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| INTRODUCTION

One of the durable iceas in Al ia the patterp-oriented data base
developed by Carl| Hewitt for the original Planner programming languags.
<Hewitt, 1371> It has appeaied to many peocple because it seems to be a
good framework for implementing @ "blackboard” communication channel
betueen processes. <Newe|l, 1582w

Such a data base operates by indexing records so that they may be
accessible with any of several different key patterns. This is the same as
the mere traditional "file inveraion" <Rivest, 1974s, except that the
patterns are more complex. The data base alse provides primitives for
copying and combining collections of data. These facilities can be used to
implement controlled "deductive” procedures which limit their searches to
formulas that have been included in the current local data base, and which
are |ikely to match the current goals. When such data bases were
implemented (by various people in different uays, e.g., <Rulifson et. al.,
1372», <Sussman and Mclermott, 1972:), they wers found to help overcoma the
obstaclies facing previous deductive programs.

However, recently such data bases have come in for some criticism.

Some critics feel that sets of pattern-accessible records are wrong (or
misguided] as a data structure for Al applications. They usually recommend
some more strongly organized structure; they often appeal to the concept of
“frame." <Minsky, 1974>

This criticisn is buttressed by the feeling ameng many people that
Planner-type data bases are intrinsically hard to organize except for small
“toy" provlems. Scott Fahlman <1375» has argued that the usual methods of
organizing them uill break down conpletely when we try to implement data

bases of the size the human brain aust contain,



Although it is poasible, and done all the time, to misorganize a
Flanner data base, | feel that the critics are being unfair. In fact, it
peems as though the frame idea fiows naturally from the nature of Planner-
type data base mechanism, including the "context" mechanism of OAG and
Conniver. In particular, the notions ﬁl hypothesis=driven recognition
triggered by suggestion demona <Fahiman, 1373x, of default values in fraome
slots, explaining discrepancies, frame tramaition, etc., seem to be
descended from ideas |ike consequent vs. antecedent reasoning <Hewitt,
1371>, making a@ssunptions based on partial evidence <Mclermott, 1974as, and
debugging slightly wromg date bases <Sussman, 1975:. As far a3 | can tell,
g frame is just a particular way to use a Comniver context.

Most frame proposals, however, do not suggest further embellishments of
an already sound framework, but inatead tend to propose archaic data
gtructures with |ists of slots and values, or a small set of interfaces and
possible messages. The only reason for this seems to be a widespread
acceptance of the second criticism, that a large Planner-type data base
could not be implemented efficientiy. By "large™ | mean large both
physically, reguiring secondary storage with tuday;u technologuys and
organizational ly, requiring care to avoid useless computation. [t is the
purpose of this paper to show that the case is unproven. Besides having
this narrou technical intentien, [ intend to say a little about what kinds
of operations ought to be efficient in an Al data base, and which proposed

data structure might be the best,



IT A TYPICAL DATA BASE MANAGER

In this section, | will deseribe the implementation of a typical
Planner-like data base manager (TOBM). The description is draun fram miy
experience with several versions of Conniver <fclermott and Suasman, 1973»,
but is somewhat idealized, 3o 23 to distract you from merely haphazrard

faults of existing systems and show you their deeper problems.
[1.A Behavior

There are three important features of a typical data base managemant
system: "partial-match" record retrieval, multiple data bases, and deriwed

data.
I1.A.1 "Partial-patch® Record Hetrieval

Any record may be accessed by specifying any subset of ite components,
With each specified component in its proper position, The unspecified, or
"den't care,” parts may be indicated hg.qUHﬂtinn marks. For example, the
record (P (f all may be referred to by keys (P 20, (7 (7 ald, (P (7 a)),
etc. HRecords in the data base, called items, are indexed when they are put
there ladded); and unindexed uhen they are remowed. The retrieval func=tion
is FETCH, which returns all -the present |tems which match its pattern

argument. For example, if (P (¢ al), (P (¢ bll, and [P &) are present,



(FETCH "{P (f all) returns {IP (f ad)]

(FETCH " (F (f ¢))) returns 1}

(FETCH *(F (f ?))) returns [P (F all, (P (f b))}

(FETCH " (F 7)) returns {(F (f all, (F (f b)), (P cll

(A note on notation: as in MACLISP <Moon,1574>,  *S-expression” is an
abbraviation for "[QUITE S-expressionl.”)

Sometimes | mean by "match” that there s some mapping, from
occurrencee of "7 in the fetch pattern to S-expressions, which makes the
fetch pattern equal to the item retrieved. [m practical systems, the

‘matcher is more complicated. [t may be thought of as a unification
algorithm <Aobinson, 1965», in which lacelled "don't cares” play the role
of variables. For example, (FETCH {0 7% ?X1) should find (0 a a) but not
(@ awl. I will more or less ignore this kind of matching in this paper.

However, there is an associated peculiarity | must mention. Ouwr TDEN
must allow "don't cares" in the item records. This is because users will
want to be able to model propositions with items, and need to have free
{universal ly quantified) variables in itens like ({15 MAN ?X) = (MORTAL
7H)). For our purposes, this may be treated as (IS MAMN 7) = (HORTAL 71).
He want to be able to find it with a fetch pattern like (7 > (MOATAL
FRED}].

I1.A.2 Multiple Data Bases

In Al applications, there are several reasons to have many differant
data bases to select from at a given time. However, these cannot be
represented by anything as clumsy as separate files or indexes. [t has to
be cheap te copy an entire data base in such a way that routine changes to
the copy f(additions and remcvals of datal do net affest the original

This is done by representing a data base as a |ist of Tayars which

represant the history of changes to an original empty set. Hith sach layer



are stored the differences petwueen the data bases that contain it and those
that do not. Such a list of layers is called a ext (pronounced |ike
“context,” Conniver's misleading terml, 1 will reserva the term "data
base" from now on to mean the set of all data im all cuts,

For example, a problem solver may mode| time as a seguence of cxts,
each with one more layer. In CHTL, it may have the items (ON A B), (ON B

TABLE}, (ON C TABLE}, representing the sceme of Fig. [l.1(al.

1Al — 1Al
1Bl |CI [B] IC]
CKT1 = (1} CXTZ2 = 12 1)
(al (o)
[
Figure [1.1

In contempiating an action, the problem solver may make 3 ned layer [(number
2}, and "copy" CKTL by pushing the new layer onto it, making CHTZ. MNou 1f
it AEMOVEs (ON A B} and ADDs [ON A C) with respect te CXTZ, all other data
are undisturbed, and CXTl's contents are unchanged. The tuwo changes
“remove (ON A B)" and “add (DN A& C}" are associated with layer 2, and thus
Hith CKTZ and all furtheé cxte derived from it, (Another use is to modsl
"hypothetical™ werlds in which some assumption is assumed temporarily. For
more detail on implementation, see <Mclermott and Sussmap, 1973».) 1f the
layers of two cxts Cl and CZ are such that all the layers of Cl are in C2,
Cl ia called a super-cxt of C2, which is a sub-cxt of Cl. In ny example,
CXTl ie a super-cxt of CKTZ.

Layers are well behaved encugh so that neuw cxts may be formed by taking
the union of sete of them. (This fact 1s often overlooked in discussions

of cxis, so that a "cxt .tree” created by adding new layers is taken for

granted.) I will deal with this feature at length in Sect. IV.



[1.A.3 Derived Data

The structure | have described is internal ly complete, but | must raise
one more superstructure upon it to fit it into the -usual tradition,
Planner-type data bases almost aluays have built-in mechanisms for calling
simple "deductive" procedures. 0One kind, the |F-NEEDED method ar
consequent theorem, is supposed to work with FETCH to generate "virtual
items" which might not be there until the FETCH happens. | will not say
much about this type, since the issuss in implementing it are mostly
centered on how to control @ generator co-routine.

The other kinds are implemented as software "interrupta" of additions
and removals of items matching a pattern. These are Comniver's |F-ADDED
and [F-REMOVED method types. For exanple, in pidgin LISP for the TOBM, we
might write

{if-added (is rose 7r)
ladd !"{color ar redl] )
{The !"-notation indicates ‘guasi-guotation”; the value of !"S-expression
ia S-gxpression with subparts marked by "a" replaced by thelir values.) A
procedure [ike this is present in a ext just like the items it interacts
with. [ADD Ytem) calls (FETCH !"(IF-ADDED eitem 7)), and evaluates the
third aslat in the returned |tens.

These interrupt methods tend to e used in tuo ways: to implement
useful feruard deductions; and as genuine interrupts reguiring non-trivial
attention by the caliing program. The former is i|lustrated by my "roses
are red" ex<ample; the latter, oy a method in a problem solver that notices
when a “"protected" geal is being clobbered. (Cf. <Sussman, 1375>)  The
latter, the "true interrupts,” pose no problem from a data-base management

point of view. | will ignore them.



