how a particular
mechanism performs a computation that they cannot even formulate, let alone
provide a crisp summary of ways of doing. To rectify the situation, we need to
invest considerable effort in studying the computational background to questions
that can be approached in neurophysiclogical experiments.

Therefore, although the work described here arises from a deep
commitment to the goals of neurophysiology, the work is not about neurophysiclogy
directly, nor is it about simulating neuraphysiclogical mechanisms: it is about
studying vision. It amounts to a series of computational experiments, inspired in
part by some findings in visual neurophysiclogy. The need for them arises
because, until one tries to process an image or to make an artificial arm thread a
needle, cne has little idea of the problems that really arise in trying to do these
things. Computational experiments allow one to study in detail what combination of
factors causes a method, or group of methads, to succeed or fail in a number of
particular circumstances thal originate from real-world data. The power of this
approach is that the knowledge one obtains concerns facts that are inherent in the
task, not in the structural details of the mechanism performing it. Such knowledge
is a vital prerequisite for understanding mammalian visual syslems fully, and it s
knowledge that cannot be obtained in any other way,



Introduction

The vision problem begins with a large gray-level intensity array,
and culminates in a description that depends on that array, and on the purpose for
which it is being viewed. The question of interest is what has 1o go on in
between. In this article, we shall restrict our attention to single frame,
manochromatic, monocular images withoul specularities, reflections, translucency,
transparency, or light sources; and we shall study some of the problems that arise
in understanding early and intermediate levels of visual information processing.

Perhaps the best way of intreducing the topic is to pose some
questions:

(1) What is early visual processing for?

{2) How much of visual information processing can proceed using purely data-
driven technigues?

(3} At what level and by what mechanisms may texture vision and figure-ground
phenomena be implemented?

(4) When does higher |evel knowledge about the world have to begin interacting
with purely data-driven processes?

(5} When and how does purpose have fo influence what computations are made
on an image?

Recent work in computer vision has tried to invelve high-level
knowledge about the world at a very early stage in the processing (Shirai 1974,
Freuder 1975). The main mativations for this have been that it has proved very
difficult to exiract object boundaries from intensity arrays, and that strategic
deployment of high-level knowledge about a scene can somelimes greally raduce
the computational effort required for primary image processing. This article
opposes this trend, and makes three main arguments. The first argument consists
of a demonstration that a very greal deal of information may in fact be extracted
from an image using knowledge-free techniques. The price one pays for this is
predigious computing power, and it involves programs that are considerably more
complex than feature-point detecting routines. There can, however, be little doubt
that our own visual systems do in fact possess enormous power (Thomas and -
Binford 1974, p 16). The second argument is thal deciding what a low-level visual
processor Can and cannot deliver is a pre-requisite for useful research into
"higher-level" problems of recognition. For example, the problem of recognizing
and interpreting a scene has a very different flaver in vision systems with rich and
with poor pre-processing abilities. The difference is almost as extreme as trying
to make sense out of an English sentence with and without the benefit of a
knowledge of English syntax. Hence, unless one has a firm idea about what pre-



processing is possible, one is in danger of expending affort on problems that, in a
real sense, are not problems at all. The third argument is that our own perceptual
apparatus probably contains a rich pre-processing ability. Hence if machine vision
intends to say anything useful about those compulations, il had better examine the
lower problems first, and study the laler ones when the peripheral processing has
been solved. Otherwise one is conducting research without the benefit of data on
which to test one's conclusions. This amounts Lo a reckless abandoning of
precisely the new experimental tools thal compuler technology has made available,
namely the ability to decide whether a compulational theery successfully

addresses tha problems that arise in real-world data.

This article presants a theory of visual processing for its chosen
class of images up to about the level of the figure-ground problem. Its main focus
is a new computational theory of texture vision. The arlicle gives a sufficient
number of examples of processed images to eslablish that the theory is not
obviously inadeguate. The detailed and lengthy arguments that make a positive
case for adequacy will appear elsewhere (Marr 1976). The argument is quite
protracted, and relies on several main steps. Its overall thrust is that the first
step of consequence in visual information processing is to compute a primal
description of the image, and that all subsequent computations are implemented as
manipulations of that description. In order that the reader may follow with ease
the stages in the argument, | summarize the main steps here:

{1} The function of early visual processing is to compute a description of the
gray-lavel changes present in an image in terms of a vocabulary of gray-lavel
change primitives., These primitives consist of straight contour segments of

various kinds (SHADING-EDGE, EXTENDED-EDGE, elc.), LINEs, BLOBs, and of various
paramaters bound to them such as FUZZINESS, CONTRAST or LIGHTNESS, POSITION,
ORIENTATION, simple measures of their SIZE, and a specificalion of their
TERMINATION points. This primitive description is obtained from the intensity
array by knowledge-free technigues, and it is called the PRIMAL SKETCH. It

differs from an array of feature points in a subtle way, which is explained in the
text.

{(2) From our ability to interpret drawings, ona may infer the presence in our
perceptual equipment of symbolic processes that are capable of grouping lines;
points, and blobs together in various ways. Non-symbolic techniques, like
examining the power spectrum of the spatial Fourier transform of the drawings,
cannot account for these grouping phenomena, since the groupings are performed
by mechanisms of construction rather than mechanisms of detection.

