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From understanding computation to understanding neural circuitry

Complex systems, like a nervous system or a developing embryo, must be
analyzed and understood at several different levels. Of course, there are logical and causal
relationships among them, but the important point is that these levels of description are only
loosely related. The underlying philosophical issue here is that reductionism does not imply
constructionism. ,

Thus the question we ask in this essay is, at what level is it necessary and
profitable to study the information processing that is carried out during visual perception?
For a machine that solves an information processing problem, there are four important
levels of description. At the lowest, there is basic component and circuit analysis - how do
transistors, neurons, diodes, and synapses work? The second level is the study of particular
mechanisms; adders, multipliers and memories accessed by address or by content. The third
level is that of the algorithm, and the top level contains the theory of the overall
computation. For example, take the case of Fourier analysis. The theory of the Fourier
transform is well understood, and is expressed independently of the particular way in which
it is computed. One level down, there are several algorithms for implementing a Fourier
transform -- the Fast Fourier transform (Cooley & Tukey 1965) which is a serial algorithm;
and the parallel algorithms of holography that are based on mechanisms of laser optics. All
these algorithms carry out the same computation, and the choice of which one to use
depends upon the particular mechanisms that are available. If one has fast digital memory,
adders and multipliers, one will use the FFT, and if one has a laser and photographic plates,
one will use an optical algorithm. In general, mechanisms are strongly determined by
hardware, the nature of the computation is determined by the problem, and the algorithms
are determined by the computation and the available mechanisms.

Each level of description has its place in the eventual understanding of
perceptual information processing, and it is important to keep them separate. Too often in

attempts to relate psychophysical problems to physiology there is confusion about the level at
which a problem arises - is it related mainly to biophysics (like after-images) or primarily to
information processing (like the ambiguity of the Necker cube)? More disturbingly,
although the top level is the most neglected, it is also the most important. This is because
the structure of the computations that underly perception depend more upon the
computational problems that have to be solved than on the particular hardware in which
their solutions are lmplementqdl. There is an analog of this in physics, where the global
descriptions of thermodynamics represented, at least historically, the first, stage in the study
of matter. A description in terms of mechanisms or elementary components appeared
afterwards. '

' Our main point then is that the topmost of our four levels, that at which
the necessary stucture of computation is defined, is a crucial but neglected one. Its study is
separate from the study of particular algorithms, mechanisms or hardware, and the
techniques needed to pursue it are new. In the rest of the article, we summarize some

examples of theories at the different levels we described, and illustrate the types of
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Figure 1. la shows the distributions of the error angle Y(t), during stationary fixation of 2-
stripe patterns (lower figure). The varying parameter is the angular separation of the two
black, vertical stripes. The upper figure shows corresponding histograms obtained from eq.
(). A typical phase transition occurs in the stationary fixation distribution for a value of
the parameter between 40 and 60 degrees. The nonlinear superposition of very simple, local
mechanisms (see Fig. 5b) leads to such a symmetry breaking. An open loop analysis (for
instance via electophysiology) cannot predict this closed loop behavior without the
phenomenological theory. (From Reichardt and Poggio, 197). The same phase transition
behavior can be observed in the fixation of the Mueller-Lyer figures (fig.lb). The
histograms extend from -180 to }80 degrees and show the fraction of time the fly gazed at
any part of the two figures. The results conform to ti"ne theory’s predictions (from Geiger
and Poggio, 1975). A fly fixates (in the horizontal degree of freedom) the “illusory” vertical
line arising at the boundary between the two sets of parallel horizontal lines in the upper
pattern (fig. Ic). There is no fixation, however, of a similar illusory, vertical line in the