The others, the "data derivers,” fall into two classes: |f-addeds that

add consequences of their trigger [tems: and | f=removeds that clean them
up, lika:
(if-removed (ies rose Tr)
{remove !"lcolor ar redl) |
I will idealize this aituation by assuming one kind of data deriver, an
item of the form
{ANTEC-ITER input output).
(“Antec” is descended from Hewitt's <1371ls "antecedent theorem.”) For
example, We can have (ANTEC-ITEM (IS5 ROSE 7R} (COLODR 78 RED)). Wmen ADD
adds an item matching input, the matching substitution is applied to
output, and adds it, too. Femoval works asymmetrically. Im this schems,
ADD makes a note that the support for, say, (COLOR ROSE471 RED) im this ext
is the presence of (15 ROSE ROSE471) and (ANTEC-ITEM (IS ROSE 7A) (COLODR 7R
RED)}. Thie note is attached to all three items. When REMOVE flushes an
item, it flushes as well all items supported by it that have no other
support. This cbviates clean-up methods,
The details of this somewhat arbitrary scheme are unimportant, but the
notion of distinguishing true interrupts fron data derivers has been shown

%o ba useful in practice.

11.B Implerentation

In the TDBM, there are three entities that stand betuween the caller of
FETCH and the data: the index, the cxt filter, and the matcher. All
previousiy-mentioned data are in the index {which behaves much like the
LISP atemic symbol arrayl, but a given call to FETCH should return only a

handful. (See Fig. [1.2.)



fetch fetch fetch

pattern cxt patiern
I (. | |
| | - | I
| | W | | ¥ - ¥
| | TWOEX- | | Cxt |Present] Hatcher
| INDEX | =======--> | Hatch | =====» |Hatch | ===--=- » |Hinners|
| | FETCH |Candidates Filter |Candi= | ([tems &
I || | I |dates | | substi-
| | | | I | | tutions)
| | | | |
re| jects re| jects re|jects
| | |
¥ L) W
dissimilar gimilar |tems non=matching
i tems not in cxt i tems

Figure [1.2
The last step in Fig. 11.2, which rejects (P a b) uhen the feteh pattern is
P 7% 7x], is not of interest to us. We focus on the others.

Motice first that cxts are inplemented backuards. The systen doss not
look in & cxt for a datum; it looks om a datum to sem if it is in the
current cxt. In the index, am item is stored as an ftem datum, of the form
[1tem -cmarkers=l. The cmarkerz, one per relevant layer, say which cxts
the |tem has been added te or remcved from. <HMcDermott and Sussman, 1973s
These markers are compared uith the current cxt [the tue lists being kept
sorted by layer number) to asee if the datum is actually there. (Datum
"properties,” such as what data support 3 datum, may also be stored in the
cmarkers. )

The marker system treats datum presence asymmetrical ly from absence. A
marker for a cwt layer is attached to & datum only if the datum was added
uwith respect to the layer. 1f it is later removed from the layer, the
marker is just thrown auay. However, if it is removed in a cxt derived by
pushing ned layers onto the original one, the syatem must cancel the
marker. For exanple, 1¢# (DN A B) is marked as being in layer 1, then
REMOVing it im ext (3 2 1) marks (DN A B! "present in 1 as cancelled in 3."

Any ext which includes layer 1 will contain (ON A B) unless it includes



layer 3 also.

This “backuwards® cxt scheme is efficient enough for small data bases,
but for large ones it could be embarrassing., This is the topie of Section
Iv.

Even for ;ME|| data bases, it ig important that the indes-fetcher
reject all but a small |ist of candidates., (Matching tends to be anm
expensive way to reject an iten.] There have been many ways suggested to
do this. The following is a compos=ite.

Every item is indexed by its features. A feature is a pair <atom,
position>, For example, [P (f 7)) has features <P, CAR>, <f, CAADAs, <7,
CADADR=. (The positions are, of courss, really represented as bit strings,
but we will use LISP CAR-CDA compositions, with "CR" standing for the empty
string that represents the top-level position.] For each feature, thera ia
a bucket of items with that feature. (This nay be implemented using a hash
table.] For example, the <F, CAR» bucket will include items (P al, (B (f
pl), P mnopl, if these are present in any cxt in the data base. The
<7, CADR> bucket will contain items like (F 7x), (IO &) ?yl, P 7= (f c)),
etc.

The function INDEX-FETCH takes a pattern and a position, and returns a
list of candidates that contain, in that position, a structure which could
match pattern.  Thus (INDEX-FETCH 'pattern 'CR) returns all items anyuheras
which could match pattern. [f the pattern is "7," all items sust be
included; this is indicated by returning a symbel for the "universal
bucket.” Otherwise, the returned list must aluays include the members of
the <7, position» bucket. [f the pattern ies am atom, the union of the <7,
position> and <atom, position» buckets is returned. [Nothing else could
tﬁlch.i

Hhen the pattern is non-atomic, INJEX-FETCH must examine the left and



right "extensions” of the current position: that is, the CAR and COR
ralative to the current positien. For example, [(INDEX-FETCH " (P 71 "CRI}
will call (INDEX-FETCH *P "CAR} and [INDEX-FETCH *({7) 'COR). The pattern

of calls may be represented by & tree isomorphic to the original fetch

pattern:

<7, CA» P ?)

<F, CAR> <2, COR> /\
<7, CAR» /',r“\ o (7}

UNIYERSAL <NIL, CODH>
BUCKET <?, CODA> ? NIL

(al (o)
Figure 1.3

Remember that at each "care" node the "don't care" bucket must be unioned
in. But first, uhat does the syster da With the results of the two
subcalls to [NDEX-FETCH at each level? Conceptually, the desired result is
their intersection, the set of all items which share the feature
combinations on each subtree. ([This is actually done in the current
Conniver, under some circumatances.] However, it is too painful in a large
data base with many items. The output of the intersection may be guite
small, and it will have to be redone every time there is a FETCH.

A cheaper procedure, most of the time, ie just to take the shorter of
the two buckete at each stage. This leaves in some losers, but it may not
be worth it to get rid of them. For example, given the fetch pattern (P
Al, there may be many iteme starting with P, but only a few with an A in
the CACH pﬂ!-'rt'l.nn- For now, let us assume it is cheaper to #ilter out the
losers with the cxt and matching mechanisms than do '|:nte|'E|e|:ti¢:|ns uith
arbitrarily long buckets,

The mechanism sc far thus selects a branch of a tree like Fig. 11.3(a),



and returns the union of the buckets om the branch. (There is no reason
actually to do the umion until it returns to the top level.)  Notice that,
since the tree is searched depth-first, the search doun a branch can be cut
off as soon as the sum of the sizes of the buckats encountered excesds that
of the best previous branch. .

In a very large data base, taking the shorter of the tuo competing
bucket unions may mot be enocugh. 1f there are two competing features in a
fetch pattern, and sach has a large bucket, but the intersection of the two
%5 anall, It is costly to return either one or their (expensive te compute)
intesection. The usual =olution is to take one of the offending buckets
and break it down by features again, to produce sub-buckets corresponding
to pairs of features. This amounts to computing all non-empty
intersections in advance. For ewxample, if the indexed items are [P a), (P
by, (Fe), (P dh, IFel, (Oal, (R al, (S al, T all, then the <P, CAR>
bucket is [(P al, (P o), [P}, (Pdl, (Pell, the ca, CADR> bucket ig [(P
al, (0 al, (R al, (5 al, (T all, and the <NIL, CODA> bucket includes all
the data. The best (INOEX-FETCH "(P Al 'CR) can do is find the tuo S5-|tes
buckets. Assuming 5 exceeds the threshold of bad taste for bucket sizas,
the indexer decides to break down the <F, CAA> bucket.

Hhen it is dome, the index contains the following:



Buckets
<P, CAR»
Sub-buckets

<P, CAR> [P al, P ul, {Pcl, (Pdl, IFall
<a, CADR= 1IP al!
<k, CADR> [IP wl}
g, CAOR= {{PF c}i
<d, CADR= {{P dl
<@, CADR=> (P all
<NIL, COOR=> {{P al, (P w), (Pcl, (P dl, P ell
<0, CAR= [(Q all}
<R, CAR= 1R all
<3, CAR> [(S all
<T, CAR= {(T all
<a, CADA= (IP ab, 10 ab, (R al, (5 al, (T alt
<b, CAOR> [{P b}
«c, CAOR> [P c}}
<d, CADR> [iP d}}
<8, CADR> [P mll :
<MIL, CDOR= (P a}, (P B}, (Pch, (P d), (Pel, I0al,
(R a)l, (5 al, (T all

Figure J1[.4

This procedure is called rehashing the <°, CAR»> bucket. From nou on, any
reference to the <P, CAR> bucket ie handled by finding the relavant sub-
buckets given the rest of the pattern, and using those instead (and
ignoring the corresponding buckets in the main index, uhich are aluays
bigger}. Consequently, bucket and sub-bucket keys must be generalized to
sequences of features, |ike <<®, CAR», <a, CADA»»>. [In this uway, the index
tends to organize itself into efficient sub-indexes. 1f necessary, the
process may continue, generating sub-sub-indexes, etc. (with the. sub-indes
coming more and more to rasamhla.ﬂhﬁ'u discrimination net index system
;Hullfann et. av., 1972:].

