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ABSTRACT. Image ‘intensities have been processed traditional ly without
much regard to how they arise. Typically they are used only to segment
an image into regions or to find edge-fragments. Image intensities do
carry a great deal of useful Information about three-dimensicnal aspects
of objects and some initial attempts are made here to exploit this. An
understanding of how images are formed and what determines the amount of
light reflected from a point on an object to the viewer Is vital to such

a development. The gradient-space, popularized by Huffman and Mackworth
is a helpful tool in this regard.

This report describes research done at the Artificial Intelligence Labora=-
tory of the Massachusetts Institute of Technology. Support for the labora-
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AND HOW FOR SOMETHING COMPLETELY DIFFERENT

A case will be made for the usefulness of image intensities or gray
levels, Usually cne would like to forget about image intensities as soon
as possible, extracting only edge-fragments or regions before going on.
Huch of the work in image analysis has used Image intensities only to seg-
ment the image, based on differences in average image intensity or some
higher-order measure. A great deal of Information is contalned in the

image intensities, however, and there are ways of exploiting this fact.

Our approach is based on the belief that it is important te understand the
image-forming process if one is to construct models of the world being
imaged. It is not sufficient te try an assortment of statistical, compu-
tational, or signal-processing tricks that come out of a bag of procedures

that has proved useful in some other domain.

Using an understanding of the visual effects of edge imperfections and
mutual illumination, we will be able to suggest interpretations of lines
based on image Intensity profiles across edges. A "sharp peak" or
edge-effect will Imply that the edge is convex, a "roof" or triangular
praofile will suggest a concave edge, while a step-transition or discon-
tinuity accompanied by neither a sharp peak nor a roof component will most
ITkely be an obscuring edge. This latter hypothesis is strengthened sig=

nificantly if an "Inverse peak' or negative edge-effect is also seen.

Next we will show that the image intensities of regions meeting at a joint

corresponding to an object corner allow one to determine fairly accurately



the orientation of each of the planes meeting at the corner. The three-
dimensional structure of a polyhedral scene can thus be established with=

aut the use of size- or support-hypotheses or a Finite catalogue of models.

Finally we will turn to curved objects and show that their shape can be
determined from the intensities recorded in the image. The approach to
this problem presented here is supported by geometric arguments and does
not depend on methods for solving First-order non-linear partial different-

ial equations. It is instead a synthesis of the previous shape-from-shading

method and the gradient-space approach. [4,2].

The results presented here depend to a large degree om geometric imsight
gained by using the gradient-space approach popularized by Huffman and
Mackworth. [1,2,3,9]. Approaching the image analysis problem in the way
proposed in this paper leads to the ability to prove or disprove that cer-
tain features can be extracted from images. It is mot claimed, however,

that it makes any inrcads on the scene analysis problem.



DEVELOPING THE TOOLS

IHAGE FORMATION:

Our wsual visual world consists of opague bodies immersed in a transparent
medium. Since we cannot see into opaque objects, their surfaces are im-
pertant for recognition and description purposes. This special nature of
our visual world makes it reasonable to attempt to derive a model of what

is being seen from an image. The dimensionalities of the two domains match:
On the one hand, we have two-dimensional surfaces plus depth, on the other,

two image dimensions plus intensity.

If we are to exploit this observation we have to understand how images are

formed. There are two parts to this problem. One deals with the two image
dimensions and relates them to the surface coordinates, and the other deals
with the determination of what intensity will be recorded in the image at

each point.

PROJECTIOM:

First, let us look at the geometry of projection. For this purpose one
can replace a lens with a pin-hole at Its center. Straight lines then con-
nect points on the objects to their images =- these lines pass through the
pin-hole. If we let (x,y,z) be the coordinates of some point before the

viewer, and (x',y') its image coordinates, then

x' = (wfz)f and y' = (y/z)f



Here f is the separation of the image plane from the lens. It is conveni-

ent to superimpose the image plane onto the object space as follows:

(x.yz)

:ﬂ:mm.x

pé;;;;:;ilég

Above is the well-known perspective projection. Sometimesz [t s eon-
venient to consider a simpler case where objects are vary far away rela-
tive to their size. We can imagine looking at them through a telephoto
lens. The scene then will occcupy a small visual angle and the distance to

peints on the object will be almost constant in the projection equation.

®' = [ffrﬁ]x and y' = EFfzﬂ]y

This corresponds to orthographic projection.



SURFACE ORIENTATION:

In order to determine the light flux reflected in the direction of the
viewer from a particular surface element of the object, we will have to
understand the ]lght‘5nur:3, object-surface, viewer geometry. In particu-

lar, the surface arientation will play a major role,

There are various ways of specifying the surface orientation for a plane.
We can, for example, give the equation defining the plane, or the direction
of a vector perpendicular to the surface. If an equation for the plane

is ax + by + cz = d, then a sujtable surface normal is (a,b,c). In fact

we can rewrite the aguation (%,v,z)-{a,b,c) = d. To show that any line

in the surface is indeed perpendicular to the normal s=o defined, consider
any pair of points in the surface [:a,yn,zuj and Ex],?]+z]}, Connecting

Lhem and taking dot-products we find that {xufx.,vn—fl.zﬂ-zlj'[a,b,a] = 0,

Since we shall be interested in curved surfaces as well, we extend this
method for specifying surface orientation by applying it to tangent planes,
That is, the orfentation of the surface at a point fxﬂ,yn.zﬂ} 1s defined

ta be the arientation of the tangent plane constructed at that point. If
the equation of the surface is given as z = z(x,y), we can take an infinj=-
tesimal step (dx, dy, dz) in the surface and find that dz = zhdh + z?dy.
where z, and z? are the first partial derivatives of z with respect to x
and y respectively, Clearly, the equation of the tangent plane can be
written as z %+ zy -z~ d (where d = L ;?yﬂ - zu}. We can immedi-

ately construct a local normal fzx+:f,-l}.



It will be convenient to abbreviate the first partial derivatives as p and
g. The local normal then becomes (p,g,-1). It is clear that erientation
defined in this way has but two degrees of freedom. The quantity (p,q)

will be called the gradient.

local normal

tangent plane

[T~

IMAGE INTERSITY:

Hext we turn to the image intensity. This will be egual to the amount of
11ght reflected by the corresponding point om the object in the direction
of the viewer, multiplied by some constant factor that depends on the param-
aters of the image-forming system, To be precise, we have to think of in-
tensity as light flux per unit area and correspondingly also have to con-

sider the reflected light per unit area as seen by the viewer.

Now the amount of light reflected by a surface depends on its micro-struc-
ture and the distribution of the incident light. Constructing a tangent=
plane to the object's surface at the point under consideration, one Sees
that light may be arriving from directions distributed over a hemi-sphere.
One can consider the contributions from each of these directions separately

and superimpose the results.



The important peint is that no matter how complex the distribution of 1ight-

sources, and for most kKinds of surfaces, there is a unigue value of re-

flectance, and image intensity, for a given mrientgtiqn aof the surface.

We shall spend some time exploring that and develop the gradient-space image

in the process.

SINGLE POINT SOURCE:

The simplest case is that of a single point-source. It is easy to see that
the geometry of reflection in this case is governed by three angles, the
incident, the emittance, and the phase angles. The incident angle is the
angle between the incident ray and the local normal, the emittance angle
is the angle betwsen the emitted ray and the local normal, and the phase

angle is the angle between the incident and emitted ray [4].

N
== source
normal # 2T

Clearly the cosines of the three angles can be found simply by taking the
dot-product of the appropriate pair of unit vectors. The reflectivity

function is a measure of how much of the light incident on a surface ele-



ment is reflected in a particular direction. Roughly speaking, it is the
fraction of the incident light reflected per unit surface area, per unit

solid angle, in the direction of the viewer.

Let the illumination be E (flux/unit area) and the resulting surface lum-
inance in the direction of the viewer be B (Flux/steradian/projected area).
Frojected area is simply the equivalent area if the surface was not fore-
shortened, that is, if it was normal to the view-vector. The reflectivity

is simply defined as B/E. It is usuvally written 4(i,e.q).

Note that an infinitesimal surface element, dA, captures a flux E cos(i)dA,
since its surface normal is inclined 1, relative to the incident ray.
Similarly, the intensity I{flux/steradian) equals B cos(e)dh, since the pro-
Jected area is foreshortened by the Inclination of the surface normal rela-

tive to the emitted ray.