(3) For most images, the primal skelch is large and unwieldy. It can however be
capably analyzed by a mechanism that has available the symbolic processes



discovered in step (2), together with the ability to select items out of the primal
sketch on the basis of first-order discriminations acting on the principal
parameters. Hence, it is argued, texture vision rests on grouping operations and
first-order discriminations operaling on the primal sketch, rather than on second
order operations operating on the intensity array as suggested by Julesz (1975).
It is further argued that the set of processes whose exislence is necessary In
order to explain our ability to interpret drawings, is also sufficiant, when applied
to the primal sketch, to explain the range of texture vision that is present in '
humans. Fourier and power-spectrum techniques on their own are cerlainly
deficient, and probably alse unnecessary.

(4) The extraction of a form from the primal sketch using these techniques
amounts to the figure-ground computation. Except in difficult cases, this extraction
can proceed successfully withoul calling upon higher level knowledge, and it
precedes the computation of the shape of the extracted form. This has twe
important consequences. Firstly, the isclation and delivery of a form to
subsequent processes does not depend on being able to assign an accurate high-
level description to it; and secendly, because of this it is easy to compute rough
descriptions of complex forms. This is probably essential for the fluency of
subsequent analysis of shape.

(5} The extent to which higher level knowledge and purpose influences the
processing up to this stage is very limited. There is at present no reason to
believe that higher level knowledge is needed to compute the primal skatch at all;
and its role in the extraction of form from the primal sketch can often be limited to
deciding which form should be extracted. It is conjectured that in all cases, higher-
level knowledge need be only weakly coupled lo the processes that separated
figure and ground. This relegates the use of higher level knowledge to a much
later stage than is found in current machine vision programs, and simultanecusly
confines much of its impact te influencing control, rather than interfering with the
actual data-processing that is taking place lower down.

Each step In the argument is treated in a separate section.

Early Processing: computing the primal sketch

The primal sketch consists of a primitive but rich description of
the intensity changes that are present in an image. This description consists of a
set of asserlions, expressed in terms of a vocabulary of symbols and modifiers
that are powerful enough to capture all of the important information in an intensity
array. An example of such an asserlion might bec



{SHADING-EDGE (POSITION (34 48) (73 4&))
(CONTRAST 34)
(FUZZINESS 17)
(ORIENTATION @)}

The first problem is hew such an assertion may be computed -- what
measurements should one first make on an image, and how should those
measurements be combined to enable the assertion to be made.

Ta help us answer these questions, let us see what
neurophysiology tells us. Simple cells in the cat make measurements upon an
image, and the nature of the measurement that they make is fairly well understood.
Their receplive fields are either bar- or edge-shaped (Hubel and Wiesel 1362),
and if other parameters are held constant, they signal the linear convolution of a
bar- or edge-shaped mask with the intensity distribution currently falling upon the
retina, in logarithmic units of contrast (Maffei and Fiorentini 1973, figure 8). Not
all of what are now called simple cells behave linearly, but & distinct subclass
does. The imporiant question for understanding the analysis of visual information
is whether these cells represent asserlions other than the fact of the
measurement itself; and if they do, what are they? One idea is, for example, that
a cell with a bar-shaped receplive field signals an assertion about the presence of
a bar in the visual field; but a moment’s thought reveals that this is impossible,
since such cells respond slse to the presence of a single edge. Another puzzie
concerns the existence of both bar-shaped and edge-shaped receptive fields (in
different cells). Since both kinds detect changes in intensity, why are both types
needed? The reasen is probably that changes in intensily are not the only
important types of change in an image -- changes in intensity gradient often
provide important, and sometimes the only information that an object boundary is
present (Marr 1974b). An edge that consists of a step change in intensity gradient
rather than in intensity may be produced by a lambertian white cube aligned at 45
degrees to the viewer and illuminated from the viewing position. Perceptual
evidence of our sensitivity to such edges is easy to find: Mach Bands are the
most well-known example (see e.g, Ratliif 1965). This immediately suggests that
one should regard simple cells that have an edge-shaped receplive field as
measuring something like the first directional derivalive of intensity; and those with
a bar-shaped receplive field as measuring the second directional derivative. Two
questions then arise: firsily, why compute directional measures? And secondly,
what should one do with the measurements when one has them?

The application of a bar-shaped mask to an image does not, as we
have seen, lead directly to an assertion about the presence of a bar in the image.
The underlying point concerns the relation between computing the bar assertion,
and the inverse transform of the original measurement, and it is a point of some
importance. Let us consider the computation of an assertion about the presence of
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1. The image of a chair (1a) has been convolved with two "corner-masks” (1b and

1¢). The mask shapes are shown in the figures. Detecling corners from such
measurements is not straightforward.



a corner in the image of figure la. A way of computing this assertion that
immediately springs to mind is to take a specially “tuned” corner-shaped mask. One
might conjecture that a "corner” exists in the image at a point P provided that the
mask gives a value there which is greater than some threshald, Figures 1b and ¢
show the conveolution of corner masks with the image; but can the reader
confidently distinguish the corners from these measurements? The reason for the
failure is that the inverse transform to that produced by a corner-shaped
receplive field depends critically on the boundary conditions that obtain, Any
method that computes a corner assertion is saying something about this inverse,
and so must take enough information into account at each point to satisfy the
dependence on boundary conditions. This extra information may be provided by
looking at the results of the corner-mask at nelghbering paints, or by looking al
the results of some other measurement taken in parallel; the important point is
that the computation is not a trivial one, and has to lake these extra factors into
account. It is not impossible to use primary measurements that are not crientation
sensitive, but the extra computation involved is expensive, since one swilches
from having to look in just two directions ta having to look in all directions. A
persuasive case would have to be made if one were to choose a primary
measurement that was not directionally selective.