One drauback to my scheme is that some buckets created this Way will
never be used. For example, in the sample index shown, the only reaszon to
have a bucket for the feature <a, CADA> In the main index as well as in
various sub-indexes is the possibility of a future (FETCH *(7 all. 1f the
user is sure is sure all future fetches will nention P, O, A, etc.

explicitly, the bucket is uselasa to him.



The solution ia to make the searching, indexing, and unindexing
routines data-driven in the sense thai their default actions may be
overridden by roeutines dependent on the data being handled. The simplest
scheme is to associate special indexing routines uith the CAR of an |tem.
For exanple, the routines for atoms like P might specify skipping indexing
and fetching on the CADR position at all, in the case where all FETCHas
have a "7" in the CADR position.

Data-driven indexing is helpful in octher Haya. A form like OA%'s (SET
elementl ... element) may be indexed in such a way that all the elements
are associated with the same (CADA) position. Then a special set matcher
can be used to proceas FETCHed sets. [f the set (SET A B) is fished for
Hith the pattern (SET B . 7], it will be overlooked uniess something |ike
this is done. A more prosaic example is aveiding looking for <7, poss
buckets when they are knoun not to exist., Ordinary Planner and Conniver
programs usually have great guantities of dull data Iike (VERTEX 8.5 -4.7),
where it is wasteful te have to leok for the enpty <7, CADA> and <7, CADDR>

buckets.

[T THE SYMBOL-MAPPING PROBLEM

IT1.A Intreduction

Oifficulties of scale with the typical data-base manager appear in
connection with Fahiman's <1575> "symool-mapping" prooles,

Suppose | tell you that a certain animal--let"s call him Clyde==ia
an-elephant. You accept this sinple assertion and file it auay With na
dpparent dieplay of mental effort., And yet, a=z a result of this simpla
transaction, uyou suddenly appear to know a great deal about Clude. 1§ 1
say that Llyde climbe trees or plags the pianc or lives in & teacup,
you Wwill immediately begin te doubt my credibility. Somehow,



“"elephant® is serving 23 more than a mare |abel herey it is, in some
sense, a uwhole package of properties and relationships, and that
package can be delivered by means of a single [S-A atatement.

In principle, such behavior can be achieved through the use of soma
farm of deduction. Each tact is a separate entity, and new facts are
produced by knocking together tuo old ones. Thus, F we have “All
elephants have wrinkles" and "Clyde is an elephant”, we have the right
to deduce that Clyde has wrinkles. In one form or another, this has
been the standard Al approach.

But having the right to deduce some fact is not the same as having
the job dome. Much ingenuity has been devoted to the search for fast
deductive mechanismg, but the problen remaing intractably
combinatorial.

There are tuo problens described here: bringing in large amounts of
tupical-elephant knodledge, with, loosely speaking, typical elephant "bound
te" Clyde; and detecting implausibilties ("Clyde climbs trees®™) when they
come up.

The second ie 3 serious problem, uhose solution depends on the
particular domain it is draun from. HWe should not expect & raw data-base
system fo perform unassisted tasks [ike choosing betueen tuo
interpretations of "he® in, "The monkey screamed at the elephant as he
climbed the tree.”

But 1 feel that the first problen should be made simple by such a
system. Let us gwamine the three optioms for salving it that a Planner-
type systen offers us:

(1) WHe could treat

(is elephant 7x)

> lodlor Px grayl A [size Px bigl & [diet 7x plants)
n lis mammal =} A ...
as a large ANTEC-1TER (Sect. [1.A.3). HWhen (15 ELEPHANT CLYDE) is added to
a cxt, the newl|y-consed facts (COLOR CLYDE GRAY), (SIZE CLYDE BIG), ... are
added as well. Unfortunately, this is likely to waste & lot of time and
space, since the number of facts known 2bout elephants is large, but only a

few of them are going to be used on any occasion. Further, facts like (15

MAMMAL CLYDE) are |ikely to cause many more facte to be deduced,



[2) He could wait until a feten of (COLOR CLYDE 7C) was attempted, and
propose (15 ELEPHANT CLYDE) as a subgoal (via an IF-NEEDED method or
consequent theoren). Obviously, howsver, thers are nany equal ly good-
loocking subgeals, like (IS ROSE CLYDE) or {OCCUPATION CLYDE CHIMMEY-SWUEEP),
for the system to waste its time going through.

Another approach |ike this is to search through all things that Clyde
IS when his color is wanted, looking for &n assertion like (COLOR ELEPHANT
GRAY). For this search to mean anything, the IS5 relation will have to
carry the burden of representing nost information in the syatem, indesad any
piece of information from which inferences could have been made (in this
case, about EEILEFI]-+ For example, one would be forced to say (1S CHIMNEY-
SWEEP CLYDE) instead of (OCCUPATION CLYDE CHINNEY-SWEEP): or the |tem
{COLOR CHIMNEY-SWEEP BLACK) would not be found. Although the approach can
be useful when the use of IS is carefully tailored for a specific
. application, if used profligately it turns “{I5" into a mere ayntactic
sysbol, a left bracket like "{," which indicates enly that some inference
might have h.“” draun from what it delimits. The method then becones
“search through l(almost) everything knoun about Clyde to see if a COLOR
turns up," I-J'.ni-:h could not be efficient on a normal computer. (0F COUFSeE,
it is an open guestion whether all useful Al inference can be made to fit
the "({15,..)" syntax, Cf. <Moods, 1575») Another difference betusen " (]S"
and " (" would be that 15 presunaoly would signal that its second argument
i8 What the assertion is "about.” For exanple, if by accident we had (IS
(DCCUPATION CLYDE] CHIMNEY-SUEEP), this fact would not be “about™ Clyde,
and would mot be considerad, |

(3) If the right-hand side of the Implication could be represented as a
cxt layer or set of layers, we could just merge these layers into the

current cxt. The problem with this is that "CLYDE" daes not appear on the



right-hand side. We really want a "closure” of a cxt, analogous to
closures in languages |ike POP-2 <Burstall et. al., 1971> and LISP 1.5
<Levin at. al., 1865s, in which a free variabla like ¥ is bound to CLYDE

Hith minimal cost,

Approach (3) is the one we will explore, but it is worth examining in
detail why a Conniver-atyle cxt will not work, The uger can't replace 7H
with something like THE-ELEPHAMT, for tuo ressons: there might be more than
one elephant; and he has to begin referring to Clyde as THE-ELEFHANT. This
second reason ie & problem because some of the facts invelved might refer
to THE-MAMMAL; and because tuo processes in the user®s problen solving
program might have trouble communicating with each other, each having
focussed on a different aspect of this creature and chosen a diffarant
name.

These facts hurt, not nnlﬁ because they blunt our attack on the symbol-
mapping problem, but because they appear to pull the rug out from under
efforts to implement a Minskian frame system «Minsky, 197&> in a Planner-
like way.

However, there is a way to debug approach (3], which makes a Planner=

tupe data base a viable candidate for a substrate for frames.

IIT1.B Potential [tams

The idea is to index an item |ike (COLOR 7X ﬁﬁhf] Hith 7X as a
variable, but mark it as a mere ﬁatential item. HWhen FETCH finds such a
potential item, it is to "smash" it with values of X corresponding to
creatures whose elephant-hood have been asserted. In addition, the item ism

te be present only in cxts including the “elephant layer,” uhich is the



representation of the right-hand-side of cur large implication. This layar
i included only a8 long as there are elephants arcund. Such a layer lor,
more generally, entire cxt), containing potential items referring to
elephant, is called a packet, after Fahiman <1973> and Harcus <1374,

In other words, | am trying to make the system "cheat” by subatituting
values for variaples In the right-hand side of a large implication before
the substitution to do it with is known. In lieu of that substitution, a
set of temporary bindings to dummy.quantities like [#ABSTRACT ELEPHANT) ie
used., Since the indexer is data-driven, it can be instructed to Index
[#ASSTRALT ...) ae a variable. [ will indicate this binding to a quasi-
constant with the prefix "7H4."

