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processing systems. A computalional theory of early visual information processing is

presented, which extends to aboul the level of figure-ground separation. It includes &

precess-oriented theary of texture vision. Maost of the theary has been implemented, and

examples are shown of the analysis of several natural images. This replaces Memos 324 and

334.
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Summary

L. An intreduction is given o a theory of early visual informalion processing. The theory has
been implemented, and examples are given of images at various stages of analysis. :

2. It is argued that the first slep of consequence is to compute a primitive but rich description
of the gray-level changes presant in an image. The description iz expressed in a vocabulary.
of kinds of intensily change (EDGE, SHADING-EDGE, EXTENDED-EDGE, LINE, BLOS efc.).
Waodifying parameters are bound to the elements in the description, specifying their POSITION,
ORIENTATION, TERMINATION peints, CONTRAST, SIZE and FUZZINESS. This descriplion is
obtained from the intensity array by fived techniques, and it is called the primal sketch.

3. For most images, the primal skelch is large and unwieldy. The second important step in
visual information processing is to group its conlenls in @ way that is appropriate for later
recognition,

4. From our eability to interpret drawings wilh little semantic conlent, ene may infer the
presence in our perceptual equipment of symbolic processes that can define “place-tokens® in
an image in various ways, and can group them according to certain rules. Homomorphic
techniques fail to account for many af these grouping phenomena, whose explanalions require
mechanpisms of construction rather than machanisms of deteclion.

5. The necessary grouping of elements in the primal sketch may be achieved by & mechanism
‘that has available the processes inferred from {4), logether with the ability to select items by
first-order discriminations acting on the elemenls’ paramelers. Only occasionally do these
‘mechanisms use downward-flowing information aboul the contents of the parficular image
being processed.

6. It is argued that “non-attentive”™ vision is in practice implemented by these grouping
operations and first-order discriminations acting on the primal skelch. The class of
computations so oblained differs slightly from the class of second-order operations on the
intensity array. ' '

7. The extraction of a form from the primal sketch using these bechnigues amounls lo lhe
separalion of figure from ground. 1t is concluded that most of the separation can be carried
out wsing techniques that do nol depend upon the particular image in question. Therefors,
figure~ground separation can normally preceds the description of the shape of the extracted
farm.

B, Up 1o this point, higher-level knowladge and purpoze are braught to bear on only a few of
the decisions taken during the processing. This relegales the widespread use of downward-
flowing information to a lster slage than is found in curremt machine=vision programs, and



implies that such knowledge should influence the control of, rather than inlerfering with, the
actual data-processing that is taking place lower down.



Introduction t

The wvision problem begins with a large gray-level intensity array, and
culminates in a description that depends on that array, and on the purpose for which it is
being viewed. The question of interest |¢ what has to go on in between. This article oullines
the first part of a theory of visual information processing, and covers the analysis up to about
the level of figure-ground separation. The theory iz restricted to single frame,
manochromatic, monocular images withoul specularilies, reflections, translucency, transparency
or light sources. It is argued that the first step of consequence is to compute a primitive bul
rich description of the gray-level changes present in an image, and that all subsequent
computations are implemented as manipulations of thal description. The description itsell is
called the Primal Sketch. The processes thal compute it, and most of the processes thal
operale directly on it, do not depend significantly upon the particular contents of the imapge.
The control of these processes may.

The approach taken here rests upon the cbservation that a drawing of a scene
adequalely represents the scene, despite the very different gray-level image to which it gives
rise. It therefore seems reasonable to suppose that the artist’s local symbols are in
correspondence with natural symbols, thal ere computed cul of the image during the normal
course of its interprelation. The idea that visual processing should commence with the
extraction of a more or less elaborate line-drawing is nol a new one, bul its successful
implementation has proved elusive. Several edge-detection algorithms have been proposed
(Hueckel (1971 & 1973), McCleod (1970), Rosenfeld & Thursten (1971), Resenleld, Thurston &
Lee {1972, Horn {19723)), bul as thelr proliferation suggests, the resulls of applying them to
natural images have proved generally unsalisfactory. This has led some to believe that an
adeguale line-drawing of & scens cannol be computed unless hypotheses about whal is
present are allowed to influence quite early slages in the processing (Shirai 1973, Freuder
1975} '

How much independent pre-processing can usefully be carried ouwl? Do the
different slages in recognition have fo inferact in a rich and complex way, or may they be
implemented in modules that are to a first approximation independent? These guesliens do -

not depend upon the particular hardware (wel or dry} in which the processing is implemented,
' We need to answer them before we can address “higher-level” problems, because the nature
of the answers delermines the overall stralegy that subsequent processes must employ.

General principles

Several lessons have been learnt over the last ten years from the experience
of designing and implementing large symbolic computer programs. These lessons may be
expressed as four principles for the arganization of complex symbalic processes. Because |
shall need to refer to them, and because recognition and other advanced biclogical
computalions are complex symbolic processes, [ take the liberty of setting oul these
principles here.
I: Principle of explicit maming

Whenever a colleclion ef data is lo be described, discussed or manipulated as a



whole, it should first be given a name. This forms the dala into an enlity in its own right,
permils properties to be assigned o it, and allows other structures and processes to refer to
it. The act of naming is the distinguishing mark of symbalic computation, and this insight was
the single most important idea behind the invention of the programming language called LISP
{MeCarthy of al. 1963) . '
2:Principle of modular design

Any large computation should be split up and implemented as a collection of
small sub-parts thal are as nearly independent ol one another as the oversll task allows. 1f a
process is not designed in this way, a small change in one place will have consequences in
many other places. This means thal the process as a whole becomes extremely difficult to
debug or to improve, whather by a human designer or in the course of nalural evolution,
because a small change lo improve one parl has to be sccompanied by many simultaneous’
compensating changes elsewhere. '

J3: Principle of loast commitment

The principle of least commitment slates that one should never do something
that may later have to be undone, and | believe that it applies to all situations in which
performance is fluent. It is frequently the case during the execution of a recognition ask that
there are a number of possible interprelalions of a particular datum, bul that there is not yet
sufficient evidence to decide between them. In such cases, one should never become
committed to one of the possibililies prematurely, because of the damage that knowledge
associated with that possibility and net with the others can subsequenthy do.

There are two escapes from situations in which the principle is about to be
viclated, One is to "wail and see”, hopeful that the rival possibilities can be maintained
without causing memory overflow unlil information becomes available that cen selecl the
correct interpretation. Mareus (1974) has conjectured that the structure of English syntax s
such thal a wail-and-see parser never has lo wait very long belore seeing. The other escape
is to restructure the problem, by breaking the compulation into more steps, by increasing the
votebulary for expressing ihe possible choives, and by adeing more diagnosiics for deciding
between rival possibilities. The sheer volume of information rules out a wait-and-see
approach to early visual processing, so only the second alternative is a real option there. My
experience has been lhal if one has to disobey the principle of least commilment, one . is
either doing something wrong, or something very difficull.

An application of the principle is frequently accompanied by a parlicular slyle
of computation called comstraint analysis, or filtering. We shall meet il laler in this arlicle,
Where several possibilities compete for the privilege of describing a particular datum, there
usually exist constraints or measures of preference that operate among them. The act of
filtering the possibilities using the constraints is a distinctive style of computation, somewhat
reminiscent of relaxation techniques for solving complex problems in structural engineering.
Constraint analysis was first used effectively in a vision program by Waltz {1972} A neural
implementation of essentially this technique was given by Marr (1971 section 3.1.2).

4 Principle of groceful dogredriion '
The final principle iz designed to ensure that wherever possible, degrading the



data will nat prevent one from delivering al least some of the answer. It amounts to a
cendition on the continuity of the relation between descripltions computed at different stages
in the processing. For example, it would be foolish not to require that a "rough” two-
dimensional description, of the kind thal a vision system might compute out of a drawing,
should enable it to compute a “rough” Thrm-:irrrurumnll description of what the drawing
represents. :

Early Procassing: computing the primal sketch
The primal skelch consists of a primitive but rich description of the intensity
changes that are present in an image. This description consists of a set of assertions,
expressed in terms of a vocabulary of symbols and modifiers thal are powerful enough to
caplure all of the important information in an intensity array. An example of such an
assertion might be
(SHADING-EDGE {POSITION (34 48) (73 a8
(CONTRAST 34)
(FUZZINESS 17)
{ORIENTATION 0))
The design of a method for achieving this rests on two primary decisions; what
types of intensity change are lo be detected, and how expressive Is the vocabulary in terms
of which these changes are lo be described? -

One-dimensional intersity profiles

In an empirical study, Herskovitz & Binford (1970 ppl9, 53, 55) found that the
most comman intensity changes in images of scenes composed of polyhedral objects were step
changes, bumps, and roof-shaped profiles. Qur experience adds some others for more general
scenes (see figure 2). The delection of roof-shaped inlensity changes requires a sensitivity
to changes in intensily gradient. The human visual system has long been known to be
sensilive o such changes (Mach Bards, Ratliff 1965), but of the edge-detection algurithms
referred to in the intreduclion, enly the Binford-Horn line-finder (Horn 1973) incorporates a
sensitivity to the second derivalive of intensily, There iz no evidence that humans are
sensitive to higher derivalives.