lower pattern. The phenomenological theory correctly predicts these results. (From Poggio
and Geiger, unpublished). ’
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Figure 2. The geometry of constraints on the computation of binocular disparity. 2a
illustrates the constraints for the case of a one-dimensional image. Lx and Ly represent the
positions of descriptive elements from the left and right views, and the horizontal and
vertical lines indicate the range of disparity values that can be assigned to left-eye and
right-eye elements. The use-once condition states that only one disparity value may be
assigned to each descriptive element. That is, only one disparity value may be “"on" along
each horizontal or vertical line. The second condition states that we seek solutions in which
disparity values vary smoothly almost everywhere. That is, solutions tend to spread along
the dotted diagonals, which are lines of constant disparity, and between ad jacent diagonals.
2b shows how this geometry appears at each intersection point. The constraints may be
implemented by a network with positive and negative interactions that obey this geometry,
because the stable states of such a network are precisely the states that satisfy the constraints
on the computation. 2c shows the constraint geometry for a 2-dimensional image. The
negative interactions remain essentially unchanged, but the positive ones now extend over a
small 2-dimensional neighbourhood. A network with this geometry was used to perform the
computation exhibited in figure 6.
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prediction that can emerge from each.
Examples of computational theories

1: Orientation behavior of the fly (Reichardt, 1970; Reichardt & Poggio, 1976)

The approach of Reichardt and Poggio towards an understanding of the
visual control system of the fly is an example of the characterization of a "simple” complex
system. Their description accounts in a quantitative way for orientation, chasing and
Spontaneous pattern preference behavior. Although connections with physiological and
anatomical data are being established, the theory was based on behavioral data. The theory
outlines the basic logical organization of the visual control system of the fly. It holds that
the nervous system performs two main computations on the visual input, one extracting
movement information, the other providing position information. The theory leads to the
equation of motion L .

OY(t) « k() + kao(t) = -DLY(] - r(t) + N(t) o \
where the angular error y(t) represents the instantaneous position of the pattern on the
retina of the fly. The terms on the left hand side represent the flight dynamics (@ is the
moment of inertia of the fly, k is a rotational friction constant). w(t) is the angular speed of
the object. The right hand side describes the instantaneous torque of the fly; the term N(t)
is a zero-mean random process, and is independent of the visual input; r‘« t), a velocity-
dependent optomotor response, is the result of "movement computation™, D(y) carries the
position information, acquired from the visual input by the “position computation”. All
these terms have been characterized quantitatively, through independent experiments.
Through equation (1) the theory predicts a rather complex natural (closed loop) behavior,
characterized by phase transition-like phenomena, and by primitive classifications of
patterns. Figure | gives two examples of behavior that is quantitatively explained by this
approach. The quantitative description of equation (I) could not have been obtained from
single cell recordings or from _histology. Furthermore, it is probably a prerequisite of any
full understanding at the level of circuitry.

_ The other examples that we describe come from work on visual
information processing that has been carried out at the M. L T. Artificial Intelligence
Laboriatory over the last two years, |
2: Stereopsis (Marr 1974, Marr ‘&‘Pbg'gio in preparation) L |

| : Suppose that images of a scene are available, taken from two nearby
points at the same horizontal level. In order to compute stereoscopic disparity, the following
steps must be Car‘rled‘ out: (1) a particular location on a surface in the scene must be chosen
from one image (2) that location must be identified in the other image; (3) the relative
ositions of the two images of that location must be measured. Notice that methods based
n grey-level correlation between images fail to satisfy these conditions because a grey-level

measurement does not define a point on a physical surface independently of the geometry of
the imaging device. The matching must be based on ob Jjective markings that lie on a

{
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physical surface, and so one has to use predicates that correspond to changes in reflectance.
One way of doing this is to obtain a primitive description of the intensity changes that exist
in each image, and then to match these descriptions. Line and edge segments, blobs, and
edge termination points correspond quite closely to boundaries and reflectance changes on
physical surfaces. ! |

The stereo problem may thus be reduced to that of matching two
primitive descriptions, one from each !eye. One can think of elements of these descriptions
as having only position information, like the black, points in a random-dot stereogram,
although in practise there exist ‘sorte rules about which matches between descriptive
elements are possible, and which are not. There are two crucial constraints on the way in
which the left and right descriptions qke combined:
(1) The use-once condition. Each item from each image may be assigned at most one disparity
value. This condition rests on the premise that the items to be matched have a physical
existence, and can be in only one place at a time.
(2) Continuity. Disparity varies smoothly almost everywhere. This condition is a
consequence of the cohesiveness of matter, and it states that only a relatively small fraction
of the area of an image is composed of boundaries. 7
These conditions on the computation are represented geometrically in figure 2a. Later in
the article, we exhibit a network that implements these conditions, and we illustrate how it
solves random-dot stereograms.