As an example, let us examine the elephant packet. [t containa the
potential items {(COLOR PANELEPHANT GRAY)x, (SIZE 7HHELEPHAMT LARGE)w%, etc.
il will mark potential items with an "=.") The system gives the packet an
atomic name, |ike ELEFHANT-PKT, and treats it as a predicate with the free
variables as arguments, (ELEPHANT-PKT 7El. This allous it to process items
like (ANTEC-ITEM (IS ELEPHANT ?X] (ELEPHANT-PKT 7X)). When (15 ELEPHANT
CLYOE) is added to a cxt, it triggers the adding of (ELEPHANT-PKT CLYDE).
The system indexes this item as usual, but notices that ELEPHANT-PET is not
an ordinary predicate, but a packet, so it includes the ELEPHANT-PET axt
layers in the current cxt, and notes the substitution of CLYDE for 7X. The
i tam (ELEPHANT-PKT CLYDE! is a packet-closure.

Nouw when a FETCH of any of

lcolor elyde gray)
lcolor fred grayl
{color 7z gray)

(coler ?z 7e)

lcoler clyde 7cl, ete.

is attempted, the potential item (COLOR ?4SELEPHANT GRAY)# will be found

and actualizad to [COLOR CLYDE GRAY)., This new item will appear in the



local cxt, of course, not in the elephant packet.

If (IS ELEPHANT RALPH] is added, the system adds (ELEFHANT-FXT RALPHI.
On the next fetch of (COLOR ...}, both (COLOA CLYDOE GRAY) and (COLOR RALPH
GRAY) will be generated. (The way the systenm finds all bindings, of
COUrSe, |3‘ to FETCH (ELEFHANT-PET 7X) and use the retrieved substitutions.)

Of course, this is wasteful as it stands, since the system doesn't get
beyond the potential item. In fact, it must replace it with its
actualizations. (It must be cautious enough to remember that it did that,
o0 it can reactivate it in case another elephant appeara.)

Finally, "data-dependency notes" |ike those of Sect. I[[.A.3 must be
attached to actualizations like (COLOR CLYOE GRAY), so that if (IS ELEPHANT
CLYDE) is removed from the cxt, the actualizations can be removed, too.

And when the last (ELEFHANT-PKT ...} packet-closure is gone, the lauers of

the ELEPHANT-PKT must be excluded frem the current cxt.

111.C Further Enoel | ishments and Comments

Uhen a packet is being built, it is desirable to be able to make
deductions from its potential items as they are added, For ewample, it is
important to be able to include a closure of the MAMMAL packet in ELEPHANT-
PET when it is bullt. So at this time the system must treat PESELEPHANT as
an actual constant that can take part in matches, ete. When (15 HAMMAL
YHHELEPHANT) is added, it is not treated 2s a potential item, but causes
(MAMMAL-PKT 7#4ELEPHANT) to be included im the ELEPHANT-PKT ext. This is
not i‘UEt: applicable to transitive IS5 deduction; it works for ordinary
antecedent reasoning, and for inclusion of other kinds of packets (such as
the TUSK packet, two closures of which might be included in the alephant

packatl.



Thus there will be dependencies ameng the potential items. For
example, (LAN P#FELEPHANT (HIDE-IN FILING-CABINETS) )% might be marked as a
consequence of (LOLOR PHYELEPHANT GRAYIx. This will not matter much unless
some user af the packet tries to remove the COLOR item for & particular
elephant. This is intuitively a complex operation, since the reasons for
and consequences of an alteration to a structured data base may be
convoluted, However, some simple bookkeeping can be done Eu the data basa
manager. Hhen (COLOR CLYDE GRAY) is removed, (CAN CLYDE (HIDE-IN FILING-
CABINETS)) should go, toe. The situation mdy be represented as fol | oust
ELEPHhHT—FHf

[color 74##elephant grayls ————--——— > lcan ?P84elephant
thide=in filing-cabinets) )«
| .
|

|
|
| lelephant-pkt {elephant-pkt
| Clyda) | Clyde}
|
| |
|
CURAENT | I
CXT ) ¥
leolor Ciyde gray) = - - - - = - » fcan Clude

(hide-in filing-cabinets))
Figure 111.1
Even though the broken |ines are not uet present, they must be put in.
Then (COLOR CLYDE GRAY) and its supportees can be removed as described in
Sect, 11.A.3, The actualization links must be marked so that future
fetches will know not to add the actualizers again. This process i=s called
detaching the item [COLOR CLYDE GRAY) from its packet.

This mechanisn [uhich in ite full ggnaral}tg is more complex) can be
used for building packets defined in terms of other packets plus certain
exceptions. For exanple, ALBIND-ELEPHANT-PKT may be defined as the
ELEPHANT packet ext with one layer added, in which (COLOR ?4¥ALBIND-
ELEFHANT GRAYl*% is removed and [COLOR ?H#ALEIND-ELEPHAMT MHITE)%= is added.



[4# (IS ALBINO-ELEPHANT CLYDE] is added to a c=t, a FETCH of (COLOA CLYDE

CGRAY] finds the following =ituation:

ELEPHANT=FKT
lcolor 78#elephant grayle ————— » lean 7H8elephant
[hide-in filing-caninets) =
| I
I |
| I
|g====={glaphant-pkt = = =c==-= = |
| THEalbino-glephantl= |
| |
| =EXCEPTI Ol | *EXCERT ] D=
| |
ALBIMNO- | |
ELEPHANT-PKT ) L]
[i{color ?84%albino-elephant [{ican THfalbino-elephant
gray) *ABSENTx] (hide=in filing-cabinets)
=AHSENT %]
CURRENT
CKT

(albino-elephant=-pkt Clydel
Figure 111.2
FETCH finds (COLOR ?P4#ELEPHANT GRAY)=, but in attempting to find all the
elephants, it notices the =EXCEPTION= |inks through the ALBIND-ELEPHANT
packet, and leaves Clyde out.

The “"potential item" implementation of packet-closures has the feature
that it is independent of a particular relation like set-inciusion ["IS").
For example, a large implication like

{loves Fx Tyl

> (jealous-of 7x Tyl A (admires 7x Py
a (habitually {together Px Tyl)
A (uhen (do ?x (for-some movie
[lanbda (m} [attend ¥« Fmll})
{presumably (accompanies Py ?x))
.
can be handled easily by creating a "love-affair® packet, containing 1tems

like [JEALOUS-OF ?PEHLOVER P#SLOVEElw. In fact, implication itself is only

incidentally connected with the use of packets. Any large conjunction of



items sharing free variables may be represented as a packet.

Lf the reader is fesling optimistic about packetz, here are some
cautions. First, although the "semantic baggage" prebler doesn't look so
bad any more, the other problemns Fahlman is concerned With are not attacked
directly by my solution te it. In particular, typical conseguences of
sorething's Being an elephant are mot automatically weable in recognition
of alephants. [nstead, elephant recognition knouledge will be contained
in, say, the jungle packet, with the typical frame organization. ([(This is
as good a place as any %o point out that my absu~d examples im this chapter
are not representative of useful elephant knodledge, but only |llustrate
formal problems amd aoluticnse. )

The biggest draaback to my syster is that 1t relies on @ packet-
closure, such as the ome expressing Clyde's elephanthood, being a temporary
atructurae, freguently added, removed, or abandoned. Otherwiss, if all
krnoun information about all known elephanta is aluwaya around, it will take
too long to smash a potential item like (COLOR ?P#¥ELEFHANT GRAY)l=, and most
of the products of the effort will be useless. Note that there is really
no difference betueen the potential item idea and a particular kind af
consequent (IF-NEEDED) reasoning. This reasoning is, "te find Clyde's
ceolor, find what types of colored entities are around, deduce what they
are, and seo if Clyde iz one of ther.” This deduction is done efficiently
by following the actuzlization pointers down through layers of packet (Cf.
Fig. T11.2), and we get the exception mechanisn cheap by having the system
do it this way, but the combinatorial |imitations are the same. (] believe
that even in bad cases this method is superior to the other approaches
mentioned at the beginning ef this section, which involve prn:ﬂdlng.frnm
Clyde te COLOR. My approach aluays sticks to pathuays which are guaranteed

to lead to present COLOR items (or exceptions}. Furthermore, once they



have been found, the potential item that generated them ie gone.)

In my own research on eluctrnﬁit design <Mclermott, 137&b>, this
assusption that only 3 few closures of a packet will be around at one time
ia justified. A closure of the "af-anplifier" packet will be made and
included in the cxt for & radio receiver when an af amplifier is needed,
but it Wwill not be visiole in cxts for later taska. [ tRink this sort of
organization is typical of problem solving systems [(and is erucial to the
trame theory that mest people acceptl, but there may be situations where it

is inapopropriate. [See Sect. Y.l

IHI.0 Implementation

Although it is too early to tell hew successful my packet scheme can
be, 1 have implemented a preliminary veraion of it, the PANACEA data base
manager. It is based on a modified Conniver data haﬁu Hith a data-driven
indexer but no sub-indexing, which it u:;i @8 an apsociative memory and
item unigquizer. It buffers the user from the actual data by smashing all
potential item data as described abova.