. A competent edge-finder therefore needs to be sencitive to discontinuities in
intensity and in intenzity gradient, or (roughly) to measure the first and second derivalives, of
intensity everywhere. Appr‘ﬁximatiuns to these gquantities may conveniently be obtained by
convolving the image locally with "edge-shaped” and "bar-shaped™ masks (ses figure Za). This
follows from the fact thal an edge-shaped mask measures an approximation to the local
intensity gradient in a particular direction. A bar-mask may be thought of as composed of
bwo adjacent edge-masks with opposile signs. It therefore measures approximately the local
change in intensity gradient.

This argument delines the fypes of intensity change thal are o be detecled,
but it is important fo note that simply mabking the measurements is nol enough. Almost every -
paint in almost every natural image gives rise to a non=zero convelution value with almost



FIGURE 1. Selecting the appropriale mask-size from which to compute the description of an
intensity change. The figure illuslrales the convolution of "edge-shaped™ masks of three sizes
with different intensity distributions. The masks are shown to scale on the lefl, and the
widths of their panels are 10, 25, and 60 unils. The three intensity distributions are a step
function (a), a function that increases linsarly over 100 units and is constant elsewhere (b),
and a step change 10 units wide superimposed on the linear one (c). Convolulions with each
of these distributions are exhibited cpposite each mask. In (d), the peak height that oceurs in
each convolution has been plotted against mask size for each intensity distribution; trace 1
" corresponds to distribution (a), trace 2 o dislribution (b), and trace 3 to distribulion {c). Tha
selection criterion chooses a mask size if it corresponds lo a peak or to the left-hand end of a
near plateau in the graph (d). Some distributions cause two mask sizes to be selected.
Distribution (c) is one of these. The mask sizes selecled for it are 10, and a value near 90.
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FIGURE 2. Classifying the gray-level infensily changes present in an image. Examples of the
edge- and bar-masks thal were used appear In (a). The lext classifies the possible
configurations of peak patterns in edge- and bar-mask convelution profiles, and this
clazsification is illustrated by (b) - {T). Edge-mask profiles are marked with a 1, and bar-mask
profiles {(second derivalive) with a 2. The classes are EDGE (b), EXTENDED-EDGE (c), BAR
{Mach Band) (d), LINE {e) and SHADING-EDGE (f). Intermediate lerms are used when the
processor fails lo find sufficient peaks to determine the edge type. :
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FIGURE 3. The intensity distribution exhibiled in {a), whose profile appears in(b), was oblained
by illuminaling a curved piece of white paper from one end, and viewing it from above, Iis
descriplion, computed using an edga-mask of panel-width 8 E'_t:l', and bar-masks of panel-widths
& {d} and B (e}, is as follows: .

EDGE (POSITION B0) (CONTRAST 136) (FUZI

EDGE (POSITION 212) (CONTRAST.3) (FUIT 4)

EDGE (POSITION 292) (CONTRAST 2) (FUZZ SHARP)

EDGE (POSITION 435) (CONTRAST -3) (FUZT &)

EDGE (POSITION 444) (CONTRAST 25) (FULL §)

EDGE {POSITION 464) (CONTRAST 2) (FUZZ 4)

EDGE (POSITION 490) (CONTRAST 1) (FUZZ 4)

EXTENDED-EDGE (POSITION 582) (CONTRAST -12) (FUZZ 9)
{the peaks giving rise to this edge are marked wilh arrows)

- EDGE (POSITION 624) (CONTRAST -20) (FULL &)

EDGE (POSITION 676) (CONTRAST 3) (FUZL 4)

EDGE (POSITION 684) (CONTRAST -4) (FUZL 4)

SHADING-EDGE (POSITION 5700 (CONTRAST -14) (WIDTH 67)

SHADING-EDGE (POSITION 321) (CONTRAST 4) (WIDTH 36}

SHADING-EDGE (POSITION 333) (CONTRAST -8) (WIDTH 73}
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0. Marr i3 EARLY VISUAL PROCESSING

every size and orientation of edge-mazk. We therefore have to compute from this mass of
data some symbol that represents a local plece of edge, and it is this symbaol that will then
stand in correspondence with a line segment in an artists drawing. Fortunately, we can make
a great simplification ab this stage in the analysis. Provided thal measurements are made with
masks Of two or more sizes, the pasitions and sizes of the peaks in the measurements provide
encugh information to compute the description of the underlying intensity changes.
Furthermore provided that a group of peaks is sufficiently isclated from other peaks, the
other peaks may be ignored when analyzing that group.

The reason for this is illustrated in figure 1, which shows the diffarence
betwean edge-mask values oblained using masks of three differant sizes on a step change in
intensity {la), and on a gradual change (Ib)l The results are analogous o the power spectra
of the different kinds of edge. Slep changes are "seen” equally well by all sizes of mask.
Gradual changes are seen increasingly faintly by edze-shaped masks whose dimensions are
smaller than the distance over which the intensity change is taking place. Figure ld shows
this effect in graphic form by plotting the maximum (absolute) edge-mask value against the
matkh width, Trace 1 arises from the step change (figure la), and brace 2 arises from the
gradual intensity change (figure 1b) A good estimate of the spatial extent (“fuzziness™) of an
edge may be made by finding the mask size at which the edge-mask response starls to
giminish. Accordingly the following criferion is used.

Selection eritorion: mask size s is selected at point P in the image wheraver (a) mashs
elightly smaller than s give an appreciably smaller peak at P, and (b) slightly larger masks give
a peak that is not appreciakly larger.

For some intensity distributions, more than one mask size will satisfy the
selection criterion. For the distribution shown in figure Lc, the criterion is satsfied by s = 10
and 5 = 80 to 100 (depending on the algorithm that interprets "appreciably”), as can be seen
from trace 3 of figure 1d. Such a distribution would give rise lo three assertions, a sharp
negative edge close to a sharp positive one, and a fuzzy positive edge that oncompasses the
other twa,

This shows ong way in which the use of mulliple mask sizes is important, but
thera iz another reason which is nearly as important. It is that where a faint edge exists in
the image, it is frequently impossible to tell from a single record which of the peaks ara
impartant, and which are due 1o noise, Malching peaks obtained using different sizes of mask
greatly ads the separation of signal from noise,

The algorithm to which this leads is similar to the non-linear ltechnigue
cdascribed by Rosenfeld & Thurston (1971). The difference lisz in the use to which the
algarithm is put. Rosenfeld & Thurston used it for detecling lexture boundaries at which the
average gray-level change was small compared with the contrast occurring within each
texfure. To achieve suecessiul results, they required thal measurements from mashs of all
sizes be available at all points in the image. {Nofe thal unlike spalial frequency, the denser
the measurements, the mora information one has. [f measurements are made at every paint
and sutficient information is available about the boundaries, a finite intensity array is
completely recoverable from its convalulion with any edge= or bar-shaped mask that is not



too large). In the present theary, texture boundaries are detected by other means, and the
algorithm Is used simply to oblain a measure of the spatial extent of an inlensity change.
Hamce unlike Rosenfeld & Thurston®s application, the distance balwesn measurements can
decrease as the size of the mask increases wilhout weakening the technigue,

The process of computing the description consists then of four operations: (1)
find and match peaks in the messurements oblained from the convolutions of the image with
different sizes of mask; (2) select the relevanl peaks using the selection criterion; (3)
separate the pesks into isclated groups; and (4) parse the local copfiguration of peaks into a
descripltive element. A small number of classes of peak configuration suffices fo cover the
cases thal can actually occur, and they are Hlustrated in higure 2. The figure shows bypical
combinations of peak patferns thal occur in the outpuls from edge-mask (upper records) and
fram bar-mask (lower records) convolutions. Examplas af the masks thal we use appear in
figure Za. The descriptor EDGE iz used when two peaks of about equel and opposile signs
occur together in the bar-mask record (2b). If one bar-mask peak is considerably smaller
than the other, the edge is classified as an EXTENDED-EDGE (2c). Extended-sdges are common
where a convex boundary is illuminated from one side. Figure 2d shows an intensity gradient
edge, and figure 2e corresponds fo the presence of & thin LINE such es can occur in the
highlight from an object’s edge, or a very thin pencil stroke. Finally there are edges lhal
begin and end gradually, and extend over a relalively large distance; these are classified as
SHADING-EDGEs (figure 2f). In addilion to descriptors of edge lype, ome can measure an
edge’s CONTRAST, POSITION, ORIENTATION, and FUZZINESS. This last parameter characterizes

the spatial extent of the edge.