REFLECTIVITY FUNCTION:

Mathematical models have been constructed for some surfaces that allow
an analytical determination of the reflectivity function. Such techniques

have not proved very successful so far.

In general we may not just have a single point-source illuminating the
object -- other objects arcund it, for example, will contribute to the
incident light. |In this case, one has to integrate the product of the re-
Flectivity function and the Inclident light per unit solid angle over the

hemi-sphere visible from the point under consideration In order to deter=



mine the total 1Tght flux reflected In the direction of the viewer.

TYING IT ALL TOGETHER:

S0 far we have treated geometry and intensity separately. The normal to
the surface relates object geometry to image intensity. The normal Is
defined in terms of the surface geometry, and it alsc appears In

the equation for the reflected light intensity since the three angles de-
termining reflectivity depend on it. One could now proceed to develop
partial differential eguations based on this sbservation == it is more
fruitful to intreduce another tool first, gradient-space. This will allow
us to gain valuable intuitive insight into how one can exploit the detailed

understanding of image formation.

GRADIENT SPACE:

Gradient-space can be derived as a projection of dual-space or of the
Gaussian sphere, but it is easier for our purposes here to relate it direct-
ly to surface orientation [2]. We will concern ourselves with orthographie
projection only, although some of the methods camn be extended to deal with

perspective.

The mapping from surface orlentation to gradient-space is straight-forward.
If we construct a normal (p,q,-1) at a point on an object, it maps into the
paint {p,g) in gradient-space. Equivalently, one can imagine the normal
placed at the origin and determine its intersection with & plane at unit dis-

tance form the origin. If we write the equation for the surface = = z(x,v),



_'ID-

then a normal to the surface will be [:H.z?.-ll, where z, and z, are the
first partial derivatives of z with respect to x and ¥y respectively.

Clearly, p = zy énd q = z?.

We nead to look at some examples to gain a feel for gradient-space. Evi-=
dently a plane maps inte a point in gradient-space. A second plane parallel
to the first maps Inte the same point. What plane maps inte the polint at
the origin in gradient-space? A plane with normal (0,0,-1), that is, a

plane perpendicular to the view-vector (0,0,-1).

Having away from the origin in gradient-space, one finds that the distance
from the origin corresponds to the inclination of the plane with respect to
the view-vector == specifically, the distance from the origin equals the

tangent of the angle between the surface-normal and the view-vector, tan(e) .

If we rotate the object-space about the view-vector, we inﬁu;g an equal
rotation of gradient-space about the origin. This allows us ta line up
points with the axes and so simplify analysis. Using this technique it is
easy to show that the angular position of a peint in gradient-space carres-

pends te the direction of steepest descent on the original surface.ace.

Let us call the orthogonal projection of the original space, image-space.
Usually this is all that is directly accessible to us. Two planes inter-
sect in a line. Let us call the projection of this line the image=-1line.
The two planes, of course, also correspend to twe points in gradient-space.
The line connecting these two points is called the gradient-1ine. Thus, a

line maps into a line. The perpendicular distance of the gradient-space



=-11-=

line from the origin eguals the tangent of the inclination of the original

line to the image plane.

It can be shown that If the gradient-space were to be superimposed on the
image-space, an image-line would be perpendicular to the correspond ing
gradient-space line. Mackworth's scheme for scene analysis of line-drawings

of polyhedra depends on this cbservation [2].

TRI-HEDRAL CORNERS:

The points in gradient-space, that correspond to the three planes meeting at

a tri-hedral corner, have to satisfy certain constaints. The |ines connect-
ing these points have to be perpendicular to the corresponding lines in

image=-space.

IMAGE-SPACE GRADIENT-SPACE

This provides us with three constaints -- not enough to Fix the position of
three points in gradient-space. Three degrees of freedom are still undeter-
mined, namely the position and scale of the triangle., We shall see later
that measuring the three intensities provides enough information to dis-
ambiguate the orientations of the planes, and thus allows a determination of

the three-dimensional structure of a polyhedral scene.



GRADIENT=5PACE IMAGE :

The amount of 1Tght reflected by a given surface element depende on its
arientation and the distribution of light-sources around it, as well as on
the nature of its surface. For a given type of surface and distribution
of light-sources, there is a fixed value of reflectance for every orienta-
tion of the surface normal and, hence, for every point in gradient-space.
Image intensity is a single-valued function of p and g. We can think of
this as a gradient-space image. This is not a transform of the image seen
by the viewer. It Is, in fact, independent of the scene and a function of
the surface properties and the light-source distribution. Mote that we
have assumed that both viewer and light-sources are far from the objects

in the scene,

The use of the gradient-space diagram Is analogous to the use of the hodo-
gramor velocity-space diagram. The later provides insight into the motion
of particles in force fields that is hard to obtain by algebraic reasoning
alene. Similarly, the gradient-space will allow geometric reascning about

surface orientation and image intensities.
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MAT SURFACES AND POINT-SOURCE MEAR VIEWER:

Some examples will make this clear. Consider a perfect lambertian surface.
A perfect diffuser has the property that it looks equally bright frem all
directions and that the amount of light reflected depends only on the cosine
of the incident angle. In order to postpone the caleulation of incident,
emittance, and phase angles from p and q for now, we will place a single
light-source near the viewer. Then the incident angle equals the emittance
angle and is simply the angle between the surface nermal and the view-vector.
Its cosine is just the dot-product of the corresponding unit vectors.

That is,

eos(i) = (p,9,=1)-{0,0,-1) = 1/¥1 + p? + g*

|'I-.Prqh_”| | {D-D-‘Iﬂ

The same result could have been obtained by remembering that the distance
from the origin in gradient space Is the tangent of the angle between the

surface-normal and the view-vector:
Vo2 + g2 = tan(e) and costle) = 1/[1 + tan?(e)] and & = | here.

IT we plot reflectance as a function of p and q, we get a central maximum

of one at the origin, and a circularly symmetric function that monotonically
falls to zero as one goes to Infinity in gradient space. This is a nice,

smooth gradient-space image, typical of mat surfaces.

A given image intensity corresponds to a simple locus in gradient-space, a



eircle centered on the arigin. A measurement of image intensity tells us

that the surface gradient has to be one that falls on a certain circle in

gradient-space,

UNIFODARM TLLUMINATION:

Note that the case of uniform [l1lumination is quite similar to the situ-
ation where the light-source Is near the viewer. For a start, there are
no shadows in either case. Secondly, in both cases the reflectivity can be
written as a function of the emittance angle alona. In fact, we can define

an eguivalent reflectivity function,

¢'(e) = 2 /T o#li,e,a) sin(1) dadi
¥ E

far the uniformly Illuminated surface. Here A is the azimuth angle defined by

cos(g) - cos(i)cos(e)

cosl(A) =
sin(i)sin(e)

In general, the light=source is not 1ikely to be near the viewer, so
we wWill have to explore the more complicated geometry of incident and emittred

rays for arbitrary directions of incident light at the object.
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Contours of constant E = cosf{e). Contour intervals are .1 units wide.
This is the gradient-space Image for objects with lambertian surfaces

when there is a single light-source near the viewer.
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INCIDENT, EMITTANMCE, ANMD PHASE ANGLES:

For many surfaces the reflectance is a smooth function of the incident,

emittance, and phase angles.