The PANACEA system itself is guite small, although my programming style
has made the TOBH and others system programs it relies on too big and
clumsy. FMost of the complexity of PANACEA is in the routines that maintain
data dependencies and exception links in a consistent state. The actual
potential-item smasher occupies tuo or three pages of LISP code. [t is
hard to tell how fast it runs at this time, since it has not been fully
compiled, and since there are known inaffi:ienci;s in the support routines
for it. The best measure is the number of matches [unifications) and
variant-tests done in the course of a fetch. This number depends on the

complexity of the packets involved, but is much smaller than it would be in



an ordinary deductive scheme.

The item representation | am using is that of Boyer and Moore <1972»,
in which an item is stored a3 a pattern and separate substitution. By
analogy With function closures, the stored substitution is called the
"environment" of the iten. The original purpose was to save storage and
enhance readability of formulas by representing a deduced formula as a
pattern plus bindings acquired during its deductive history. However, it
has the additional advantage for PANACEA that 1t enables potential items to
be actualized by just switching their environments before adding them.
Unfortunately, this is paid for in other ways, since special functions have

to be written to manipulate items stored this way.

I¥ INKDEXING BY CONTEXT

I¥.A Structural Indexing

Except for cancellation, & cxt behaves |ike the union of the sets of
data represented by its cxt layers. Therefore, it le @ particulariy ugly
feature of the classical implementation that it finds all the data likely
te match a pattern and throws auway the ones not inm the current cxt, instead
of taking the union only of the relevant sets. Ex:iuding a layer from the
current cxt only means hiding {t from yourself, not from the data base
machinery. 1t has aluays seemed that these facts make cxts fit only for
toy problems;  that domain-dependent data structures or multiple CPFU" @
Hould be needed for large dets bases.

The problem is eespecially pressing in view of our willingness in Sect.

[IT to have many items like (COLOA PONELEFPHANT GRAY)# nmormally hidden from



vied. Clearly, we cannot afford to have every FETCH of (COLOR x 7C) filter
4 bucket containing a formula for every type of uhjuci dith a usual ecoler.

The first alternative that comes to mind is to rehash any index bucketa
that have gotten too big by the layers their data are present in. On
fetching, the system takes each lager in the fetch cxt and haskes itl.
number to retrieve the relevant sub-buckets, if any. Then it unionz tha
sub-buckets,

The problem with this is that most layers will not mention any data
matching the current fetch pattern. Of 188 layers, most will mention no
COLOR assertions, for example. This scheme is still probably an
improvement over the original. [lts efficiency depends more on the length
of the cxt than the number of matching data anyuhere in the data base,

Hhieh ssems better.]
[¥.A.1 Merge Histery Graphs

So far, | have been treating cxt layers as pearls of data which can be
etrung as we will., This notion is what leaves us with so little structurs
to use Htra. where we need it, In actual practice, it is possible to
impose some useful discipline on the building of exts without losing any
redl flexibillty.

Observe first that ninety-nine percent of all Conniver cxt ranipulation
ig in terms of PUSH-CONTEXT and POP-CONTEXT. PUSH-CONTEXT adds & new | ayar
on the frent of a cxt, and FOP just gets back uhat you started with. (It
ig equivalent to COR.) PBecause we want to manipulate packets, let ;I
pensralize PUSH to merge: take n cxts, union them, and push a neu |ayer
onto the result. Merging may be used to include a packet-closure in a cxt.

(e are alao going te need an implementation of packet-closure ewxclusion,



which | wWill describe later,)

If we restrict ocurselves to merging for the time being, every cxt has n
parents of which it is the child. The process starts with the empty cxt,
With ne layers, called B. All one-layer cxts are children of @ [the resul t

of a merge With n=B). Every layer iz the first laysr of exactly one cxt.

Over time, the structure of cxts might evolve |ike this:

P VI
A key path L

1 @3 - 632 i7 32

18 e 21 432 1)

154321

87854 321)

Merge History Graph
Figure IV.1

Notice that there may be more than one merge of the same tuo cxts. This
tfact is pasically irreluéant. aﬁu [ will ignere 1t, allowing myself to say
"the" merge of tuwo cxts. The ned layer in each cxt ie called its primary
layer, of which it i= the primary cxt,

The merge history graph gives us some structure to werk with. Let us
associate with every bucket in the index its key paths, =ach of which is a
{partial) descending branch through @ cxt graph like Fig. I¥.1. (A "key
path" is a "path used as a key,” not a vitally important path.) A key path
for a bucket must terminate on a cxt which i= @ super-cxt of the ocxt of
each datum in the bucket. For example, in Fig. I¥.L, <8, (1), (54 3 2 11>
Would be a key path for a bucket of data associated with cxts (5 & 3z,

(11 54 321), and (875 & 321). Since a layer unambiguously



identifies a its primary cwt, [ will abbreviate this key path to <@, 1, S».
Hitherto, all buckets have implicitly had key path <@>, since the cxt nf.
every item is a descendant of B. {An item may have more tham one cxt, but
that's not important.]

Hitherto, however, such a bucket has often been able to grow without
bound. Now, When its size exceeds some threshold, let the system rehash it
inte sub-bucketa, each of whose key paths ia 1 longer than the old one it
came from. For exanple, a <@ bucket may be broken down into <@, l», <8,
2>, and <@, 3> sub-buckets. (lf any of these is empty, it should be
omitted.)

Mow say [F al is in layer 1 and (P B) in2. [ will abbreviate this as
[(P aly, Fwolsl, The system can put (P alyl in bucket <8, 1», put (P u}z
in bucket <B, 2>, and omit the <@, 3> bucket. Nou when a (FETCH "(P 7)) is
done in cxt (B 1), the data-base manmager cam ignore some of the (P...)
items altogether. It just "inverts” (B 1) (this may be done in advancel to
give <8, 1, B>, and takes the <@, 1> sub-bucket when it discovera the <B>
bucket to have been rehashed.

Clearly, this process is extendable. Say that ([P clg, P dlg, (P e)y.
(P flg, (P glgl are added to this bucket structure. All have inverted cxts
starting with <@, 1,...», so they are all placed in the <B, 1> sub-bucket.
Mow @ fetch of (P ?) in ext (1) will get [(P ail. F c!E1 (P dig, (P ely.
(P flg, [P glgl, all but two of which are then filtered out. This lou
efficiency indicates the |ist has gotten too big, so it is rehashed into

three sub-buckets:

Key Path Contants

<@, 1= P aly, [P elyl
<@, 1, B» {{p clg, [P digl
<@, 1, 3 (P flg. (P gﬁgf

Now if the fetch is from cxt Eli. the system gets ([P a]1+ P 511} Wi thout



any filtering. If it ie from (B 11, it takes the union of the <@, 1> and
<8, 1, B» sub-buckets to get (P a]l‘ P 9111 P :IE. P d]E]'

So long as only pushes are used to make ned cxts, the fetch algorithm
{once you have a bucketl is

fal invert the fetch cxt

(b} uee successive prefix strings of the inversion as key paths to find
your Way down the sub-bucket trese

icl take the union of the sub-buckets found, filtering out items not
actually in the fetch cxt

Fart (b) will proceed only ao long a@s the as yet uneeen sub-buckets
generated by past ADDs are too big for part (gl to be efficient.
[f merges are allowed, the algorithm Is much the same, except inverting
4 cet Wwill not give @ single key path. For example, in Fig. IV.1, cxt (5 &
32 1) looks |ike
g

e

(L) (2) (3)

{54321)
Figura [V.2

Therefore, we must take into account the likelihood of having more than one
Hay to extend the key path to find sub-buckets. In this case, if the
bucket is toc big, the fetcher nust look in the <B, 1=, <B, 2», and <B, 3>
sub-buckets, and take the union of the results. [f these sub-buckets are
therse|ves broken doun, 1t must avoid finding and filtering the bucket for
(& 3 2) twice, under key paths <8, 2, 4> and <@, 3, &>. Similariy, the
sub-bucket for (5 4 3 2 1) has three key paths. All the system has to do

is compute the “inversion" of (5 4.3 Z 1] {again, in advance, if desired)



i1l (21 (3)
43 2)
543211
Figure IV.3

or one of the other arc-deletions that turns Fig. IV.2 into a tree. Of
course, the routine that first creates an ambiguousiy-named sub-bucket! must
make sure that it is pointed to from all relevant places. Then it will not
matter which s used to find 1t again.