Translating the measurements into a description

Suppose then that one measures the first and second directional
derivatives of intensily everywhere in an image. What do we do with tham?
Translating cne large array of numbers into saveral other large arrays is not an
obviously useful process. It turns out, however, that we can make a great
simplification at this stage in the analysis. Provided thal measurements are made
with masks of several sizes, one can show that the positions and sizes of the
peaks in the measurements provide enough infarmation to compute the description
of the underlying intensity changes. Furthermore, provided that a group of peaks
is sufficiently isclated from other peaks, the other peaks may be ignored when
analyzing that group.

The reason for this is illustrated in figure 2, which shows the
difference between edge-mask values oblained using masks of two different sizes
on a step change in intensity (2a), and on a gradual change (2b). The results are
analogous torthe power spectra of different kinds of edge. Step changes are
"seen” equally well by all sizes of mask. Gradual changes are seen increasingly
faintly by edge-shaped masks whose dimensions are smaller than the distance over
which the intensity change is taking place. Figure 2c shows this effect in graphic
form, and from it one can see that a good estimate of the "fuzziness™ of an edge
may be made by finding the mask size at which the edge-mask response starts to



FIGURE 2

2. Diagrams of "edge-shaped" mask convelutions with a step (a) and with a gradyal
(b) intensity change. The intensily profiles appear at the top. The convelutions
with the two sizes of mask shown on the left appear beneath the intensity
profiles. For a step change in intensity, masks of all sizes produce the same
maximum response (trace a in graph (c)). Gradual intensity changes are seen
progressively weaker by the smaller masks (trace b in graph {c)).
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diminish.

This shows one way in which the use of multiple mask sizes is
important, but there is another reason which is perhaps even more important. It is
thal where a faint edge exists in the image, it is frequently impossible to tell from
a single record which of the peaks are important, and which are due to noise.
Malching peaks obtained using different sizes of mask greatly aids the snparatiun
of signal from naise.

The process of computing the description may therefore be
reduced to three operations: firstly, find the peaks in the measurements obtained
from the convelutions of the image with different sizes of mask, and select the
relevant peaks using the criterion illustrated in figure 2; secondly, separate tha
peaks into isolated groups; and thirdly, parse the local configuration of peaks into a
descriptive element. A small number of classes of peak configuration suffices to
cover the cases that can actually occur, and they are illustrated in figure 3. The
figure shows typical combinations of peak patterns that eccur in the outputs from
edge-mask (upper records) and from bar-mask (lower records) convelutions,
Examples of the masks that we use appear in figure 3a. The descriplor EDGE is
used when two peaks of sbout equal and opposite signs occur together in the bar-
mask record (3b). If one bar-mask peak is considerably smaller than the other, the
edge is classified as an EXTENDED-EDGE (3c). Extended-edges are common where
a convex boundary is illuminated from one side. Figure 3d shows an intensity
gradient edge, and figure 3a corresponds to the presence of a thin LINE such as
can occur in the glare off an object’s edge, or a very thin pencil stroke. Finally
- there are edges that begin and end gradually, and extend over a relatively large
distance; these are classified as SHADING-EDGEs (figure 3f). In addition to
descriptors of edge type, one can measure an edge’s STRENGTH, POSITION,
ORIENTATION, and FUZZINESS. This last parameter is computed by comparing the
amplitudes of the peaks obtained using masks of the same shape but different
sizes. (See figure 2, and Marr (19743b) for the details).

Figure & gives an example of an intensity distribution that has
been described by this process, and the legend explains which mask convolutions
were used. One of the assertions has been traced back to the convolution
profiles, and the arrows point to the peaks that gave rise to that particular
assertion. The low-level vocabulary that is used here is not intended Lo be
definitive, but some claim is made to the effect thal it is a good example of the
genre, because it has sufficient expressive power to dascribe most kinds of
shading adéquately, and the method is simple and works reasonably well,
Experiments are being planned to determine whether the types of intensity change
that are distinguished by these primitives are also perceplually distinct.
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3. Exlarnplu .uf edge- and bar-masks appear in 3a. 3b - f give the classification
that is described in the text of peak patierns in edge- and bar-mask convelution

profiles. The primary visusl processor uses these stereotypes to classify intensity
changes in an image,