NI/
=( J= source
normal $ (s

viewer

It s convenient to work with the cosines of these angles, | = cos(i),
E = cos(e], and 6 = cos{g) -- since these can be obtained easily from dot-
products of the three unit vectors. Suppose for now that we have a single

distant light-source and that its direction is given by a vector {pg,qs,—]J1

The view=vector is (0,0,-1), so:

= |;fﬁ + pEE + qsﬂ, E= 1/¥1 + p? + g2, and

T=1(l+pp+ qsq}fifi +pZ+g2 e+ p% 4 g 2) = (14 p P *+ q_a)EG

Evidently it is simple to calculate I, E, and G for any point in gradient=
space. In fact G is constant given our assumption of orthogonal projection

and distant light-source. We have already seen that the contours of constant



E are circles In gradient-space centered on the origin. Setting | conmstant
gives us a second-order polynomial in p and g and suggests that loci of
constant | may be conic sections. The terminator, the line separating
lighted from shadowed regions, is a straight line, obtained by setting

i = 7/2., Here I = 0; that is, | + PP *a.9=0. Similarly, the locus

af T =1 is the single point p = P, and q = q_-
A geometric way of constructing the loci of comstamt I is to think of the
cone generated by all directions that have the same incident angle. The
axis of the cone is the direction to the light-source (pi.qi.-l}. The
correspond ing points in gradient-space are found by Intersecting this cone
with a plane at unit distance from the origin. Varying values of I will
produce cones with varying angles. These cones will form a nested sheaf.
The intersection of this nested sheaf with the unit plane will be a nested

set of conic sections.

| f we measure a particular image intensity, we know that the gradient of

the corresponding surface element has to fall on a particular one of the
conic sections. The possible normals are then confined to a cone. In this
case this is simply a circular cone. In the case of more general reflectivi-
ty functions, the locus of possible normals will constitute a more gemeral

figure called the Monge cone.
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Contours of constant I = cos(i). Contour Intervals are .l units wide.

The direction to the source is ipi,qi} = (0.7,0.3).

This is the gradient=space image for objects with lambartian surfaces

when the light=-source (% not near the viswer.
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SPECULARITY:

Many surfaces are not completely mat, having some specular reflection from
the outermost layers of their surface. This Is particularly true of sur-
faces that are smooth on a microscopic scale. For specular reflection we
have i = e and the Incident, emitted, and normal vectors are all in the

same plane. Alternatively, we can say that | + & = g. In any case, only
one surface orientation will be just right for reflection of the light=
source towards the viewer. That is, perfect specular reflection contributes

an impulse to the gradient-space image at a particular point.

In practice, few surfaces have such perfect specularity. Instead they
reflect some light in the direction slightly away from the geometrically
cerrect direction [B]. It can be shown that the cosine of the angle betwsen
the direction defined by perfectly specular reflection and any other direc-
tion 1s (2IE-G). This will clearly equal one in the correct direction

and fall off towards zero as one increases the angle to a right-angle.

By taking varicus functions of (2IE-G) one can construct more or less com-

pact specular contributions. Raising this function to some large power,

for example, will do.

A good approximation for some glossy white paints can be obtained by com=
bining the wsual mat component with a specular component defined in this
way. For example, $(I,E,G) = %s(n + 1)(2IE - G]n + 01 = )1 will wark,
Here s wvaries between 0 and 1 and determines the fraction of Incident
light reflected specularly before penetrating the surface, while n deter-

mines the sharpness of the specularity peak in the gradient-space image.
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m

tontours for ¢0,6,6) = Ns(n + 1)(21E = )" + {1 - 5) . This is the gradient=
space image for a surface with both a matt and a specular component of re-

Flectivity [lluminated by a single point-source.
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FINDING p AND g FROM I, E, AND G:

In order to explore further the relation between the specification of
surface orientation in gradient-space and the angles invalved, we shall
salve for p and g, given I, E, and G. We have already shown that it is
simple to perform the opposite operation. One way of approaching this
prablem is to try to solve the polynomial equations in p and g derived
from the equations for 1, E, and G. This turns out to be messy, but it
can be shown that:
p=p cos(a) - g" sin(8)

q=p' sin(8) + q' cos(8)
Whare
pl- IHE_G] and q'-%
1 -6 I -G

82 = 1 + 2IEG = (I2 + E2 4 §2)

p q
3 and sin(g) = =

? + g 2 CZ+aq2
ps * qS p‘5 * qE-

cos(a) =

It is irmediately apparent that for most values of |, E, and G, there are
two solution points inm gradient space. HNotice that & here is the direction
of the light-source in gradient-space; the line connecting {ps'qE} to the
origin makes an angle 8 with the p-axis. %o p' and g' are coordinates In

a new gradient-space obtained after simplifying matters by rotating the

axes until g, = 0 -- the light source is in the direction of the x'-axis.
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The next thing worth noticing about this set of equations is that if I/E
is constant, then p' is constant (remembering that G s constant anyway).
S0 the loci of constant I/E are straight lines. These lines are all para-
ITel to the terminator, for which I = 0. This turns out to be important

ince some surfaces have constant reflectance for constant I/E.

AN
LN

Contours of #(I,E,G6) = IfE. Contour intervals are .2 units wide. The

reflectivity function for the material In the maria of the moon Is eon=

stant for I/E.
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METALLIC SURFACES:

Consider next a metallic surface, a surface with a purely specular reflectance.
Each point in gradient-space corresponds to a particular direction of the surface
normal and defines a direction from which incident light has to approach

the object in order to be reflected towards the viewer. In fact, in gradient-
Space we can produce a complete map of the sphere of possible directions as
seen from the object. At the origin, for example, we have the direction
towards the viewer. |If we record an intensity in the gradient space corres-
ponding to the intensity arriving at the object from the corresponding direc-
tion we obtain a picture of the world surrounding the object. In map pro-
Jection terms we have a plane projection of a.sphere with one pale of the
sphere as the center of projection. Another way of looking at it Is that

the image we construct in this fashion is 1ike one we would obtain by look-

ing inte a convex mirrFar -- a metallic paraboloid to be precise,

What can we do with this strange image of the world surrounding the object?
If we measure a certain intensity at a given point on the object, we can

now say something about the orientation of the surface at that point. We
cannot uniquely determine that orientation, but we do know that [t i= re-
stricted to a sub-set of all possible orientations. We have one constraint
on it -- It has to be one of the points in gradient-space where we Find

this same value of intensity. |If the world surrounding the object Is at

all complex, this sub-set will tend to be wvery disconnected and complex,

and not much help in recovering the shape directly. There are exceptions --

light-sources, for example, tend to be compact and very bright, correspond-
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ing to definite easy-to-locate points in gradient-space. For points with
such high reflected light intensity in the image we can often locally de-

termine the surface normal uniguely.

We have now developed methods for constructing gradient-space images for
various surfaces and distributions of light-sources. The latter is done
simply by superimposing the results in gradient-space for each light-
source in turn. We will now turn to a minor flaw in this approach and

attempt a partial analysis of mutual 11lumination.

Gradient-space image for a metallic object in the center of a large wire
cube. Equivalently one can think of it as the reflection of the wire cube
in a paraboloid with a speculariy-reflecting surface.



MUTUAL ILLUMINATION:

The gradient-space image is based on the assumption that the viewer and

all light socurces are distant from the object. Only under these assump-
tions can we associate a unique value of image Tntensity with every surface
orientation. If the scene consists of a single convex object these assump-
tions may be satisfied, but when there are several highly reflective ob-
Jects placed near one another, mutual illumination may become important.
That is, the distribution of incident light ne longer depends anly on direc-
tion only, but is a function of position as well. The general case is very
difficult to deal with and we shall study only some idealized situations
applicable to scenes made up of pelyhedra. There are two primary effects
of mutual illumination: a reduction in contrast between faces, and the
appearance of shading or gradation of light on images of plane surfaces.

In the absence of this effect, we would expect plane surfaces to have
polygonal images of uniform intensity since all points on them have the

same orientation.

TWO SEMI=INFINITE PLANES:

First let us consider a highly idealized situation where we have two semi-
infinite planes joined at right angles, and a distant light-source. Let

the incident rays make an angle a with respect to ome of the planes. Further
assume that the surfaces reflect a fraction r of the light falling on them,

and that the illumination provided by the source is E (light flux/funit area).
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E,

Picking any point on one of the half-planes, we find that ane-half of its
hemisphere of directions is occupied by the other plane, so one=half of

the light radiated from this point will hit the other plane, while one-half
will be lost. Since both planes are semi-infinite, the geometry of this
does not depend on how far from the corner we are. MNow, the light incident
at any point is made up of two components, that received directly from the
source and that reflected from the other plane. It Is not hard to see that
the intensity on one plane will not vary with distance from the corner --

a point receives reflected light from one-half of 1ts hemisphere of direc-
tions no matter how far from the corner it is. Put another way, there is
ne natural scale factor for a fluctuation in intensity. Let the illumina-

tion of the planes he E] and E, (light fluxfunit area).

Ey = %E; + E cos(a)

E, = 4E, + E sin(a)



salving for E] and EE' ane gets:

m
]

Efcos(a) + %r sin(al]/[1 - (%r)2]

E, = Elsin(a) + e cos(a)]/[1 - (kr)?]