’ Figure 3 gives an example of an intensity distribution that has been described
by this process, and the legend explains which mask convolutions were used. One of the
assertions has been traced back to the convolution profiles, and the arrows point to the peaks
that gave rise lo Ythal particular assertion. The low-level vocabulary that iz wsed in ouwr
present system is nol intended 1o be definitive, but some claim is made to the effect lhat it is
2 good example of the genre, because it rests on the correct measurements, it has sufficient
expressive power to describe most kinds of shading adaqualely, and the method is simple and
works reasonably well,

Extension to tioo dimemnsions :

The method may be extended to two dimensions by carrying oul the analysis
simultansously at several different orientations, It is preferable lo use orientation-dependent
measures for making the initial measurements, for reasons that are illustrated by figure 5. The
image (5a) of & chair {128 points square), whose hall-tone image is figure da and whose
intensity distribution is shown in figure Sb, has besn convelved with "corner-shaped™ masks.
The results appear in figures B¢ & d, but can the reader confidenlly distinguish the corners
from these measurements? The reason for the failure is thal the inverse transform to that
produced by a corner-shaped mask depends crilically on the boundary conditions thal oblain.
Ary method that compules a corner assertion Is saying something aboul this inverse and so

**fa*“

]



FIGLURE 4, This figure provides a high quality reproduction of the ziy images discussed in the
text. a and b were taken with a considerably maodified Information Internalional Incorporated
Vidissector, and the resl were taken with a Telemation TMC-2100 vidicon camera allached to
a Spalial Data Systems digitizer (Camera Eye 108), The full dynamic range from black to
while is represented by 256 gray levels. The images reproduced here were created by an
Optronics P1500 Pholowriter from intensity arrays that measured 128 elements square. This
size of intensily array corresponds to viewing a 1 inch square at 5 feel with the human
retina. The image of the period at the end of this sentence probably covers more than 40
retinal receptors. The reader should view the images from a distance of aboul five fes! when
assessing the performance of the programs. In the inlerests of clarily, these intensity arrays
have been displayed In two other ways (where:helpful). They have been printed on a
¥erographic printer using a font of 16 gray levels; and they have been displayed as a three-
dimensional graph, in which the z coordinale represents inlensily. These displays appear in
the figures. ’
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FIGURE 5. The image of tha chair whose half=tone representation is given in figure da, has
bean printed in a 16 gray-level font in (al A three-dimensional intensily map (height = log
intensity) appears in (b). This image has been convolved with two "corner-masks” (c} and {d).
Detecting corners from such measurements alone is not an easy task. This illustrates why it is
difficult to compute a description of an image directly frem measurements that are nol
directionally asslective,
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FIGURE 6. The first step in computing the primal sketch of the image CHAIR is to compute a
dascription of the gray-level changes at each of eight orientations. The results of doing this
at four orienfations are shown here. The orientations are arranged clockwise from the
wverlical {a), 225 degrees to the vertical (b), horizontal (c), and £5.0 degrees Yo the horizontal.
The descriplions were oblained by scanning every other line perpendicular to the orientation
of the masks, Each division on the axes reapresents ten image elements, Two sizes of bar-
mask and one edge-mask were used. This included a bar-mesk of panel-width 2 and length
10, in addition to the masks shown in figure Za. Each of the lelters in each figure represents
an assertion like thal given in the legend to figure 3. The axes ara marked al multiples of 10
picture elements,
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must take enough information inte account al each point to satisty the dependence on
boundary condilions. This extra informalion may be supplied by looking 2t the results of the
corner mask al neighboring points or by looking at the resulls of some olher measurement
taken in parallel; the important point is that the computation is not ‘a trivial one and it has to
take these exira fectors into account, .
The way to svoid the difficulty is to make the masks so orientation-dependent
that they push the problem back into one-dimension. To take account of the boundary
conditions associated with edge- or bar-shaped masks, one needs to compare quanlities in
only two directions, rather than in all directions round a point. This makes it inherently
simpler to compute the primal sketch from messures obtained with such masks, and it is why
we use them. MNotice that this argument is independent of presumed properties of the image.
It is not impessible to compute the primal skelch from measures that are not directionally
selective, bul a parsuasive case would have o be mads for choosing them. '

Combining orientation-dopendent deseripiions

The number of different oripntations at which the analysis needs to be carried
out is fixed by the first stage al which the local assertions are glued together. The sensitivity
of the masks is nol so important, 25 we can see by calculaling their orientation tuning curves.
The ratio of panel-length to panal-width in the masks thal we use is about 5:1 {figure 2a). 1f
such a mask is rolaled about & step-change edge, the angular distance belween lhe maximum
response and Lf]2 of the maximum is about 35 degrees; so their natural tuning curves are
very broaed. 5 ' . . )
Kuch more critical is the flexibility with which individual elements are combined
_ to form assertions about small edge-segments. This process is the beginning of the grouping
phenomena that ceem to be central to early visual processing, and designing it has been the
main slumbling block in writing compelen! edge-detectors. One of the ‘best of them (Horn
1973} requires that lines should have length 20 before evidence of their existence is accepled
as compelling. Il was designed this way because it substantially shorler elements are
accepted, a large amount of "noise” appears in the outpul. Blobs and blotches, common in
textured images, often give rise to elements that are shorber than this, so ways have to be
found of dealing with the noise.

Figure & gives some examples of the dala with which one has to deal. This
shows the primary analysiz of CHAIR at the verfical (6a), 225 degrees lo the verlical (Ehb),
horizontal (6c} and 45.0 degrees to the horizontal (6d). For each mask orienlalion, the image
has been scanned along every other line perpendicular to the mask, and every peint along
each scan line was considered. We have to use a fine scan because the smallest masks used
were 50 tiny. Each symbol E in figure 6 represents an asserlion like thatl given in the legend
te figure 3. With this scan, it is sufficient to use a primary grouping that operates
independently along eight orientations 225 degrees aparf. The grouping requires that the
types of adjacent primary sszertions (represented by the E's) should roughly mateh, (for
example EDGE malches EXTENDED-EDGE but not LINE), and thal the relative positions of the
two asserlions should be appropriste. Edpes whose orientations lie midway betwesn two



scanning direclions are somelimes found by bath neighboring scans, which shows that eight
orientations are sufficient at this stage. Soms technical problems have lo be dealt with
before this process will work :u:uufullr, but they are too minor ’m:r be treated here (sees
Marr 1376).

By the lime the primitive elemenls have been assembled inlo straight edge-
segments, evidence that they originated lrom eighl scans has almost evaporated. It is
advisable not to quantize the orientations of the glued edge-segments, because doing so can
cause confusion belween a straight line and one containing many small kinks. It is however
possible to devise a discrete representalion syslem for the segments, in which a segment of a
given orientalion is represented by linear interpolation between fixed, standard orientalions.
Mast schemes of this sort require some mutual "inhibition™ between carriers of neighboring
compenents in order that the contrast of the intermediate edge should be represented linearly
(see Marr 1976). Such inhibition arises for purely represeniational reasons. The main force
* behind the initial gluing process is the consistency rtralmns belween nearby primitive
elements.

Mevertheless there turns oul lo be a need for competition between scans al
different orientations, that arises for reasons which are infringic to the analysis not just from
a representational convenience. The surprising parl is thal the competition is required not
belween segments al nearly adjacent orienlalions, but between ones that are nearly
perpendicular.

Figure 7 illustrates the problems that arise. The imege of a rod (figure 4ab,
figures 7a and 7hb) was firs) oparsted on at eight orientalions wilh the process describad in
the last section. Next, these local asserlions have been glued along directions nearly parallel
te the masks from which they were oblained. Each edge-segment in figures 7c & d
represents several of the E's of the type shown in figure 6, and the dalsbase records all of
the paramelers associaled with each segment. Quantities like the edge type, conlras! and
fuzziness are specified al inlervals along the longer segments, since they can change along
them. The longer segments should properly be regarded as a sequence of collinear short
segments. In a full vision system, discontinulties of binocular disparily or molion along such
an edge could still prevént the assembly of its subsegments into a single unit.

The fealure of the data that is relevant ta infer-orientation competition s the
abundance of short segments roughly perpendicular to the primary edge (figure 7). These
are caused by a combinalion of local noise, the image lesselation, and Irruul:riilt,s in the
image. They occur in every image that we have processed. In dealing with them, one cannol
dismiss in a cavalier manner all very shorl segmants: tiny "blobs” in the image also gi.\.ra rise
to them, as can be seen from the same image el coordimate (73, 75). Bul a "small” slement
like this can be ignored if (a) it crosses a "long” element, and (b) its contrast is less than that
of the item il crosses. Figure 7d shows the resulls of removing small noize elements wsing
this criterion., Qccasionally, two small noisy segmenls can accidentally becoms aﬂgnm:l
crealing a longer noisy segment. These are eliminated in the same way.

The crosses in the figure (somelimas rolated to aveid alignment with the ¢u‘gn
segment to which they are attached) signify that the contrast of a direcled segment changes



FIGURE 7. The zecond step in compuling the primal skelch, After the intensity changes have
been described independently at each of 8 orientations, and after local linear assembly of
these descriplions has taken place, the eight deseriptions are combined. This process is
llustrated here for a parliculacly simple image, of the rod whose half-tone representation
appears as figure 4b. The printed version of this image appears as {a), and the intansity map
as (b). The resuits are combined to give the data shown in (¢). Each tiny line segment
corresponds lo two or mere individual assertions (like those illustrated in figure 6), and a
summary of the information associated with each of thoss assertions (as in figure 3} is made
al intervals along each segment. Only information about the positions of the segments and
about the precursors of termination assertions (shown as crosses) can convenlently be
represenled in a diagram; this can give a misleading impression of some items in the primal
sketch. For example, many of the lines on the curved part of the rod on the left of the image
arise from shading edges. They describe the gradual intensity changes thal lake place there,
and should not be thought of in the same way as sharper edges. Shorl noise slimination then
takes place o give (d), which gives a fair idea of the messiness of the uninterpreted primal
skelch, ) ' :






FIGURE &. The difference between the primal sketch and a feature-point array is brought out
by an intensily distribution like (al A measurement taken with a large mashk (b} could
generate a feature-point, but it would not be used in the computation of the primal sketch,
This is because the sharp contrast changes operale through the selection criterion to force
the description 10 be computad from small mazks like those shown in {c). The final descriplion
is of bwo blobs, which define "places”™ (d).



rapidly at that point, possibly becoming zero, They are the precursors of asserlions about
the presence of terminations, and may be thought of as identilying the exact position of a
termination if rne exists near there. The problems that arise in obtaining them are dealt with
elsewhere (Marr 1976). '