3:The Primal Sketch (Marr 1976a)

It is a commonplace that a scene and a drawing of the scene appear very
similar, despite the completely different grey-level images to which they give rise. This
suggests that the artist's local symbols correspond in some way to natural symbols that are
computed out of the image_qt_l'gipg the normal course of its interpretation. The first part of
this visual information theory _a(ss‘e.;t‘s_‘kh(at the first ‘aperation on an image is to transform it
Into its raw primal sketch, which is a primitive but rich description of the intensity changes
that are present. Figure 3 shows an example. In order to obtain this description,
approximations to the first and se‘;:?‘ﬁjd directional dqfﬁrlvativ‘e's of intensity are measured at
several orientations and onfsgx‘m;aij scalés everywhere in the image, and these measurements
are| combined to form local )dgs;cri'ggiye‘assertloqs.f The process of computing the primal
sketch involves five important steps, the first of which can be compared with the
Measurements that are apparently made by simple cells in the visual cortex. One prediction
made by this part of the theory is that a given intensity change itself determines which
simple-cell measurements are used to describe it. This is in direct contrast to theories which
assert tTt eachl' 'simple cell acts ‘as 3 "feature-detector”, whose output is freely available to
éupquu Nt processes. Another prediction is that a’ well-defined interaction must take place
between 'simple-cell like Measurements made at the same orientation and position in the
visual field but with different receptive field sizes.

4 G:roupfing and texture vision (Marr 1976a) | ;
o | The primal sketch of an image is in general a large and unwieldy

N
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Figure 3. 3a shows the image of a toy bear, printed in a fontf with 16 grey levels. In b, the

intensity at each point is represented along the z-axis. Sc illust

rates the spatial component of

the raw primal sketch as obtained fram this image. Associated with each line segment are
measures of contrast, type and extent c}f the intensity change, position and orientation. This
image is so simple that purely local grouping processes suffice to extract the ma jor forms

|

from the primal sketch. These forms‘ are exhib!ited in 3d, e/& f. (from Marr 1976a, figure

-
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‘ i
collection of data. This is an unavoidable consequence of the irregularity and complexity of
natural image#. The next important computational problem is how to decode the primal
sketch. For most images, it is unnecessary to invoke specific hypotheses about what is there

until considerably later in the processing. The theory next applies a number of quite

general selection and grouping processes to elements in the primal sketch. The purpose of

these processes is to organize the local descriptive elements into forms and regions, which are
closed contour, groups that are obtained in various ways. Regions may be defined by their
boundaries, which have been formed by grouping together some set of edge, line, or place-
tokens; or they may be defined by a first-order predicate operating on the primal sketch
elements within it. This second method corresbonds to the definition of a region by a
texture, and it/leads to a theory of the processes on which texture discrimination is based.

| It is important to realize that the descriptive items that may be grouped
here can be very abstract -- like tokens for the end of a line, a blob, or a constructed line
that joins two blobs. Tokens are created for each new group, and these tokens themselves
become sub ject to the operation of the same or similar grouping processes as operated on
elements of the raw primal sketch. The grouping processes are very conservative. They
satisfy a principle that seems to have general application to recognition problems, called the
princtple of least commitment. Only "obvious” groupings are made, and where there is doubt
between two possible groupings, both are constructed and held pending subsequent selection.
Figure 3 illustrates some results of applying these grouping processes.

5:3-D representation of shape (Marr & Nishihara 1975)

The last two components of the theory concern the representation of
three-dimensional shapes. One coinponent deals with the nature of the representation
system that is used, and the other with how to obtain it from the types of description that
can be delivered f rom the primal sketch. The key ingredients of the representation system
are:

(a) The deep structure of the three-dimensional representation of an ob Jject consists of a
stick figure, where in formal terms each stick represents one or more axes in the ob ject’s
generalized cylinder representation. In fact, a hierarchy of stick f igures exists, that allows
one to describe an ob ject on various scales with varying degrees of detail.

(b) Each sticik figure is defined by a propositional database called a 3-D model. The
geometrical structure of a 3-D model is specified by storing the relative orientations of pairs
of connecting axes. This specification is local rather than global, and it contrasts with
schemes in which the position of each axis is specified in isolation, using some
circumscribing frame of reference.