Had we ignored the effects of mutual illimination we would have found
EI = E cos(x) and E, = E sin{a). Clearly the effect increases with In=
creases in reflectance r; it is not significant for dark surfaces. When

the planes are equally illuminated, for o = 7/k, we have:
Ep = E, = (ENVZ)/(1 = %r)

When r = 1, this is twice the ilTumination and hence twice the brightness

that we would have obtained in the absence of mutwal 1lumination.

If the angle between the two planes is varied, one finds that the effect
gets larger and larger as the angle gets more and more acute. One can
get arbitrary "amplification' by choosing the angle small enough. Con-

versely, for angles larger than =/2, the effect is less pronounced.

In the above derivation we have not made very specific assumptions about
the angular distribution of reflected light, just that it does not depend
on where the incident ray comes from and that it is symmetrical about the
normal. 50 a lambertisn surface would be Tncluded, while a highly specular

one would not.  Indeed, the effect s less proncunced For surfaces with a



high specular companent.of reflection, since most of the light is bounced

back at the source upon second reflection.

Ancther important thing to note Is that if the planes are not infinite,

the above calculations apply approximately at least close to the corner.
For finite planes we expect a variaticon of intensity as a function of
distance from the corner, but asymptotically, as one approaches the corner,

the results derived here will apply.

TWO TRUNCATED PLANES:

If the planes are of finite extent, the geometry becomes quite complex, but,
if one allows them to be infinite along their line of intersection and
truncates them only in the direction perpendicular to this, one can develop
an integral equation. Suppose they both extend a distance L from the corner,
and are joined at right-angles and that o = n/b., This produces a particular-
Iy simple form of this integral equation -- which nevertheless | have been
unable to solve analytically. MNumerical methods show that the resultant
illumination falls of f monotonically from the corner, that the value at

the corner is Indeed what we predicted in the previous sectien, and that

near the corner, the fall-off s governed by a term in —{xILj{I B hr)_

For r = 1, for example, this containt the square-root of (x/L) and there

is thus a cusp In the function at the corner. (Here x is the distance

aloeng the plane from the edge where the planss meet).
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a

Surface luminance plotted versus fractional distance from a right-angle

corner. The curves are for reflectances of .2, .4, .6, .B, and 1.0.
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Surface luminance plotted versus {fo}{l to illustrate asymptotic

behavior near the corner. The curves correspond to reflectances of

2, 4, .B, .B, and 1.0,
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THE MAIN RESULTS

THE SEMANTICS OF EDGE-PROFILES:

IT polyhedral objects were perfect, there was no mutual illumination,
image sensors were perfect and light sources distant from the scene,
images of polyhedral objects would be divided into pelygonal areas, with
intensity uniform inside each polygon. It is well known that there is
variation of Image intensity within these pelygonal areas in real images
and that an intensity profile taken across an edge separating two such
polygonal regions does not simply have a step-shaped transition in inten-
sity. Herskovitz and Binford determined experimentally that the most
common edge transitions are step-, peak-, and roof-shaped [F]. This has
30 far been considered no more than a nuisance, since 1t complicates the
process of finding edges. Here we will diseuss the interpretation of these

profiles in terms of . the three-dimensional aspects of the scene.

STEP

PEAK

ROOF
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IMPERFECTIONS OF POLYHEDRAL EDGES:

A perfect polyhedron has a discontinuity in surface normal at an edge.

In practice edges are rounded off somewhat. A cross-section through the
object's edge shows that the surface normal varies smoothly from one value
to the other and takes on values that are linear combinations of the sur-

face mormals of the two adjoining planes.

What does this mean in terms of reflected light intensity? Instead of a
sudden jump of Intensity from a value corresponding to the one surface normal
to the other, the intensity varies smoothly. The important point is that it
may take on values outside the range of values defined by the two planes.

The best way to see this is to consider the situation in gradient-space.

The two planes define two points in gradient-space and tangent planes on

the corner correspond to points on the line connecting these two points.

IT the image intensity is higher for a point somewhere on this line, we will

see a peak in the Intensity profile across the edge.

0, if we find an edge-profile with a peak-shape or a step with a peak supar-
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imposed, it is most likely that the line should be labelled convex. The
converse is not true, an edge may be convex and not give rise to a peak,
if the line connecting the two points in gradient space has intensity
warying monotonically along its length. The identification is also not
completely certain since under pecullar lighting conditions and with ob-
Jects that have acute angles between adjacent faces, a peak may appear at

an obscuring edge.

Notice that the peak is quite compact, since it only extends as far as

the rounded-off edge does.

At a cormer, where the planes meet, we find that surface imperfec-

tions provide surface normals that are linear combinations of the three nor-
mals corresponding to the three planes. In gradient space this corresponds
to points in the triangle connecting the three points corresponding to the
planes. If this triangle contains a maximum In image intensity we expect

to see a high=light right on the corner.
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Image of tri-hedral corner and corresponding gradient-space diagram.

The image intensity profile across the edge between face A and face
B will have a peak or highlight. The others will not.
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MUTUAL |LLUMINATION:

We have already seen that mutual illumination gives rise to intensity vari-
ations on planar surfaces. The intensity falls off as one moves away Trom
the corner. MNear the corper, this fall-off is approximately

linear. Motice that this affects the intensity profile over a large dis-
tance from the edge, quite unlike the sharp peak found due to edge imper-
fections. Clearly, if we find a roof-shaped profile or step with a roof-

shape superimposed we should consider laballing the edge concave.

The identification is not perfectly certain, though, since some imaging
device defects can produce a similar effect, Image dissectors, for example,
suffer from a great deal of scattering and this has the effect that areas
further from a dark background are brighter. So one may see a smoothed
version of a roof-shape in the middle of a bright scene against a dark
background. Experimentation with high-quality Image input devices such

as the PIN-diode mirror-deflect jon system has confirmed that this j& an

artifact introduced by the image dissector,

Further, when the light-socurce is close to the scene, significant gradients
can appear on planar surfaces as pointed out by Herskovitz & Binford [7].
Lastly, the roof-shaped profiles on the two surface may be due to mutual
iMlumination with cther surfaces, not each other. HNevertheless, a roof-

shaped profile does wsually suggest a concave edge,



_35_

OBSCURATION:

Step-shaped intensity profiles most often occur where objects ohscure

one ancther, although they can be found with convex and sometimes con-
cave cdges as well. |If the obscuring surface adjoins a self-shadowed
surface, however, edge imperfections will produce a negative peak on the
profile, since the line connecting the points corresponding to the two
surfaces in gradient-space then passes through the terminater. 5o a nega-
tive peak or & step with a superimposed negative peak strongly suggests
obscuration. It is unfortunately impossible to tell which side is the

ohscuring plane.
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Generation of a nﬁgat|ve pgah ar an nbﬁ:urlng Edgﬂ faclng away
from the light-socurce.



-38-

DETERMINING THE THREE=DIMENSIONAL STRUCTURE OF POLYHEDRAL SCENES:

The approach invented by Hackworth for understanding line-drawings of
palyhedra allows one to take into account some of the guantitative aspects
af the three-dimensional geometry of scenes [2]. |t does not, however,
allow one to determine fully the orientation of all the planes. The scale
and position of the gradient=space diagram is undetermined by his technigue.
To illustrate, consider a single trihedral corner. Here we know that the
three paints in gradient-space that represent the three planes meeting at
the corner have to satisfy certain constraints. Specifically, they must

Tie on three lines perpendicular te the image-=1ines.

O/ e

It takes six parameters to specify the position of three points on a plane,

50 we 5till have three degrees of freedom after introducing these constraints.
Measuring the three image intemsities of the planes supplies another three.
The constraints are due to the fact that the points In gradient=space have

to lie on the right contours of image intemsity. The triangle can be
stretched and moved until the polnts correspond to the correct image inten-
sities as measured for the three planes. Since this process corresponds

to solving three non=linear equations for three unknowns, we can expect a
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finite number of solutions. Often there are but one or two; some
can be eliminated from prior knowledge of what 13 te be expected in the

sCane.

When mare than three planes meet at a corner, the situation s even more
constrained -- the equations are over-determined. Conversely, one cannot
do much with just two planes meeting at an edge, since there are too few

equations, and an Infinite number of solutions exist, as one might expect.