One other item of nole in computing the primal sketch is the question of
detecting local, small blobs. Figure 7d al coordinate (73, 75) shows how they appear, and in
fact we make small blobs a primitive element of the primal sketch, together with their
assoclated contrast, and the sizes and orientations of their major and minor axes. The
defining criterion for when an image item is small enough to be called a biob or a line is that
it should be indivisible. This occurs when ona of its dimensions is comparable with the
resolution of the analysis of the image at that peint {abeut 5 image elemenls in length).
Finding blobs from the glued asserlions depends a small amount on elegant programming, and
a large amount on brute force (Marr 1976) '

Some conssguences

' As a model of the information-processing that is performed in area 17 of the
menkey, these ideas have one main consequence whose disprool would destroy the theory, It
iz that the direct culpul of a linear simple cafl is not availabla centrally: Ils signal is used to
creafle an assertion about the presence of an edge, and thal asserlion is what is available.
Creating the azsertion Iz an act of computation - a simple one, since it involves litlle more
than peak malching, applying the selaction eriterion, and the claszification ;"'.‘ peak
configuration; bul it is an act of computaiion nonetheless, The main point is thatl this has to
g0 on, and one should therefore be able to find experimental evidence of it,

A consequence of this view is illustraled in figure B. Suppose thal an image
contains two small close blobs. These blobs give rise o measurements by a number of sizes
of mask - some small ones represented by the ting line segments; and some large ones; like
the one thal is illusiraled. One's & priori inclination might be thal a large Sline-detector®
would fire, and thal this weuld have something lo do wil™ seaing; the two blobs. This view
amounts to supposing thal simple cells wrile directly inlo a fealure-peoint arrey that is. freely
available to subsequent processes. But if our theory is correct, although the large "simple
cell® may indeed fire, ils meessurement will not be used lo compule the description of the two
blobs because their sharp boundaries cause the sssocialed inlensity change to be described
from peaks in the small masks (by the selection criterion). The selection criterion (figure 1d) ’
will cause the description to be compuled from the smaller masks unless the blobs are
severely defocussed. . . .

Another interesting point is that we fail 1o "see" Abraham Lincoln in L. D.
Harmen's coarsely sampled and quantized image of him (reproduced by Julesz 1971 p311) If
measurements from linear simple cells were freely available 1o later processes, and if we
were able fo select them by receplive-Tield size, we would presumably be able to interpret
that image withaut physically defocussing It, According to the present theory, the mazk size
used to compute the description is chosen by the seleclion eriterion, This is consistent with
Harmon & Julesz's (1973) finding thal nodse bands spectrally adjacent to a piclure’s spectrum



are most effective at suppressing recogmilion, since these have mos) effect on mask response
amplitudes near the important mask sizes. Furthermore, because lwo peaks in the graph 1d
- would cause the algorithm to creals two local edge asserlions {with dillerent’ degrees of
fuzziness), it also explains why removal 6f only the middle spatial frequencies from such an
image leaves a recognizable image of Lincoln behind a visible graticule (figure 1d of Harmon &
Julesz 1973) :
The structure of the raw primal shelch as it is firsl delivered from the image
may ba summarized as follows:
P51, The primary visual processor delivers a symbolic descriplion of the intensity changes
present in an image. This description uses the following primilives to describe inltensily
changes: ' '
(i) Various types of EDGE
(i} LIMEs, or thin BARs.
(i) BLOBs .
The items (i) and (i) have been assembled inlo straight segments, and short noise elimination
has occurred. PS2. The following items are compuled and bound to each element of the
descriplion.
(i) ORIENTATION - of an edge, line or bar; of the major axis of
2 blob or a group.
{ii) S1ZE - length and width if both are defined, dizmeler if
major and minor axes are equal or undefined.
(i1} Local CONTRAST,
{iv) POSITION
{w) TERMINATION POINTS.

' Hhat drewings vell us
The second step of the a:.‘guman’r depands on our abilily lo interpret simple
pencil drawings that lack semantic content, By examining suilable examples, we can infer wilh
some confidence thal certain symbolie grouping operalions must exist in ouwr visual syslems.
In order to establish the principle thal grouping processes somelimes exisl, lel us first take
an exireme case. When one looks at figure 9a, there can be little doubl thal some process is
creating a circular contour joining the inner ends of the radial lines. The path of this confour
is marked by an apparent chenge in brighiness, less than but comparable to that observed in
the Kanizsa triangle illusion. Lt
. In deciding how this comes sbout, we may dislinguish three rival theories. (1)
B local process operates to join neighbouring ends of lines. (Z) The inner conlour is
constructed by some mechanism thal relies upon the placing of an edge-shaped mask in the
position shown in figure b, (3) The radial lines cause a "Gestalt” of a "sun” to be jnstantiated
for describing the siluation. This very high-level concept then imposes the cenlour on the
figure,
If (2) were correct, it would disprove the primal sketch theory, since it requires
that a mask output value be identified in & simplistic way with an assarlion sbout a contour.

L]



llustration 9¢c dispreves (2) however, because the contour remains visible despite the
presence of an intensity dislribution that would remove or negate the mask values on which
(2) depends. If (3) were correct, it would imply that downward-flowing information has a
great influence on early processing - a view which runs counter to the second main thrust of
the present theory. Theory (3) assumes 2 sensitivity to radial lines. The lines in figure 9d
are however also radial, and ths is nof immadialely obviouws,

The pessibility remains thal some combination of (1) and {3} is whal really
governs our perceplion of the figure, The important point is that the initial acquisition af the
"sun” concepl probably relies on the mechanisms in (1) Once accessed, this Gestall may
influgnce the computalions to the extent of deciding that the sun part is the foreground and is
therefore slightly brighter, but such an influence determines only one bit of the final
description, Figure e makes it unlikely thal the particular "sun™ gestall has even this effect,
since it provides a similar example in which “ends-of-things™ form a perceplually "brighter”
obscuring region. It is more likely thal the reletive brighiness rellects a (conlext-sensilive)
assumplion eboul the sign of foreground-background contrast,

These examples eslablish that sbstractly defined places in an image can be
essembled into contours that have a definite perceplual existence, and thal this operation
probably precedes the access and application of higher-level concepls 1o the image. From a
computational point of view, it is natural lo think of the phenomena as occurring in two steps.
. Firstly, certain things in drawings cen cauze “place-tokens” to be delined in some absiracl
sense. Secondly, place-lokens so defined can be grouped in various ways.

In how many ways may place-tokens be defined, and in what ways may they be
grouped? We see from figure 10a thal a short line may define a place-token, and from figure
10b that a small blob may also do s, The end of a line that is nol loo shorl, or of a blob with
long major axis and short miror axis may also define a place-loken. (The imprecision of the
boundary between “too long” and "too shorl™ is inconsequential, because near it, both
definitions usually lead to the same groups. The boundary needs to be in the region of 0.5 to
1 degrevs of arc at human foveal resclution.) Small -ollzctions of blobs {figure 10c) or of
lines (figure 10d) may also be trealed as a unit. Because of the variely of ways in which this.
may be done, (figure 10e) it is probably implemented by the rule that a group of place-tokens
may also define a place-token, rather than by different rules for groups of blobs, groups of
lines, groups half of blobs and hall of lines and =0 forlh. Hence although plece-lokens can be
described and lo some extent selected by properlies of items al thal place in the image, the
grouping processes themselves read place-lokens and are insensilive to the particular way a
place-token was obtained. The notion of a place-token is a good example of the principle of
explicit naming, and the separalion of the way in which a plece-token is defined from the ‘way
in which it is grouped illusirates the principle of modular design.

The recursive character of the dafinition of & place-lokan leads one lo evpect
that the grouping processes responsible for them read and wrile into the same storage,
Mherwise, one would heve lo maintain many copies of the storage and grouping processes,
instead of just ore. [f only one copy is kepl, two organisational rules must be observed.
Firstly, whenever a set of place-lokens is grouped to form a new one, onfy the new token is



FIGURE 9. The illusary contour in (a) is somewhal similar to the Kanizsa triangle. It cannol be
due to a simple cell in configuration (b), because the contour is still visible in {c). It cannol be
due to a gestalt of the sun induced by radial lines, because the lines in () are radial, yet this
is not readily apparent. A similar illusion is present in (d) suggesting that the apparent
brightness ol the inner disc reflects a default assumplion about fereground-background
conlrast, rather than any high level influerce. The theory atiributes the contour to local
processes that join nearby ends of hines. Such processes are mechanmisms of construclion
rather than mechanisms of datection.