(c) When a 3-D model is being used to interpret-an image, the geometrical relationships in
the model are interpreted by an essentially analogue mechanism called the tmage-space
processor. This mechanism is computationally very simple, and may be thought of as a
limited resolution device for representing the positions of two vectors in 3-space, and for
computing their pro jections onto the image.

(d) During recognition, a sophisticated interaction takes place between the image, the 3-D
model, and the image-space processor. This interaction gradually relaxes the stored $-D
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model onto the axes computed from the image. Some facets of this process resemble the
computation of a 3-D rotation, but a simple computer graphics metaphor is misleading. In
fact, the rotations take place on abstract vectors (the axes) that are not even present in the
original image; and at any moment, only two such vectors are explicitly represented.

| The essence of this part of the theory is a method for representing the
spatial disposition of the parts of an ob Ject and their relation to the viewer.

6:2 1/2 - dimensiona! analysis of an image (Marr & Vatan, in preparation)

‘ In simple images, the forms delivered from the primal sketch correspond
to the contot;n's of physical objects. Finally therefore, we need to bridge the gap between
such forms and the beginning of the 3-D analysis described in the previous paragraph. We
call this 2 1/2 - dimensional analysis, and it consists largely of assigning to contours labels,
that reflect aspects of their 3-dimensional configuration, before that configuration has been
made explicit. The most pojerful single idea here is the distinction between convex and
concave edges and contour segments. One can show that these distinctions are preserved by
orthogonal projections, and can be made the basis of a segmenting technique that
decomposes a figure into 2-D regions that correspond to the appropriate 3-D decomposition
for a wide range of viewing angles (see figure 4). The theory assigns many alternating
figure effects like the Necker cube to the existence of alternative self-consistent labellings
computed at this stage. '

It is perhaps worth mentioning one interesting point that has emerged
from this way of recognizing and representing 3-D shapes. Warrington & Taylor (1973)
described patients with right parietal lesions who had difficulty in recognizing ob jects seen
in “unconventional” views - like the view of a water pail seen from above. They did not
attempt to define which views are unconventional. According to our theory, the most
troublesome views of an object will be those in 'which its stick-figure axes cannot easily be
recovered from the image. ‘The théory therefore predicts that unconveqti'qna;l views in the
Warrington & Taylor sense will toi'li%spénd to those views in which an impartant axis in the

ob ject’s ,generalized,cyliride} fepr ntation is foreshortened. Such views dre by no means

uncommon -'if a 35mm camera is directed t‘owa’rf $ you, you are seeing an unconventional
view of it, since the axis of its lens is foreshortened. Recent observations by S. Carey

(personal communication) appeartq confirm that this definition captures the important
distinction. S ; | |

. o
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- Examples of algorithms and mechanisms

!

o | Bétween the top and bqtt?lln' ‘of our four levels lie dgscriptions of
algopfiqhq\s and, descriptions of mechanisms. The distinction between these two levels is
ra‘uh‘br‘ subtle, since they are ‘often closely related. The form of a specific algorithm can

impose strong constraints on the mechanisms, and conversely. Let us consider three
| T I '

xamples. | o
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Figure 4. Analysis of a contour. The outline (4a) was obtained from a primal sketch just as
figure 3d was obtained from Sa. This contour is smoothed, and then divided into convex
and concave components (3b). The outline is searched for deeply concave points or
segments, which correspond to main segmentation points. There are usually several possible
matches for each such segmentation point, but the correct ma fo:r each may be found by
eliminating relatively poor andidaﬁqs The result; of this is the segmentation shown in 3c.
Once these segments have been defined, corres Jonding| axes are easy to obtain (3d). They
do not usually connect, but may btji lated to ope another by intermediate lines which are
called embedding relations (%), The ulting stick figure is hOWI:’I in 3f which, according
to the theory, is the deep structure on which interpretation of 1Et| is image is based. '

I
|
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Figure 5. Graphical representation (a) of the decomposition of a nonlinear, n-input
"algorithm"into a sum of lnteractlons of v?rnous order. Thﬁ functional representation
S{..x;(t). )} = L. z L {x; (1)} + {x; ©x; O} + ...