The possible ambiguity at a tri-hedral corner is not very serious when one
considers that in a typical scene there will be many "connect" edges, either
convex or concave as determined by Mackworth's program, Usually the over-
all constraints will allow only one interpretation that is consistent.

A practical difficulty is that It Is unclear what seareh strategy will lead

one efficiently to this interpretation.

Measurements of image intensity are not very precise and surfaces have
properties that vary from point to polnt and with handling. We cannot
expect this method to be extremely accurate in pinning down surface orienta-
tion. The fact that for a typical scene the equations will be over-deter-
mined allows a least-squares approach which may help to improve matters a

little.

The idea of stretching and shifting can be generalized to smooth surfaces.
We know that the image of a paraboloid is the gradient-space image. |If
we can stretch and shift a real Image of some object to fit this pattern
of intensity distribution we can determine its surface shape by applying

the Inverse stretching and shifting to the paraboloid.



LUNAR TOPOGRAPHY :

When viewed from a great distance, the material in the maria of the moon
has a particularly interesting reflectivity function. First, note that

the lumar phase is the angle at the moon between the light-source (sun)

and the viewer (earth). This is obviously the angle we call g, and ex-
plains why we use the term phase angle for g. For constant phase angle,
detailed measurements using surface elements, whose projected area as seen
from the source is a constant multiple of the projected area as seen by the
viewer, have shown that all such surface slements have the same reflectance.

But the area appears foreshortened by cos(i) and cos(e) as seen by the source

and the viewer respectively. Hence the reflectivity function I1s censtant for

constant cos(i)/cos(e) = I/E (for fixed G).

Each surface element scatters light uniformly into its hemisphere of
directions, quite unlike the lambertian surface, which favors directions
normal to its surface. This is not an isolated incident. The surfaces
of other rocky, dusty objects when viewed from great distances appear to
have similar properties. The surface of the planet Mercury, for example,
and perhaps Mars, as well as some asterolds and atmosphere-free satellites
fit this pattern. Surfaces with reflectance a function of I/E thus form
third species we should add to mat surfaces where the reflectance iz a
function of I and glossy surfaces where the reflectance 1s & function of

(21E-G).
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LUNAR REFLECTIVITY FUNCTION:

Returning to the lunar surface, we find an sarly formula due to Lommel-

Seel inger [6]:

Tﬁ{iIEJ

¢'|:T_.E|.E1 =
(1/E) + x(G)

Here Tﬁ is a constant and the functicon A(&) is defined by an empirically
determined table. A somewhat more satisfactory fit to the data is provided

by a formula of Fesenkov's [6&]:

FB(IIE}fI + cos?(a/2)]

$(1,E,G) =
{ (1/E) + 2 [1 + tan® (x/2)]

Where T and %, @re constants and tan(a) = -(I/E-G)/¥1-G%. By the way,
tan{a) = -p'. This formula is also supported by a theoretical model of

the surface due to Hapke. MNote that given I, E, and G, it is straight-
forward to calculated the expected reflectance. We need to go in the
reverse direction and selve for I/E given G and the reflectance as measured
by the image intensity. While it may be hard to invert the above equation
analytically, it should be clear that by some iterative, interpolation,

or hill-climbing scheme, one can solve for I/E. We shall iagnore for now

the ambiguities that arise if there is more than one solution.



LUNAR GRADIENT=-SPACE IMAGE:

Hext, we ask what the gradient-space image looks like for the lunar surface
illuminated by a single point-source. The contours of constant intensity

in gradient-space will be lines of constant I/E. But the contours of

constant |/E are straight lines! So the gradient-space image can be generated
from a single curve by shifting it along a straight=line == the shadow-1ine,
for example. The contour lines are perpendicular to the direction defined

by the position of the source (that is, the line from the origin to pE,qE}.

Now what information does a single measurement of image intensity provide?

It tells us that the gradient has to be on a particular straight line.

Again, we shall ignore for the moment the possible existence af more than one
contour for a given intensity. What we would like to know of course s the
orientation of the surface element. We cannot determine completely that locally,
but we can tell what its compopent will be in one direction, the direction
perpendicular to the contour lines. We can tell nothing about it in the
direction at right-angles to this favored direction. In fact, knowing I/E and

G determines p*, as previously defined and tells up nothing about gq°.
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This favored direction lles in the plane defined by the source, the

viewer, and the surface element under consideration. |If one wishes, one
can simplify matters by rotating the viewer's coordinate system system until
the x axis lies in this plane as well, Then q = 0, and the cantours of
constant fntensity in gradient-space are all vertical lines. Ewvidently,

an image intensity measurement determines the slope of the surface in the

' direction, without telling us anything about the slope in the y' direction.

We are now ready to integrate out the surface by advancing in the direction

in which we can locally determine the surface slope.
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FINDING A SURFACE PROFILE BY INTEGRATION:

We have:

p':d_z =-'I.'---—--—'II|lE.I;I
ds 1 - G2

The distance s from seme starting point is measured in the object coor-
dinate system and is related to the distance along the projection of this

curve in the image by s' = sfffzn},

EE- - I__IIE - G
ds’ z, ‘1 - 62

Integrating, we get:

where I/E is found from G and the image intensity b(x',y') by ?ﬁ:
L/E = vglb(x',y")]

Starting anywhere in the image, we can integrate along a particular |ine

and find the relative elevation of the corresponding points on the ohject.

The curves traced out on the object in this fashion are called characteristics,

their projection in the image plane are called base characteristics. |t js




.

clear that the base characteristics here are parallel straight lines in

the image, Independent of the object's shape.

FINDING THE WHOLE SURFACE:

We can explore the whole image by choosing sufficient starting points along a
line at an angle to the favored direction. In this way we obtain the surface

shape over the whole area recorded in the image.

7

/|

There is nothing to relate the integrals cbtained along adjacent characteristics

in the image, since we cannot determine the gradient in this direction. We have
to know an initial curve, or use assumptions of reasonable smoothness.
Alternatively, we can perform a second surface calculation from an image

taken with a different source-surface-observer geometry. In this case,

we Will gbtain solutions along lines crossing the surface at a different

angle and can so tie the two solutions together. This is not quite as

useful as one might think at first, since it does not apply to pictures

taken from earth. The plane of the sun, moon, and earth varies little from
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the ecliptic plane. The lines of integration in the image will vary little

in inclination. This idea does work for pictures taken clase to the moon.

to the moon.

AMBIGUITY IN LOCAL GRADIENT:

What if more than one contour In gradient-space corresponds to a given in-
tensity? Then we cannot tell locally which gradient to apply. If we are
integrating along some curve, however, this is not a problem, since we may
assume that there is lTittle change in gradient over small distances and
pick the one close to the gradient last used. This assumption of smooth=
ness leaves us with one remaining problem: what happens if we approach a
maximum of intensity in gradient-space and then enter areas of lower inten=
sity. Which side ﬂf_tha local maximum do we slide down? This Is an
ambiguity which cannot be resolved locally, and the solution has to be
terminated at this point. Under certain lighting conditions the image will
be divided into regions inside each of which we can find a solution. The
regions will be separated by ambiguity edges, which cannot be crossed

without making an arbitrary choice.

a BOCy)
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LOW SUN-AMGLES:

This problem can be entirely avoided if one deals only with pictures taken
at low sun-angles, since the gradient is then a single valued funmction of
image intensity. This is a good idea in any case, since the accuracy of
the reconstruction will depend on how accurately one can determine the
gradient, which in turn depends on the spacing of the contour lines in
gradient-space. |If they are close together, this accuracy will be high;
near a maximum, on the other hand, it will be low. |t is easy to convince
oneself that pictures taken at low sun-angle have "better contrast," show

the "relief in more detail", and are "easier to interpret'.

There is another reasen for interest in images obtained under conditions
of low sun-angle. Near the shadow-line in gradient-space, the contours
of constant-intensity are nearly straight lines even if we are not deal ing
with the special reflectivity function for the lunar materiall An early
solution to the problem of determining the shape of lunar hills made use

of this fact by integrating along lines perpendicular to the terminator [5].

DEALING WITH SHADOWS :

Working at low sun-angles introduces another problem of course, since
shadows are 11ke1y to appear. Fortunately, they are easy to deal with
since we can simply trace the line in the image until we agalm see a
lighted area. Since we know the direction of the rays from the source
we can easily determine the pesition of the first lighted point. The

integration is then continued from there., In fact, no special attention



-k@-

has to be paid to this problem, since a surface element oriented for grazing
incidence of light will already have the correct slope. Thus simply looking

up the slope for zero intensity and integrating with this value will da.