FIGURE 4

4. The intensity distribulion exhibited in 4a, whose profile appears in 4b, was
ebtained by illuminating a curved piece of white paper from one end, and viewing
it from above, Its descriplion, computed using an edge-mask of panel-width 8 (4c),
and bar-masks of panel-widths 4 (4d) and 8 (&e), is as follows:
EDGE {POSITION 180) (AMOUNT 138} (FUZZ SHARP)
EDGE {POSITION 312) (AMOUNT 3} (FUZZ &)
EDGE (POSITION 392} (AMOUNT 2} (FUZZ SHARP)
EDGE (POSITION 535} (AMOUNT -3) (FUZZ 4)
EDGE (POSITION 544} (AMOUNT 25) (FUZZ 5)
EDGE (POSITION 564 (AMOUNT 2} (FUZZ 4)
EDGE (POSITION 590 (AMOUNT 1} (FUZZ 4)
EXTENDED-EDGE (POSITION 682) (AMOUNT -12) (FUZZ 9)
ithe peaks giving rise to this edge are marked with arrows)
EDGE (POSITION 7248) (AMOUNT -20) (FUZZ &)
EDGE (POSITION 776) (AMODUNT 3) (FUZZ 4)
EOGE (POSITION 784) (AMOUNT -4} (FUZZ &)
SHADING-EDGE (POSITION 670) (AMOUNT -14) {WIDTH 67)
SHADING-EDGE (POSITION 491) (AMOUNT 4) (WIDTH 36)
SHADING-EDGE (POSITION 429) (AMOUNT -8} (WIDTH 73)
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FIGURE 5

3. After description of intensity changes has occurred independently at each of 8
orientations, and after linear assembly of these destriplions has taken place.
locally, the eight descriptions are combined. An example of the result obtained
from Sa appears in 5b. Short noise elimination then takes place, giving Sc. The
aslerisks dencte places at which directional measures of contrast suddenly change.
They are the precursors of termination assertions.
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Combining orientation-dependent descriptions

We have seen how to compute an orientation-dependent
description of the intensily changes, and we now deal with the problems of
combining local pieces of description from the same orientation, and of combining
the descriptions obtained at different orientations. What then are the issues that
are raised in combining the local analyses described in the previous section?

The information that is used during this operation is primarily of
two kinds: local consistency relations, which enable one to string local assertlions
topether; and local competition, between competing descriptions of the same
phenomenon oblained from masks at different orientations. Surprisingly, it turns
out that the local consistency relations are more important than local competition,
and that lecal competition is required not so much between descriptions obtained
from masks at nearly adjacent orientations, but between the descriptions oblained
from masks that are nearly perpendicular,

Figure 5 illustrates the problems thal arise. The image was first
operated on at eight orientations with the process described in the last section.
Mext, these local assertions have been glued slong directions nearly parallel to tha
masks from which they were oblained An interesting feature of the process is the
abundance of short segments perpendicular to the primary edge (figure Bb). These
arise because of a combination of local noise, the image tesselation, and other
irregularities in the image. They occur in every image we have processed. In
dealing with them, one cannot dismiss in a cavalier manner all very short segments:
tiny "blobs” in the image alsc give rise to them, as can be seen from the same
image at coordinate (73, 75). But a "small” element like this can be ignored if (&)
it crosses a "long" element, and (b) its contrast is less than that of the item it
crosses. Figure 5c shows the results of removing small noise elements using this
criterion

The asterisks in the figure signify that the contrast of the edge
changes rapidly at that point, possibly beceming zero. They are the precursor of
assertions about the presence of terminations, but space forbids a discussion of
tham here (see Marr 1974c).

The only other item of note in computing the primal sketch is the
question of detecting local, small blobs. Figure 5c at coordinate (73, 75) shows
how they appear, and in facl we make small blobs a primitive element of the
primal sketch, together with their associated “intensity” value, and the sizes and
orientations of their major and minor axes, Finding these blobs from the glued
assertions depends a small amount on elegant programming, and a large amount on
brute force. The reader may ask why do we detect blobs in this way; why not
use a simple blob-detector like a mask with a centre-surround organization? The
reasons are twofold. Firstly, when using a centre-surround mask o generate
assertions, one has to be very careful of the boundary condition problem
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mentioned earlier. One can devise parallel schemes of the form "a blob exisis at
points P if the centre-surround mask gives an isolated peak there, and if there are
no edges in the vicinity,” but these are relatively expensive to compute, and
become unralisble if the blob is nat very circular, or if there are indeed other,
fainter or unrelated edges in the vicinity. It is interesting in this connection to
note that the phosphenes produced by stimulating a point in area 17 -- an act
which presumably slimulates orientation-sensitive cells at all orientations --
commonly take the form of a bright point in the visual field (Brindley 1970, p 124).

The primal sketch differs from a simple feature-peint array in a
rather subtle way, and as a moedel of the information-processing thal is performed
in area 17 it makes some definite and perhaps unexpected statements. Some
examples will help to make this clear. One consequence is that the direct output
of a linear simple cell is not available as an element in the primal sketch. Its
measurement is used lo create an assertion about the presence of an edge, and
that assertion is what is available. Creating the assertion is an act of computation
== a simple one, since it involves little more than pesk matching and the

classification of a peak configuration, but an act of computation nonetheless. The
main point is that this has to go on

An interesting censequence of this is illustrated in figure 6.
Suppose that an image contains two small close blobs. These blobs give rise to
measurements by a number of sizes of mask -- some small ones represented by
the tiny line segments, and some large ones, like the one that is illustrated. One's
a priori inclination would be to believe that large “line-detector” would fire, and
that this would have something to do with seeing the two blobs. This view
amounts to supposing that simple cells write directly into a feature-point array.
But if our theory is correct, although the large “simple cell® may indeed fire, its
measurement will not be used ta compute the description of the two blobs
because their sharp boundaries cause the associated intensity change to be
described from peaks in the small masks. The effect illustrated in figure 2c will
cause the description to be computed from the smaller masks unless the blobs are
severely defocussed [Compare also our failure to perceive L. D. Harmon's coarsely
sampled and quantized image of Abraham Lincoln, (Julesz 1971, p.311)] | mention
this paint because Julesz (1975, ppd0-42) has concluded that in situations like
this one, the output of lerge simple cells in this configuration plays ne part in -
texture vision discriminations. We shall see the relevance of this shortly.