" FIGURE 10. Place-tokens may be defined in an image.in several ways, and may then be
aggregated by certain slandard lechnigues. Small lines (a) or blobs (b) may define a place-
token. S0 may small colleclions of places (c and d). The definition and the grouping of place-
tokens may be regarded as independent processes, because grouping does not depend on the
way the place-tokens were defined. This is shown by {e), in which every subgroup is defined
differently, yet the collinparity of all of them iz immediately apparent. Information such as
orientation may be bound to a place-token because it was intrinsic fo the element that gave
rise to it. Such informalion may be used lo help grouping.
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subsequently visible lo the grouping processes; and secondty, there is a priority system that
operales among compeling processes such thal (for example) very local groups usually lake
precedence. Inleraction between rival local groupings is often necessary to arrive al a
greuping salisfactory to them all. In figure 10e, the local groups are formed before their
organisation into a line. Grouping processes are sensitive to origntalion, intensity (lightness),
fuzziness, and various measures of the size of an item in the image, as well as to spatial
proximity and collinearity. For example, orientation informalion may or may nol be present,
(10a, 10b, 1la, 11b), and i prosent, it may (1la, 11b) or may not {10a) be used. Indeed
these two siluations can occur in the sams figure (11e). Combinations of spatial proximity and
of similar orientation are often important,

We see from these examples thal place-tokens can be grovped into regions
directly, or into curvilinear assembliss that defing regions by acling as their boundaries. The
Gestalt psyehologists were aware of thesa grouping phenomena (Wertheimer 1923). In
addition to the region-defining facilities just mnn#luﬁed, it the number of places involved is
very small (less than 5 say), the places may form a standard, named configuration (see figure
1le-h) which is evidently described relative ta an axis which is imposed on the figure, and
‘whose default value iz the vertical. '

Separating figure and ground

Before the digression of the last section, we' had reached the point of defining
the raw primal sketch, and of showing how to compute most of the quanlilies in it We also
examined the primal sketch of a very straightforward image, of 8 rod. The primal skelch is
rarely as simple as that, however, Figures 13, 18, 19 and 21 contain examples of the primal
skelches of more complex images, and as ene might expect, they are in general large and
unwieldy collections of data. Furthermaore, it is difficull to see how the complevity of the
primal sketch could be an artifact of our particular choice of primitives: images really are
complex in this way.

The unwleldy nalure of the primal sketch creales what appears to be the main
task of the next stage of visual infarmation processing: how do we select regions that should
be treated as unit forms by subsequent descriplive processes; and can this be done withoul
complex interactions between the primal sketch and hypotheses aboul the nature of the forms
that are being exiracted? In perceptual terms, the compulational problem that we must now
address corresponds to dislinguishing betweesn figure and ground, and it is strongly related to
the problem of texture vision (Julesz 1571 eg pp 105 L In neurophysiological terms, if
area 17 roughly speaking computes the primal skelch, we come mow fo the problem that the
next stage must solve, .

_ We have now reached the core of the first part of the theory. We saw in the

last seclion that cerlain computational facilities exis! and are deployed during our reading of
certain kinds of drawings. It is of course possible thal their existence iz no more tham a
happy accident, which fortuitously allows us lo interpret the idle seribblings of the arlistically
gifted. The present theory was however founded on the obeervation that drawings and
imeges appear surprisingly similar. It takes the view Ihat the processes exhibited by the



drawings of figures 9, 10 and 11 are not empty examples: the ability to perceive the
envelope of a tree, a row of bushes, or even the border of a grass lawn can depend on such
processes, and they are parl of the reason why computer vision has had such problems
finding cbject boundaries in the past. A cemtral assertion of this theory in that these grouping
processes are available precively becavse they are needed to help interpret the primal sketch;
and furthermore that these symbolic procassss, together with first-order diecriminations,
aoting recursively on the description in the primal skeich, are sufficient to oceoumt for most
of the range of "non-attentive” vision of which we are capable, within the class of images 1o
whick this article is rostricted. In olher words, the extraction of forms and associated
“texture” discriminations are actually implementad by first order discriminalions, logelher with
a small number of grouping cperations, acling on the primal skelch of the image. We now
study in more detail lhe grouping operations on which the second part of the theory depends.

Grouping techniques

The purpose of the grouping techrigues oullined here is therefore to partition
the primal sketch inte unil forms, in a way that is useful for subsequent recognition. The'
important question concerns the extent to which hypotheses sboul the nature of a form need
to interact with the processes that extract it. The kssue is one of degres, not principle, since
we shall show that some dewnward-flowing information may be necessary to complete
segmenlation. The demands of speed and fluency make it desirable to minimize lhese
downward influences, and our main conclusion is that for most images, such influences affect
only a small number of the decisions taken during grouping.

The most impartant guideline Tor the design of grouping technigues is the
principle of least commitmant. According to this principle, each slep is irreversible. Hence
only groupings thal are reasonably certain may be made. This forces one to decompose the
overall process into several steps, and to take advantage of as many cues es possible to help
in the decisions that are made at each step. '

Curvilinear aggregation .

We define curvilinear aggregation to mean the assembly of place-tokens that
cenltain an orientation inte a group thal preserves il. This type of aggregation is one-
dimensional rather than two, and the discovery and use of the appropriate local orientation is -
central. to it. We shall see that one-dimensional grouping processes are by far the most
important kind, Two-dimensional grouping seems to be necessary only locally; larger regions
that are characterised by a lexiure predicate are best found by computing their boundaries.

Information that determines whether two items should be grouped comes
initially from their primal sketch paramelers and spatial dispositions. The primal sketeh
parameters are orientation, confrast, type (EDGE, LINE etc.), and fuzziness, Spatial information

Cincludes the distance between the nearest parts of the two items, and the relationship
belween the orientations assoclated with the items and the orienlalion of the line joining their
nearest parls.

Bacause of the principle of least commitment, the first stage of grouping



FIGURE 11. {a} and (b) give examples of groupings in which orienlalion s important. In (c),
orientation is important for constructing the square, bul not for perceiving the collinearily of
the rotated "L's" across the middle. Informalion aboul similarity of orientation is used it it can
be, but it iz not dizastrous. If it cannol be. (d) shows how the orientation of a small aggregate
can be used to form a larger aggregale. Evidence like this suggests thal the results of these
primary aggregation processes are written Into the same slorage as the primal skelch. (e} lo
{h) give some examples of "standard configurations” thal we have found it uselul to recognize.
The reader will probably perceive them relative fo a vertical axis. The VEE shown in (h) is
ysed in figure 21d.
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FIGURE 12. Examples in which semi-local and global constraints can influence local measures
of preference during aggregalion. (a) shows a set of place-lokens, and (b) illustrates the
possible pairwise groupings that local neighborhood analysis permils. The situation after the
first pass is shown in (c). Informalion from this pass makes (d) the preferred link on the
second pass. In (e}, the links between | & 2, and belween | & 3 are evaluated as equally
. desirable on purely local grounds, The overall closure property creales a preference for the
link that uses 2. In the primal sketch, the aflinily between two elemenls is evalualed
simultaneously along several dimensions. Consideralions such ss these can often cause a
particular grouping lo emergs as clearly preferable to any others. :






FIGURE 13. The image PLANT, whose half-tone represenlation appears in figure dc, has been
printed in (a). The actual intensity values that occur within the superimpesed rectangle have
been sot out in table 1. The spatial information from the primal skelch of this image Is given
in (b). Typical segments that arise from the first two stages in curvilinear aggregation appear
in () and (d.. The primal sketch doss not contain quite enough information to separate the
two leaves, and the aggregation lechniques deliver the form (el They have however almost
succeeded in the separation, If one piece of informalion is added (that segment 1 does not
match segment 2), the aggregation routines can separate (&) into (f) and (g
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TABLE 1. The top table shous the intensity values for a small section

of the image PLANT (see figure 12]. The louwer table gives the

values of edge-mask convolutions over the same region. Only residual

dacay from the sdge abowve this region is measurable. Mo general-purpose edge-finder
could discern the edge of the nearer leaf in this part of the image.

Ke 34 35 35 37 38 33 4B 41 42 43 44 L5 4B 4T 4B 49

B8 171 169 187 167 166 165 166 1B4& 167 171 171 174 174 176 173 171
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combines two elements only it they malch in almost all respecls, are very close lo one
ancther, and if there are no other candidales. This typically reduces the number of groupable
elements to aboul a third of the number present in the raw primal skelch. The second stage
can then make use of exlra informalion given by the first, Sometimes, the only extra clues
are thal some segments are now qule long (more than 20 image elements). Such segments
almost cerlainly have some physical imporlance, and hence in the second stage it is safe to
combine two such elements even if they fail to malch on some paramelers, praovided that
there are no other ressonable cendidates in the vicinity. In some siluations, the first stags
will actually have introduced new informalion which can then be used by the second stage.
For example, figure 12a shows a set of places that are to be aggregated, and the possible
links between nearby places are shown dotlad in figure 12b. The first stage of aggregation
inserls the unambiguous segments (12c). By the second slage, an orientalion parameter is
present, end this, logether with the equal specing of the collinear lokens, makes the grouping
shown in figure 12d the preferrad one,

Some results of these two grouping processes are illustrated by the analysis of
the image PLANT, which is exhibited because It raises several points of interest. Figure 13a
gives the printed image whose half-tone representation appears in figure dc, and 13b shows
its primal sketch, Figures 13¢ and 13d show lypical segmenls obtained by the above
processes. Nolice the ragged nature of 13d; this is a common fealure of the high resclution
analysis of indistinct object boundaries. The local orientalion of the raw primal skelch
elements is preserved only roughly hera. _

Having exhausted all those situations in which sggregation takes place more or
less by default, we turn now o the olber lechnique thal characterizes an application of the
principle of least commitment, namely the rejection of relatively unlikely possibilities. The
method is to sel up a node for each of the ends of the segments that were delivered by the
preceeding processes, and to associale with each node a list of the nodes that could possibly
match this one. Molice how this presupposes that each segment-end can be assigned an
internal name (principle of explicit naming). Each of the possible malches is then evalualed
independently along several dimensions, and possibilities that are graded relatively poorly by
several methods of evaluation, and well by nome, are struck oul.