Before extending this concept, let me explain what its costs and
pitfalls are. First, like any table look-up scheme, it trades off the cost
of adding an entry against the cost of retrieving it. Me have to spend
more time and space adding an item if we must index it by cxt. However,
memory is getting cheaper, and this scheme will work Wwith cheap mass
storage (Sect. IV.Cl. Furthermore,if necessary we can arrange to expend
the resources primarily on cxts (like packets) which are to be relatively
pernanent, fetched from more often than added to.

Ee:nnd., it seemz as theugh it could be a big nuisance to have to push a
ned lager onte a cxt every time you do & merge. Hhy not just use the old
top 1'auer, especially if you're doing only retrieval and no new storing?
The_an:uer is, you can; | just wanted the one-to-one correspondence betuween
layers and cwte for purposes of clear exposition. Since it's the complete
ext inversion that guides the fetcher, it dossn't matter whether tuo exts
share the same top layer. (0f course, two cxts sharing a primary layer can
have side effects on sach other.)

Third, there are "pathological® cases where this scheme will not work

any better than the primitive unien case (and practically reduces ta it).



If a ext is shallow and wide, |ike this:

\\

{IP (21 ... e e - === -, (583)

Figure IV.4&
and its items are sparsely distributed among its layers, then we are back
to unstructured unions. However, this is Aot a ¥Ery common case, because
packet-like cxts tend to have been built by merges.  Thus the packet for
“elephant” will include the mamnal packet: as will the packet for "wombat."
If both elephant and wombat packet-closures are added to the current ext,
they will not be children of 8:

)

,;;e,ff”rﬁﬂhhhhjggﬁhal

{1}
&lephant wombat
(68 elephant wombat
nanmal 1)
Figure IV.5

(Here and later, | use, e.g., "elephant” to mean the primary |ayer of the
elephant packet ext.] In general, [ expect there to be a feu "utility
packets" for a given domain {“body part,” for example, in one domain, and
"electrenic component" in another! that will serve as strong keys for
pursuing sub-buckets. Even though most of them will draw a blank for a
given pattern, they will then hide their sub-cxts fe.g.., the cxts for
animals or circuits whose parts they represent] from being used as hau path
elemants at all,

It may be possible to aveld this preblem by artificially ensuring that



no cxt has more than some small numoer W of children. bWhenever a cxt
acguires N+l children, the system could insert dummy layers betusen it and
its children to group them inte fewer than N groups, esach with fewer than N
members, [f the data are sparsely enough distributed, some of the
intermediate cxts will drauw blanks and save us some work. However, |
pradict this is more trounle tham it i3 worth.

A good remedy for many problems of this kind is to store a complete
list of the sub-buckets of a bucket and throw out the sub-buckets with bad
key paths instead of Finding those with good ones. 1f the data are
distributed so that they all fall inte 2 or 3 sub-buckets out of a possible
588 key path extensions, it is worth locking &t it this way.

To see houw this remedy might apoly, consider the case of the creation
of & huge set of data matching a pattern, In juat one cuxt that ia the

result of many pushea:

(598 ... 5@ 5 1) (1

{1 {5E2e S8@ ... 5B 5 1) (4333 58 e ... 1) I
{{F a, (o, (P cl,
wnny KPZNE

Figure [V.B
The problem here is that, uhen fetching from (4333 ... 1), the indexer does
not knod it 18 on & wild-goose chase until the last step. There are aluays

lote of data still around doum there, or there would be just one bucket to

be filtered the old way.



This problem will be solved if ue make @ note in the bucket for cxt (1)
that there is only one non-empty sub-bucket {or two or threel anyuhere
below it in the graph. [f =o, it is better just to keep that bucket around
and test its key paths against the fetch cxt. [In fact, there is no reason
to build the actual graph umtil the nunber of ﬁun—enptg buckets sxcesds
some threshold, and them only the first couple of forks need to be built
immediately. Consequentiy, we can modify the previous algorithm to include
the possibility that a bucket has, say, four or feuer sub-buckets, which
are just filtered a bucket at a time, not by individual item. The graph
structure exiasts only to guide the indexer to this situaticn or the old
case of one small bucket as yet unrehashed. (There is no difficulty in

interleaving layers of graph and amorphous bucket list.] For example:

e

iz 1] [z 1) ... i5 1) - (a1}
(LEBA (3388 [EBDA {Se0a
1Ea a8 cEa ol
1B 1) a8 1) 8 1) 28 1)
i{F a), {{P b}, [P al, {...}
II-II‘ -I-ll'} EP n"l"‘"
' Figure [Y.7

Here, from (1) thers are gight big buckets, too many to examine one by one
{let ua Aassumel. ;Hnueuer, i# the fetch cxt is (4333 ... 1), after one step
down the tres there is only one big bucket left te werry about, the one for

(SBBB ... 1), which can be compared with (4333 ... 1) and ignored.



I¥.A.2 Excision of Cxt Layers

To implement packet-closure exclusion, we have to have & way to remove
cxte from a merge. The way | have developed, although someuhat
unintuitive, serves this purpose well enough. (1t is so unintuitive that
you may want to skip this section, if you wish to take ny word for it that
cxt layer excision Is compatible with cxt imdesing. }

A first guess at hou such alterations ought to work is to generalize
the usual POP-CONTEXT cperation, and allew any layer to be removed from a
cxt. However, this turns out to be not as useful as the seemingly mora
indirect method [ will describe, for tuo reasons. First, we want the
ocperation to implement packet exclusion., Since thers may be more than one
elosure of a packet in a given cxt land a given layer may be in more than
one packet) we must solve the problem of how to "undo® just one inclusion
of a packet, removing only those layers with no other attacheent to the
cxt. Second, the alteration method must preserve the usefulness of any
index structure that may have been previcusly bullt on a cxt.

Therafore, it is desirable to represent an excision in terms of
alterations to the merge histery graph. Let us augnent the usual merge
operation with the 1ink cut: a notation to the effect that one edge of the
-graph ia to be invisible in the result of the merge and cxts (ater derived

from it:
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mu

(4 1)

5321
(E54321)

7EE&2Z1)
Figure 1Y.B
In Fig. I¥.8, layer 7 has been pushed onte (65 4 3 2 1), and lauer 3 has
been deleted. Houever, deleting a link doesn't alwaus have any immediate

aeffect. -

2.1 3 1}

4 3 2 1)

54321

BE54&32)
. Figure 1Y¥.9
In Fig. IV.9, layer 1 cannot be flushed from cxt (5 &4 3 2 1), because there
is another link "&" te it from (4 3 2 1), But (E5 4 3 2), generated by
excigion of “%," has lost layer 1.

Sometimes deleting & |ink remcves more than one layari



(11

2 1 13 1]

4 3 10

5 &321)
B5 2 1)
Figure [V.18
Here, snapping the link removes the last tie to layer 3 as wall as layer &,
Unfortunately, there may be more than one path to a link (which
corresponds to its being part of a tuice-included packet). In this case we

must specify which one we mean:

“ 3210
Gei7n ®i32i
(7654321
87654321

BETES4321)
Figure [V.11

Huré. He mean to delete one "ococurrence” of the link "=," as d-tﬁruinad by
its subsequent history. The cut is specified by its target |ink "x" and
the path takenm te it. Since there remains snother path, lauers 3, 2, and 1
ramnsin.

In general, the ruie is that cutting a link during a8 Berge causes the
excision of all layers whose primary cxte can no longer be reached from the
result of the merge. A cxt cannot be reached only if every path to every

link immediately below it is cut by some node on the path.



In Fig. I¥.12, there are four paths to link "=" from (8 7...11.

i

(1)

(32 1)
1543 21]

4 2 1)

—

754321

E54321)

[B7BE54&321)

BE7E54321)

Figure [V.12

Oniy tue of the patha are cut in producing (3 87654 32 1), so layer 1

remaing in the merge.

If a cut diagram leaves a path anbiguity, my convention is that all

paths to the cut link are sinultanecusly flushed.

Hare ia another example of a merged and cut graph:



2 1) (3 1)

4 3 2 1)

B & 3 2 1)

(TES4321) (18 5 &)

(B75421)

A Z2=uay -
Ambiguous Link

F7654 31}
Figure [V.13
The reader should convince hinself of the correctness, given the merge
history graph, of each of the cxts in Fig. V.13,

MNou that |ink cutting is Undeg‘inﬂd, [ am in @ position to describe its
advantages in more detail. First, it is complete, in the senze that a cxt
uwith any set of layers can be generated by a merge with appropriate cuts.
Namely, merge the primary cxts of each layer, with a cut of every link

between cxis:

—-‘—-—"/’I-’/_EF-‘\—\___‘\.
VE (3 (4)

(WES&321L

Figure I¥.158

Second, as promised, Iink—'nuttl!'l-; is a natural implementation of packet



exclusion. For example, say Clyde and Bonny are elephants, and every

alephant has an LTUSE and an RTUSE.