The structure of the primal sketch may be summarized as follows:

PS1. The primary visual processor delivers a symbolic description of the intensity
changes present in an image. This description uses the following primitives to
describe inlensity changes:

(" Various types of EDGE



{iiy LINEs, or thin BARs.

(i) BLOBs
The items (i) and (ii} have been assembled into straight segmenls, and short noise
elimination has occurred.

PS2 The following items are bound te each element of the description.
(i) ORIENTATION
(i) SIZE - length and width if both are defined, diameter if
major and minor axes are equal or undefined.
(iii} INTENSITY (LIGHTNESS).
(iv) POSITION.
(v} TERMINATION POINTS.

What drawings tell us

In order to make the second step of my argument, | must digress
awhile on the manifest variety of ways in which we can interpret simple pencil
drawings that lack semantic content, The point | wish to make is that from our
ability to interpret certain kinds of drawings, we can infer with some confidence
that certain kinds of symbolic process must exist in our visual systems. Let us
take an extreme example first. In figure 7a there is little doubt that some process
somewhere is creating a circular contour, and that the "places” in the image that
are giving rise to that contour are the inner ends of the radial lines. One cannot
argue that Fourier detection methods will produce it for one, because it really is
not there. This contour is not being detected, it is being constructed. Figure 7b
shows another example in which "ends of things" are baing formed into a
perceptually vivid contour.

Fram these two rather strong examples, we see that abstractly
defined places in an image can be assembled into contours that have a definite
perceplual existence, despile the absence of apparent semantic content in the
image. If one approaches these phenomena from a computational point of view, it
is natural to think of this process as occurring in two steps. Firstly, certain things
in drawings can cause “places” lo be defined in some abstract sense. Secondly,
"places”, once defined, can be apgregated in various Ways. .

Having realized this, one immediately wants to know in what WaYs
places actudlly can be defined, and in how many different ways they can be
aggregated. A betler feel for the problem can be gained by looking at the rest of
figure 7, and al figure 8. We are forced to conclude that “places™ may carry
intrinsic orientation information, and that this crientation information may or may

not be Used (figures 8d and 7c). Indeed these two silustions can occur in tha
same figurae (7e).



FIGURE &

B. The difference between the primal sketch and a feature-point is brought out by
the image 6a. A measurement taken with a large mask (6b) could generate a
feature-paint, bul it would not be used in the computation of the primal sketch.
This is because the sharp contrast changes force the use of measurements from
small masks (&c).



 FIGURE 7

C
.
5 &)

S\

\Nﬁ\ag\ﬂf
. o o o d
r 7 o I
WAL oo
I
- — In A
e. f

7. These drawings provide evidence for the action of saveral symbolic processes
during our perceplion of them. In particular, the circular “contour” in 7a, and the
linear one in 7b, are being constructed, not detected.



We see from these examples thal the aggregation of places can
occur in two broad ways: clustering into groups that often have computable
boundaries, and the assembling of places into curves or lines, which | call
curvilinear aggregalion. In the case where there is an orientation associated with
the place, aggregation can either use or ignore it. If the orientation is used, there
are two possible ways: the aggregation can either follow the intrinsic criantation,
or it can proceed in a fixed orientation relative ta it (figure Bc). If the number of
places involved is very small (less than 5 say), the places may form a standard,
named configuration (see figure 9) which is evidently described relative to an axis
which is imposed on the figure, and whose default value is the vertical.

interestingly, procedures for implementing each aggregation
technique are quite straightforward, They have a common flavor; a mixture of a
simple local process cperating everywhere over the image, together with a
sensitivity to, and the ability to generate, one or two straightforward global
measures. To give you an idea of their simplicity, | shall outline one of them, which
we call theta-aggregation. Thela-aggregation is the process by which oriented
items are aggregated in a direction thal differs from their intrinsic crientation. The
difficult part about it arises because measures of the "averlap” of two oriented
items depends upon the angle, theta, thal the final aggregate makes with each local
unit (see figure 10). So theta delermines the aggregation process, but also
depends upon it. For good data, it may be quite unnecessary to know theta; place
aggregation that ignores theta will suffice to compute the aggregate. In general,
however, one will need to take theta into account, as we shall shortly see.

Viewed from a very abstract level, this computation may be regarded as a process
of solving a large number of rather simple equations. In practice, a network with
feed-back will sclve it, where the information being fed back is theta. We have
implemented an iterative version of this process, and some resulls are displayed
later on

In summary then, the argument of this section has been that our
ability to interpret certain simple drawings shows that we can bring certain highly
symbalic processes to bear on the analysis of drawings whose semantic content is
small. | summarize the precesses thal appear to be available below, even though
space has nol permitted mention of several of them.

PLACES may be defined by: -

(P1} The position of a blob, or of an edge or line that is not too long. _
(P2} The end of an edge or line that is not too shorl, or of a blob with long major
axis and short minor axis.