where [Mis an n-linear mapping, 'can be read frd’m an appropriate sequence of such
elementary graphs. Fig. 5b shows the graphs that implement the fly's orientation behavior,
studied by Reichardt and Poggio. Several findings suggest that they may correspond to
separate physiological modules. Characteristic functional and computational properties can
be associated to each interaction type. (From Poggio and Reichardt, 1976).
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1:"Simple" algorithms
An algorithm operates on some kind of input and yields a corresponding
output. In formal terms, an algorithm can be thought of as a mapping between the input
and the output space. Perhaps the simplest of all nonlinear operators on a linear space are
the so-called polynomial operators. They encompass a broad spectrum of applications
including all linear problems, and they approximate all sufficiently smooth, nonlinear
operators For this particular class of “simple” algorithms (i.e. representable through a
"smooth"” operator) polynomial representations provide a canonical decomposition in a series
of simpler, multilinear operators. Figure 5 shows this decomposition in terms of interactions
or "graphs” of various orders: in this way an algorithm, or its network implementation, may
be decomposed into an additive sequence of simple, canonical terms, just as in another
context, a function can be conveniently characterized by its various Fourier terms.
Moreover, functional and computational properties can be associated with interactions of a
given order and type.
Poggio & Reichardt (1976) used the polynomial representation of
functionals to classify the algorithms underlying movement, position and figure-ground
computation in the fly’s visual system. The idea was to identify which terms, among the
diversity of the possible ones, are implied by the experimental data. Figure 5 shows the
graphs that play a significant role in the fly's control of flight and, in this sense,
characterize the algorithms involved. The notion that seems to capture best the
“computational complexity” of these simple, smooth mappings is the notion of p-order
(perceptron-order, see Poggio and Reichardt, 1976). Movement computation in the fly is of
order 2, and figure-ground discrimination in the simple case of relative motion depends on
fourth-order graphs, but possibly with p-order 2. A closed or Type 1 (Marr 1976b) theory of
this kind may be a useful way of characterizing preprocessing operations in nervous systems.
The approach has a rather limited yalidity however, since it does not apply to the large and
important class of " nonl-smoo h" algorithms, where cooperative effects, decisions and symbols
play an essential roleP While an arbitrary mpmber of mechanisms and circuits may
implement tnete "smooth" algorithms, it is clear that forward" interactions between Jheurons
are the mostn tdral candidates - ! h
' Although the vgr ous Ievels of description are only loosely related
‘é'nowleq ge of thti computation and t;gthe algorrthfn may sometimes admit mi‘ erences at the
t

west level of! Mat my and physm y. The description of the visual system of the fly at
he cor putationa'l, and functional ievel suggests, for i
iﬂru tures m M‘? .orrespond to the ‘different i:gmpr
cpn Jecture. ov ent computatioq (the term ny(t) of equation (1) and the second qrder
gi’a I-i of Figu ~5) seems to depend mamly on receptor system 1-6, while the position
computation (th e term D(y(t)) of equation (1) and the "self-graph” of Figure 5) seems
dppendent on teceptor system 7-8 (Wehrhahn, 1976 and in preparation). Mutant of
broiophila. no al with respeqt to qhe movement' algorithm. are apparently disturbed iri the
pqsitionf algorithm (Heisenberg. in ﬁreparation) i |

s‘tance, that different, separate neural

utations. Recent data support this
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2: "Cooperative” algorithms

A more general and not closely defmable class of a,lgonthms includes
what one might call cooperative algorithms. Such algonthms may describe bifurcations and
phase transitions in dynamiml systems. An essential feature of a cooperative algorithm is
that it operates on many "input” elements and reaches a global organization via local but
highly interactive constraints. An apparently cooperative algorithm plays a major role in
binocular depth perception (Julesz 1971). The stereopsis computation defined by figure 2a
applies many local constraints to many local inputs to. yield a final sate consistent with these
constraints. Various met:hanismsl could lmplement this type of algorithms. Parallel,
recurrent, nonlinear interactions, both excitatory and inhibitory, seem to represent a natural
implementation. In the stereopsis cape sucha mech;misrlII is illustrated in the rest of figure 2.
This mechanism may be realized through many different components and circuitries. In the
nervous system, however, there are certain very obvl}ous candidates, whtch allow some
definite predictions. For instance, onel is led to con jecture the existence of disparity columns
(actually layers) of cells with reciprocai excitatory short-range interactions on each layer and
long-range inhibitory interactions between layers with the characteristic "orthogonal®
geometry of figure 2. Figure 6 shows that this algorithm succesfully extracts depth
information from random-dot stereograms. The algorithm exhibits typical cooperative
phenomena, like hysteresis and disorder-order transitions. It is lmportant to stress that it is
the computational problem which determines the structure of the excitatory and inhibitory
interactions, and not "hardware” considerations about neurons or synapses. The apparent
success of this cooperative algorithm in tackling the stereo problem suggests that other
perceptual computations may be easy to implement in similar ways. Likely candidates are
"filling-in® phenomena, sub jective contours, figural reinforcement, some kinds of perceptual
grouping and associative retrieval. In fact the associative retrleval network described by