=

\

some portion of the surface of course will not be explored because of
shadows. Most of this area will be covered if one takes ome picture just

after "sun-rise" and one just before "sun-set'.

GEMERAL I ZATION TO PERSPECTIVE PROJECTION:

All along we have assumed orthographic projection -- looking at the surface
from a great distance with a telephoto lens. In practice, this is an un-
reasonable assumption for pictures tzken by artificial satellites near

the surface. The first thing that changes in the more general case of per=
spective projection is that the sun-surface-viewsr plane is no longer the
same for all portions of the surface imaged. Since it is this plane which
determines the lines along which we integrate, we can expect that the

lines of integration will no longer be parallel. Instead they all conwverge
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on the anti-solar point -=- that iz, the point in the image which corresponds

to a direction directly opposite to the direction towards the source.

The next change is that z is no longer constant in the projection equation.

o ' = f(s/z). Hence,

v 94z _ Fdz _ 1/E -G
ds z ds’ ¥l = G

We can no longer simply integrate. But it is easy to solve the above differ-
ential equation for z by separating terms:

1es'1/E - 6

— ds'
. - TEe

loglz) = 1,J'l£§_:_ﬁ ds' and so z(s'") = z
G Y °

Finally, note that the phase angle g Is no longer constant. This has to
be taken into account when calculating I/E from the measured image intensity.
On the whole, the process is still very simple. The paths of integration

are pre-determined straight lines in the image -- radiating from the anti-
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salar point. At each point we measure the image intensity, determine what
value of I/E will give rise to this Image intensity. Then we calculate
the corresponding slope aleng the straight line and take 2 small step.
Repeating for all lines crossing the image we obtaln the surface elevation

at all points in the image.

The same result could have been obtained by a very painful algebraic

method [6].

A WOTE OM ACCURALCY:

Since image intensities can only be determined with rather limited precision,
one must expect the calculation of surface coordinates to suffer from errors
that may accumulate along characteristics. A "sharpening'” method that relates
adjacent characteristics can reduce these errors somewhat [4). 1t further
appears that an objects shape is better described by the orlentations of

its surface normals than by distances from the viewer to points on its surface.
In part this may be because distances to the surface underge a more complicated
transformation when the object is rotated than do surface normal directions.
Note that the calculation of surface normals T3 not subject to the cumulative

errors ment ioned.

Fimally, it should be pointed out that the precise determination of the
surface shape is not the main impetus for the devicpment presented here.
The understanding of how Image intensities are determined by the object,
the lighting and the image forming system is of more Importance and may
lead te interesting heuristic methods.
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GEMERAL REFLECTIVITY FUNCTIONS:

The simple method developed for lunar topography does not apply if the
contours of constant intensity in gradient-space are not parallel straight
I'ines.  We shall still be able to trace along the surface, but the direction
we take at each point will mow depend on the image and will change along

the profile. The base characteristics will no longer be pre-determined
straight lines in the image. At each point on a characteristic curve we
shall find that the solution can be continued only in a particular direction.
It will alse appear that we will need more information to start a solutlon
and shall have te carry along more information as we proceed. Reasoning
from the gradient-space diagram can be augmented here by some algebraic

manipulation.

Let alp,q) be the Intensity corresponding to a surface element with a
gradient (p,q). Let bix,y) be the intensity recorded in the image at

the paint (x,y). Then, for a particular surface element, we must have:

alp.q) = bix,y)

How suppose we want to proceed in a manner analogows to the method
developed earlier by taking a small step (dx,dy) in the image. It is clear

that we can calculate the corresponding change in z as follows:

dz = z, de + z"II dy = p dx + g dy

To do this we need the values of p and g. As we integrate out the curve



we also have to keep track of the values of the gradient. We can calculate

At First, we appear to be getting into more difficulty, since now
we need to know Py pY =q, and q?' In order to determine these unknowns
we will differentiate the basic eguation a(p,q) = b(x,y) with respect to

® and ¥:

a + & =b and a +a g =hb

p Py q A » P PF g % ¥
While these equations centain the right unknowns, there are only two
equations, not epough to solve for three unkmowns. Note, however, that

we do not really need the individual values! We are only after the linear

combinations (pﬂdx + p?d?} and {qxdx + qfdy}.

We have to choose the direction of the small step (dx,dy)] properly te
allow the determination of these gquantities. There is only one such direc-
tion. Let (dx,dy) = {ap,aq}di* then (dp,dgq) = {bx'hf}dﬁ' This is the
solution we were after. Summarizing, we have five ordinary differential

eguations:

«x=a ,%¥=a ,t=pa + qga h=hb , and 4= b
x E"p'f q F'p qprp Wt andq ¥

Here the dot denotes differentiation with respect to s, a parameter that

varies along the solution curve.
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INTERPRETATION IN TERMS OF THE GRADIENT-SPACE:

As we solve along a particular characteristic curve on the object, we

simul taneously trace out a base characteristic in the image and a curve

in gradient-space. At each point in the solution we will know which point
in the image and which point in the gradient-space the surface element
under consideration corresponds to. The intensity in the real image and

in the gradient-space image must, of course, be the same. The paths in the
two spaces are related in a peculiar manner. The step we take in the image
will be perpendicular to the contour in gradient-space and the step we

take in gradient-space will be perpendicular to the intensity contour in

the real image.

-

@




GEMERALIZATION TO MEAR SOURCE AND HEAR VIEWER:

The last solution method, while correct for arbitrary reflectivity functions,
still assumes orthographic projection and a distant source. This is a good
approximation for many practical cases. In order to take into account the
effects of the nearness of the source and the viewer, we have to discard

the gradient-space diagram, since 1t is based on the assumption of constant
phase angle. The problem can stil] be tackled by algebraic manipulatien,
much as the last solution. |t turns out that one is really trying to selve
a first order non-linear partial differential equation in two independent
variables. The well-known solution involves converting this equation into
five ardinary differential equations, quite like the ones we obtained in

the last section [4].
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MATHEMAT ICAL DETAILS

DUAL=-5PALCE :

Ine approach to gradient-space s to consider it as a projection of duwal

space [1,2,9]. Dual-space is a threc-dimensicnal entity cbtained by mapping
planes into points and points into planes. A point of course can be speci-
fied as a vector (x,y,z). A plane also can be defined in terms of a vector

{a,b,c). The plane consists of points which satisfy the equation:

{xr?-zl'{ﬂ-h-'ﬂ} = I ar ax + h}' + oF = ]

It is clear that a plane in one space can be mapped into a point in the

other and that, conversely, a point can be mapped into a plane. These
operations are reversible, that is, if we start with a plane, find the
cerresponding point in dual-space, we can map this point back into the original

plane.

What about lines? Lines can be thought of either as the intersection of two
planes or as connections between two points. Thus, the dual of a line, con-
sidered to be formed by the intersection of two planes, can be construed to
be the line connecting the two points in dual-space that correspond to these
two planes. A line also can be associated with the family of all planes
passing through it -- Its dual will be the line formed by mapping all of

these planes into paints.

What does the cormer of a polyhedron correspond to in dual-space? First
of all, a corner is a point, so It must map into a plane. Secondly, it lies

in each of the planes intersecting to form the corner, so its dual must con-
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tain all of the points corresponding te these planes. The dual of a corner
is the plane defined by the points corresponding to the planes that inter-
sect to form the corner. The edges of the object meeting at the corner map

into lines connecting these points.

The object-space 1s not directly accessible to us, since we have only a
prajection of it, the image-space. We cannot expect to arrive at the re-
sults in dual space simply and directly == but It turns cut that a very

uvseful projection of dual-space exists.

Given apoint (a,b,c) in dual-space, one can define its projection into
gradient-space as (-afc,-bfc). This is a perspective projection. How is
this related to the original object-space? Let a plane In object-space be

defined as ax + by + cz = 1. This can also be written:
z = (=afc)x + (-bfely + (1/c)

It is clear now why (p,q) = (-afc,-bfc) is called the gradient of the plane.
In fact, p = z, and g = z?. the first partial derivatives of z with respect

to x and v respectively.