(P3} A small aggregalion of places.

The definition is slightly recursive. This is to be expected, since the assertions



produced by one aggregaticn process are presumably written into the same active
geometrically organized storage processor as is the primal sketch. The precise
boundary between "too long" and "too short® can be left to individual taste,
because near it, bolth definitions will usually lead to the same aggregations. Thae
boundary needs o be in the region of 0.5 to 1| degrees of arc at foveal resclution.

AGGREGATION may proceed in the following ways:

(1) Clustering nearby places, using the methods about as complex as Bl or B2 of
Jardine & Sibson (1971), but which are sensitive to global paramelers of size and
average densily. Clustering facilities that appeer to have about this complexity can
oparate on patterns of dots in most human visual eystams (see eg Julesz (1971
pp 105ff), er recently O'Callaghan (1974a)).

{2) Curvilinear aggregalion: aggregation that has a (local) erientation, and which
produces contours by joining nearby, aligned places. It is probable that only first
and second nearest neighbors need be considered by the local components of
these processes, but some global information is also generated and used [see
O'Callaghan (1974a and b} for access lo recent literature on dot-grouping studies,
and Marr (1976)]

{3} Theta-aggregation, the grouping of local, similarly oriented items in a direction
that differs from the intrinsic orientation, but in a manner which uses it.

(4} If the number of places is small (< 5), the configuration formed by the places
may be described relative to some specified axis by means of a special
configuration datastructure (See Marr 13976).

Global Measures on the Primal Sketch

Before the digression of the last section, we had reached the
point of defining the Primal Skelch, and of showing how to compute most of the
quantities in it. We also saw the primal skeich of a very straightforward image, of
a cylinder. The primal skelch is rarely as simple as that, however. Figures 12 and
13 contain examples of the primal skelches of more complex images, and, as one
might expect, they are in general large and unwieldy collections of dala.
Furthermore, it is difficult to see how the complexity of the primal sketch could be
an artifact of our particular choice of primitives: images really are complex in this
Way. ~

The unwieldy nature of the primal sketch is therefore something
with which we have to live, and turn to our advantage if possible. The
fundamental problem of the next stage of the analysis is simply stated: how do

‘we select out from the primal sketch those regions that should be treated as unit
ferms by subsequent descriptive processes; and is it possible to do this without



~ FIGURE 8

.. %llllH||illllﬂl!lllﬂlﬂllﬂﬂllH]lII

——
——
——
1
=—rr=
—
=
—
—
=
)
—
f—-- -
———
e
e
§orm——

o=
== e—
—a
S e—
—
=
r—
e ra
—
—
——
RS
e
p—
e
===
e
 ——
—

A

W

8 lThese drawings exhibil aggregation processes thal take some account of the
orientation present at the aggregated places.




complex interactions between the primal sketch and higher-level knowledga? In
perceptual teems, the computaticnal problem that we must now address
corresponds to distinguishing between figure and ground, and it is strongly related
to the problem of texture vision (Julesz 1971).

From an abstract paint of view, the primal skelch is simply a
large body of data. There is therefore no difficulty in extracting frem it certain
simple global measures and statistics. In particular, we shall assume that the
fallowing measures are automatically available from any primal sketch:

MEASURES taken over moderately sized regions (0.5 to 1.0 degrees at foveal
resolution) of the primal sketch:

MO. The total amount of contour, and number of biobs, al different contrasts and
intensities,

M1. ORIENTATION: the tolal number of elements al sach orientation, and the total
contour length at each arientation -- the crientations being divided into about 12
discriminable buckets, Detection of the existence of one, two, or three
predominant orientations, and the recognition of distributions that have substantial
amounts of contour in more than three orientations.

M2. SIZE: measurement of the mean and variance of the size parameters defined
in the primal sketch.

M3. INTENSITY: measurament of the mean and variance of the lightness of items
in the primal skelch

M4, SPATIAL DENSITY: mean and variance of the nearesl neighbor distances, and
possibly the mean second-nearest neighbor distance. There is no compulational
problem in obtaining these measures.

Texture Vision

There are three parts lo the problem of texture vision, How
does cne discriminate between textures, and hence form regions from texture
differences? How does one describe the shapes and dispesitions of the regions so
obtained” And finally, how does one interpret a texture, in the sense of
understanding the structure of the surface that gave rise to it? Only the first of
these will be dealt with here.

There are several current ideas on texture processing. Some
authors have used Fourier technigues, and in cerlain circumstances, the spatial
power spectrum can successfully separate different regions (Bacjsy 1972). Others
have construcled specialized operators which when applied to an image somatimes
discriminate between regions with different texture. Probably the earliest
example of this was the Roberts gradient (Roberts 1963). The most interesting



FIGURE 9
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9. Examples of "standard configurations” that we have found it useful to recognise.
The reader will probably perceive them relalive to a vertical axis. The VEE
shewn in 9f is used in figure |5e.