Our present implementation assesses the possible cholces using measures of
relative contrast, orientation, alignment or. misalignment, distance, edge type, fuzziness,
whelther an item acls as a good intermediary belween two segments that mateh very well, and
whether a closed form would be created by choosing a particular segment. The idea behind
this is straightforward. Il has long been known to the Geslall psychologisls thal in a line
drawing, each of these crileria can cause elements to be grouped logether in a "preferred™.
way (Werlheimer 1923). In the much richer environment of the primal skelch, there is
frequently encugh information available to apply all of these eriteria simultanecusly. I most
or all of them agree in selecling a parlicular grouping, ane can be certain enough of ils.
corroctness to select thal grouping irrevocebly. There is nolthing special aboul the way in
which the preferences of the different methods are combined: If an cbvious choice exisls, il
is taken, end any theory would select it If the choice is not obvious cne needs additional



FIGURE 14, About two people in three fail to perceive the original of this image correctly the
first time. The failure is caused by the accidental alignment of the subject’s forefinger and
nose, This failure shows that simple local processes are important during the analysis of an
image, and that delivery by them of an incorrect grouping is not a normal event. This s good
evidence against the hypolhesis that early visual processing is designed around a failure-
driven control structure. The facl thal one does not make the same mislake a second lime
shows thal some downward-flowing informalion can affect sarly processzing. Only & small
emount is required to prevent recurrence of the error. .
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FIGLURE 15, The measure of the overlap of two adjacent, paraliel lines depends on an external
angle, thata. In (a), theta is 90 degrees, which is the value al which iteration begins in the
routines that decode fhiz type of grouping. (b) and {c] show two other values of theta.



information, and a theory thal happened to make the correct choice on marginal grounds in
one image would fail in many others. The interesling point is an empirical one - that these
crude selection criteria are very effeclive. They enable one lo solve zimple images
completely, and almost o solve even quile difficull ones. Applying the criteria is relatively
inexpensive, because the number of segments that exist al this point is much less than the
number of items in the raw primal sketch. This type of filler analysis has the added attraction
of being readily extendable, because the addilion of extra filtering criteria simply leads to the
rejection of more of the candidates at a given node. '

All of the filtering criteria described above are local in the computalional sense
that they do not depend on the results of subsequent higher-level processes, But this does
not mean that the criteria are spatially local. For example, which of the two segments 2 or 3
should be joined with segment 1 in figure 1287 Mo preference exists on purely local grounds,
but a decided preference arises from the closure property of the whole figure. Only a limited
degree of sensitivity to connecledness appears to be present in human visual systems (Minsky
& Papert 1969 p.73), but it is not hard to devise a detection scheme thal would operate
sufficiently well to help in decoding many images, while failing to provide a complete
sensitivity to connectedness, . :

A delailed account of the selection criteria thal appear to be useful will be
Biven in a separale arlicle, but if these melhods are taken as a lheory of part of our cwn
visual systems, there is one consequence thal would follow from even the skelchy account
given here. If it were true that mest of the time, decisions about local groupings are taken
using crileria computed at roughly the same slage of the analysis, rather than by exlensive
use of downward-flowing informetion, it should be possible to find images in which a
particular grouping is greatly lo be preferred on most of the crileria described here, but
which is nevertheless incorrect. Furthermore, if low-level decisions are indeed irrevocable (as
the principle of least commilmen! asserls), their failure should cause severe damage to the
perceplual analysis of an image. Occasionelly, one finds a photograph in which the accidental
alignment of contours causes this to happen, and figure 14 shows an image whose original is
misinterpreted the first time by about two people in three. The accidental alipnmeni of the
forefinger with the nose appears to be responsible for the failure. It is interesting that one
does not make the same mistake the second time one views the picture; and that in lhe real
world where stereo disparily and motion information are also available, one almost never fails
al the same low lavel.

Tranamitsion of unresolved nodes

The next imporiant conseguence of the p'rinr.lpl& ol least commitment is that if
no clear leader emerges from the group of contending possibilities, all possibilities that were
nol rejected are accepled. MNo arbitrary choices are made this early in.lhe analysis. Nodes al
which an ambiguity exists are marked, and themselves form part of the information thal is
sent to the next stage In the processing. The reasen for doing this is that subsequent
processes then have access to whatever trouble-spots exist lower dewn, In the image PLANT,
part of the nearer leat happens to have the same intensity as its background, Table la shows



the actual intensity values in the rectangle (34, 37) to (49, 58), and table Ib shows the -
approximate edge-mask convolution values there. Although some intensity changes do exist .
above this area (near (44, 53)), they are inzufficiently distinguished to allow the grouping
methods described above lo separate the two leaves. Accordingly, all of the segments are
included in ene form, shown logether with the segments it contains In figure lﬂa (1t has
been separated manually Trom the stem, for clarityl

If the nodes that support this figurda are maintained and can be 1nl1mﬂtﬂd h}r
subsequent processes, the amount of infermation needed lo separale the two leaves is very -
small. For example, one decision can suffice; if it is asserled that segment (1) does mot malch
segment (2}, this information is sufficient o sllow the aggregalion filler nelwork to decompose
the imags into the two parts shown in 13f and 13g. So although some downward-flowing
infarmation is neesded hera, the amount required is small provided that it is applied so 2= to
use the partial results oblained ab the lower level,

Theta-aggregation. _
The techniques ducrlbtd above group items that possess an intrinsic
orientalion (or acquire one early in the processing), in a direclion that approximales their
local orientation. Theta-aggregation is the name we have given o the process of grouping a
set of similarly oriented items in a direction thal diffars from Iheir infrinsic orientation, but in
a manner which uses il (e.g. figure 11a). The technique is to use very local grouping
-measures to farm place-tokens thal have an orientation associated with the group rather than
with the local elements, and then to apply curvilinear aggregation to these lokens. The
- difficult part about it is thal measures of the “overlap® of lwo neighboring oriented items
depend upon the engle, thela, that the aggregate makes with each local unit (zee figure 15)
-GS0 theta delermines the aggregation process, but slso depends upon ik For good data, it may
be quite unnecessary o know theta; aggregation of the places thal each individual element
defines will suffice to compute the aggregate. In general however, one will need to take into
account the relation belween lhe overal, direclion of e wggregate and the orientalicn of the
local elements. Viewed from a very abstract level, this computation may be ragacr:lud s 8
process of solving a large number of rathar simple equations. :

Grouping into neighborkoods and regions ;

The second category of grouping operalions concerns the selection of a region
by the presence there of some distinguishing local property. We first examine the nature of
the local properties en which such grouping operations are based, and secondly we make
some brief comments about the growping techniques that operate on them.

Semi-loeal measures, From an abstract point of view, the primal skelch is simply a large body
of data. There is therefore no difficulty in extracting from it cerlain measures and statistics,
computed from the parameters that are bound to the elements of the skelch. Such measures
provide a useful coarse descriplion of & neighberheed in the image. They can be used lo
contrel the type and deplh of the analysis that is applied lo 2 region, er to select
neighbourhoods for subsequent grouping into regions. In parlicular, we shall assume lhal



over moderately sized regions (05 lo 1.0 degrees al foveal resolufion) of the primal sketch,
the following distributions are available to processes that are capable of asking certain
straightforward statistical questions of them:

00. The tolal amount of contour, and number of hhb'r-.. at ditferent contrasts and intensities.
D). ORIENTATION: the tatal number of elements al each orientation, and the tolal conlour
length at each orientalion,

D2, SIZE: distribution of the size paramelers deflined in the primal skalch,

O3, COMNTRAST: distribution of the contrast of items in the primal skelch,

D4, SPATIAL DENSITY: spatial density of place-tokens defined in the dlfl’arnn-t possible way's,
measurad using a small selection of neighborhood sizes.

The straightforward statistical questions referred to sbove include such matters as whether
the distribution is uniform, or has one, two, three or more peaks; If peaks exist, where they
are and their relative sizes. I the distribulions are very scallered {like orientalion
distributions), the corresponding questions are whelher the orientalions are grouped in a
significant way, or are roughly uniformly spread oub. [t has been our experience that
straightforward histogram-based seleclion techniques suffice to drive the inilial examination of
an image. For example, to examine the ch:ra-cl_eris.lil:'i. of the orientation distribution in an
image, one forms an erientation histogram based on len degree wide orientalion buckets. The
figure of ten degrees was oblained empirically, and appears to be suitable for all images. For
speatial grouping on the other hand, the scale at which one applies histogram-based technigques
depends upon the place=loken density af the particular image being analysed. Once again, we
have mot found it desirable to use claborale statisfical tests. If a property is significant, any
reasonable test would defect it. If & property is marginal, no statistical model can aller the
fact.

The final facility that we require is the ability to select from the image those
areas or items thal give rise o obvieus features of these distribulions. For example, in figure
18 items at an orientation of 60 degrees are strongly predominant. We assume that items at
about this orientalion can be selected from the primal skeich for examination by processes
that specialize in grouping such collections together. In anolher image, one might wish lo
examing first all those items whose conlrast was greater than a cerlain value. These facilities
are used only when lesls indicale that they thould be, and thay can help the analysis of an
image by greally restricting the number of elements in the primal sketch that need lo be
considered by a particular process. - .

Boundary of a group of place-tokens. The distribulions DO - D4, and the density of place-
tokens obtained from items in the primal sketch, can lead 1o the splitting of an image inlo
regions, The cenires of figures 10a & 10b provide simple examples of this (see also Julesz
1971 pplOSH). OCsallaghan (19733 & b) surveyed the literalure on dot-grouping studies, and
defined a locel operator for oblaining boundary lines of clusters of dots. The idea is that the
shape and exient of the clusters are subsequently computed from the lecal boundary
elements, .