THE GAUSSIAN SPHERE:

Another convenlient way to talk about directions is by way of a unit sphere
surrounding the point in question [3,39]. Points an the sphere then define
specific directions. This representation is very convenient for some purposes

since some useful invariants exist on the surface of this sphere which are
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lost in projection. Huffman uses this to advantage in analyzing developable

surfaces [3]. For our purposes, however, a planar representation is more con-

venient. Gradient-space 15 simply a projection of the Gaussian sphere,

with the center of the sphere acting as the center of projection and the

projection being constructed onto a plane tangent to the sphere.

ORIGIN OF
GRADIENT - SPACE

GALUSSIAN
SPHERE
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THE GRADIENT-LINE IS PERPENDICULAR TO THE IMAGE=LINE:

Consider two planes defined by the equations:

3 + hlf toz= dl and ax + bzf +c,z=d

2 2

These planes have normals ia],h],cl} and taz.bz,cz} respectively. The
planes intersect in a line. The direction of this 1ine can be found by
taking the cross-products of the two normals. This follows from the Fact
that the line of intersection certainly has to be in both planes and, hence,
perpendicular to both normals. The ¢ross-product turns out to be
{hlcz-bzcl.azcl—alcz,a]bivazb]].

The image-line is the orthogonal projection of the line of intersection.

lts direction is simply {hlcz-hzci,azcl-alczl.

The two planes map into the points f—a]ch.Lthcl} and {-aE£¢E.~hEIcEJ in
gradient-space. The line connecting these two points Is the gradient-1ine.

Its direction can be found by subtraction to be [azfczra]fc],hzfcz—h]fcr],

Ir order to establish that the gradient-line so defined is perpendicular
to the image-line, we have to show that the dot-products of their respective

directions is zero.

fhlcz—bzc],azcl-alczj-{azcl-alcz.bzc]-b]czlftc]uzl =0

The two lines are thus perpendicular. The same result can be developed using

only geometric reasoning.
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INTEGRAL OF cos’ (8) OVER A HEMISPHERE :

To provide for the correct scaling of the specular component of reflected

light we need the integral of cos"(B) over the hemisphere 0 £ 0 = /2.

The area of the strip on the surface of the hemisphere is 2nR%sin(&)dd.

Integrating, we get:

w/2
J, 2mR%sin(8)cos” (0)ds

s .
Enﬁ%j; cos (#)sin(a)ds

fital
IWHE[; EEE———EEi];fz = 29R2/(n + 1)
m o+

This Is 1/{n + 1) of the surface area of the hemisphere.
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THE OFF=-SPECULARITY AMGLE:

For surfaces with a specular component of reflectivity one needs to know
the angle between the reflected ray and the line of sight [B]. This angle

can be found by simple application of some results of spherical geometry.

SPECULAR
REFLECTION

VIEWER

SOURCE

Here A is called the azimuth angle.

We are given i, e, and g, and have to find the angle §.

cosis) = cos(i) cos(e) + sin(i) sinle) cos(® - A)

cos(g) = cos(i) cosle) + sin(i) sinle) cos(A)

Clearly, cos(s) = 2cos(i) cos (e} - cos{g) = 2IE - @

= et
If 2I1E - 6 = k and ¢ = G/(k + G), then, (p - pc)? + (g - gc)? = 1=k

(k + &)2
S50, the contours of constant (2 E - G) are circles. This also follows From

the circle-preserving property of sterecgraphic projection.
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GRADIENT-5PACE IMAGE FOR A METALLIC SURFACE:

For specular reflection we must have two constraints satisfied; the incident
angle has to equal the emittance angle, and the incident ray, the emitted

ray and the surface normal have to be coplanar.

il
™

If i =e, thenl = E and so (1 + p_p + g_q)EC

And so,
(1 +pp +aa)s= A+ P+ a?

Next we must have (p,q.=1), fpﬁiqi,—1}+ and (0,0,-1) co-planar. That is,
the dot-product of any one with the cross-product of the other two must
equal zero. Expressed ancther way, we must have the volume of the parallele-

piped defined by the three vectors equal zero. Or, finally:

| Ps 9 -
det i pog =1 =0, that is, p_g - q_p = 0,
o o -1

The same result could be arrived at in a more round-about fashion by requiring
that i + e = g, and then expanding cos(i + &) = cos{g). We now have two linear

equations in p and g:

+ + 2 2 =
pp+9.9 fﬁ P.= *a, [

]
=

a_p - P_q
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Solving for p and q:

G
p= (V1 + psﬂ + qs2 =1) p5fﬂp52 4—qi%}- P. T+#6 =cosB/(1 - G)/(1 + &)

G
g= (1 + pz + qEi -1 qsf{pﬁz - qEE} =49, T+6 = sing{l = G)/(1 + G)

This related to the half-angle formula:

tan(la) = {1 - cosa) /(1 + cosn)

STEREOGRAPHIC PROJECTION:

The gradient-space image for a metallic object is a stereo-graphic projection
of the surround of the ckject. That is, the sphere of possible direction as
seen by the object 1s mapped onte a place, with the center of projection at
one pole of the sphere and the plane tangent at the other pole. The mapping
is conformal; that is, angles are preserved. Circles on the sphere are mapped
mapped into circles on the plane. The following illustrations from pages 248,

252, and 253 of Hilkert & Cohn-Vossen [9] will illustrate:
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Fig. 238 /A

Fia. 2ddb
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A USEFUL DISCRIMINANT :

The incident, emittance, and phase angle form a spherical triangle and
have to satisfy certain constraints -- that is, we cannot arbitrarily choose
i, e, and 9. The sum of any two has to exceed the third, This is analogous
to a similar result for the sides of planar triangles. It is easy to see
that only one of the three constraints can fail at any one time [4]. Suppose
it is the following:

i +e<g, then cos(l + &) > cos(g)
since cosine is monotonically decreasing in the range 0 to =. Expand ing,
one gets:

cos(i)cos(e) - coslg) > sin(1)sin(e)
The righthand side is positive, so we can square both sides, hence:

(1E = G} = (1 - 12)(1 - E%) or 1 + 2166 - (12 + E2 + G2} < Q.

The symmetry of this expression suggests that we would have obtained the same
result if we had picked efther of the other two constraints. In fact, it is

easy to show that if i, e, and g can form a spherical triangle, then

1 + 21EG - (I2 + E2 4+ g2) =z p

and that this expression is less than zero otherwise.
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Contours of the discriminant 1 + 2IEG - (1% + EZ + 62). The contour

intervals are .05 units,



THE AZIMUTH ANGLE:

A useful quantity for some manipulators Is the azimuth angle A, between
the projections of the incident and emitted rays onto the object's surface.

Applying a result of spherical trigonometry, we find

cosig) = cos(i)cos(e) + sinlilsin(e)cos(A)

So,

G - LE

/1 - 12 ¢1 - EZ

cos(A) =

Mow obviously, cos (A) 1
Expanding, (G - TE}E < (1 - TZ){1 - E%)

And so again,

1+ 2E6- (12 +E2 +G%) z0
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antours

= ijzg%%%éfikr

of cos(A). The contour imtervals are .1 units.
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EXPANDING THE DISCRIMINANT:

We would like to express the discriminant in terms of p, g, Py and 9,

We will need the following:

G=1/1 +p 7+ q % and E= 11 +p7 + g7
Let X = {1+ PP+ qiq}, then 1 = XEG
Then, | + 21EG - (1% + E? +G2) = 1 + 2XE%G% - (X26262 + EF + 2)
= -EZ62 + 2XE?GZ - XPEEGE 4 1 4+ E2G2 - g2 - g2
= =EZGZ(1 - X)2 + {1 - E2)(1 - §2)
= [{(1/E2 = 1) (1/62 - 1) - (1 - x)2]E262
= [p® + @) p 2+ q.?) - (p.p + q_q)?] E%G2
= lq.p - p9)? E2G2 (1)
it Is immediately apparent that the discriminant is positive for all paints
in gradient-space, as it should be. But what s more exciting is that we

have an equation that is linear in p and g and thus helpful if we are going

te try to obtain p and g, given 1, E, and G:

9.9 - P4 = &1+ 2IEG - (I% + EF + 67) /EG



_}'i_

FINDING p AND g, GIVEM I, E, AND G:

We now have two linear equaticns in P and g, one from the expression for I,

the other from the expansion of the discriminant:

PP + 9.9 = (L/E - G)/6

9P - P9 = £(4/E)/G
whera =14+ 21EG - {I‘E + E? + Ez]. selving for p and q we get:

p= (1/E - GJIGDIIIPEE + qﬁai + fﬁIE}!Gqﬁ

(piz + qiz}

qa= (1/E = G}Iﬂqifipsz + qsfj + {ﬂfEJIEps

bl i
(p = + q.°)
s (8) s (4)
If we let —2 = cos(0), and = winld),
W g +q5
p' &M..E_-..El , and g' = iﬁi—. ., Lthen
'l - G2 YT =67

p=p" cos(B) - q' sin(a)

q=p' sin(8) + q' cos(8)
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DETERMINATION OF ORIENTATION OF PLANES:

An example will illustrate how image intensity information can augment
Mackworth's gradient space scheme for interpreting pelyhedral scenes.