FIGURE 10

10. The measure of the overlap of two adjscent, parallel lines depends on an
external angle, theta. In 104, thela is 30 degrees, which is the value at which

iteration begins.



and comprehensive propesal is due to Julesz, Frisch, Gilbert and Shepp (1973),
[see also Julesz (1975)], whe showed that visual textures that differ only in their
third or higher order statistical structure are rarely perceptually discriminable;
whereas visual textures that differ in their first or second order statistics can
almost always be distinguished. The important point about this finding lies in its
demonstration of the essential simplicity of texture processing. Although it gives
no insight inte the exact nature of the processing, it does imply that all coefficients
of third and higher-order terms in its Volterra series expansion are zero,

We have now reached the core of this article. We saw in the
last section that certain computational facilities exist and are deployed during our
reading of certain kinds of drawings. The facilities were summarized as processes
P1-3 and Al-4 on page 14. It is, of course, possible that their existence is no
mare than a happy accident, which fortuitously allows us to interpret the idle
scribblings of the artistically gifted The central thesis of this article is that these
processes are avallable precisely because they are needed to help interpret the

primal sketch; and furthermore that these symbolic processes, together with first-

order discriminations based on the messures MO-4 defined on page 15, are
sufficient to account for the range of texture discriminations of which we are
capable, within the class of images to which this article is restricted. In other
words, texture vision is actually implemented nat by second-order aperations on
the image, but by first order discriminations, together with a small number of
grouping operations, acting on the primal sketch of the image. Julesz (1975 p43)
mentioned in an aside the possibility that texture vision may rest on "“first-order
statistics of various simple fealure extractors™ but this idea requires the concepts

of the primal sketch and of the aggregation primitives before it can be brought to
fruition.

So that the reader may form an intuitive grasp of the central
thesis, let us re-examine two of the textures devised by Julesz, and follow this
with some examples of the texture analysis run on the images whose primal
skelches we saw earlier. Firstly, consider figure 11. Julesz notes that in 11a, the
two regions have distinct second-order statistics, but not in figure 11b. Hence,
according to his rule, the two regions are distinguishable in 11a, but not in 11b.
Now consider our new explanation of this. Orientation measures are the only
distinguishing feature of the primal sketch representation, because everything else
has carefully been held constant. In 11b, the two basic slements are related by a
180 degree ratation, and so the orientation statistics to which they give rise are
identical. Hence the two regions are indistinguishable. In 11a however, there is
mare contour at O degrees than at 30 degrees in the central patch, but the
opposite is true in the surround. Hence the two regions are immediately
distinguished,

The second example appears as figure 11c. Some of the modules
in the pattern have been reflected about & vertical line through their centers.
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11. Examples of textures devised by Julesz. All three contain a square region
which differs from the background, but only in 11a is it immediately discernable.
The theory provides an explanation of all of them.



FIGURE 12

COARSE I|MAGE DESCRIPTORS

b. (used In primary control of texture analysis)

Orientatlon Buckets are 15° wide

ORIENTAT ION

(degrees) @ 15 30 k5 60 75 90 105 120 135 150 165
iTens 6 12 oz 3z 1 3 &z s 4w
Tﬂ{::nﬁﬁwma 256 264 15 25 14 10 998 34 23 3 25 207

12. 12a gives a rendering of the primal skelch of the image of figure l1a. 12b
shows some measuras made on il. Theta aggregation has decoded the texture that

is present, and the aggregates are displayed as the mosaic 12c.
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13. 13b shows a rendering of the primal sketch of 13a. 13¢ gives the associated
orientation-dependent statistics. The predominance of items at 60 degrees causes
theta-aggregation to be attempied at this crientation. The default selling of thata
produces the aggregate 13d From this, thela is found, and the aggregation process
then extracts the stripes successiully {13e - i),



Their second-order stalistics are therefore different. This is an example in
which Julesz's generalization fails.

The statistics of the orientations of the contours are however unchanged in
this particular instance, because only vertical and horizontal orientations are
involved. Hence the present theory predicts that the two regions are in fact
indistinguishable.

Now let us look at some real images. Figure 12a shows the
primal skelch of the chair whose image appeared as figure la, and figure 12b
gives some of its orientation stalistics. The first thing to realize about this image
is that it is textured at all. The texture is so simple that one easily overlooks it
Yet the texture exists in exactly the sense of this article, and the process that
succeeds in decading it is thela-aggregation Figure 12¢ shows the resulls of
running the theta-aggregation procedures on this image, and each element in the
mosaic conlains just cne aggregate.

We see from this example a glimmer of the power of texture
vision. Using one knowledge-free technique, we have separated the chair from its
backgreund, and alse separated the problem of divining the overall three-
dimensional shape of the chair frem the analysis of ils surface properties. Each of
the aggregates can be described simply by position, orientation, and extent; and
this produces a skeleton of the cutline of the chair. By considering separately the
structure of just one aggregate, one could go on to compute a description of the
surface structure of the material out of which the chair is made.