A
() T
[ husk-pxt [tusk-pkt
{1l tusk {rtusk
THie = THle e~
priamtl ) phantl )

glephant

lelephant-
pkt
Eoniny)

lelephant-
pkt
Clydel
(28 elephant tusk 1)
The packet-closure [TUSK-PKT (RTUSK CLYDE)) can be removed by cutting

the graph this wau:

(1} tuak

[tusk-pkt
(Ttusk

ThHele-

prantl]

[tusk=pkt
(rtusk

Thiale-
phant] )

&lephant

{elephant-
pkt
Bonny)

lelephant-
pkt
Clydel

{26 elephant tusk 1)

(38 28 elephant tusk 1)
Figure I¥,15
The third and main advantage Is that we can use tha same imdexing
strategy as for uncut graphs. All we have to be able to do is invert a ext

with some cut branches. In many case such as Fig, [V.1E, this is trivial,



gsince all we have dore is prume some redundant branches.
Problems arise with cxts like (18 5 &) of Fig. IV.13. Inverted, |ta

graph ia

b weem
. —

@1 G

e

& 3I"11
{5 4|2 1)
18 & &)
Figure 1¥.17
where the dotted areas are not tnere any more. On fetching from this eoxt,
the system needs a ned uay to extend the key path <@s,

The simplest approach is do retrieval the same as befors, but to ignore
the sub-buckets with key paths <B, 1s, <@, 1, 2=, and <@, 1, 3> {if they
have been rehashed), and just use them to get to the <@, 1, 2, 4> sub-
bucket. A solution |ike this may be painful if ue have to follow a long
'phEﬂtDE- trail Ilke this, only to find an empty bucket at the end. But
there 18 no reason mot to hang the <8, 1, 2, &= sub-bucket directly from
the <B> bucket for future reference, and give it the new key path <8, 4s.
Cxt (4 3 2 1) becomes a "pseudo-child™ of B. The |ink from the <B> buckst
to the <8, 4> sub-bucket is only used for sub-cxts of (18 5 4] and ite ilk.
(Notice that the system must do this for every bucket in the index rehashed
on these cxts: having organized the (COLOA...) bucket this Hay will nat
help us on a fetch of (SIZE...).)

The Implementation of cxt exclusien is compatible with the trick of
associating with every bucket a list of |ts sub=buckets, to be used to
speod UP-HEHFEHE! for isclated sub-buckets. (Sect. IV.A.1) Pseudo-child

links do not alter the sub-bucket |ist, but merely ghorten the paths to



some sub-buckets in some clircumstances,
I¥.A.3 Cancallation

So far, | have treated the cancellation of & cmarker (Sect, I11.A.2) as
an infrequent occurrence, It is hanrdled by the still-necessary cxt
filtering atep that is done on the final output from the index. Thia is
proper if only a fed data are cancelled in & particular ext,

However, there may be cases in which cancellation is s0 freguent that
the system | have outlined works less well. (It can't do worse than the
current algorithm.) For auamﬁle. desume again that cxts are being used to
model successive situations, whose approximate time is represented as |tems

of form (TIME t). A seguence might look Iike this:

sss==== CHT] =mcc CHTZ === CHT3 —=-= CHTE ——e= ...
(time ——eee- (time afternoon) ————e-- >
marningl (timg ——-=lf
Tunchl
Figure 1V.18

The X's mark the cancellation of an |tem. Each successive cxt is formed by
pushing the previous one. Consequently, a FETCH of (TIME 7) in CXTé uill
unien the sub-buckets of the <<TIME, CARs» bucket for Cx¥T s 1, 2, 3, and &.
Only one of the three items found will survive the test for cancellation.
By making the string of cxts and items longer, the efficiency can be made
arbitrarily low,

My feeling is that in practice this problem will rot be serious,
because the only cxts that gﬂ} tat enough to reguire sub-indexing are the
more or less permanent ones that are planned too carefuly to be the result
of a long string of cancellations. As discussed in <McOermatt, 1974as,

there is a need to regrganize and epitonize =xt sequences periodically if



they are to represent fong stretehes of time in 3 waeful way., During such
a summary, the cancellations tend to be lett aut,

However, for curious purists whe think it important that an algorithm
aluays work, there are ways of avoiding some of the trouble. If you think
of cancellation as 3 complement operation :Lptrinpu:gd on the union of sub=-
buckets for different layers, the problem is that taking one big set from
another can given an irritatingly small raturn from a large investment
{uhile an expensive union ia aluays worth it). Once the system has done
such a complementation, howaver, it might as well try to save the result
for future reference. For example, in the <<TIME, CAR»> bucket for CHT4,
ue can lafter one referencel mark the sub-bucket ((TIME AFTEANDONI) as

" meaning that the buckets above it should be igrored, not

"corpleta,
unioned and filtered. The problem with this approach is that scme
bookkesping is reguired to unmark it if an item is added or removed from a
super-bucket. (One scheme: every bucket could be marked with its "time of
completion”; @ complete bucket would be accepted only if its time of

completion was after the complation times of all its superiors.)

I¥.B Interaction with the TOBM ]lndexer

| have referred vaguely to the rehashing of eertain "buckets" into
“sub-buckets" by cxt structure. In Sect. [1, | described an independent
bucket=sub=bucket system based on pattern features. [t has to be decided
how these systems should interact.

Logically, there is no particular problen. At each step in a FETCH,
the indexer has a bucket and a remaining set of features and cxts that it
hasn't used yet. [f the bucket is a rau liat, 1% taxes that. 1f it is

broken down by features, it uses the features it has; if by cxt, it guéu



another atep down the inverted fetch cxt, Aftter sach step, it has a fed
bucket and less remaining key material.

The problem is purely strategic. HWhen an oversized bucket needs to be
rehashed, there is a8 choice as to which of the remaining keys to rehash on.
For example, 1f (FETCH "IP A 7]) finde too many items, should it rehash the
<P, CAR> bucket by atoms or by cxta?

Notice that no matter hou long & bucket is, it is “"too long" under just
two kinde of circumstance: either the cxt filtering step or the match
filtering step rejected too large a fraction of ite input. The proper
rehashing strategy, therefore, is to rehash on the key corresponding to
which of the tuwo problems actually occurred. Thus, if there are tuenty
items in the <<P, CAR»» bucket, but only cnz ia in the fetch cxt (4 1), the
eystem should rehash by ext amd take the <<F, CAR», ls sub-buckst. [f 19
of the items are in the cxt, but only one or tuo mateh (F A& 7), it should
rehash by features, and take the <<F, CAR=, <&, CADH»> sub-bucket.

Of course, there are exceptionas. If the cxt filtering step's
inefficiency is due to a lot of cancelled itema, different raiadiuu aras
:al[uﬂ fur; (5ee Sect. [V.A.3.] If a bucket is already rehashed, as is the
<<P, CAR>, <P, CAR»>» sub=buckat of Fig. I1.5, there is no paint in
rehashing by features., The impefficiency can happen in this case only if
the fetch pattern is something like (F 7X 7X] and there are too many items
of the form (P 51 52) with sIes2. (] do not knou if there is a Hay to
handle this case efficiently, or hou important it is.)

HWith this schems, the system can sta~t out with one bucket for all
data, With key «<»>. [t treats this top-level bucket the way it would any

other, rehashing it by relevant key when it gets teo big.



I¥.C Secondary Storage

An advantage of the cxt indexing scheme over the pure cxt filtering of
the TOBR is that it appears to be compatible with efficient use of alow,
non-random-access storage. Because ue do not actually have to see |tems
nat in the current cxt, they can be purged out onte a disk er drum.