Our experisnce has been that purely lecal methods can vsually be improved by



adding to them a sensilivity to the “overall” direclion of 2 boundary. The interaction betwean
local and global intormalion resembles that shown in figure 12, The overall direction of a
group of place-tokens can be obtained cheaply by finding peaks in their spatial dnnﬁihl; or its
gradient. Such a mechanism allows one to oblain an overall description of the shape or
orientalion of a group of places before a precise assignment of local boundary points has
been made. This is relatively easy to implament, and it has the advantages of speed and
econamy thal lead one to expect it in our own visual systems,
Relation to texture-vision diseriminaiion

There are several current ideas on lexlure processing. Some suthors have
used Fourier technigues, and in certain circumstances the spatial power spectrum can’
successfully separate different regions (Bacjsy 1972). Others have constructed specialized
operators which sometimes discriminate between regions with different lexture. Probably the
earliest example of this was the Roberls gradient (Roberts 1963). The most inleresting and

comprehensive proposal is due to Julesz, {Julesz {1962), Julesz, Frisch, Gilbert & Shepp

(1973}, Julesz (1978)), who showed thal visual textures that differ only in their third or
higher order slatistical structure are rarely perceplually discriminzble; whereas visual -
textures that differ in their first or second order statislics can ususlly be distinguished, The
important point about this finding lies in ils demanstralion of the essential simplicity of
texture discriminations. Although il gives lillle insight inlo how the processing is implemented,
it does imply that with Volterra series expansion, all coefficients of tarms whose p-order is
higher than 2 are zero, -

The present theory includes texture discrimination with the other technigues
for extracting forms from the primal skebeh, and assects that texture discriminations are
actually implemented by the family of first-order discriminations and grouping processes that
act upon the primal skelch. The class of compultations thal these proceszes define differs
from but overlaps considerably with the class of all second-order operzlions operaling on the
original intensily array, Juiesz (1975 pd3) mentioned in an aside the possibility that texture
vision may rest on “first-order statistics of various simple feature extractors™, but this idea
requires the concepts of the primal skelch and of recursively applied grouping before it can
be brought to Iruition. The principle difference belwesn the two approaches is that the -
present theory is process-orignted, since It rests on the belief that early precessing of viswal
infermalion is in facl implemenled in this way. The second-order discrimination theory
provides a phenomenological description. As wilth many other problems of bin!uﬁl-cﬂ
information precessing, it will be inleresting o see whelher the phenomenology can be
described accurately without explicitly defining the underlying compulational processes,

So that the reader may form an intuilive grasp of the way in which the present
theory accounts for texture vision diseriminalions, let us re-examine some of the textures
devised by Julesz, and follow this with some examples of the texture analysis run on some
natural imeges. Firstly, considar figure 16, Julesz notes that in 16a, the two regioms have
distinct second-order statislics, but nol in figure 16b. Hance, according lo his rule, the two
regions are distinguishable in 16a, but nol in 16b, The present theory explains this as
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FIGURE 16. Examples of {extures devised by Julesz. Al four contain a square region that
differs from the background, (a) and (b) obey Julesz's conjecture; in (c), the second-order
statistical struclure of the square differs from that of the background, yet we cannol
distinguish the two., In {d}, the second-order structure is uniform, yel we can faintly
dislinguizh the square region, The present theory accounts for these examples, and defines a
sel of discriminations that neither containe nor is conlained by the set of all second-order
discriminalions,



FIGURE 17. The spatial information of the primal skefch of the image CHAIR (figure 4a) is
shown in (a) (b} and (c) show two unils lhel emerge after aggregation, and (d) gives lhe .
sheleton of the chair to which this aggregation leads. (This skeleton was oblained by
selecling the longes! edge from each aggregate, and edding the edge whose center lies at (30,
67)). By using the texture that is present in the image, the problem of divining the three-
dimensional shape of the object has been separaled from the problem of recogmizing its
surface structure {one takes {d) as its dala, the other takes units like (b) or {c)). No
dowmward-flowing information was necessary to accomplish this.
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follows: orientation measures are the only distinguishing featlure of the primal sketch
representation, bacause everything else has carefully been held constant, In 16b, the two
basic elements are related by a 180 degree rotation, and so lhe orientation statistics to which
they give rise are idenlical. Hemce the two regions are indistinguishable. In 16a however,
there is more contour at O degrees than al 90 degrees in the central patch, but the opposite
is true in the surround. Hence the two regions are immediately distinguished.

The second exampla appears as figure 162, Some of the modules in the pattern _
have been reflected about a vertical line through their centers. Their second-order statistics
are therefore different. This is an example in which Julesz's generalization fails. The
orientation statistics of the contours, and of the local groups they form, are however
unchanged because only vertical and horizontal orientalions are involved. Hence the present
theory predicls that the two regions should be indistinguishable without seruliny, as indeed
they are. This establishes thal the class of second order discriminations includes some
operations thal are nol included in the class defined here. s

The aggregation lechnigue that was illustrated in figure 12 provides an example
of a technigue whose cemplexily is higher than second-order. Discrimination of the
distinguished region can jusl be made jn figure 16d, and the reason seems to be that the dols
"string together” belter there than in the background. This would be an unusual use of the
aggregation techniques, bul it does allows us to distinguish the region from its surround even
though the second-order statistical structures of the two are idenlical. If does mol however

“allow uz to be confident of the exact boundaries.

Examples af the analysis of somo reel images

In order to illusirate the usefulness of the theory, we shell now examine the
resuits of applying it'to some images. Figure 17a shows the primal sketch of the chair whese
image appeared as figure da. The first thing to realize aboul this image is that it is textured
at all. The texture is so simple that one easily overlooks il, yet il exists in exactly the senze
of this article. The presence of the texture is suggested by the existence of three rlear
peaks in the orientation histogram, and the texture itsell i decoded by grouping nearby ifems
with similar crientations. Figures 17b & ¢ show lypll:n!_ results of running this procedure on
this. image.

Each of these aggregales can now be described simply by position, orientation
m:l extent, and this produces a skeleton of the outline of the chair (figure 17d) - By
considering separalely the structure of just ome sggregate, one could go on to compule a
descriplion of the surface structure of the material out of which the chair is made. Using one
sutonomous technique, we have separated (but not of course solved) the problem of divining -~
the overall three-dimensional shape of the chair from the analysis of its surface properlies.
This ability is wital if the organizetion of subsequant analysis is to be modular.

The nex! example shows a diflicult caze of thela-aggregation. The image
{figure 4d) is not very contrasty because it was taken from a photegraph (Brodatz 1966 plale
D11). The intensity values have been printed in figure 18a, and figure 18b shows the spatial
componen! of the primal sketch. Contours of all infensities, lengths and orientalions are



shown, and as one would expect from an image of this complexily, 18b has 2 somewhat messy
appearance. Part of the mess can be removed by excising elements responsible for the
lowest-contrast peak in the contrast-distribution histogram, bul the crucial clues come from
the orientalion distribution. Table 2 provides rough information aboul the amount of contour
that is presenl al each orientation, from which it is evident that items 2t an orientation of
around 60 degrees predominate, The average lenglh of items at this orientation is 13, These
coarse measures cause the texlure analyzer to attempl to group the edges at this crientation.
Initially, the direction along which grouping should lake place is unknown, so stringent local
grouping parameters are used. This leads lo the primary cluster shown in figure 18¢c. From -
this, an overall direction is oblained {-28 degs), and curvilinear aggregation then groups the
“items into the stripes shown in 18d, e, f, g & h. This completes primary texture processing.
Once the primary stripes have been oblained, the same analysis operaling recursively on
tokens for these siripes serves to relate them lo one-anolher. Notice thal in lhis particular
imagm, same of the stripe information has been picked up directly from the inlensily values
(see figure 18b). This would not be frue of a more herring-bone lexiure, and the analysis
does not depend vpon il. Qur present system is successful at processing herring-bone
textures of similar complexity in which the two types of stripe have the same average
reflectance. Figure 19 demonstrales this. It shows the analysis of figure de, which is a
fragment of Dr. Eric Sandewall®s waisteoal,

Finally, I give two exemples of images that are simple enough for the
aggregation techniques to extract the important forms unsided. The local elements of the
primal sketch of the rod of figure & are grouped by the first lwo stages of curvilinear
aggregation inte the units shown in figures 20a, b & c. The third stage assembles them into
the form shown in 20d. The reason why the first two stages. cannol complele the job is
because of the alternatives near (33, 60), and because the contrast across the iup-hft poriion
of the form has the opposile sign frem the contrast elsewhere. :

Several types of analysis have been applied 1o the image of a loy bear {figure
21). The half-tone image (figure 41} has been printed in 21a, and the inlensity map is given in
2lb. The primal sketch of this image is represented by 2lc. The blobs exiracted from this
image appear in figure 21d, and the routines for describing the spalial disposition of a small
rnumber of places recognize that these form a (VEE FLAT) configuration {cf. figure L1h),
described relative to the default vertical ais. The contours that form the bear’s face appear
in 2le, and 21f shows his muzzle. The extraction of the muzzle made use of the closed form
property, as well as discrepancies in contrast and fuzziness, whila choosing between rival
segments near coordinate (20, 65)

Discwssion
) Perhaps the most novel aspect of these ldeas is the notion thal the primal
sketch exists as a dislinct and circumscribed symbolic entity, computed aulununmu-ﬂ}l from the
image, and operated on repealedly by & number of local geometrical processes, semi-local
measures, and first-order discriminalions. The underlying reason why one needs lo compule
such a thing is thel in some sense a descriplion like the primal sketch is much closer to whal



TABLE 2. First-order measures taken over the primal sketch can control

the execution of grouping technigues. This table shous the

erientation statistica of the primal sketch shown in figure 18. For the
purpose of illustration, the orientations have been

divided into disjoint buckets 15 degrees wide, and the total amount

of contour and number of primal sketch elements are shoun for

gach of these buckets. Any criterion Would judge BB degrees to be an important
orientation. The processor therefore tries to group contours having this
orientation.