The next example shows a more difficult case of thata-
aggregation. The image is taken from Brodatz (1972, plate D11), and the intensity
values are shown in 13a. Figure 13b shows an approximation to the primal sketch
Contours of all intensities, lengths, and orientaliens are shown, and as one would
expect from an image of this complexity, 13b has a somewhat messy appearance.
Figure 13c gives statistical information about this image, from which it is evident
that items at an orientation of around 60 degrees are strongly predominant. The
average length of items at this orientation is 13, These coarse measures cause
the texture analyzer to attempt to group the edges at this orientation. Initially,
the direction in which grouping should take place is unknown, so a default of 150
degs (= B0 + 90} is assumed, and stringent grouping parameters are used. This
leads to the primary cluster shown in figure 13d. From this, the correct direction
is oblained (-88 degs), and the clusier process then groups the items into the-
stripes shown in 13e, f, g, h, and i. This completes primary texture processing.
Once the primary stripes have been obltained, another stage of theta-aggregation
serves to relate the siripes to one-another. Notice that in this image, some of the
stripe information has been picked up directly from intensity values (see figure
13b). This would not be true of a more herring-bone texture, and the analysis
does not depend upon it. Our present system is successful al processing herring-
bone lextures of similar complaxity in which the two types of stripe have the



FIGURE 14

14. Curvilinear aggregation cperating on the primal skelch shown in figure 5S¢
produced the elements 14a, b & ¢ Once larger units have been oblained, the

governing paramelers can be relaxed, and the elliptical form (14d) is obtained. At
this point, the system is unaware of its shape.



15. This image of a toy bear (15a) has the primal sketch illustrated in 15b. The
three principal forms extracted from 15b appear in 15¢, d & & The items in 15a
are classed as BLOBs, and the configuration that they form is recognised as a VEE
{figure 9f) with modifier FLAT. The axis relative to which this description was
computed is the vertical (default value).
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same average reflectance,

Next, we give an example of a simple kind of curvilinear
aggregation. The local elements of the primal sketch of the cylinder shown in
figure 5 are grouped using tight, conservalive techniques inte the units shown in
figure 14a, 14b, and 14c. These are then gathered using slightly weaker
constraints into the form shown in 14d. Notice that the contrast across the top-
left portion of the form has the opposite sign from the contrast elsewhere.
Curvilinear aggregation depends on local information about how well two adjacent
segments match; and on global information that includes for example whether the
complete form is closed. The global measures can affect the local choice of
segment in those infrequent cases where no candidate is to be preferred on
purely local grounds (see Marr 1976).

Finally, an example of several types of analysis appears in the
image of a toy bear (figure 15a). The primal skelch appears in 15b. The contours
of his face and muzzle appear in 15¢ and 15d, and the three blobs that come from
buttons that stand for his eyes and nose appear in 15e. The three blobs define
three places, which in turn pravoke a specific configuration description relative to
the default axis, which is the vertical.

The examples given here do not prove the central thesis of this
article. This will need to be tested by experimenting with considerably more
images than the twenly or so with which we have dealt hitherto. But they give us
grounds for believing it to be a reasonable theory of the computational mechanisms
that underlie texture vision and the separation of figure from ground. A more
complete report is in preparation (Marr 1976).

The influence of higher-level knowledge and of purpose on visual
information processing

Perhaps the most novel aspect of these ideas is the notion that
the primal skelch exists as a distinct and circumscribed symbolic entity, computed
autonomously from the image, and operated on by a number of local geometrical
processes, semi-local measures, and first-order discriminations. In a computational
sense, the primal sketch is a very active structure. The information written into it
depends on the image, but lurking active in ils fabric lie several highly abstract
_geometrical and statistical processes. It is the direct analog for the class of images
studied here of the Cyclopean retina that Julesz (1971) wrote of for binocular
vision. More subjectively, it correspands very closely to the "image™ that one is
conscious of. This reflects the computational hypothesis that all subsequent
analysis reads the primal skeich, not the data from which it was computed. The
primal skelch therefore acts in a genuine sense as the interface at which visual
analysis becomes a purely symbaolic affair.



If it turns out to be true that texture vision is successfully
implemented by approximately the set of processes that has been defined in this
arlicle, it will mean that visual “forms” can usually be exlracted from the image by
using knowledge-free techniques. In other words, the extraction of a visual form
can usually precede its description. From this it follows that it is usually easy to
compute a coarse descriplion of a form,

it is difficult to overstate the importance of this for determining
the structure of subsequent recognition processes. It means that one can see the
shape of the forest without first computing detsiled descriptions of all the treas;
that one can compute the cluster of blobs that forms a distant village
independently of deciding that some of those blobs are actually buildings. In the
more mundane example of figure 15, cne can compute that the overall shape of
the top form is roughly ovoidal without first having to segment out and describe
separately the bumps that are the bear's ears. Furthermaore, it suggests thal the
role of higher level knowledge in this process is not only very restricted, but is
also different in kind from its intervention in programs like Shiral’s (1973). It does
not atfect the line-finding stage (the computation of the primal sketch) at all. Its
most usual modus operandi is in choosing which processes are to be used to read
the primal sketch -~ for example by specifying which texture predicate should be
used on the image to select the parls of current interast It can also apply certain
limited kinds of flags to critical segments during their aggregation into forms. The
coupling between higher-level knowledge and the form-extraction processes is
however much weaker than the coupling between the different form-extraction
processes,

It is clearly desirable to have some control over which of the
possible forms in a figure should be delivered at a given moment from the primal
skelch. For example, in the image BEAR there are three possible major forms; the
outline of the head, the muzzle, and the three blobs that represent his eyes and
nose. It seems probable that only one of these should be made available at a tima,
and this in turn raises interesting questions about the order in which it is done, the
way in which the three forms and their relative positions are described, and the
way in which those descriptions trigger a larger datastructure and are absorbed by
it. In living systems, which are powerful enough to operate in real time, the
control of the direction of gaze may be rather closely related to the order in which
these events take place. :
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