Marr (1971), in connexion wtth a theory of the hlppocampal cortex, implements a cooperative
algortthm

- HE- i
| 0 i o N , : |
| | i

P i , |

3 Procedural dlgonthms hen |
‘ Still ‘another a a‘ Iarger class of algotlthms is represented by the
specif icatlon t#‘ prMurL;. and ¢ e construction ?f‘ manip tion of explioit symbolic
tl crtptipns Fbr example, the S-U resentatton th#d? describeg in part 5 of’the previous
b¢cri ) xplaths how the stick fi represen tation of a viewed object may be obtained
] 141'1 imag e,‘ and mampulat during rec nltioh| The detailed speciﬁ tion of the
orithms iny olved here is qrriéd out by deﬂqing the datastructures that a e created to
Fseht the shtuation anh by specif ying procedures that operate on these dqtastructures in
ac qrid nce w{th the information |currently bemg‘ ddlivered from the image, and that
i{le from stored models. |
| N This \#ay of spécifylng an ‘algorlthm is very general qnd powerful,
ﬂ.th uéh unliké the two other ways'that we discussed, it is a far cry from thei circuitry level
of des riptlon a)tt Whtch ineuroph siological expertments are carried out. In a digital
&Omtuger. one c‘oes not try to bridgd the gap between these two- levels in one step Instead, a
igni i ltruttlon set, qn as;embler. a,htgh level lqnguagé (LISP, ALGOL) and a dompiler
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! t

Figure 6. A pair of random dot stereograms (left and right), the initial state of a network
that implements the algorithm illustrated in figure 2, and the first 9 iterations of the
network operating on this stereo pair. To understand how the f igures represent states of the
network, imagine looking down on it from above. The different disparity layers in the
network are in parallel planes spread out horizontally, and the viewer iis looking down
through them. In each plane, some: ‘nodes are on and some are of f. ‘Each layer in the
network has been assigned a different gray levél so that a node that is switched on in the
lowest layer contributes a dark point to the lmd‘ge and one that is smtched on in the top
layer contributes a lighter point. Initially (iteration 0) the the network is disorganized but in
the final state order has been achieved (iteration 9). The central square has a convergent
disparity of 2 relative to the background, and it thererore appears lighter. The density of
the original random dot stereogram was 50%, but the algorithm succeeds in extracting
disparity values at densities down to less than 5%. Let d‘lenote the state of a cell (either O
or 1) in the 3-D arny of fig.2b at the J-th iteration. Then the algorithm used here reads

qh' Ug {2 - O?Z C(I]h' + uh b

where uy(x) = 0 if x < 8, and = | otherwise; S(ijh) is a neighborhood of cell (ijh) on the
same dlsparity layer; O(ijh) represents the neighborhood of cell (ijh) defined by the
orthogdnal' directions shown in Fig. 2b. Excitation between disparity layers is also present
in a diagonal direction orthogonal to the layers and decreases with increasing disparity
“distances”; D(ijh) represents the corresponding neighborhood.
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are interposed to ease the burden of passing from the description of a computation down to
the specification of a particular pattern of current flow.

' We may eventually expect a similar intermediate vocabulary to be
developed for describing the central nervous system. Hitherto, only one non-trivial
“machine-code” operation has been studied in the context of neural hardware, namely simple
storage and retrieval functions (Marr 1969 & 1971, and Brindley 1970).
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