ORIENTATION B 15 38 45 6@ 75 9@ 185 129 135 158 165

(degraees)

NUMBER OF B4 7 14 1B 1l 27 42 15 25 28 34 1B
[ TEMS

TOTAL CONTOUR 632 B4 132 116 2213 1E6 6E@ 118 198 384 331 138
LENGTH '



is really there (e, changes in reflactance) than the valuss of edas-shapsd or bar-shaped
mask convolulions, which form a large and confusing set of primary messurements. IF would
be almost impossible o deal with so huge a mass of data unless it were first organized inlo a
readable format, :

The storage into which lhs primal ehateh is written is the direct analog for the '
class of images studizd here of the Cyclopean re!-m that Bdesz (1971} wrote of for binocular’
vision. More subjactively, what it holds corresponds very closely to Yhe Simage”™ that one is
conscious of. This reflects the computational hypothesis that all subsequent analysis raads
the primal sketch, nol the data from which it was compuled. The primal sketch therefore acts
ina gunu:_na senseé as the inlerface at which visual analysis bacomes a puraly symbaolic alfr—lir.._

I'mplicationa for nevrophysiology .

The images stedied here are impoverished by their inharenl lack of rn-nvnrnnh't .
or binocular disparity. Extrema caulion is needed when allempling lo make predictions from .
- such a theory, because of the power of these two types of inform ation. For example, a linear
cell with a esnter-surround roceplive fisld is » hopaless Blob-assertar on its own, The lrng"s.
fly-catching systam only works because the additions] constraint of relative molion is added
(Barlow 1953, Leltvin et al. 15533). Movemsnt information logether with some exlra circuitry
might even lurn o linear simple cell with o bar-shaped receplive field inlo a passable detector.
of bars in an image. But & simplistic scheme of this sorl, though possibly acceplable lo a cal,
would be of little vse for decipharing a motion'sss scene, It is therefore reasenable to expect
that something like & primal shefch is computed, at lzast by the higher primates. IF il is, the
calls thal reprasent the primal sheteh should exiibit the consequences of algorithms like
peak-matching, the selection criterion, and the (otherwise surprizing) inter-orientalion
Cinteractions thal are central to its construction, O would also expecl grouping processes
that use disparity or molion information bo lake as their .||'|p-lll the primal sketch and at least
soma of the clasces of token: oblained from it (Mare 1974)

At & higher level, one would expect lo find exparimental evidence of the
aggregation processes that the I'he-i}ry' predicts should act upon the primal sketeh to
demn:rpnm it into unit forms. Some of lhe.se processas have nalural neural representalions,
and som= do not. For curvilinear and thela- pagregation, one would expect o fingd a call Thal
marks the overall direction of aggregation indepzndently of the oriantation of the loeal
elements, l.'.lnE would also expect o find cells that represent place-lokens {recognizable by
their ins.ensiiivitj-' ‘te what is al the placel; and cells for carrying pleces of the local first-
erder and spalizl-density measures thal are important for lexlure-based definition of regions.
The design of the most likely neural representalion of these processes is not slraightforward.

The influence of higkerlevel knowledge and of purpn:r o
] viseel fﬂfﬂrmn:uﬂh pl‘ﬂtculng i
There are bwo broader implicelions of the theory that are worlh menlioning.
Firstly, the four principles staled st the beginming of the article have survived intact, and .
their guidance has baen valuable, The principle of lzast commitment has played an especialip



50

I N E— -

I

P N

FIGURE 18, The image shown in figure dd (taken from Brodatz (1966 plate D11}, has been
printed in {2) {b) shows a rendering of the spatial component of the primal sketch, The
predominance of items ol an orientation of 60 degress (see ftable 2) causes thela-aggregalion
to be attempted at this orientalion. Initial grouping produces the aggregate (). From this,
theta is found, and the szgregation process then extracts the stripes successfully, as shown in
{d} to (h),
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FIGURE 19, The analysis of this herringbone pattern (figure de) demonstrates that the
methods for distinguishing twe texiure regions do not depend on their having different
everage refleclances, (2] shows the prinfed image, and (b} the spatial component of the
primal sketch. Typical extracted stripes are shown in {c} and (d).
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FIGURE 20. The first two stages of curvilinear aggregation have been run on the primal sketch
of the rod shown in figure 7, and they produced the elements (a), {b) and (c). Once larger
" units have been oblained, the governing parameters can be relaxed, and the elliptical form {d)

iz oblained be the third step. Up 1o this paint, the system has neither computed nor used any
descriplor of the Form's overall shape,



FIGURE 21. The image of a toy bear (figure 41) has been printed in (a), and its intensity map
appears in (b). The zpatial componenl of the primal skelch is illustrated in {c), The three
principal forms exiracted from (¢} appear in (d), (e} and {f). The items in (d) are classed as
BLOBs, and the canfiguration that they form is recognized as a VEE (figure 11h) with modifier
FLAT. The axis relalive to which this configuration was computed is the vertical (delault
value). The outline of the bear fe), and of his muzzle (f) are simple enough to have been
extracted using only the technigues deseribed in this arlicle. The closed form property was
used to help decide between compeling segments al coordinate (20, 65). (The verlical
appears as the negalive ¥ axis, because lhis image was taken wilh the camera on ite zide).



= E R _”
i T
.-....”..”__..L...I._. : b ....I_.._a.....r N
» ..._...m.._q i ...l-.” .
T “.__. ..-.-.r...__.. 1|1.-.1-||".. H._..'f
[ u_\.”_._.:.ru.lf..n S
) TlPCR |- 50
AT o
..u...1..-." .;h _ LS ﬁ.. ¢, %.1.;%,.. ¥
e Pl -__la,.._h
h-j..__“_. i : .1,. -
AL

Figure 3, 2a shows the image of a toy bear,
intensity al each point is represented along the z
the raw primal skelch as oblained from this image. Associaled wilh each line segment are
measures of contrast, type and extent of the inlensity change, position and grienfation. This
image ie so simple thal purely local grouping processes sullice lo exfiract the major
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printed in a font with 16 grey levels. In 3b, the
-gxis, 3¢ lustrates the spatial component of

from the primal skelch. These forms are exhibited in 3d, e & 1.
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important role, by its pressure on us te desizn a system that does not usually do anything

. wrongz. It esused us 19 sbandon ideas shout "iFigger leatures™ in favour of the compulation of

a “trua” descriplion, which lzd in turn to the gradual elucidation of the processes that are
necassary o resd il Tha result is bulky rather than comslay, and requires prodiziovs
computing powar but little compuling sophistication {it could be implemented without difficulty
in a stackless maching). Thare can however be no doubt that in terms of sheer processing
power, the human visual system must be spectacularly well-endowed,

The second implicalion af interest concerns the structure of sub:equnnf
recognition processes. If non-atientive vision may be implemented successfully by
approximalely the sel of methods defined in Ihis arficle, it means that visual "forms” can
usially be extracted from the imege by using knowledge-Tree tachniquez. In other words, the
extraction of a visual form can ususlly preseds its description. From this it follows that it is
sually easy lo compula a cearse deseription of a form before having any idea aboul what the
form is. ' - _ .
If this is true, it greally simplifies the dasign of subsequen! recognition
procasses, becapss iF means thal they too can boe made modular, -For example, the abilify to
compule a coarse descriplion of a form allows one lo describe the shape of a forest withouo!
first compuling delailed descriptions of all the tress: or to compule the shope of the cluster
. of bloba- that forms a distant villaze independently of deciding thal some of those blobs are
actually buildings and thal the cluster iz therefore a village, In the more mendans example of -
figure 21, an= can I:.trrnpuig thal the avarell shape of the tep form is roughly evoidal withau!
first havine ta segmant out and describe saparalzly the bumps thal are the bear’s ears. The
gulonormy of early visual procaszing permils the rale of higher level knowledpe Yo be very
“restricted, and diffarent in kind from its inlervention in programs like Shirai®s (1973}
Dowrnward-flowing information will not affect the line-finding stage (the computation of the
primal sketeh) at all, Its most usual medus aperandi is in choosing which processes are lo be
vsed to read the primal sketch - for exampla by specitying which lexture predicate should be -
psed on the Imasz to salart tha parlz of current intarast, It can also apply cerialp limited
kinds of [lags to crilical segmanta during their aggregation into forms {as in the image PLANT).
Tha coupling bebwsen higher-laval knowledge 2nd the form-extraclion processes is however
much weaker than the coupling belween the different form-exlroclion processes.

It is clearly desirable to have some centrol over which of the possible forms in
a fizure should be deliversd at a given moment from the primal skelch. For example, in the
imaga BEAR there are three possible major forms; the oulline of the head, the muzzle, and
the three blobs that represent his eyes and nose. It seems probable that only one of these
should be made available al a fime, and this in furn raises interesting quesliocns about the
arder in which it is done, the way in which tha three forms and their relative positions are .
described, and the way In which those descriplions Irigger a larger dalastructure and are -
absorbed by it. In living systems, which are powerful enough lo operate in real time, the.
control of the direction of gaze may be rather closely related lo the order in which these
evenls take place,
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