We are given a trihedral corner projected into the image as follows:

G

The corresponding gradient-space diagram with position and scale as yel
undetermined is on the right. MNow we are told that the (normalized) image
intensities are .79, .30, and .B& for the regions A, B, and C respectively.
We thus have six constraints on the position of the three points in gradient
space. Given that [Ps,qsl = (0.7,0.3), and #(1,E,G) = i, we can develop

the following equations:

9 = a.
lq, = ag) = +35_(nn - pg)

lay - a.) = va'[pA - pe)



(V4 2 Tpy + 3ag) = ¥+ @+ q,° f%%

a.,|~1.a
o=

(1 + a?PB + .jqﬁ} =¥l + pﬂd + qEE

‘a=|;=
o ] e

(b + .Tp. + 3g.) = v1 +p.= g7

Where we used the Fact that 6 = .80, Sguaring the second set of three
equations, we obtain second-order polynomials. This simply reflects the
fact that the points are constrained to lie on certain conic sections.
Using an iterative modified Hewton-Raphson method, one quickly converges

ta a salution as fol lows:

(pyaa,) = (0,.70)

{pquB] = {‘16‘]. '135]

4

{PE.qEJ = {*-51: '-35]

The polynomials are actually simple enough that they might be solwved

directly using appropriate symbol manipulation algorithms.

The following guestions are left as an exercise for the reader:

1. Is there another soclution?

2. Are there solutions for which the three edges are
concave?

3. Are the points EB' Gt 85 precisely determined in

gradient-space as the point GA?
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Ilustration of the constraints on the three gradient-space
points G, , » @nd G.. This isthe solution to the problem of

G
. B . .
determining Ehe orientation of the three faces meeting at the
corner.

X\ Tt




_?E.._

MUTUAL ILLUMINATION -- PLANES TRUNCATED IN ONE DIRECTION:

S

o
-

In order to get a feel for the mutual illumination problem it helps to study a
simple case first. Consider two planes joined at right angles, infinite in the
direction of the line of their intersection, and both of length L in the direc-
tion away from their intersection. Let the incident light come From a distant
source and in a direction /4 with respect to the planes. This last condition
and the equal lenth of the sides provide the symmetry necessary to ensure that
the intensity distribution on the two planes is equal. HNext we will assume

that the surfaces are lambertian, with reflectivity r.

Y ]




Now let us calculate the total light flux received by a surface element a
distance x away from the cormer. First consider the contribution due to a
surface element on the other plane a distance y from the corner and separated
by a distance z along the direction of the line of intersection. Let the
luminous emittance vary as L(y). Then this contribution will be, for

lambertian surfaces,

(r/m)[cos(i)cos(e}]/1% Liy)dydz (Flux/unit area)

Here | is the distance between the two points, e is the angle of emittance
at the emitting surface element and i is the angle of incidence at the re-

ceiving surface element.
cos(e) = x/1, cos(i) = v/1, and 12 = x2 + y2 & 22

50 the contribution due to the patch (dy by dz) is then:

L{yidy(r/m) (xy) /1% dz

Integrating with respect te z, one obtains:

Lividy(rdfn)ny JI 10 + y? + 282 g2
N, bjF 1/(a? + s2)2 ds = (1/a?) (n/2)

S0 we get: Lividy Y% sy (x2 + y2)3/2
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INTEGRAL EQUATION:

Finally integrating with respect to v and adding in the direct contribution:

Lix) = VT + Sr " — X | (y)dy
o G2 + y2)372

50 here we have an Implicit equation for L(x) called an integral eqguation.
Before we try to solve it, notice that the parameters E and L can be aliminated.
For example, if L{x) Is a solution for incoming light flux E, then al(x) will

be a selution if the light-flux is changed to aE. That Is, everything just

gets brighter in proportion, if we increase the incident flux. Without a

loss of generality, we can set E/VE = 1.

Hext, let x' = x/L an vy' v/L, then we Find

Lix'} =1 + 1/2r [ X'y Ly’ Jdy*
z 2 3f2
O {“I 1..,.' J
20, we can, without loss of generality, also let L= 1. So we will try to
solwe:

Li=z) =1+ ke[ Liyldy

[x® + y

This is a Fredholm integral equation of the second kind [10]. Such equations
usually eccur as solutions to ordinary differential equations with given

end conditions. The kernel is,



= Ry
H{llf:l [:_2 . .?,.2] 3}.2

The kernel is symmetric, non-separable, and worst of all, not bounded. There

are a number of techniques for solving such equations with symmetric kernels,

but most work only for bounded kernels, er, if one can calculate the iterated

kernel.
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ITERATIVE SOLUTION:

One method is iteration [10]. Suppose we start with Ln{u} = 0. Substituting
this im the righthand side of the eguation we arrive at the next approximation:

Lyfx) = 1. Using this we integrate again and find:

Lyfx) =1+ Lol - —E )
T + =2

The next step leads to:

=1+ Mre(l+ el - —2 ) - (52 [ — =
La[x] 1+ ri{l + rl T ) = ( %r) ﬁf; (x2 + y2)3/2 (1 4 IIIIEJIIE

This last term turns out to be some messy difference of elliptic integrals
and 5o we abandon further iteration. A few things of note emerge, however.
First of all, we have a useful first approximation in Lg(x) or the first few
terms in Ly(x). This approximation is particularly good for small r, since

the remaining omitted terms are in r® and higher orders.

Secondly, the leading term will ¢learly become on further iteration:

1+ %p o (% e)2 ¢ (%012 4+ ..., 1701 = % r)
And so, L(0) = 1/(1 - % r), not too surprisingly. MNext one can say some-
thing about the convergence of this iterative process -- It will converge for

r less than 2, and diverge for r greater than or equal to 2. Obviocusly, we
care only about values for r between zero and one, so we expect a solution

will always exist.

dy
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INTEGRATION BY PARTS:

Further useful results can be obtained by integrating by parts:

1
Lix) =1+ 1% r [L{0) - L1} —2 4 L' (y) —E2—— 4y]
X roL{ e lJ; ¥ P ¥

Clearly L{O) = 1 + 1%r L(0) and 50, once again, we see that L(0) =

1 - 1% e}, This result depends on the fact that the integral is zero for
# = 0, which can be shown by applying L'Hospital's rule to the resulting
indeterminate form. By a tedious method of little interest here, one can
arrive at another approximation:

- I“ - ;‘t".:']

- 13
Lix) [ +T|'_'_HF [1

This approximation is particularly good near the origin and can be "tuned"
by multiplying the factor containing = by a number smaller than one. The
farm of this result shows that Lix) will have a cusp at the origin for r

greater than or equal to one.
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MUMERICAL SOLUTIOM:

It 15 becoming Tncreasingly obvious that an analytical solution is not

around the corner, so it is time to turn to numerical methods. There ars
again various possible avenues, the most obvious being iteration == sipce we
already know some good first approximations we can speed up the convergence.
The only difficulty is the singularity in the kernel for x = y = 0. Dividing
the range of Integration evenly produces gquite poor results particularly near
the origin for large values of r. Dividing the range more finely near the
crigin and ignoring the first few values near there is the cbvious solution.
Choosing as end-points of the intervals the points l[i;"n}l2 works gquite well.
Here n is the total number of segments in the interval from 0 to 1. The

mid=points of the intervals are used when evaluating the kernel.

The resulting solutions for n = 256 were presented graphically earlier.