However, use of secondary storage will require development of & record
11"!:' system for handling item data. [t will be impossible to use LISP
addresses, since LISP's address space is so small (and since mpst LISPs
make a mess of secondary storage use). In particular, | doubt that synbols
can be stored as LISP-like ators, unless thers is a large obarray-|ike hash
table on the disk for sinulating LISP's obarray. (Presumably, the
analogous "uniguizing” function for items, called DATUM in Conniver, will
have to be foregone, since the system can’'t afford te search the diak for a
variant of a new | ten,]

So there are tuwo approaches one can take: ejther Hait fer a LIS® uith g
large, efficiently organized address space, or gebug the following hack:

Assume sumbols are represented by character gtrings. The sgatem will
have to use LISP's AEAD {or a streamliined version] to read |tens from tha
digk, Df course, we do not have to specify all of the characters in an
item"s printed representation, but only those left unspecified by the keys
to the bucket the characters were found in. For example, if the <<P, CAR>>
bucket of Fig, I1.4 were uritten to the disk, it could be stored as ((a),
(b}, fel, (d), (&)} (plus ext markers), Furthermore, the system can save
time by postponing the actual AEADing of characters when they are brought
im, until they are needed to reconstitute a buckat. That is, there is a

buffer step between asking for a bucket and reading from the disk:



asks for asks for
INDEX-FETCH <mecccc——eu BUFFER €--=======—a= 015«
bucket record
"e=====" indicates data flou
Figure 1V.19
The most crucial requirement for such a system is that it respect

locality of reference with respect to cxt., That g, uhen ore bucket for a
et i brought in, other buckets for different features in the same cwxt
should be stored in the sane records. This can be achieved by keeping a
liet of all buckets and sub=indexas directly associated with a cxt lauer,
and uriting them out together. (This will be cheaper if buckets are broken
down by cxt before features; cf. Sect. IV.B.) Sinpce the indexer nesds tha
sub-buckets for all super-cxts when FETCHing from a cxt, a FETCH from a

long-neglected cxt might cause several whole branches of a sub-index to

brought in from disk,

<P, CAA» <0, CAR=»

Sub-index Sub-index
5]
1

{iF al, P B} (1 (id el

] (e 11 {10 dil
{IP chk [lﬂﬂilﬁ 1] il eb, @ 11
Figure V.28

In Fig. IV.28, the items shown are uritten out in order (P a), (F b), (0
cl, @dl, (Pe), (0el, 10 fl,.... A reference to (P 7] in cxt (1) will
anticipate a reference to (0 7} by eringing 10 ¢} in. |

The complexity of the issues regarding secondary-storage management ia
the main obstacle to implementing the cxt indexing Egateu | have described.
Hithout taking secondary storage into account, an implemsntation would

begin to thrash from external reasons (limitations of POP-18"s and LISPa)



bafore (t1s advantages began to tell,

¥ 50 WHAT?

The reader should by now be convinced that it is possinle to implement
large Flanner-type data bases efficiently, if they can be well organized.
The time regquired to fetch a pattern from a cxt depends on the size of the
pattern and the length of the cxt, and to a small degree on the number of
closely related data that might sericusly confuse a more standard system.

It would be nice if | could prove a theorem regarding the average cost
in time and space of uaing & systen like the one | have described, but
fack the expertise to do it. [ find it hard to imagine cases in which ite
behavior would be unacceptable, but 1 am probably over looking some pecul iar
interactions. Most of the interactions 1 see are actually beneficial. For
example, the more features in a pattern, the more sub-indexes to |look
through, if there are a lot of data. On the other hand, uhen a pattern has
a lot of features, there are unlikely to be mear duplicates of it in other
cxts, so the bucket that is ultimately found will provakly mot be rehashed
by ;ut at all. ©So performance is probably seldom degraded on both types of
key. | can't prove to what degree ‘th-l.! ig true, housver.

The case is even more confused with my packet implementation, which
relies on the organizing power of the frame concept. Here what is neaded
is experience, which [ hope we will all soon have more than enough of. Tha
most pressing guestion we should be asking is, how well does @ program have
to organize itself te avoid choking en irralevant packets or frames?

Brute-force efficiency ies thus & subordinate issue. A more interesting



cause | would like to rally to is the defense of Scott Fahlman's early
paper "A Huypothesis-Frame System for Recognition Problems®™ <1373= from the
critigue in hig recent "A System for Representing and Using Real-Worid
Knowledge.” «<1975> The first paper was an elegant exposition of the
developing frame theory. [t is consistent with the work of Minsky <1974s,
Kuipers <1375», Hinograd <1374», Rubin <1975:, Marcus <1975>, and Moore and
Mewell <1373, moat of whom claim to be working on frames., People uho
admire all this research can see how the mechanisms | have described could
oe helpful,

Or maybe they can't. One problem with my exposition that makes it look
different from previous frame theories is that [ haven't mentioned
recognition at all. FMost of the theories are about nothing but
recognition. The computational problems all revolve arcund guessing a
frame to account for data, filling in that frame with data, proposing
subframes, building super-frames, transforming to nes frames, and ao on.
The only apparent purpose of a frame is to embed it in a more inclusive
framae.

Probably this ig a minor oversight. We are expected to see by
ourselves the many advantages of finding an instance of a laroe "almost
right” chunk of cata |ike a frame. For example, after a medical diagnosia
<Aupin, 1975, a doctor program has a structure of frames representing a
huypothesized conatellation of diseases. How does. it know what treatment to
prescribe? Presumably, there is a frame slot TREATHENT = AMPUTATION, or
something, which can just be read off

Indeed, "just reading it off" seems to be the retrieval mechanism frame
thecrists long for. A frame represents a body of knowledge that is well
understood. "A frame is a specialiat in a small domain.* <Kuipers, 1375,

p. 182> This is why tupical frame contents tend to be slots and values,



With all other information represented as auxiliary procedures. [ndeed,
the siot-value system reminds me of nothing =0 much as a called function
with all its variables bound [with some slots being modelled as optional
arguments with default valuesl. Euipers' frane implementation ie just |like
this. His frames are processes which communicate by sending each other
requests for slot values and the |ika.

All of this concentration on slots, values, and message passing makes
me unhappy. Hhy did all these people abandon the Planner-type data base?
There is no real difference conceptually in how a Planner-type index stores
#lot-value pairs. Clearly, if all assertions are of the form (COLOR AED)
or [TREATHENT AMPUTATION), it doesn't matter whether they are stored in an
g-list er & cxt. The problem lies in representing more complex pieces of
information, like "the way to spot a gnurd I8 that his socks don't match.”
Ha]l. this is @ problem; it might be the Al problem.

Let me suggest that a most important feature of a representation of
facte [ike this is that it be obvious what the fact is and why it is
believed and what might have been believed in its place and how it might
have been used, as well as how it 15 being used. Unless a program is such
an expert that it knous, by reading off a slot, what to do in any
conceivable situation, someday it is going to fail to soive a problem and
have te debug ite world model. [Cf, <Sussman, 1975:) 1t will ha;u to start
from the debris of its previous efforts. If this debris consists only of
program counters of processes confused by conflicting =lots, it will be
useless. A prograsm that relies completely on passing messages of
anticipated form can have only unpleasant surprises. Intelligent people
are pleasant |y surprised by problens all the time.

Anyway, packets and cxts can suppert all the usual ways of daing

recegnition: let the data suggest a frame; focus attention by activating



only a few frames at & time; rely on "demons" (if-added interrupts, for
examplel to model "noticing”; let the frames guide the search: alliow
default facts which are easily replaced. Hopefully they will support
Hhatever other functions frames are going to have.

Fahiman's recent paper, "A System for Aepresenting and Using Real-World
Knouwledge” <13975» repudiates much of this frame tradition, and advecates
the use of large parallel networks of "concept nodes" for storing
information and doing recognition of unfamiliar objects. Fahlman claims in
this paper that relevant subsetis of a Iarga_aer of data cannot be
efficiently retrieved from a typical Al data structure: if "relevance” can
be model led wusing cxts (or framesl, | am confident this claim is false.

His other claim is that the usual frame-theoretic approaches te recognition
[ menticned in the preceding paragraph are not as powerful as doing
parallel intersections of large sets of nodes, each representing the
concepts with a given property, in order to suggest a fariliar concept that
might share all of a set of properties. These intersections, which reguire
special-purpose paral lal hardware, can be made to solve other well-known
problems. Fer example, disambiguation of co-occurrent terms |ike "pltcher”®
and "diamond” can be accomplished by intersecting their sets of possible
contexts.

This proposal stands in direct opposition to the wsual mechanisms
proposed by frame thecrists to do these tasks. Each theory makes different
assumptions about where the complexity lies. The fundamental assurption of
frame thecry is that a problem solver should neet a difficulty by finding
an organized body of knowledge that applies to it. For example, Marcus's

<1975> “uwalt-and-see parser® uses knowledge about choosing between parses
to avald having to back up. 1t doesn’t have probliems regquiring large

intersections for sclutien, because It always phrases its recognition



problems in terms which it knows are correct,

A language system knows that "Fide" 15 a moun, but it also knows under
Hhat circumstances to da pattern-matching on "Fide™ (say, in the
phonologyl, and when to call it a noun (in the syntax). 1t would be
possible to do Fahimanesgue "sacker sweeps® to implement demon calls
triggered by structures the aystem builds, but, given these guidelinas,
which are needed on independent |inguistic grounds, there are cheaper ways.

Another example comes from Haltz's <1972 research on vision of scenss
with shadous. His method would seem to benefit greatly from parallal
marker sueesps, untl[ closer examinaticn reveala that enough sinmple
knouledge has been brought to bear on the problen to make the parallielism
UNNBCABEArY.

It seemz at present that the evidence favors frame theory s account of
the complexities of intelligence, but the issues are too conplex for a
verdict nou. * At any rate, data base efficiency does not seem to be the

iggue,
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